2 * PowerPC integer and vector emulation helpers for QEMU.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
23 #include "qemu/host-utils.h"
24 #include "qemu/main-loop.h"
26 #include "exec/helper-proto.h"
27 #include "crypto/aes.h"
28 #include "fpu/softfloat.h"
29 #include "qapi/error.h"
30 #include "qemu/guest-random.h"
32 #include "helper_regs.h"
33 /*****************************************************************************/
34 /* Fixed point operations helpers */
36 static inline void helper_update_ov_legacy(CPUPPCState
*env
, int ov
)
39 env
->so
= env
->ov
= 1;
45 target_ulong
helper_divweu(CPUPPCState
*env
, target_ulong ra
, target_ulong rb
,
51 uint64_t dividend
= (uint64_t)ra
<< 32;
52 uint64_t divisor
= (uint32_t)rb
;
54 if (unlikely(divisor
== 0)) {
57 rt
= dividend
/ divisor
;
58 overflow
= rt
> UINT32_MAX
;
61 if (unlikely(overflow
)) {
62 rt
= 0; /* Undefined */
66 helper_update_ov_legacy(env
, overflow
);
69 return (target_ulong
)rt
;
72 target_ulong
helper_divwe(CPUPPCState
*env
, target_ulong ra
, target_ulong rb
,
78 int64_t dividend
= (int64_t)ra
<< 32;
79 int64_t divisor
= (int64_t)((int32_t)rb
);
81 if (unlikely((divisor
== 0) ||
82 ((divisor
== -1ull) && (dividend
== INT64_MIN
)))) {
85 rt
= dividend
/ divisor
;
86 overflow
= rt
!= (int32_t)rt
;
89 if (unlikely(overflow
)) {
90 rt
= 0; /* Undefined */
94 helper_update_ov_legacy(env
, overflow
);
97 return (target_ulong
)rt
;
100 #if defined(TARGET_PPC64)
102 uint64_t helper_divdeu(CPUPPCState
*env
, uint64_t ra
, uint64_t rb
, uint32_t oe
)
107 if (unlikely(rb
== 0 || ra
>= rb
)) {
109 rt
= 0; /* Undefined */
111 divu128(&rt
, &ra
, rb
);
115 helper_update_ov_legacy(env
, overflow
);
121 uint64_t helper_divde(CPUPPCState
*env
, uint64_t rau
, uint64_t rbu
, uint32_t oe
)
124 int64_t ra
= (int64_t)rau
;
125 int64_t rb
= (int64_t)rbu
;
128 if (unlikely(rb
== 0 || uabs64(ra
) >= uabs64(rb
))) {
130 rt
= 0; /* Undefined */
132 divs128(&rt
, &ra
, rb
);
136 helper_update_ov_legacy(env
, overflow
);
145 #if defined(TARGET_PPC64)
146 /* if x = 0xab, returns 0xababababababababa */
147 #define pattern(x) (((x) & 0xff) * (~(target_ulong)0 / 0xff))
150 * subtract 1 from each byte, and with inverse, check if MSB is set at each
152 * i.e. ((0x00 - 0x01) & ~(0x00)) & 0x80
153 * (0xFF & 0xFF) & 0x80 = 0x80 (zero found)
155 #define haszero(v) (((v) - pattern(0x01)) & ~(v) & pattern(0x80))
157 /* When you XOR the pattern and there is a match, that byte will be zero */
158 #define hasvalue(x, n) (haszero((x) ^ pattern(n)))
160 uint32_t helper_cmpeqb(target_ulong ra
, target_ulong rb
)
162 return hasvalue(rb
, ra
) ? CRF_GT
: 0;
170 * Return a random number.
172 uint64_t helper_darn32(void)
177 if (qemu_guest_getrandom(&ret
, sizeof(ret
), &err
) < 0) {
178 qemu_log_mask(LOG_UNIMP
, "darn: Crypto failure: %s",
179 error_get_pretty(err
));
187 uint64_t helper_darn64(void)
192 if (qemu_guest_getrandom(&ret
, sizeof(ret
), &err
) < 0) {
193 qemu_log_mask(LOG_UNIMP
, "darn: Crypto failure: %s",
194 error_get_pretty(err
));
202 uint64_t helper_bpermd(uint64_t rs
, uint64_t rb
)
207 for (i
= 0; i
< 8; i
++) {
208 int index
= (rs
>> (i
* 8)) & 0xFF;
210 if (rb
& PPC_BIT(index
)) {
220 target_ulong
helper_cmpb(target_ulong rs
, target_ulong rb
)
222 target_ulong mask
= 0xff;
226 for (i
= 0; i
< sizeof(target_ulong
); i
++) {
227 if ((rs
& mask
) == (rb
& mask
)) {
235 /* shift right arithmetic helper */
236 target_ulong
helper_sraw(CPUPPCState
*env
, target_ulong value
,
241 if (likely(!(shift
& 0x20))) {
242 if (likely((uint32_t)shift
!= 0)) {
244 ret
= (int32_t)value
>> shift
;
245 if (likely(ret
>= 0 || (value
& ((1 << shift
) - 1)) == 0)) {
246 env
->ca32
= env
->ca
= 0;
248 env
->ca32
= env
->ca
= 1;
251 ret
= (int32_t)value
;
252 env
->ca32
= env
->ca
= 0;
255 ret
= (int32_t)value
>> 31;
256 env
->ca32
= env
->ca
= (ret
!= 0);
258 return (target_long
)ret
;
261 #if defined(TARGET_PPC64)
262 target_ulong
helper_srad(CPUPPCState
*env
, target_ulong value
,
267 if (likely(!(shift
& 0x40))) {
268 if (likely((uint64_t)shift
!= 0)) {
270 ret
= (int64_t)value
>> shift
;
271 if (likely(ret
>= 0 || (value
& ((1ULL << shift
) - 1)) == 0)) {
272 env
->ca32
= env
->ca
= 0;
274 env
->ca32
= env
->ca
= 1;
277 ret
= (int64_t)value
;
278 env
->ca32
= env
->ca
= 0;
281 ret
= (int64_t)value
>> 63;
282 env
->ca32
= env
->ca
= (ret
!= 0);
288 #if defined(TARGET_PPC64)
289 target_ulong
helper_popcntb(target_ulong val
)
291 /* Note that we don't fold past bytes */
292 val
= (val
& 0x5555555555555555ULL
) + ((val
>> 1) &
293 0x5555555555555555ULL
);
294 val
= (val
& 0x3333333333333333ULL
) + ((val
>> 2) &
295 0x3333333333333333ULL
);
296 val
= (val
& 0x0f0f0f0f0f0f0f0fULL
) + ((val
>> 4) &
297 0x0f0f0f0f0f0f0f0fULL
);
301 target_ulong
helper_popcntw(target_ulong val
)
303 /* Note that we don't fold past words. */
304 val
= (val
& 0x5555555555555555ULL
) + ((val
>> 1) &
305 0x5555555555555555ULL
);
306 val
= (val
& 0x3333333333333333ULL
) + ((val
>> 2) &
307 0x3333333333333333ULL
);
308 val
= (val
& 0x0f0f0f0f0f0f0f0fULL
) + ((val
>> 4) &
309 0x0f0f0f0f0f0f0f0fULL
);
310 val
= (val
& 0x00ff00ff00ff00ffULL
) + ((val
>> 8) &
311 0x00ff00ff00ff00ffULL
);
312 val
= (val
& 0x0000ffff0000ffffULL
) + ((val
>> 16) &
313 0x0000ffff0000ffffULL
);
317 target_ulong
helper_popcntb(target_ulong val
)
319 /* Note that we don't fold past bytes */
320 val
= (val
& 0x55555555) + ((val
>> 1) & 0x55555555);
321 val
= (val
& 0x33333333) + ((val
>> 2) & 0x33333333);
322 val
= (val
& 0x0f0f0f0f) + ((val
>> 4) & 0x0f0f0f0f);
327 uint64_t helper_CFUGED(uint64_t src
, uint64_t mask
)
330 * Instead of processing the mask bit-by-bit from the most significant to
331 * the least significant bit, as described in PowerISA, we'll handle it in
332 * blocks of 'n' zeros/ones from LSB to MSB. To avoid the decision to use
333 * ctz or cto, we negate the mask at the end of the loop.
335 target_ulong m
, left
= 0, right
= 0;
336 unsigned int n
, i
= 64;
337 bool bit
= false; /* tracks if we are processing zeros or ones */
339 if (mask
== 0 || mask
== -1) {
343 /* Processes the mask in blocks, from LSB to MSB */
345 /* Find how many bits we should take */
352 * Extracts 'n' trailing bits of src and put them on the leading 'n'
353 * bits of 'right' or 'left', pushing down the previously extracted
358 right
= ror64(right
| (src
& m
), n
);
360 left
= ror64(left
| (src
& m
), n
);
364 * Discards the processed bits from 'src' and 'mask'. Note that we are
365 * removing 'n' trailing zeros from 'mask', but the logical shift will
366 * add 'n' leading zeros back, so the population count of 'mask' is kept
377 * At the end, right was ror'ed ctpop(mask) times. To put it back in place,
378 * we'll shift it more 64-ctpop(mask) times.
