2 * QEMU Floppy disk emulator (Intel 82078)
4 * Copyright (c) 2003, 2007 Jocelyn Mayer
5 * Copyright (c) 2008 Hervé Poussineau
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * The controller is used in Sun4m systems in a slightly different
27 * way. There are changes in DOR register and DMA is not available.
30 #include "qemu/osdep.h"
32 #include "hw/block/fdc.h"
33 #include "qemu/error-report.h"
34 #include "qemu/timer.h"
35 #include "hw/isa/isa.h"
36 #include "hw/sysbus.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/blockdev.h"
39 #include "sysemu/sysemu.h"
42 /********************************************************/
43 /* debug Floppy devices */
45 #define DEBUG_FLOPPY 0
47 #define FLOPPY_DPRINTF(fmt, ...) \
50 fprintf(stderr, "FLOPPY: " fmt , ## __VA_ARGS__); \
54 /********************************************************/
55 /* Floppy drive emulation */
57 typedef enum FDriveRate
{
58 FDRIVE_RATE_500K
= 0x00, /* 500 Kbps */
59 FDRIVE_RATE_300K
= 0x01, /* 300 Kbps */
60 FDRIVE_RATE_250K
= 0x02, /* 250 Kbps */
61 FDRIVE_RATE_1M
= 0x03, /* 1 Mbps */
64 typedef enum FDriveSize
{
70 typedef struct FDFormat
{
71 FloppyDriveType drive
;
78 /* In many cases, the total sector size of a format is enough to uniquely
79 * identify it. However, there are some total sector collisions between
80 * formats of different physical size, and these are noted below by
81 * highlighting the total sector size for entries with collisions. */
82 static const FDFormat fd_formats
[] = {
83 /* First entry is default format */
84 /* 1.44 MB 3"1/2 floppy disks */
85 { FLOPPY_DRIVE_TYPE_144
, 18, 80, 1, FDRIVE_RATE_500K
, }, /* 3.5" 2880 */
86 { FLOPPY_DRIVE_TYPE_144
, 20, 80, 1, FDRIVE_RATE_500K
, }, /* 3.5" 3200 */
87 { FLOPPY_DRIVE_TYPE_144
, 21, 80, 1, FDRIVE_RATE_500K
, },
88 { FLOPPY_DRIVE_TYPE_144
, 21, 82, 1, FDRIVE_RATE_500K
, },
89 { FLOPPY_DRIVE_TYPE_144
, 21, 83, 1, FDRIVE_RATE_500K
, },
90 { FLOPPY_DRIVE_TYPE_144
, 22, 80, 1, FDRIVE_RATE_500K
, },
91 { FLOPPY_DRIVE_TYPE_144
, 23, 80, 1, FDRIVE_RATE_500K
, },
92 { FLOPPY_DRIVE_TYPE_144
, 24, 80, 1, FDRIVE_RATE_500K
, },
93 /* 2.88 MB 3"1/2 floppy disks */
94 { FLOPPY_DRIVE_TYPE_288
, 36, 80, 1, FDRIVE_RATE_1M
, },
95 { FLOPPY_DRIVE_TYPE_288
, 39, 80, 1, FDRIVE_RATE_1M
, },
96 { FLOPPY_DRIVE_TYPE_288
, 40, 80, 1, FDRIVE_RATE_1M
, },
97 { FLOPPY_DRIVE_TYPE_288
, 44, 80, 1, FDRIVE_RATE_1M
, },
98 { FLOPPY_DRIVE_TYPE_288
, 48, 80, 1, FDRIVE_RATE_1M
, },
99 /* 720 kB 3"1/2 floppy disks */
100 { FLOPPY_DRIVE_TYPE_144
, 9, 80, 1, FDRIVE_RATE_250K
, }, /* 3.5" 1440 */
101 { FLOPPY_DRIVE_TYPE_144
, 10, 80, 1, FDRIVE_RATE_250K
, },
102 { FLOPPY_DRIVE_TYPE_144
, 10, 82, 1, FDRIVE_RATE_250K
, },
103 { FLOPPY_DRIVE_TYPE_144
, 10, 83, 1, FDRIVE_RATE_250K
, },
104 { FLOPPY_DRIVE_TYPE_144
, 13, 80, 1, FDRIVE_RATE_250K
, },
105 { FLOPPY_DRIVE_TYPE_144
, 14, 80, 1, FDRIVE_RATE_250K
, },
106 /* 1.2 MB 5"1/4 floppy disks */
107 { FLOPPY_DRIVE_TYPE_120
, 15, 80, 1, FDRIVE_RATE_500K
, },
108 { FLOPPY_DRIVE_TYPE_120
, 18, 80, 1, FDRIVE_RATE_500K
, }, /* 5.25" 2880 */
109 { FLOPPY_DRIVE_TYPE_120
, 18, 82, 1, FDRIVE_RATE_500K
, },
110 { FLOPPY_DRIVE_TYPE_120
, 18, 83, 1, FDRIVE_RATE_500K
, },
111 { FLOPPY_DRIVE_TYPE_120
, 20, 80, 1, FDRIVE_RATE_500K
, }, /* 5.25" 3200 */
112 /* 720 kB 5"1/4 floppy disks */
113 { FLOPPY_DRIVE_TYPE_120
, 9, 80, 1, FDRIVE_RATE_250K
, }, /* 5.25" 1440 */
114 { FLOPPY_DRIVE_TYPE_120
, 11, 80, 1, FDRIVE_RATE_250K
, },
115 /* 360 kB 5"1/4 floppy disks */
116 { FLOPPY_DRIVE_TYPE_120
, 9, 40, 1, FDRIVE_RATE_300K
, }, /* 5.25" 720 */
117 { FLOPPY_DRIVE_TYPE_120
, 9, 40, 0, FDRIVE_RATE_300K
, },
118 { FLOPPY_DRIVE_TYPE_120
, 10, 41, 1, FDRIVE_RATE_300K
, },
119 { FLOPPY_DRIVE_TYPE_120
, 10, 42, 1, FDRIVE_RATE_300K
, },
120 /* 320 kB 5"1/4 floppy disks */
121 { FLOPPY_DRIVE_TYPE_120
, 8, 40, 1, FDRIVE_RATE_250K
, },
122 { FLOPPY_DRIVE_TYPE_120
, 8, 40, 0, FDRIVE_RATE_250K
, },
123 /* 360 kB must match 5"1/4 better than 3"1/2... */
124 { FLOPPY_DRIVE_TYPE_144
, 9, 80, 0, FDRIVE_RATE_250K
, }, /* 3.5" 720 */
126 { FLOPPY_DRIVE_TYPE_NONE
, -1, -1, 0, 0, },
129 static FDriveSize
drive_size(FloppyDriveType drive
)
132 case FLOPPY_DRIVE_TYPE_120
:
133 return FDRIVE_SIZE_525
;
134 case FLOPPY_DRIVE_TYPE_144
:
135 case FLOPPY_DRIVE_TYPE_288
:
136 return FDRIVE_SIZE_350
;
138 return FDRIVE_SIZE_UNKNOWN
;
142 #define GET_CUR_DRV(fdctrl) ((fdctrl)->cur_drv)
143 #define SET_CUR_DRV(fdctrl, drive) ((fdctrl)->cur_drv = (drive))
145 /* Will always be a fixed parameter for us */
146 #define FD_SECTOR_LEN 512
147 #define FD_SECTOR_SC 2 /* Sector size code */
148 #define FD_RESET_SENSEI_COUNT 4 /* Number of sense interrupts on RESET */
150 typedef struct FDCtrl FDCtrl
;
152 /* Floppy disk drive emulation */
153 typedef enum FDiskFlags
{
154 FDISK_DBL_SIDES
= 0x01,
157 typedef struct FDrive
{
161 FloppyDriveType drive
; /* CMOS drive type */
162 uint8_t perpendicular
; /* 2.88 MB access mode */
168 FloppyDriveType disk
; /* Current disk type */
170 uint8_t last_sect
; /* Nb sector per track */
171 uint8_t max_track
; /* Nb of tracks */
172 uint16_t bps
; /* Bytes per sector */
173 uint8_t ro
; /* Is read-only */
174 uint8_t media_changed
; /* Is media changed */
175 uint8_t media_rate
; /* Data rate of medium */
177 bool media_validated
; /* Have we validated the media? */
181 static FloppyDriveType
get_fallback_drive_type(FDrive
*drv
);
183 /* Hack: FD_SEEK is expected to work on empty drives. However, QEMU
184 * currently goes through some pains to keep seeks within the bounds
185 * established by last_sect and max_track. Correcting this is difficult,
186 * as refactoring FDC code tends to expose nasty bugs in the Linux kernel.