383 n
= 64 - ctpop64(mask
);
386 return left
| (right
>> n
);
389 uint64_t helper_PDEPD(uint64_t src
, uint64_t mask
)
398 for (i
= 0; mask
!= 0; i
++) {
401 result
|= ((src
>> i
) & 1) << o
;
407 uint64_t helper_PEXTD(uint64_t src
, uint64_t mask
)
416 for (o
= 0; mask
!= 0; o
++) {
419 result
|= ((src
>> i
) & 1) << o
;
425 /*****************************************************************************/
426 /* Altivec extension helpers */
427 #if defined(HOST_WORDS_BIGENDIAN)
428 #define VECTOR_FOR_INORDER_I(index, element) \
429 for (index = 0; index < ARRAY_SIZE(r->element); index++)
431 #define VECTOR_FOR_INORDER_I(index, element) \
432 for (index = ARRAY_SIZE(r->element) - 1; index >= 0; index--)
435 /* Saturating arithmetic helpers. */
436 #define SATCVT(from, to, from_type, to_type, min, max) \
437 static inline to_type cvt##from##to(from_type x, int *sat) \
441 if (x < (from_type)min) { \
444 } else if (x > (from_type)max) { \
452 #define SATCVTU(from, to, from_type, to_type, min, max) \
453 static inline to_type cvt##from##to(from_type x, int *sat) \
457 if (x > (from_type)max) { \
465 SATCVT(sh
, sb
, int16_t, int8_t, INT8_MIN
, INT8_MAX
)
466 SATCVT(sw
, sh
, int32_t, int16_t, INT16_MIN
, INT16_MAX
)
467 SATCVT(sd
, sw
, int64_t, int32_t, INT32_MIN
, INT32_MAX
)
469 SATCVTU(uh
, ub
, uint16_t, uint8_t, 0, UINT8_MAX
)
470 SATCVTU(uw
, uh
, uint32_t, uint16_t, 0, UINT16_MAX
)
471 SATCVTU(ud
, uw
, uint64_t, uint32_t, 0, UINT32_MAX
)
472 SATCVT(sh
, ub
, int16_t, uint8_t, 0, UINT8_MAX
)
473 SATCVT(sw
, uh
, int32_t, uint16_t, 0, UINT16_MAX
)
474 SATCVT(sd
, uw
, int64_t, uint32_t, 0, UINT32_MAX
)
478 void helper_mtvscr(CPUPPCState
*env
, uint32_t vscr
)
480 ppc_store_vscr(env
, vscr
);
483 uint32_t helper_mfvscr(CPUPPCState
*env
)
485 return ppc_get_vscr(env
);
488 static inline void set_vscr_sat(CPUPPCState
*env
)
490 /* The choice of non-zero value is arbitrary. */
491 env
->vscr_sat
.u32
[0] = 1;
494 void helper_vaddcuw(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
498 for (i
= 0; i
< ARRAY_SIZE(r
->u32
); i
++) {
499 r
->u32
[i
] = ~a
->u32
[i
] < b
->u32
[i
];
504 void helper_vprtybw(ppc_avr_t
*r
, ppc_avr_t
*b
)
507 for (i
= 0; i
< ARRAY_SIZE(r
->u32
); i
++) {
508 uint64_t res
= b
->u32
[i
] ^ (b
->u32
[i
] >> 16);
515 void helper_vprtybd(ppc_avr_t
*r
, ppc_avr_t
*b
)
518 for (i
= 0; i
< ARRAY_SIZE(r
->u64
); i
++) {
519 uint64_t res
= b
->u64
[i
] ^ (b
->u64
[i
] >> 32);
527 void helper_vprtybq(ppc_avr_t
*r
, ppc_avr_t
*b
)
529 uint64_t res
= b
->u64
[0] ^ b
->u64
[1];
533 r
->VsrD(1) = res
& 1;
537 #define VARITHFP(suffix, func) \
538 void helper_v##suffix(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, \
543 for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \
544 r->f32[i] = func(a->f32[i], b->f32[i], &env->vec_status); \
547 VARITHFP(addfp
, float32_add
)
548 VARITHFP(subfp
, float32_sub
)
549 VARITHFP(minfp
, float32_min
)
550 VARITHFP(maxfp
, float32_max
)
553 #define VARITHFPFMA(suffix, type) \
554 void helper_v##suffix(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, \
555 ppc_avr_t *b, ppc_avr_t *c) \
558 for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \
559 r->f32[i] = float32_muladd(a->f32[i], c->f32[i], b->f32[i], \
560 type, &env->vec_status); \
563 VARITHFPFMA(maddfp
, 0);
564 VARITHFPFMA(nmsubfp
, float_muladd_negate_result
| float_muladd_negate_c
);
567 #define VARITHSAT_CASE(type, op, cvt, element) \
569 type result = (type)a->element[i] op (type)b->element[i]; \
570 r->element[i] = cvt(result, &sat); \
573 #define VARITHSAT_DO(name, op, optype, cvt, element) \
574 void helper_v##name(ppc_avr_t *r, ppc_avr_t *vscr_sat, \
575 ppc_avr_t *a, ppc_avr_t *b, uint32_t desc) \
580 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
581 VARITHSAT_CASE(optype, op, cvt, element); \
584 vscr_sat->u32[0] = 1; \
587 #define VARITHSAT_SIGNED(suffix, element, optype, cvt) \
588 VARITHSAT_DO(adds##suffix##s, +, optype, cvt, element) \
589 VARITHSAT_DO(subs##suffix##s, -, optype, cvt, element)
590 #define VARITHSAT_UNSIGNED(suffix, element, optype, cvt) \
591 VARITHSAT_DO(addu##suffix##s, +, optype, cvt, element) \
592 VARITHSAT_DO(subu##suffix##s, -, optype, cvt, element)
593 VARITHSAT_SIGNED(b
, s8
, int16_t, cvtshsb
)
594 VARITHSAT_SIGNED(h
, s16
, int32_t, cvtswsh
)
595 VARITHSAT_SIGNED(w
, s32
, int64_t, cvtsdsw
)
596 VARITHSAT_UNSIGNED(b
, u8
, uint16_t, cvtshub
)
597 VARITHSAT_UNSIGNED(h
, u16
, uint32_t, cvtswuh
)
598 VARITHSAT_UNSIGNED(w
, u32
, uint64_t, cvtsduw
)
599 #undef VARITHSAT_CASE
601 #undef VARITHSAT_SIGNED
602 #undef VARITHSAT_UNSIGNED
604 #define VAVG_DO(name, element, etype) \
605 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
609 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
610 etype x = (etype)a->element[i] + (etype)b->element[i] + 1; \
611 r->element[i] = x >> 1; \
615 #define VAVG(type, signed_element, signed_type, unsigned_element, \
617 VAVG_DO(avgs##type, signed_element, signed_type) \
618 VAVG_DO(avgu##type, unsigned_element, unsigned_type)
619 VAVG(b
, s8
, int16_t, u8
, uint16_t)
620 VAVG(h
, s16
, int32_t, u16
, uint32_t)
621 VAVG(w
, s32
, int64_t, u32
, uint64_t)
625 #define VABSDU_DO(name, element) \
626 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
630 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
631 r->element[i] = (a->element[i] > b->element[i]) ? \
632 (a->element[i] - b->element[i]) : \
633 (b->element[i] - a->element[i]); \
638 * VABSDU - Vector absolute difference unsigned
639 * name - instruction mnemonic suffix (b: byte, h: halfword, w: word)
640 * element - element type to access from vector
642 #define VABSDU(type, element) \
643 VABSDU_DO(absdu##type, element)
650 #define VCF(suffix, cvt, element) \
651 void helper_vcf##suffix(CPUPPCState *env, ppc_avr_t *r, \
652 ppc_avr_t *b, uint32_t uim) \
656 for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \
657 float32 t = cvt(b->element[i], &env->vec_status); \
658 r->f32[i] = float32_scalbn(t, -uim, &env->vec_status); \
661 VCF(ux
, uint32_to_float32
, u32
)
662 VCF(sx
, int32_to_float32
, s32
)
665 #define VCMPNEZ(NAME, ELEM) \
666 void helper_##NAME(ppc_vsr_t *t, ppc_vsr_t *a, ppc_vsr_t *b, uint32_t desc) \
668 for (int i = 0; i < ARRAY_SIZE(t->ELEM); i++) { \
669 t->ELEM[i] = ((a->ELEM[i] == 0) || (b->ELEM[i] == 0) || \
670 (a->ELEM[i] != b->ELEM[i])) ? -1 : 0; \
673 VCMPNEZ(VCMPNEZB
, u8
)
674 VCMPNEZ(VCMPNEZH
, u16
)
675 VCMPNEZ(VCMPNEZW
, u32
)
678 #define VCMPFP_DO(suffix, compare, order, record) \
679 void helper_vcmp##suffix(CPUPPCState *env, ppc_avr_t *r, \
680 ppc_avr_t *a, ppc_avr_t *b) \
682 uint32_t ones = (uint32_t)-1; \
683 uint32_t all = ones; \
687 for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \
689 FloatRelation rel = \
690 float32_compare_quiet(a->f32[i], b->f32[i], \
692 if (rel == float_relation_unordered) { \
694 } else if (rel compare order) { \
699 r->u32[i] = result; \
704 env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
707 #define VCMPFP(suffix, compare, order) \
708 VCMPFP_DO(suffix, compare, order, 0) \
709 VCMPFP_DO(suffix##_dot, compare, order, 1)
710 VCMPFP(eqfp
, ==, float_relation_equal
)
711 VCMPFP(gefp