188 * For now: allow empty drives to have large bounds so we can seek around,
189 * with the understanding that when a diskette is inserted, the bounds will
190 * properly tighten to match the geometry of that inserted medium.
192 static void fd_empty_seek_hack(FDrive
*drv
)
194 drv
->last_sect
= 0xFF;
195 drv
->max_track
= 0xFF;
198 static void fd_init(FDrive
*drv
)
201 drv
->perpendicular
= 0;
203 drv
->disk
= FLOPPY_DRIVE_TYPE_NONE
;
207 drv
->media_changed
= 1;
210 #define NUM_SIDES(drv) ((drv)->flags & FDISK_DBL_SIDES ? 2 : 1)
212 static int fd_sector_calc(uint8_t head
, uint8_t track
, uint8_t sect
,
213 uint8_t last_sect
, uint8_t num_sides
)
215 return (((track
* num_sides
) + head
) * last_sect
) + sect
- 1;
218 /* Returns current position, in sectors, for given drive */
219 static int fd_sector(FDrive
*drv
)
221 return fd_sector_calc(drv
->head
, drv
->track
, drv
->sect
, drv
->last_sect
,
225 /* Seek to a new position:
226 * returns 0 if already on right track
227 * returns 1 if track changed
228 * returns 2 if track is invalid
229 * returns 3 if sector is invalid
230 * returns 4 if seek is disabled
232 static int fd_seek(FDrive
*drv
, uint8_t head
, uint8_t track
, uint8_t sect
,
238 if (track
> drv
->max_track
||
239 (head
!= 0 && (drv
->flags
& FDISK_DBL_SIDES
) == 0)) {
240 FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
241 head
, track
, sect
, 1,
242 (drv
->flags
& FDISK_DBL_SIDES
) == 0 ? 0 : 1,
243 drv
->max_track
, drv
->last_sect
);
246 if (sect
> drv
->last_sect
) {
247 FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
248 head
, track
, sect
, 1,
249 (drv
->flags
& FDISK_DBL_SIDES
) == 0 ? 0 : 1,
250 drv
->max_track
, drv
->last_sect
);
253 sector
= fd_sector_calc(head
, track
, sect
, drv
->last_sect
, NUM_SIDES(drv
));
255 if (sector
!= fd_sector(drv
)) {
258 FLOPPY_DPRINTF("error: no implicit seek %d %02x %02x"
259 " (max=%d %02x %02x)\n",
260 head
, track
, sect
, 1, drv
->max_track
,
266 if (drv
->track
!= track
) {
267 if (drv
->blk
!= NULL
&& blk_is_inserted(drv
->blk
)) {
268 drv
->media_changed
= 0;
276 if (drv
->blk
== NULL
|| !blk_is_inserted(drv
->blk
)) {
283 /* Set drive back to track 0 */
284 static void fd_recalibrate(FDrive
*drv
)
286 FLOPPY_DPRINTF("recalibrate\n");
287 fd_seek(drv
, 0, 0, 1, 1);
291 * Determine geometry based on inserted diskette.