, !=, float_relation_less
)
712 VCMPFP(gtfp
, ==, float_relation_greater
)
716 static inline void vcmpbfp_internal(CPUPPCState
*env
, ppc_avr_t
*r
,
717 ppc_avr_t
*a
, ppc_avr_t
*b
, int record
)
722 for (i
= 0; i
< ARRAY_SIZE(r
->f32
); i
++) {
723 FloatRelation le_rel
= float32_compare_quiet(a
->f32
[i
], b
->f32
[i
],
725 if (le_rel
== float_relation_unordered
) {
726 r
->u32
[i
] = 0xc0000000;
729 float32 bneg
= float32_chs(b
->f32
[i
]);
730 FloatRelation ge_rel
= float32_compare_quiet(a
->f32
[i
], bneg
,
732 int le
= le_rel
!= float_relation_greater
;
733 int ge
= ge_rel
!= float_relation_less
;
735 r
->u32
[i
] = ((!le
) << 31) | ((!ge
) << 30);
736 all_in
|= (!le
| !ge
);
740 env
->crf
[6] = (all_in
== 0) << 1;
744 void helper_vcmpbfp(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
746 vcmpbfp_internal(env
, r
, a
, b
, 0);
749 void helper_vcmpbfp_dot(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
752 vcmpbfp_internal(env
, r
, a
, b
, 1);
755 #define VCT(suffix, satcvt, element) \
756 void helper_vct##suffix(CPUPPCState *env, ppc_avr_t *r, \
757 ppc_avr_t *b, uint32_t uim) \
761 float_status s = env->vec_status; \
763 set_float_rounding_mode(float_round_to_zero, &s); \
764 for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \
765 if (float32_is_any_nan(b->f32[i])) { \
768 float64 t = float32_to_float64(b->f32[i], &s); \
771 t = float64_scalbn(t, uim, &s); \
772 j = float64_to_int64(t, &s); \
773 r->element[i] = satcvt(j, &sat); \
780 VCT(uxs
, cvtsduw
, u32
)
781 VCT(sxs
, cvtsdsw
, s32
)
784 target_ulong
helper_vclzlsbb(ppc_avr_t
*r
)
786 target_ulong count
= 0;
788 for (i
= 0; i
< ARRAY_SIZE(r
->u8
); i
++) {
789 if (r
->VsrB(i
) & 0x01) {
797 target_ulong
helper_vctzlsbb(ppc_avr_t
*r
)
799 target_ulong count
= 0;
801 for (i
= ARRAY_SIZE(r
->u8
) - 1; i
>= 0; i
--) {
802 if (r
->VsrB(i
) & 0x01) {
810 void helper_vmhaddshs(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
811 ppc_avr_t
*b
, ppc_avr_t
*c
)
816 for (i
= 0; i
< ARRAY_SIZE(r
->s16
); i
++) {
817 int32_t prod
= a
->s16
[i
] * b
->s16
[i
];
818 int32_t t
= (int32_t)c
->s16
[i
] + (prod
>> 15);
820 r
->s16
[i
] = cvtswsh(t
, &sat
);
828 void helper_vmhraddshs(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
829 ppc_avr_t
*b
, ppc_avr_t
*c
)
834 for (i
= 0; i
< ARRAY_SIZE(r
->s16
); i
++) {
835 int32_t prod
= a
->s16
[i
] * b
->s16
[i
] + 0x00004000;
836 int32_t t
= (int32_t)c
->s16
[i
] + (prod
>> 15);
837 r
->s16
[i
] = cvtswsh(t
, &sat
);
845 void helper_vmladduhm(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
849 for (i
= 0; i
< ARRAY_SIZE(r
->s16
); i
++) {
850 int32_t prod
= a
->s16
[i
] * b
->s16
[i
];
851 r
->s16
[i
] = (int16_t) (prod
+ c
->s16
[i
]);
855 #define VMRG_DO(name, element, access, ofs) \
856 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
859 int i, half = ARRAY_SIZE(r->element) / 2; \
861 for (i = 0; i < half; i++) { \
862 result.access(i * 2 + 0) = a->access(i + ofs); \
863 result.access(i * 2 + 1) = b->access(i + ofs); \
868 #define VMRG(suffix, element, access) \
869 VMRG_DO(mrgl##suffix, element, access, half) \
870 VMRG_DO(mrgh##suffix, element, access, 0)
877 void helper_vmsummbm(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
878 ppc_avr_t
*b
, ppc_avr_t
*c
)
883 for (i
= 0; i
< ARRAY_SIZE(r
->s8
); i
++) {
884 prod
[i
] = (int32_t)a
->s8
[i
] * b
->u8
[i
];
887 VECTOR_FOR_INORDER_I(i
, s32
) {
888 r
->s32
[i
] = c
->s32
[i
] + prod
[4 * i
] + prod
[4 * i
+ 1] +
889 prod
[4 * i
+ 2] + prod
[4 * i
+ 3];
893 void helper_vmsumshm(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
894 ppc_avr_t
*b
, ppc_avr_t
*c
)
899 for (i
= 0; i
< ARRAY_SIZE(r
->s16
); i
++) {
900 prod
[i
] = a
->s16
[i
] * b
->s16
[i
];
903 VECTOR_FOR_INORDER_I(i
, s32
) {
904 r
->s32
[i
] = c
->s32
[i
] + prod
[2 * i
] + prod
[2 * i
+ 1];
908 void helper_vmsumshs(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
909 ppc_avr_t
*b
, ppc_avr_t
*c
)
915 for (i
= 0; i
< ARRAY_SIZE(r
->s16
); i
++) {
916 prod
[i
] = (int32_t)a
->s16
[i
] * b
->s16
[i
];
919 VECTOR_FOR_INORDER_I(i
, s32
) {
920 int64_t t
= (int64_t)c
->s32
[i
] + prod
[2 * i
] + prod
[2 * i
+ 1];
922 r
->u32
[i
] = cvtsdsw(t
, &sat
);
930 void helper_vmsumubm(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
931 ppc_avr_t
*b
, ppc_avr_t
*c
)
936 for (i
= 0; i
< ARRAY_SIZE(r
->u8
); i
++) {
937 prod
[i
] = a
->u8
[i
] * b
->u8
[i
];
940 VECTOR_FOR_INORDER_I(i
, u32
) {
941 r
->u32
[i
] = c
->u32
[i
] + prod
[4 * i
] + prod
[4 * i
+ 1] +
942 prod
[4 * i
+ 2] + prod
[4 * i
+ 3];
946 void helper_vmsumuhm(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
947 ppc_avr_t
*b
, ppc_avr_t
*c
)
952 for (i
= 0; i
< ARRAY_SIZE(r
->u16
); i
++) {
953 prod
[i
] = a
->u16
[i
] * b
->u16
[i
];
956 VECTOR_FOR_INORDER_I(i
, u32
) {
957 r
->u32
[i
] = c
->u32
[i
] + prod
[2 * i
] + prod
[2 * i
+ 1];
961 void helper_vmsumuhs(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
962 ppc_avr_t
*b
, ppc_avr_t
*c
)
968 for (i
= 0; i
< ARRAY_SIZE(r
->u16
); i
++) {
969 prod
[i
] = a
->u16
[i
] * b
->u16
[i
];
972 VECTOR_FOR_INORDER_I(i
, s32
) {
973 uint64_t t
= (uint64_t)c
->u32
[i
] + prod
[2 * i
] + prod
[2 * i
+ 1];
975 r
->u32
[i
] = cvtuduw(t
, &sat
);
983 #define VMUL_DO_EVN(name, mul_element, mul_access, prod_access, cast) \
984 void helper_V##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
988 for (i = 0; i < ARRAY_SIZE(r->mul_element); i += 2) { \
989 r->prod_access(i >> 1) = (cast)a->mul_access(i) * \
990 (cast)b->mul_access(i); \
994 #define VMUL_DO_ODD(name, mul_element, mul_access, prod_access, cast) \
995 void helper_V##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
999 for (i = 0; i < ARRAY_SIZE(r->mul_element); i += 2) { \
1000 r->prod_access(i >> 1) = (cast)a->mul_access(i + 1) * \
1001 (cast)b->mul_access(i + 1); \
1005 #define VMUL(suffix, mul_element, mul_access, prod_access, cast) \
1006 VMUL_DO_EVN(MULE##suffix, mul_element, mul_access, prod_access, cast) \
1007 VMUL_DO_ODD(MULO##suffix, mul_element, mul_access, prod_access, cast)
1008 VMUL(SB
, s8
, VsrSB
, VsrSH
, int16_t)
1009 VMUL(SH
, s16
, VsrSH
, VsrSW
, int32_t)
1010 VMUL(SW
, s32
, VsrSW
, VsrSD
, int64_t)
1011 VMUL(UB
, u8
, VsrB
, VsrH
, uint16_t)
1012 VMUL(UH
, u16
, VsrH
, VsrW
, uint32_t)
1013 VMUL(UW
, u32
, VsrW
, VsrD
, uint64_t)
1018 void helper_vperm(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
,
1024 for (i
= 0; i
< ARRAY_SIZE(r
->u8
); i
++) {
1025 int s
= c
->VsrB(i
) & 0x1f;
1026 int index
= s
& 0xf;
1029 result
.VsrB(i
) = b
->VsrB(index
);
1031 result
.VsrB(i
) = a
->VsrB(index
);
1037 void helper_vpermr(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
,
1043 for (i
= 0; i
< ARRAY_SIZE(r
->u8
); i
++) {
1044 int s
= c
->VsrB(i
) & 0x1f;
1045 int index
= 15 - (s
& 0xf);
1048 result
.VsrB(i
) = a
->VsrB(index
);
1050 result
.VsrB(i
) = b
->VsrB(index
);
1056 #if defined(HOST_WORDS_BIGENDIAN)
1057 #define VBPERMQ_INDEX(avr, i) ((avr)->u8[(i)])
1058 #define VBPERMD_INDEX(i) (i)
1059 #define VBPERMQ_DW(index) (((index) & 0x40) != 0)
1060 #define EXTRACT_BIT(avr, i, index) (extract64((avr)->u64[i], index, 1))
1062 #define VBPERMQ_INDEX(avr, i) ((avr)->u8[15 - (i)])