292 * Will not operate on an empty drive.
294 * @return: 0 on success, -1 if the drive is empty.
296 static int pick_geometry(FDrive
*drv
)
298 BlockBackend
*blk
= drv
->blk
;
299 const FDFormat
*parse
;
300 uint64_t nb_sectors
, size
;
302 int match
, size_match
, type_match
;
303 bool magic
= drv
->drive
== FLOPPY_DRIVE_TYPE_AUTO
;
305 /* We can only pick a geometry if we have a diskette. */
306 if (!drv
->blk
|| !blk_is_inserted(drv
->blk
) ||
307 drv
->drive
== FLOPPY_DRIVE_TYPE_NONE
)
312 /* We need to determine the likely geometry of the inserted medium.
313 * In order of preference, we look for:
314 * (1) The same drive type and number of sectors,
315 * (2) The same diskette size and number of sectors,
316 * (3) The same drive type.
318 * In all cases, matches that occur higher in the drive table will take
319 * precedence over matches that occur later in the table.
321 blk_get_geometry(blk
, &nb_sectors
);
322 match
= size_match
= type_match
= -1;
324 parse
= &fd_formats
[i
];
325 if (parse
->drive
== FLOPPY_DRIVE_TYPE_NONE
) {
328 size
= (parse
->max_head
+ 1) * parse
->max_track
* parse
->last_sect
;
329 if (nb_sectors
== size
) {
330 if (magic
|| parse
->drive
== drv
->drive
) {
331 /* (1) perfect match -- nb_sectors and drive type */
333 } else if (drive_size(parse
->drive
) == drive_size(drv
->drive
)) {
334 /* (2) size match -- nb_sectors and physical medium size */
335 match
= (match
== -1) ? i
: match
;
337 /* This is suspicious -- Did the user misconfigure? */
338 size_match
= (size_match
== -1) ? i
: size_match
;
340 } else if (type_match
== -1) {
341 if ((parse
->drive
== drv
->drive
) ||
342 (magic
&& (parse
->drive
== get_fallback_drive_type(drv
)))) {
343 /* (3) type match -- nb_sectors mismatch, but matches the type
344 * specified explicitly by the user, or matches the fallback
345 * default type when using the drive autodetect mechanism */
351 /* No exact match found */
353 if (size_match
!= -1) {
354 parse
= &fd_formats
[size_match
];
355 FLOPPY_DPRINTF("User requested floppy drive type '%s', "
356 "but inserted medium appears to be a "
357 "%"PRId64
" sector '%s' type\n",
358 FloppyDriveType_lookup
[drv
->drive
],
360 FloppyDriveType_lookup
[parse
->drive
]);
365 /* No match of any kind found -- fd_format is misconfigured, abort. */
367 error_setg(&error_abort
, "No candidate geometries present in table "
368 " for floppy drive type '%s'",
369 FloppyDriveType_lookup
[drv
->drive
]);
372 parse
= &(fd_formats
[match
]);
375 if (parse
->max_head
== 0) {
376 drv
->flags
&= ~FDISK_DBL_SIDES
;
378 drv
->flags
|= FDISK_DBL_SIDES
;
380 drv
->max_track
= parse
->max_track
;
381 drv
->last_sect
= parse
->last_sect
;
382 drv
->disk
= parse
->drive
;
383 drv
->media_rate
= parse
->rate
;
387 static void pick_drive_type(FDrive
*drv
)
389 if (drv
->drive
!= FLOPPY_DRIVE_TYPE_AUTO
) {
393 if (pick_geometry(drv
) == 0) {
394 drv
->drive
= drv
->disk
;
396 drv
->drive
= get_fallback_drive_type(drv
);
399 g_assert(drv
->drive
!= FLOPPY_DRIVE_TYPE_AUTO
);
402 /* Revalidate a disk drive after a disk change */
403 static void fd_revalidate(FDrive
*drv
)
407 FLOPPY_DPRINTF("revalidate\n");
408 if (drv
->blk
!= NULL
) {
409 drv
->ro
= blk_is_read_only(drv
->blk
);
410 if (!blk_is_inserted(drv
->blk
)) {
411 FLOPPY_DPRINTF("No disk in drive\n");
412 drv
->disk
= FLOPPY_DRIVE_TYPE_NONE
;
413 fd_empty_seek_hack(drv
);
414 } else if (!drv
->media_validated
) {
415 rc
= pick_geometry(drv
);
417 FLOPPY_DPRINTF("Could not validate floppy drive media");
419 drv
->media_validated
= true;
420 FLOPPY_DPRINTF("Floppy disk (%d h %d t %d s) %s\n",
421 (drv
->flags
& FDISK_DBL_SIDES
) ? 2 : 1,
422 drv
->max_track
, drv
->last_sect
,
423 drv
->ro
? "ro" : "rw");
427 FLOPPY_DPRINTF("No drive connected\n");
430 drv
->flags
&= ~FDISK_DBL_SIDES
;
431 drv
->drive
= FLOPPY_DRIVE_TYPE_NONE
;
432 drv
->disk
= FLOPPY_DRIVE_TYPE_NONE
;
436 /********************************************************/
437 /* Intel 82078 floppy disk controller emulation */
439 static void fdctrl_reset(FDCtrl
*fdctrl
, int do_irq
);
440 static void fdctrl_to_command_phase(FDCtrl
*fdctrl
);
441 static int fdctrl_transfer_handler (void *opaque
, int nchan
,
442 int dma_pos
, int dma_len
);
443 static void fdctrl_raise_irq(FDCtrl
*fdctrl
);
444 static FDrive
*get_cur_drv(FDCtrl
*fdctrl
);
446 static uint32_t fdctrl_read_statusA(FDCtrl
*fdctrl
);
447 static uint32_t fdctrl_read_statusB(FDCtrl
*fdctrl
);
448 static uint32_t fdctrl_read_dor(FDCtrl
*fdctrl
);
449 static void fdctrl_write_dor(FDCtrl
*fdctrl
, uint32_t value
);
450 static uint32_t fdctrl_read_tape(FDCtrl
*fdctrl
);
451 static void fdctrl_write_tape(FDCtrl
*fdctrl
, uint32_t value
);
452 static uint32_t fdctrl_read_main_status(FDCtrl
*fdctrl
);
453 static void fdctrl_write_rate(FDCtrl
*fdctrl
, uint32_t value
);
454 static uint32_t fdctrl_read_data(FDCtrl
*fdctrl
);
455 static void fdctrl_write_data(FDCtrl
*fdctrl
, uint32_t value
);
456 static uint32_t fdctrl_read_dir(FDCtrl
*fdctrl
);
457 static void fdctrl_write_ccr(FDCtrl
*fdctrl
, uint32_t value
);
469 FD_STATE_MULTI
= 0x01, /* multi track flag */
470 FD_STATE_FORMAT