1063 #define VBPERMD_INDEX(i) (1 - i)
1064 #define VBPERMQ_DW(index) (((index) & 0x40) == 0)
1065 #define EXTRACT_BIT(avr, i, index) \
1066 (extract64((avr)->u64[1 - i], 63 - index, 1))
1069 void helper_vbpermd(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1072 ppc_avr_t result
= { .u64
= { 0, 0 } };
1073 VECTOR_FOR_INORDER_I(i
, u64
) {
1074 for (j
= 0; j
< 8; j
++) {
1075 int index
= VBPERMQ_INDEX(b
, (i
* 8) + j
);
1076 if (index
< 64 && EXTRACT_BIT(a
, i
, index
)) {
1077 result
.u64
[VBPERMD_INDEX(i
)] |= (0x80 >> j
);
1084 void helper_vbpermq(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1089 VECTOR_FOR_INORDER_I(i
, u8
) {
1090 int index
= VBPERMQ_INDEX(b
, i
);
1093 uint64_t mask
= (1ull << (63 - (index
& 0x3F)));
1094 if (a
->u64
[VBPERMQ_DW(index
)] & mask
) {
1095 perm
|= (0x8000 >> i
);
1104 #undef VBPERMQ_INDEX
1107 #define PMSUM(name, srcfld, trgfld, trgtyp) \
1108 void helper_##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1111 trgtyp prod[sizeof(ppc_avr_t) / sizeof(a->srcfld[0])]; \
1113 VECTOR_FOR_INORDER_I(i, srcfld) { \
1115 for (j = 0; j < sizeof(a->srcfld[0]) * 8; j++) { \
1116 if (a->srcfld[i] & (1ull << j)) { \
1117 prod[i] ^= ((trgtyp)b->srcfld[i] << j); \
1122 VECTOR_FOR_INORDER_I(i, trgfld) { \
1123 r->trgfld[i] = prod[2 * i] ^ prod[2 * i + 1]; \
1127 PMSUM(vpmsumb
, u8
, u16
, uint16_t)
1128 PMSUM(vpmsumh
, u16
, u32
, uint32_t)
1129 PMSUM(vpmsumw
, u32
, u64
, uint64_t)
1131 void helper_vpmsumd(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1134 #ifdef CONFIG_INT128
1136 __uint128_t prod
[2];
1138 VECTOR_FOR_INORDER_I(i
, u64
) {
1140 for (j
= 0; j
< 64; j
++) {
1141 if (a
->u64
[i
] & (1ull << j
)) {
1142 prod
[i
] ^= (((__uint128_t
)b
->u64
[i
]) << j
);
1147 r
->u128
= prod
[0] ^ prod
[1];
1153 VECTOR_FOR_INORDER_I(i
, u64
) {
1154 prod
[i
].VsrD(1) = prod
[i
].VsrD(0) = 0;
1155 for (j
= 0; j
< 64; j
++) {
1156 if (a
->u64
[i
] & (1ull << j
)) {
1160 bshift
.VsrD(1) = b
->u64
[i
];
1162 bshift
.VsrD(0) = b
->u64
[i
] >> (64 - j
);
1163 bshift
.VsrD(1) = b
->u64
[i
] << j
;
1165 prod
[i
].VsrD(1) ^= bshift
.VsrD(1);
1166 prod
[i
].VsrD(0) ^= bshift
.VsrD(0);
1171 r
->VsrD(1) = prod
[0].VsrD(1) ^ prod
[1].VsrD(1);
1172 r
->VsrD(0) = prod
[0].VsrD(0) ^ prod
[1].VsrD(0);
1177 #if defined(HOST_WORDS_BIGENDIAN)
1182 void helper_vpkpx(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1186 #if defined(HOST_WORDS_BIGENDIAN)
1187 const ppc_avr_t
*x
[2] = { a
, b
};
1189 const ppc_avr_t
*x
[2] = { b
, a
};
1192 VECTOR_FOR_INORDER_I(i
, u64
) {
1193 VECTOR_FOR_INORDER_I(j
, u32
) {
1194 uint32_t e
= x
[i
]->u32
[j
];
1196 result
.u16
[4 * i
+ j
] = (((e
>> 9) & 0xfc00) |
1197 ((e
>> 6) & 0x3e0) |
1204 #define VPK(suffix, from, to, cvt, dosat) \
1205 void helper_vpk##suffix(CPUPPCState *env, ppc_avr_t *r, \
1206 ppc_avr_t *a, ppc_avr_t *b) \
1211 ppc_avr_t *a0 = PKBIG ? a : b; \
1212 ppc_avr_t *a1 = PKBIG ? b : a; \
1214 VECTOR_FOR_INORDER_I(i, from) { \
1215 result.to[i] = cvt(a0->from[i], &sat); \
1216 result.to[i + ARRAY_SIZE(r->from)] = cvt(a1->from[i], &sat);\
1219 if (dosat && sat) { \
1220 set_vscr_sat(env); \
1224 VPK(shss
, s16
, s8
, cvtshsb
, 1)
1225 VPK(shus
, s16
, u8
, cvtshub
, 1)
1226 VPK(swss
, s32
, s16
, cvtswsh
, 1)
1227 VPK(swus
, s32
, u16
, cvtswuh
, 1)
1228 VPK(sdss
, s64
, s32
, cvtsdsw
, 1)
1229 VPK(sdus
, s64
, u32
, cvtsduw
, 1)
1230 VPK(uhus
, u16
, u8
, cvtuhub
, 1)
1231 VPK(uwus
, u32
, u16
, cvtuwuh
, 1)
1232 VPK(udus
, u64
, u32
, cvtuduw
, 1)
1233 VPK(uhum
, u16
, u8
, I
, 0)
1234 VPK(uwum
, u32
, u16
, I
, 0)
1235 VPK(udum
, u64
, u32
, I
, 0)
1240 void helper_vrefp(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*b
)
1244 for (i
= 0; i
< ARRAY_SIZE(r
->f32
); i
++) {
1245 r
->f32
[i
] = float32_div(float32_one
, b
->f32
[i
], &env
->vec_status
);
1249 #define VRFI(suffix, rounding) \
1250 void helper_vrfi##suffix(CPUPPCState *env, ppc_avr_t *r, \
1254 float_status s = env->vec_status; \
1256 set_float_rounding_mode(rounding, &s); \
1257 for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \
1258 r->f32[i] = float32_round_to_int (b->f32[i], &s); \
1261 VRFI(n
, float_round_nearest_even
)
1262 VRFI(m
, float_round_down
)
1263 VRFI(p
, float_round_up
)
1264 VRFI(z
, float_round_to_zero
)
1267 void helper_vrsqrtefp(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*b
)
1271 for (i
= 0; i
< ARRAY_SIZE(r
->f32
); i
++) {
1272 float32 t
= float32_sqrt(b
->f32
[i
], &env
->vec_status
);
1274 r
->f32
[i
] = float32_div(float32_one
, t
, &env
->vec_status
);
1278 #define VRLMI(name, size, element, insert) \
1279 void helper_##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1282 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1283 uint##size##_t src1 = a->element[i]; \
1284 uint##size##_t src2 = b->element[i]; \
1285 uint##size##_t src3 = r->element[i]; \
1286 uint##size##_t begin, end, shift, mask, rot_val; \
1288 shift = extract##size(src2, 0, 6); \
1289 end = extract##size(src2, 8, 6); \
1290 begin = extract##size(src2, 16, 6); \
1291 rot_val = rol##size(src1, shift); \
1292 mask = mask_u##size(begin, end); \
1294 r->element[i] = (rot_val & mask) | (src3 & ~mask); \
1296 r->element[i] = (rot_val & mask); \
1301 VRLMI(vrldmi
, 64, u64
, 1);
1302 VRLMI(vrlwmi
, 32, u32
, 1);
1303 VRLMI(vrldnm
, 64, u64
, 0);
1304 VRLMI(vrlwnm
, 32, u32
, 0);
1306 void helper_vsel(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
,
1309 r
->u64
[0] = (a
->u64
[0] & ~c
->u64
[0]) | (b
->u64
[0] & c
->u64
[0]);
1310 r
->u64
[1] = (a
->u64
[1] & ~c
->u64
[1]) | (b
->u64
[1] & c
->u64
[1]);
1313 void helper_vexptefp(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*b
)
1317 for (i
= 0; i
< ARRAY_SIZE(r
->f32
); i
++) {
1318 r
->f32
[i
] = float32_exp2(b
->f32
[i
], &env
->vec_status
);
1322 void helper_vlogefp(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*b
)
1326 for (i
= 0; i
< ARRAY_SIZE(r
->f32
); i
++) {
1327 r
->f32
[i
] = float32_log2(b
->f32
[i
], &env
->vec_status
);
1331 #define VEXTU_X_DO(name, size, left) \
1332 target_ulong glue(helper_, name)(target_ulong a, ppc_avr_t *b) \
1334 int index = (a & 0xf) * 8; \
1336 index = 128 - index - size; \
1338 return int128_getlo(int128_rshift(b->s128, index)) & \
1339 MAKE_64BIT_MASK(0, size); \
1341 VEXTU_X_DO(vextublx
, 8, 1)
1342 VEXTU_X_DO(vextuhlx
, 16, 1)
1343 VEXTU_X_DO(vextuwlx
, 32, 1)
1344 VEXTU_X_DO(vextubrx
, 8, 0)
1345 VEXTU_X_DO(vextuhrx
, 16, 0)
1346 VEXTU_X_DO(vextuwrx
, 32, 0)
1349 void helper_vslv(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1352 unsigned int shift
, bytes
, size
;
1354 size
= ARRAY_SIZE(r
->u8
);
1355 for (i
= 0; i
< size
; i
++) {
1356 shift
= b
->VsrB(i
) & 0x7; /* extract shift value */
1357 bytes
= (a
->VsrB(i
) << 8) + /* extract adjacent bytes */
1358 (((i
+ 1) < size
) ? a
->VsrB(i
+ 1) : 0);
1359 r
->VsrB(i
) = (bytes
<< shift
) >> 8; /* shift and store result */
1363 void helper_vsrv(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1366 unsigned int shift
, bytes
;
1369 * Use reverse order, as destination and source register can be
1370 * same. Its being modified in place saving temporary, reverse
1371 * order will guarantee that computed result is not fed back.
1373 for (i
= ARRAY_SIZE(r
->u8
) - 1; i
>= 0; i
--) {
1374 shift
= b
->VsrB(i
) & 0x7; /* extract shift value */
1375 bytes
= ((i
? a
->VsrB(i
- 1) : 0) << 8) + a
->VsrB(i
);
1376 /* extract adjacent bytes */
1377 r
->VsrB(i
) = (bytes
>> shift
) & 0xFF; /* shift and store result */
1381 void helper_vsldoi(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, uint32_t shift
)
1383 int sh
= shift
& 0xf;
1387 for (i
= 0; i
< ARRAY_SIZE(r
->u8
); i
++) {
1390 result
.VsrB(i
) = b
->VsrB(index
- 0x10);
1392 result
.VsrB(i
) = a
->VsrB(index
);
1398 void helper_vslo(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1400 int sh
= (b
->VsrB(0xf) >> 3) & 0xf;
1402 #if defined(HOST_WORDS_BIGENDIAN)
1403 memmove(&r
->u8
[0], &a
->u8
[sh
], 16 - sh
);
1404 memset(&r
->u8
[16 - sh
], 0, sh
);
1406 memmove(&r
->u8
[sh
], &a
->u8
[0], 16 - sh
);
1407 memset(&r
->u8
[0], 0, sh
);
1411 #if defined(HOST_WORDS_BIGENDIAN)
1412 #define ELEM_ADDR(VEC, IDX, SIZE) (&(VEC)->u8[IDX])
1414 #define ELEM_ADDR(VEC, IDX, SIZE) (&(VEC)->u8[15 - (IDX)] - (SIZE) + 1)
1417 #define VINSX(SUFFIX, TYPE) \
1418 void glue(glue(helper_VINS, SUFFIX), LX)(CPUPPCState *env, ppc_avr_t *t, \
1419 uint64_t val, target_ulong index) \
1421 const int maxidx = ARRAY_SIZE(t->u8) - sizeof(TYPE); \
1422 target_long idx = index; \
1424 if (idx < 0 || idx > maxidx) { \
1425 idx = idx < 0 ? sizeof(TYPE) - idx : idx; \
1426 qemu_log_mask(LOG_GUEST_ERROR, \
1427 "Invalid index for Vector Insert Element after 0x" TARGET_FMT_lx \
1428 ", RA = " TARGET_FMT_ld " > %d\n", env->nip, idx, maxidx); \
1431 memcpy(ELEM_ADDR(t, idx, sizeof(TYPE)), &src, sizeof(TYPE)); \
1440 #if defined(HOST_WORDS_BIGENDIAN)
1441 #define VEXTDVLX(NAME, SIZE) \
1442 void helper_##NAME(CPUPPCState *env, ppc_avr_t *t, ppc_avr_t *a, ppc_avr_t *b, \
1443 target_ulong index) \
1445 const target_long idx = index; \
1446 ppc_avr_t tmp[2] = { *a, *b }; \
1447 memset(t, 0, sizeof(*t)); \
1448 if (idx >= 0 && idx + SIZE <= sizeof(tmp)) { \
1449 memcpy(&t->u8[ARRAY_SIZE(t->u8) / 2 - SIZE], (void *)tmp + idx, SIZE); \
1451 qemu_log_mask(LOG_GUEST_ERROR, "Invalid index for " #NAME " after 0x" \
1452 TARGET_FMT_lx ", RC = " TARGET_FMT_ld " > %d\n", \
1453 env->nip, idx < 0 ? SIZE - idx : idx, 32 - SIZE); \
1457 #define VEXTDVLX(NAME, SIZE) \
1458 void helper_##NAME(CPUPPCState *env, ppc_avr_t *t, ppc_avr_t *a, ppc_avr_t *b, \
1459 target_ulong index) \
1461 const target_long idx = index; \
1462 ppc_avr_t tmp[2] = { *b, *a }; \
1463 memset(t, 0, sizeof(*t)); \
1464 if (idx >= 0 && idx + SIZE <= sizeof(tmp)) { \
1465 memcpy(&t->u8[ARRAY_SIZE(t->u8) / 2], \
1466 (void *)tmp + sizeof(tmp) - SIZE - idx, SIZE); \
1468 qemu_log_mask(LOG_GUEST_ERROR, "Invalid index for " #NAME " after 0x" \
1469 TARGET_FMT_lx ", RC = " TARGET_FMT_ld " > %d\n", \
1470 env->nip, idx < 0 ? SIZE - idx : idx, 32 - SIZE); \
1474 VEXTDVLX(VEXTDUBVLX
, 1)
1475 VEXTDVLX(VEXTDUHVLX
, 2)
1476 VEXTDVLX(VEXTDUWVLX
, 4)
1477 VEXTDVLX(VEXTDDVLX
, 8)
1479 #if defined(HOST_WORDS_BIGENDIAN)
1480 #define VEXTRACT(suffix, element) \
1481 void helper_vextract##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t index) \
1483 uint32_t es = sizeof(r->element[0]); \
1484 memmove(&r->u8[8 - es], &b->u8[index], es); \
1485 memset(&r->u8[8], 0, 8); \
1486 memset(&r->u8[0], 0, 8 - es); \
1489 #define VEXTRACT(suffix, element) \
1490 void helper_vextract##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t index) \
1492 uint32_t es = sizeof(r->element[0]); \
1493 uint32_t s = (16 - index) - es; \
1494 memmove(&r->u8[8], &b->u8[s], es); \
1495 memset(&r->u8[0], 0, 8); \
1496 memset(&r->u8[8 + es], 0, 8 - es); \
1505 void helper_xxextractuw(CPUPPCState
*env
, ppc_vsr_t
*xt
,
1506 ppc_vsr_t
*xb
, uint32_t index
)
1509 size_t es
= sizeof(uint32_t);
1514 for (i
= 0; i
< es
; i
++, ext_index
++) {
1515 t
.VsrB(8 - es
+ i
) = xb
->VsrB(ext_index
% 16);
1521 void helper_xxinsertw(CPUPPCState
*env
, ppc_vsr_t
*xt
,
1522 ppc_vsr_t
*xb
, uint32_t index
)
1525 size_t es
= sizeof(uint32_t);
1526 int ins_index
, i
= 0;
1529 for (i
= 0; i
< es
&& ins_index
< 16; i
++, ins_index
++) {
1530 t
.VsrB(ins_index
) = xb
->VsrB(8 - es
+ i
);
1536 #define XXBLEND(name, sz) \
1537 void glue(helper_XXBLENDV, name)(ppc_avr_t *t, ppc_avr_t *a, ppc_avr_t *b, \
1538 ppc_avr_t *c, uint32_t desc) \
1540 for (int i = 0; i < ARRAY_SIZE(t->glue(u, sz)); i++) { \
1541 t->glue(u, sz)[i] = (c->glue(s, sz)[i] >> (sz - 1)) ? \
1542 b->glue(u, sz)[i] : a->glue(u, sz)[i]; \
1551 #define VNEG(name, element) \
1552 void helper_##name(ppc_avr_t *r, ppc_avr_t *b) \
1555 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1556 r->element[i] = -b->element[i]; \
1563 void helper_vsro(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1565 int sh
= (b
->VsrB(0xf) >> 3) & 0xf;
1567 #if defined(HOST_WORDS_BIGENDIAN)
1568 memmove(&r
->u8
[sh
], &a
->u8
[0], 16 - sh
);
1569 memset(&r
->u8
[0], 0, sh
);
1571 memmove(&r
->u8
[0], &a
->u8
[sh
], 16 - sh
);
1572 memset(&r
->u8
[16 - sh
], 0, sh
);
1576 void helper_vsubcuw(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1580 for (i
= 0; i
< ARRAY_SIZE(r
->u32
); i
++) {
1581 r
->u32
[i
] = a
->u32
[i
] >= b
->u32
[i
];
1585 void helper_vsumsws(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1592 upper
= ARRAY_SIZE(r
->s32
) - 1;
1593 t
= (int64_t)b
->VsrSW(upper
);
1594 for (i
= 0; i
< ARRAY_SIZE(r
->s32
); i
++) {
1596 result
.VsrSW(i
) = 0;
1598 result
.VsrSW(upper
) = cvtsdsw(t
, &sat
);
1606 void helper_vsum2sws(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1613 for (i
= 0; i
< ARRAY_SIZE(r
->u64
); i
++) {
1614 int64_t t
= (int64_t)b
->VsrSW(upper
+ i
* 2);
1617 for (j
= 0; j
< ARRAY_SIZE(r
->u64
); j
++) {
1618 t
+= a
->VsrSW(2 * i
+ j
);
1620 result
.VsrSW(upper
+ i
* 2) = cvtsdsw(t
, &sat
);
1629 void helper_vsum4sbs(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1634 for (i
= 0; i
< ARRAY_SIZE(r
->s32
); i
++) {
1635 int64_t t
= (int64_t)b
->s32
[i
];
1637 for (j
= 0; j
< ARRAY_SIZE(r
->s32
); j
++) {
1638 t
+= a
->s8
[4 * i
+ j
];
1640 r
->s32
[i
] = cvtsdsw(t
, &sat
);
1648 void helper_vsum4shs(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1653 for (i
= 0; i
< ARRAY_SIZE(r
->s32
); i
++) {
1654 int64_t t
= (int64_t)b
->s32
[i
];
1656 t
+= a
->s16
[2 * i
] + a
->s16
[2 * i
+ 1];
1657 r
->s32
[i
] = cvtsdsw(t
, &sat
);
1665 void helper_vsum4ubs(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1670 for (i
= 0; i
< ARRAY_SIZE(r
->u32
); i
++) {
1671 uint64_t t
= (uint64_t)b
->u32
[i
];
1673 for (j
= 0; j
< ARRAY_SIZE(r
->u32
); j
++) {
1674 t
+= a
->u8
[4 * i
+ j
];
1676 r
->u32
[i
] = cvtuduw(t
, &sat
);
1684 #if defined(HOST_WORDS_BIGENDIAN)
1691 #define VUPKPX(suffix, hi) \
1692 void helper_vupk##suffix(ppc_avr_t *r, ppc_avr_t *b) \
1697 for (i = 0; i < ARRAY_SIZE(r->u32); i++) { \
1698 uint16_t e = b->u16[hi ? i : i + 4]; \
1699 uint8_t a = (e >> 15) ? 0xff : 0; \
1700 uint8_t r = (e >> 10) & 0x1f; \
1701 uint8_t g = (e >> 5) & 0x1f; \
1702 uint8_t b = e & 0x1f; \
1704 result.u32[i] = (a << 24) | (r << 16) | (g << 8) | b; \
1712 #define VUPK(suffix, unpacked, packee, hi) \
1713 void helper_vupk##suffix(ppc_avr_t *r, ppc_avr_t *b) \
1719 for (i = 0; i < ARRAY_SIZE(r->unpacked); i++) { \