= 0x02, /* format flag */
486 FD_CMD_READ_TRACK
= 0x02,
487 FD_CMD_SPECIFY
= 0x03,
488 FD_CMD_SENSE_DRIVE_STATUS
= 0x04,
491 FD_CMD_RECALIBRATE
= 0x07,
492 FD_CMD_SENSE_INTERRUPT_STATUS
= 0x08,
493 FD_CMD_WRITE_DELETED
= 0x09,
494 FD_CMD_READ_ID
= 0x0a,
495 FD_CMD_READ_DELETED
= 0x0c,
496 FD_CMD_FORMAT_TRACK
= 0x0d,
497 FD_CMD_DUMPREG
= 0x0e,
499 FD_CMD_VERSION
= 0x10,
500 FD_CMD_SCAN_EQUAL
= 0x11,
501 FD_CMD_PERPENDICULAR_MODE
= 0x12,
502 FD_CMD_CONFIGURE
= 0x13,
504 FD_CMD_VERIFY
= 0x16,
505 FD_CMD_POWERDOWN_MODE
= 0x17,
506 FD_CMD_PART_ID
= 0x18,
507 FD_CMD_SCAN_LOW_OR_EQUAL
= 0x19,
508 FD_CMD_SCAN_HIGH_OR_EQUAL
= 0x1d,
510 FD_CMD_OPTION
= 0x33,
511 FD_CMD_RESTORE
= 0x4e,
512 FD_CMD_DRIVE_SPECIFICATION_COMMAND
= 0x8e,
513 FD_CMD_RELATIVE_SEEK_OUT
= 0x8f,
514 FD_CMD_FORMAT_AND_WRITE
= 0xcd,
515 FD_CMD_RELATIVE_SEEK_IN
= 0xcf,
519 FD_CONFIG_PRETRK
= 0xff, /* Pre-compensation set to track 0 */
520 FD_CONFIG_FIFOTHR
= 0x0f, /* FIFO threshold set to 1 byte */
521 FD_CONFIG_POLL
= 0x10, /* Poll enabled */
522 FD_CONFIG_EFIFO
= 0x20, /* FIFO disabled */
523 FD_CONFIG_EIS
= 0x40, /* No implied seeks */
532 FD_SR0_ABNTERM
= 0x40,
533 FD_SR0_INVCMD
= 0x80,
534 FD_SR0_RDYCHG
= 0xc0,
538 FD_SR1_MA
= 0x01, /* Missing address mark */
539 FD_SR1_NW
= 0x02, /* Not writable */
540 FD_SR1_EC
= 0x80, /* End of cylinder */
544 FD_SR2_SNS
= 0x04, /* Scan not satisfied */
545 FD_SR2_SEH
= 0x08, /* Scan equal hit */
556 FD_SRA_INTPEND
= 0x80,
570 FD_DOR_SELMASK
= 0x03,
572 FD_DOR_SELMASK
= 0x01,
574 FD_DOR_nRESET
= 0x04,
576 FD_DOR_MOTEN0
= 0x10,
577 FD_DOR_MOTEN1
= 0x20,
578 FD_DOR_MOTEN2
= 0x40,
579 FD_DOR_MOTEN3
= 0x80,
584 FD_TDR_BOOTSEL
= 0x0c,
586 FD_TDR_BOOTSEL
= 0x04,
591 FD_DSR_DRATEMASK
= 0x03,
592 FD_DSR_PWRDOWN
= 0x40,
593 FD_DSR_SWRESET
= 0x80,
597 FD_MSR_DRV0BUSY
= 0x01,
598 FD_MSR_DRV1BUSY
= 0x02,
599 FD_MSR_DRV2BUSY
= 0x04,
600 FD_MSR_DRV3BUSY
= 0x08,
601 FD_MSR_CMDBUSY
= 0x10,
602 FD_MSR_NONDMA
= 0x20,
608 FD_DIR_DSKCHG
= 0x80,
612 * See chapter 5.0 "Controller phases" of the spec:
615 * The host writes a command and its parameters into the FIFO. The command
616 * phase is completed when all parameters for the command have been supplied,
617 * and execution phase is entered.
620 * Data transfers, either DMA or non-DMA. For non-DMA transfers, the FIFO
621 * contains the payload now, otherwise it's unused. When all bytes of the
622 * required data have been transferred, the state is switched to either result
623 * phase (if the command produces status bytes) or directly back into the
624 * command phase for the next command.