1720 result.unpacked[i] = b->packee[i]; \
1723 for (i = ARRAY_SIZE(r->unpacked); i < ARRAY_SIZE(r->packee); \
1725 result.unpacked[i - ARRAY_SIZE(r->unpacked)] = b->packee[i]; \
1730 VUPK(hsb
, s16
, s8
, UPKHI
)
1731 VUPK(hsh
, s32
, s16
, UPKHI
)
1732 VUPK(hsw
, s64
, s32
, UPKHI
)
1733 VUPK(lsb
, s16
, s8
, UPKLO
)
1734 VUPK(lsh
, s32
, s16
, UPKLO
)
1735 VUPK(lsw
, s64
, s32
, UPKLO
)
1740 #define VGENERIC_DO(name, element) \
1741 void helper_v##name(ppc_avr_t *r, ppc_avr_t *b) \
1745 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1746 r->element[i] = name(b->element[i]); \
1750 #define clzb(v) ((v) ? clz32((uint32_t)(v) << 24) : 8)
1751 #define clzh(v) ((v) ? clz32((uint32_t)(v) << 16) : 16)
1753 VGENERIC_DO(clzb
, u8
)
1754 VGENERIC_DO(clzh
, u16
)
1759 #define ctzb(v) ((v) ? ctz32(v) : 8)
1760 #define ctzh(v) ((v) ? ctz32(v) : 16)
1761 #define ctzw(v) ctz32((v))
1762 #define ctzd(v) ctz64((v))
1764 VGENERIC_DO(ctzb
, u8
)
1765 VGENERIC_DO(ctzh
, u16
)
1766 VGENERIC_DO(ctzw
, u32
)
1767 VGENERIC_DO(ctzd
, u64
)
1774 #define popcntb(v) ctpop8(v)
1775 #define popcnth(v) ctpop16(v)
1776 #define popcntw(v) ctpop32(v)
1777 #define popcntd(v) ctpop64(v)
1779 VGENERIC_DO(popcntb
, u8
)
1780 VGENERIC_DO(popcnth
, u16
)
1781 VGENERIC_DO(popcntw
, u32
)
1782 VGENERIC_DO(popcntd
, u64
)
1791 #if defined(HOST_WORDS_BIGENDIAN)
1792 #define QW_ONE { .u64 = { 0, 1 } }
1794 #define QW_ONE { .u64 = { 1, 0 } }
1797 #ifndef CONFIG_INT128
1799 static inline void avr_qw_not(ppc_avr_t
*t
, ppc_avr_t a
)
1801 t
->u64
[0] = ~a
.u64
[0];
1802 t
->u64
[1] = ~a
.u64
[1];
1805 static int avr_qw_cmpu(ppc_avr_t a
, ppc_avr_t b
)
1807 if (a
.VsrD(0) < b
.VsrD(0)) {
1809 } else if (a
.VsrD(0) > b
.VsrD(0)) {
1811 } else if (a
.VsrD(1) < b
.VsrD(1)) {
1813 } else if (a
.VsrD(1) > b
.VsrD(1)) {
1820 static void avr_qw_add(ppc_avr_t
*t
, ppc_avr_t a
, ppc_avr_t b
)
1822 t
->VsrD(1) = a
.VsrD(1) + b
.VsrD(1);
1823 t
->VsrD(0) = a
.VsrD(0) + b
.VsrD(0) +
1824 (~a
.VsrD(1) < b
.VsrD(1));
1827 static int avr_qw_addc(ppc_avr_t
*t
, ppc_avr_t a
, ppc_avr_t b
)
1830 t
->VsrD(1) = a
.VsrD(1) + b
.VsrD(1);
1831 t
->VsrD(0) = a
.VsrD(0) + b
.VsrD(0) +
1832 (~a
.VsrD(1) < b
.VsrD(1));
1833 avr_qw_not(¬_a
, a
);
1834 return avr_qw_cmpu(not_a
, b
) < 0;
1839 void helper_vadduqm(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1841 #ifdef CONFIG_INT128
1842 r
->u128
= a
->u128
+ b
->u128
;
1844 avr_qw_add(r
, *a
, *b
);
1848 void helper_vaddeuqm(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
1850 #ifdef CONFIG_INT128
1851 r
->u128
= a
->u128
+ b
->u128
+ (c
->u128
& 1);
1854 if (c
->VsrD(1) & 1) {
1858 tmp
.VsrD(1) = c
->VsrD(1) & 1;
1859 avr_qw_add(&tmp
, *a
, tmp
);
1860 avr_qw_add(r
, tmp
, *b
);
1862 avr_qw_add(r
, *a
, *b
);
1867 void helper_vaddcuq(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1869 #ifdef CONFIG_INT128
1870 r
->u128
= (~a
->u128
< b
->u128
);
1874 avr_qw_not(¬_a
, *a
);
1877 r
->VsrD(1) = (avr_qw_cmpu(not_a
, *b
) < 0);
1881 void helper_vaddecuq(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
1883 #ifdef CONFIG_INT128
1884 int carry_out
= (~a
->u128
< b
->u128
);
1885 if (!carry_out
&& (c
->u128
& 1)) {
1886 carry_out
= ((a
->u128
+ b
->u128
+ 1) == 0) &&
1887 ((a
->u128
!= 0) || (b
->u128
!= 0));
1889 r
->u128
= carry_out
;
1892 int carry_in
= c
->VsrD(1) & 1;
1896 carry_out
= avr_qw_addc(&tmp
, *a
, *b
);
1898 if (!carry_out
&& carry_in
) {
1899 ppc_avr_t one
= QW_ONE
;
1900 carry_out
= avr_qw_addc(&tmp
, tmp
, one
);
1903 r
->VsrD(1) = carry_out
;
1907 void helper_vsubuqm(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1909 #ifdef CONFIG_INT128
1910 r
->u128
= a
->u128
- b
->u128
;
1913 ppc_avr_t one
= QW_ONE
;
1915 avr_qw_not(&tmp
, *b
);
1916 avr_qw_add(&tmp
, *a
, tmp
);
1917 avr_qw_add(r
, tmp
, one
);
1921 void helper_vsubeuqm(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
1923 #ifdef CONFIG_INT128
1924 r
->u128
= a
->u128
+ ~b
->u128
+ (c
->u128
& 1);
1928 avr_qw_not(&tmp
, *b
);
1929 avr_qw_add(&sum
, *a
, tmp
);
1932 tmp
.VsrD(1) = c
->VsrD(1) & 1;
1933 avr_qw_add(r
, sum
, tmp
);
1937 void helper_vsubcuq(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1939 #ifdef CONFIG_INT128
1940 r
->u128
= (~a
->u128
< ~b
->u128
) ||
1941 (a
->u128
+ ~b
->u128
== (__uint128_t
)-1);
1943 int carry
= (avr_qw_cmpu(*a
, *b
) > 0);
1946 avr_qw_not(&tmp
, *b
);
1947 avr_qw_add(&tmp
, *a
, tmp
);
1948 carry
= ((tmp
.VsrSD(0) == -1ull) && (tmp
.VsrSD(1) == -1ull));
1955 void helper_vsubecuq(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
1957 #ifdef CONFIG_INT128
1959 (~a
->u128
< ~b
->u128
) ||
1960 ((c
->u128
& 1) && (a
->u128
+ ~b
->u128
== (__uint128_t
)-1));
1962 int carry_in
= c
->VsrD(1) & 1;
1963 int carry_out
= (avr_qw_cmpu(*a
, *b
) > 0);
1964 if (!carry_out
&& carry_in
) {
1966 avr_qw_not(&tmp
, *b
);
1967 avr_qw_add(&tmp
, *a
, tmp
);
1968 carry_out
= ((tmp
.VsrD(0) == -1ull) && (tmp
.VsrD(1) == -1ull));
1972 r
->VsrD(1) = carry_out
;
1976 #define BCD_PLUS_PREF_1 0xC
1977 #define BCD_PLUS_PREF_2 0xF
1978 #define BCD_PLUS_ALT_1 0xA
1979 #define BCD_NEG_PREF 0xD
1980 #define BCD_NEG_ALT 0xB
1981 #define BCD_PLUS_ALT_2 0xE
1982 #define NATIONAL_PLUS 0x2B
1983 #define NATIONAL_NEG 0x2D
1985 #define BCD_DIG_BYTE(n) (15 - ((n) / 2))
1987 static int bcd_get_sgn(ppc_avr_t
*bcd
)
1989 switch (bcd
->VsrB(BCD_DIG_BYTE(0)) & 0xF) {
1990 case BCD_PLUS_PREF_1
:
1991 case BCD_PLUS_PREF_2
:
1992 case BCD_PLUS_ALT_1
:
1993 case BCD_PLUS_ALT_2
:
2011 static int bcd_preferred_sgn(int sgn
, int ps
)
2014 return (ps
== 0) ? BCD_PLUS_PREF_1
: BCD_PLUS_PREF_2
;
2016 return BCD_NEG_PREF
;
2020 static uint8_t bcd_get_digit(ppc_avr_t
*bcd
, int n
, int *invalid
)
2024 result
= bcd
->VsrB(BCD_DIG_BYTE(n
)) >> 4;
2026 result
= bcd
->VsrB(BCD_DIG_BYTE(n
)) & 0xF;
2029 if (unlikely(result
> 9)) {
2035 static void bcd_put_digit(ppc_avr_t
*bcd
, uint8_t digit
, int n
)
2038 bcd
->VsrB(BCD_DIG_BYTE(n
)) &= 0x0F;
2039 bcd
->VsrB(BCD_DIG_BYTE(n
)) |= (digit
<< 4);
2041 bcd
->VsrB(BCD_DIG_BYTE(n
)) &= 0xF0;
2042 bcd
->VsrB(BCD_DIG_BYTE(n
)) |= digit
;
2046 static bool bcd_is_valid(ppc_avr_t
*bcd
)
2051 if (bcd_get_sgn(bcd
) == 0) {
2055 for (i
= 1; i
< 32; i
++) {
2056 bcd_get_digit(bcd
, i
, &invalid
);
2057 if (unlikely(invalid
)) {
2064 static int bcd_cmp_zero(ppc_avr_t
*bcd
)
2066 if (bcd
->VsrD(0) == 0 && (bcd
->VsrD(1) >> 4) == 0) {
2069 return (bcd_get_sgn(bcd
) == 1) ? CRF_GT
: CRF_LT
;
2073 static uint16_t get_national_digit(ppc_avr_t
*reg
, int n
)
2075 return reg
->VsrH(7 - n
);
2078 static void set_national_digit(ppc_avr_t
*reg
, uint8_t val
, int n
)
2080 reg
->VsrH(7 - n
) = val
;
2083 static int bcd_cmp_mag(ppc_avr_t
*a
, ppc_avr_t
*b
)
2087 for (i
= 31; i
> 0; i
--) {
2088 uint8_t dig_a
= bcd_get_digit(a
, i
, &invalid
);
2089 uint8_t dig_b
= bcd_get_digit(b
, i
, &invalid
);
2090 if (unlikely(invalid
)) {
2091 return 0; /* doesn't matter */
2092 } else if (dig_a
> dig_b
) {
2094 } else if (dig_a
< dig_b
) {
2102 static int bcd_add_mag(ppc_avr_t
*t
, ppc_avr_t
*a
, ppc_avr_t
*b
, int *invalid
,
2109 for (i
= 1; i
<= 31; i
++) {
2110 uint8_t digit
= bcd_get_digit(a
, i
, invalid
) +
2111 bcd_get_digit(b
, i
, invalid
) + carry
;
2112 is_zero
&= (digit
== 0);
2120 bcd_put_digit(t
, digit
, i
);
2127 static void bcd_sub_mag(ppc_avr_t
*t
, ppc_avr_t
*a
, ppc_avr_t
*b
, int *invalid
,
2133 for (i
= 1; i
<= 31; i
++) {
2134 uint8_t digit
= bcd_get_digit(a
, i
, invalid
) -
2135 bcd_get_digit(b
, i
, invalid
) + carry
;
2143 bcd_put_digit(t
, digit
, i
);
2149 uint32_t helper_bcdadd(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, uint32_t ps
)
2152 int sgna
= bcd_get_sgn(a
);
2153 int sgnb
= bcd_get_sgn(b
);
2154 int invalid
= (sgna
== 0) || (sgnb
== 0);
2158 ppc_avr_t result
= { .u64
= { 0, 0 } };
2162 result
.VsrB(BCD_DIG_BYTE(0)) = bcd_preferred_sgn(sgna
, ps
);
2163 zero
= bcd_add_mag(&result
, a
, b
, &invalid
, &overflow
);
2164 cr
= (sgna
> 0) ? CRF_GT
: CRF_LT
;
2166 int magnitude
= bcd_cmp_mag(a
, b
);
2167 if (magnitude
> 0) {
2168 result
.VsrB(BCD_DIG_BYTE(0)) = bcd_preferred_sgn(sgna
, ps
);
2169 bcd_sub_mag(&result
, a
, b
, &invalid
, &overflow
);
2170 cr
= (sgna
> 0) ? CRF_GT
: CRF_LT
;
2171 } else if (magnitude
< 0) {
2172 result
.VsrB(BCD_DIG_BYTE(0)) = bcd_preferred_sgn(sgnb
, ps
);
2173 bcd_sub_mag(&result
, b
, a
, &invalid
, &overflow
);
2174 cr
= (sgnb
> 0) ? CRF_GT
: CRF_LT
;
2176 result
.VsrB(BCD_DIG_BYTE(0)) = bcd_preferred_sgn(0, ps
);
2182 if (unlikely(invalid
)) {
2183 result
.VsrD(0) = result
.VsrD(1) = -1;
2185 } else if (overflow
) {
2196 uint32_t helper_bcdsub(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, uint32_t ps
)
2198 ppc_avr_t bcopy
= *b
;
2199 int sgnb
= bcd_get_sgn(b
);
2201 bcd_put_digit(&bcopy
, BCD_PLUS_PREF_1
, 0);
2202 } else if (sgnb
> 0) {
2203 bcd_put_digit(&bcopy
, BCD_NEG_PREF
, 0);
2205 /* else invalid ... defer to bcdadd code for proper handling */
2207 return helper_bcdadd(r
, a
, &bcopy
, ps
);
2210 uint32_t helper_bcdcfn(ppc_avr_t
*r
, ppc_avr_t
*b
, uint32_t ps
)
2214 uint16_t national
= 0;
2215 uint16_t sgnb
= get_national_digit(b
, 0);
2216 ppc_avr_t ret
= { .u64
= { 0, 0 } };
2217 int invalid
= (sgnb
!= NATIONAL_PLUS
&& sgnb
!= NATIONAL_NEG
);
2219 for (i
= 1; i
< 8; i
++) {
2220 national
= get_national_digit(b
, i
);
2221 if (unlikely(national
< 0x30 || national
> 0x39)) {
2226 bcd_put_digit(&ret
, national
& 0xf, i
);
2229 if (sgnb
== NATIONAL_PLUS
) {
2230 bcd_put_digit(&ret
, (ps
== 0) ? BCD_PLUS_PREF_1
: BCD_PLUS_PREF_2
, 0);
2232 bcd_put_digit(&ret
, BCD_NEG_PREF
, 0);
2235 cr
= bcd_cmp_zero(&ret
);
2237 if (unlikely(invalid
)) {
2246 uint32_t helper_bcdctn(ppc_avr_t
*r
, ppc_avr_t
*b
, uint32_t ps
)
2250 int sgnb
= bcd_get_sgn(b
);
2251 int invalid
= (sgnb
== 0);
2252 ppc_avr_t ret
= { .u64
= { 0, 0 } };
2254 int ox_flag
= (b
->VsrD(0) != 0) || ((b
->VsrD(1) >> 32) != 0);
2256 for (i
= 1; i
< 8; i
++) {
2257 set_national_digit(&ret
, 0x30 + bcd_get_digit(b
, i
, &invalid
), i
);
2259 if (unlikely(invalid
)) {
2263 set_national_digit(&ret
, (sgnb
== -1) ? NATIONAL_NEG
: NATIONAL_PLUS
, 0);
2265 cr
= bcd_cmp_zero(b
);
2271 if (unlikely(invalid
)) {
2280 uint32_t helper_bcdcfz(ppc_avr_t
*r
, ppc_avr_t
*b
, uint32_t ps
)
2286 int zone_lead
= ps
? 0xF : 0x3;
2288 ppc_avr_t ret
= { .u64
= { 0, 0 } };
2289 int sgnb
= b
->VsrB(BCD_DIG_BYTE(0)) >> 4;
2291 if (unlikely((sgnb
< 0xA) && ps
)) {
2295 for (i
= 0; i
< 16; i
++) {
2296 zone_digit
= i
? b
->VsrB(BCD_DIG_BYTE(i
* 2)) >> 4 : zone_lead
;
2297 digit
= b
->VsrB(BCD_DIG_BYTE(i
* 2)) & 0xF;
2298 if (unlikely(zone_digit
!= zone_lead
|| digit
> 0x9)) {
2303 bcd_put_digit(&ret
, digit
, i
+ 1);
2306 if ((ps
&& (sgnb
== 0xB || sgnb
== 0xD)) ||
2307 (!ps
&& (sgnb
& 0x4))) {
2308 bcd_put_digit(&ret
, BCD_NEG_PREF
, 0);
2310 bcd_put_digit(&ret
, BCD_PLUS_PREF_1
, 0);
2313 cr
= bcd_cmp_zero(&ret
);
2315 if (unlikely(invalid
)) {
2324 uint32_t helper_bcdctz(ppc_avr_t
*r
, ppc_avr_t
*b
, uint32_t ps
)
2329 int sgnb
= bcd_get_sgn(b
);
2330 int zone_lead
= (ps
) ? 0xF0 : 0x30;
2331 int invalid
= (sgnb
== 0);
2332 ppc_avr_t ret
= { .u64
= { 0, 0 } };
2334 int ox_flag
= ((b
->VsrD(0) >> 4) != 0);
2336 for (i
= 0; i
< 16; i
++) {
2337 digit
= bcd_get_digit(b
, i
+ 1, &invalid
);
2339 if (unlikely(invalid
)) {
2343 ret
.VsrB(BCD_DIG_BYTE(i
* 2)) = zone_lead
+ digit
;
2347 bcd_put_digit(&ret
, (sgnb
== 1) ? 0xC : 0xD, 1);
2349 bcd_put_digit(&ret
, (sgnb
== 1) ? 0x3 : 0x7, 1);
2352 cr
= bcd_cmp_zero(b
);
2358 if (unlikely(invalid
)) {
2368 * Compare 2 128-bit unsigned integers, passed in as unsigned 64-bit pairs
2371 * > 0 if ahi|alo > bhi|blo,
2372 * 0 if ahi|alo == bhi|blo,
2373 * < 0 if ahi|alo < bhi|blo
2375 static inline int ucmp128(uint64_t alo
, uint64_t ahi
,
2376 uint64_t blo
, uint64_t bhi
)
2378 return (ahi
== bhi
) ?
2379 (alo
> blo
? 1 : (alo
== blo
? 0 : -1)) :
2380 (ahi
> bhi
? 1 : -1);
2383 uint32_t helper_bcdcfsq(ppc_avr_t
*r
, ppc_avr_t
*b
, uint32_t ps
)
2390 ppc_avr_t ret
= { .u64
= { 0, 0 } };
2392 if (b
->VsrSD(0) < 0) {
2393 lo_value
= -b
->VsrSD(1);
2394 hi_value
= ~b
->VsrD(0) + !lo_value
;
2395 bcd_put_digit(&ret
, 0xD, 0);
2399 lo_value
= b
->VsrD(1);
2400 hi_value
= b
->VsrD(0);
2401 bcd_put_digit(&ret
, bcd_preferred_sgn(0, ps
), 0);
2403 if (hi_value
== 0 && lo_value
== 0) {
2411 * Check src limits: abs(src) <= 10^31 - 1
2413 * 10^31 - 1 = 0x0000007e37be2022 c0914b267fffffff
2415 if (ucmp128(lo_value
, hi_value
,
2416 0xc0914b267fffffffULL
, 0x7e37be2022ULL
) > 0) {
2420 * According to the ISA, if src wouldn't fit in the destination
2421 * register, the result is undefined.
2422 * In that case, we leave r unchanged.
2425 rem
= divu128(&lo_value
, &hi_value
, 1000000000000000ULL);
2427 for (i
= 1; i
< 16; rem
/= 10, i
++) {
2428 bcd_put_digit(&ret
, rem
% 10, i
);
2431 for (; i
< 32; lo_value
/= 10, i
++) {
2432 bcd_put_digit(&ret
, lo_value
% 10, i
);
2441 uint32_t helper_bcdctsq(ppc_avr_t
*r
, ppc_avr_t
*b
, uint32_t ps
)
2448 uint64_t hi_value
= 0;
2449 int sgnb
= bcd_get_sgn(b
);
2450 int invalid
= (sgnb
== 0);
2452 lo_value
= bcd_get_digit(b
, 31, &invalid
);
2453 for (i
= 30; i
> 0; i
--) {
2454 mulu64(&lo_value
, &carry
, lo_value
, 10ULL);
2455 mulu64(&hi_value
, &unused
, hi_value
, 10ULL);
2456 lo_value
+= bcd_get_digit(b
, i
, &invalid
);
2459 if (unlikely(invalid
)) {
2465 r
->VsrSD(1) = -lo_value
;
2466 r
->VsrSD(0) = ~hi_value
+ !r
->VsrSD(1);
2468 r
->VsrSD(1) = lo_value
;
2469 r
->VsrSD(0) = hi_value
;
2472 cr
= bcd_cmp_zero(b
);
2474 if (unlikely(invalid
)) {
2481 uint32_t helper_bcdcpsgn(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, uint32_t ps
)
2486 if (bcd_get_sgn(a
) == 0 || bcd_get_sgn(b
) == 0) {
2491 bcd_put_digit(r
, b
->VsrB(BCD_DIG_BYTE(0)) & 0xF, 0);
2493 for (i
= 1; i
< 32; i
++) {
2494 bcd_get_digit(a
, i
, &invalid
);
2495 bcd_get_digit(b
, i
, &invalid
);
2496 if (unlikely(invalid
)) {
2501 return bcd_cmp_zero(r
);
2504 uint32_t helper_bcdsetsgn(ppc_avr_t
*r
, ppc_avr_t
*b
, uint32_t ps
)
2506 int sgnb
= bcd_get_sgn(b
);
2509 bcd_put_digit(r
, bcd_preferred_sgn(sgnb
, ps
), 0);
2511 if (bcd_is_valid(b
) == false) {
2515 return bcd_cmp_zero(r
);
2518 uint32_t helper_bcds(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, uint32_t ps
)
2521 int i
= a
->VsrSB(7);
2522 bool ox_flag
= false;
2523 int sgnb
= bcd_get_sgn(b
);
2525 ret
.VsrD(1) &= ~0xf;
2527 if (bcd_is_valid(b
) == false) {
2531 if (unlikely(i
> 31)) {
2533 } else if (unlikely(i
< -31)) {
2538 ulshift(&ret
.VsrD(1), &ret
.VsrD(0), i
* 4, &ox_flag
);
2540 urshift(&ret
.VsrD(1), &ret
.VsrD(0), -i
* 4);
2542 bcd_put_digit(&ret
, bcd_preferred_sgn(sgnb
, ps
), 0);
2546 cr
= bcd_cmp_zero(r
);
2554 uint32_t helper_bcdus(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, uint32_t ps
)
2559 bool ox_flag
= false;
2562 for (i
= 0; i
< 32; i
++) {
2563 bcd_get_digit(b
, i
, &invalid
);
2565 if (unlikely(invalid
)) {
2573 ret
.VsrD(1) = ret
.VsrD(0) = 0;
2574 } else if (i
<= -32) {
2575 ret
.VsrD(1) = ret
.VsrD(0) = 0;
2577 ulshift(&ret
.VsrD(1), &ret
.VsrD(0), i
* 4, &ox_flag
);
2579 urshift(&ret
.VsrD(1), &ret
.VsrD(0), -i
* 4);
2583 cr
= bcd_cmp_zero(r
);
2591 uint32_t helper_bcdsr(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, uint32_t ps
)
2596 bool ox_flag
= false;
2597 int sgnb
= bcd_get_sgn(b
);
2599 ret
.VsrD(1) &= ~0xf;
2601 int i
= a
->VsrSB(7);
2604 bcd_one
.VsrD(0) = 0;
2605 bcd_one
.VsrD(1) = 0x10;
2607 if (bcd_is_valid(b
) == false) {
2611 if (unlikely(i
> 31)) {
2613 } else if (unlikely(i
< -31)) {
2618 ulshift(&ret
.VsrD(1), &ret
.VsrD(0), i
* 4, &ox_flag
);
2620 urshift(&ret
.VsrD(1), &ret
.VsrD(0), -i
* 4);
2622 if (bcd_get_digit(&ret
, 0, &invalid
) >= 5) {
2623 bcd_add_mag(&ret
, &ret
, &bcd_one
, &invalid
, &unused
);
2626 bcd_put_digit(&ret
, bcd_preferred_sgn(sgnb
, ps
), 0);
2628 cr
= bcd_cmp_zero(&ret
);
2637 uint32_t helper_bcdtrunc(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, uint32_t ps
)
2640 uint32_t ox_flag
= 0;
2641 int i
= a
->VsrSH(3) + 1;
2644 if (bcd_is_valid(b
) == false) {
2648 if (i
> 16 && i
< 32) {
2649 mask
= (uint64_t)-1 >> (128 - i
* 4);
2650 if (ret
.VsrD(0) & ~mask
) {
2654 ret
.VsrD(0) &= mask
;
2655 } else if (i
>= 0 && i
<= 16) {
2656 mask
= (uint64_t)-1 >> (64 - i
* 4);
2657 if (ret
.VsrD(0) || (ret
.VsrD(1) & ~mask
)) {
2661 ret
.VsrD(1) &= mask
;
2664 bcd_put_digit(&ret
, bcd_preferred_sgn(bcd_get_sgn(b
), ps
), 0);
2667 return bcd_cmp_zero(&ret
) | ox_flag
;
2670 uint32_t helper_bcdutrunc(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, uint32_t ps
)
2674 uint32_t ox_flag
= 0;
2678 for (i
= 0; i
< 32; i
++) {
2679 bcd_get_digit(b
, i
, &invalid
);
2681 if (unlikely(invalid
)) {
2687 if (i
> 16 && i
< 33) {
2688 mask
= (uint64_t)-1 >> (128 - i
* 4);
2689 if (ret
.VsrD(0) & ~mask
) {
2693 ret
.VsrD(0) &= mask
;
2694 } else if (i
> 0 && i
<= 16) {
2695 mask
= (uint64_t)-1 >> (64 - i
* 4);
2696 if (ret
.VsrD(0) || (ret
.VsrD(1) & ~mask
)) {
2700 ret
.VsrD(1) &= mask
;
2702 } else if (i
== 0) {
2703 if (ret
.VsrD(0) || ret
.VsrD(1)) {
2706 ret
.VsrD(0) = ret
.VsrD(1) = 0;
2710 if (r
->VsrD(0) == 0 && r
->VsrD(1) == 0) {
2711 return ox_flag
| CRF_EQ
;
2714 return ox_flag
| CRF_GT
;
2717 void helper_vsbox(ppc_avr_t
*r
, ppc_avr_t
*a
)
2720 VECTOR_FOR_INORDER_I(i
, u8
) {
2721 r
->u8
[i
] = AES_sbox
[a
->u8
[i
]];
2725 void helper_vcipher(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2730 VECTOR_FOR_INORDER_I(i
, u32
) {
2731 result
.VsrW(i
) = b
->VsrW(i
) ^
2732 (AES_Te0
[a
->VsrB(AES_shifts
[4 * i
+ 0])] ^
2733 AES_Te1
[a
->VsrB(AES_shifts
[4 * i
+ 1])] ^
2734 AES_Te2
[a
->VsrB(AES_shifts
[4 * i
+ 2])] ^
2735 AES_Te3
[a
->VsrB(AES_shifts
[4 * i
+ 3])]);
2740 void helper_vcipherlast(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2745 VECTOR_FOR_INORDER_I(i
, u8
) {
2746 result
.VsrB(i
) = b
->VsrB(i
) ^ (AES_sbox
[a
->VsrB(AES_shifts
[i
])]);
2751 void helper_vncipher(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2753 /* This differs from what is written in ISA V2.07. The RTL is */
2754 /* incorrect and will be fixed in V2.07B. */
2758 VECTOR_FOR_INORDER_I(i
, u8
) {
2759 tmp
.VsrB(i
) = b
->VsrB(i
) ^ AES_isbox
[a
->VsrB(AES_ishifts
[i
])];
2762 VECTOR_FOR_INORDER_I(i
, u32
) {
2764 AES_imc
[tmp
.VsrB(4 * i
+ 0)][0] ^
2765 AES_imc
[tmp
.VsrB(4 * i
+ 1)][1] ^
2766 AES_imc
[tmp
.VsrB(4 * i
+ 2)][2] ^
2767 AES_imc
[tmp
.VsrB(4 * i
+ 3)][3];
2771 void helper_vncipherlast(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2776 VECTOR_FOR_INORDER_I(i
, u8
) {
2777 result
.VsrB(i
) = b
->VsrB(i
) ^ (AES_isbox
[a
->VsrB(AES_ishifts
[i
])]);
2782 void helper_vshasigmaw(ppc_avr_t
*r
, ppc_avr_t
*a
, uint32_t st_six
)
2784 int st
= (st_six
& 0x10) != 0;
2785 int six
= st_six
& 0xF;
2788 for (i
= 0; i
< ARRAY_SIZE(r
->u32
); i
++) {
2790 if ((six
& (0x8 >> i
)) == 0) {
2791 r
->VsrW(i
) = ror32(a
->VsrW(i
), 7) ^
2792 ror32(a
->VsrW(i
), 18) ^
2794 } else { /* six.bit[i] == 1 */
2795 r
->VsrW(i
) = ror32(a
->VsrW(i
), 17) ^
2796 ror32(a
->VsrW(i
), 19) ^
2799 } else { /* st == 1 */
2800 if ((six
& (0x8 >> i
)) == 0) {
2801 r
->VsrW(i
) = ror32(a
->VsrW(i
), 2) ^
2802 ror32(a
->VsrW(i
), 13) ^
2803 ror32(a
->VsrW(i
), 22);
2804 } else { /* six.bit[i] == 1 */
2805 r
->VsrW(i
) = ror32(a
->VsrW(i
), 6) ^
2806 ror32(a
->VsrW(i
), 11) ^
2807 ror32(a
->VsrW(i
), 25);
2813 void helper_vshasigmad(ppc_avr_t
*r
, ppc_avr_t
*a
, uint32_t st_six
)
2815 int st
= (st_six
& 0x10) != 0;
2816 int six
= st_six
& 0xF;
2819 for (i
= 0; i
< ARRAY_SIZE(r
->u64
); i
++) {
2821 if ((six
& (0x8 >> (2 * i
))) == 0) {
2822 r
->VsrD(i
) = ror64(a
->VsrD(i
), 1) ^
2823 ror64(a
->VsrD(i
), 8) ^
2825 } else { /* six.bit[2*i] == 1 */
2826 r
->VsrD(i
) = ror64(a
->VsrD(i
), 19) ^
2827 ror64(a
->VsrD(i
), 61) ^
2830 } else { /* st == 1 */
2831 if ((six
& (0x8 >> (2 * i
))) == 0) {
2832 r
->VsrD(i
) = ror64(a
->VsrD(i
), 28) ^
2833 ror64(a
->VsrD(i
), 34) ^
2834 ror64(a
->VsrD(i
), 39);
2835 } else { /* six.bit[2*i] == 1 */
2836 r
->VsrD(i
) = ror64(a
->VsrD(i
), 14) ^
2837 ror64(a
->VsrD(i
), 18) ^
2838 ror64(a
->VsrD(i
), 41);
2844 void helper_vpermxor(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
2849 for (i
= 0; i
< ARRAY_SIZE(r
->u8
); i
++) {
2850 int indexA
= c
->VsrB(i
) >> 4;
2851 int indexB
= c
->VsrB(i
) & 0xF;
2853 result
.VsrB(i
) = a
->VsrB(indexA
) ^ b
->VsrB(indexB
);
2858 #undef VECTOR_FOR_INORDER_I
2860 /*****************************************************************************/
2861 /* SPE extension helpers */
2862 /* Use a table to make this quicker */
2863 static const uint8_t hbrev
[16] = {
2864 0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
2865 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF,
2868 static inline uint8_t byte_reverse(uint8_t val
)
2870 return hbrev
[val
>> 4] | (hbrev
[val
& 0xF] << 4);
2873 static inline uint32_t word_reverse(uint32_t val
)
2875 return byte_reverse(val
>> 24) | (byte_reverse(val
>> 16) << 8) |
2876 (byte_reverse(val
>> 8) << 16) | (byte_reverse(val
) << 24);
2879 #define MASKBITS 16 /* Random value - to be fixed (implementation dependent) */
2880 target_ulong
helper_brinc(target_ulong arg1
, target_ulong arg2
)
2882 uint32_t a
, b
, d
, mask
;
2884 mask
= UINT32_MAX
>> (32 - MASKBITS
);
2887 d
= word_reverse(1 + word_reverse(a
| ~b
));
2888 return (arg1
& ~mask
) | (d
& b
);
2891 uint32_t helper_cntlsw32(uint32_t val
)
2893 if (val
& 0x80000000) {
2900 uint32_t helper_cntlzw32(uint32_t val
)
2906 target_ulong
helper_dlmzb(CPUPPCState
*env
, target_ulong high
,
2907 target_ulong low
, uint32_t update_Rc
)
2913 for (mask
= 0xFF000000; mask
!= 0; mask
= mask
>> 8) {
2914 if ((high
& mask
) == 0) {
2922 for (mask
= 0xFF000000; mask
!= 0; mask
= mask
>> 8) {
2923 if ((low
& mask
) == 0) {
2936 env
->xer
= (env
->xer
& ~0x7F) | i
;
2938 env
->crf
[0] |= xer_so
;