627 * The host reads out the FIFO, which contains one or more result bytes now.
630 /* Only for migration: reconstruct phase from registers like qemu 2.3 */
631 FD_PHASE_RECONSTRUCT
= 0,
633 FD_PHASE_COMMAND
= 1,
634 FD_PHASE_EXECUTION
= 2,
638 #define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI)
639 #define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT)
644 /* Controller state */
645 QEMUTimer
*result_timer
;
649 /* Controller's identification */
655 uint8_t dor_vmstate
; /* only used as temp during vmstate */
670 uint8_t eot
; /* last wanted sector */
671 /* States kept only to be returned back */
672 /* precompensation */
676 /* Power down config (also with status regB access mode */
679 uint8_t num_floppies
;
680 FDrive drives
[MAX_FD
];
682 uint32_t check_media_rate
;
683 FloppyDriveType fallback
; /* type=auto failure fallback */
689 static FloppyDriveType
get_fallback_drive_type(FDrive
*drv
)
691 return drv
->fdctrl
->fallback
;
694 #define TYPE_SYSBUS_FDC "base-sysbus-fdc"
695 #define SYSBUS_FDC(obj) OBJECT_CHECK(FDCtrlSysBus, (obj), TYPE_SYSBUS_FDC)
697 typedef struct FDCtrlSysBus
{
699 SysBusDevice parent_obj
;
705 #define ISA_FDC(obj) OBJECT_CHECK(FDCtrlISABus, (obj), TYPE_ISA_FDC)
707 typedef struct FDCtrlISABus
{
708 ISADevice parent_obj
;
718 static uint32_t fdctrl_read (void *opaque
, uint32_t reg
)
720 FDCtrl
*fdctrl
= opaque
;
726 retval
= fdctrl_read_statusA(fdctrl
);
729 retval
= fdctrl_read_statusB(fdctrl
);
732 retval
= fdctrl_read_dor(fdctrl
);
735 retval
= fdctrl_read_tape(fdctrl
);
738 retval
= fdctrl_read_main_status(fdctrl
);
741 retval
= fdctrl_read_data(fdctrl
);
744 retval
= fdctrl_read_dir(fdctrl
);
747 retval
= (uint32_t)(-1);
750 FLOPPY_DPRINTF("read reg%d: 0x%02x\n", reg
& 7, retval
);
755 static void fdctrl_write (void *opaque
, uint32_t reg
, uint32_t value
)
757 FDCtrl
*fdctrl
= opaque
;
759 FLOPPY_DPRINTF("write reg%d: 0x%02x\n", reg
& 7, value
);
764 fdctrl_write_dor(fdctrl
, value
);
767 fdctrl_write_tape(fdctrl
, value
);
770 fdctrl_write_rate(fdctrl
, value
);
773 fdctrl_write_data(fdctrl
, value
);
776 fdctrl_write_ccr(fdctrl
, value
);
783 static uint64_t fdctrl_read_mem (void *opaque
, hwaddr reg
,
786 return fdctrl_read(opaque
, (uint32_t)reg
);
789 static void fdctrl_write_mem (void *opaque
, hwaddr reg
,
790 uint64_t value
, unsigned size
)
792 fdctrl_write(opaque
, (uint32_t)reg
, value
);
795 static const MemoryRegionOps fdctrl_mem_ops
= {
796 .read
= fdctrl_read_mem
,
797 .write
= fdctrl_write_mem
,
798 .endianness
= DEVICE_NATIVE_ENDIAN
,
801 static const MemoryRegionOps fdctrl_mem_strict_ops
= {
802 .read
= fdctrl_read_mem
,
803 .write
= fdctrl_write_mem
,
804 .endianness
= DEVICE_NATIVE_ENDIAN
,
806 .min_access_size
= 1,
807 .max_access_size
= 1,
811 static bool fdrive_media_changed_needed(void *opaque
)
813 FDrive
*drive
= opaque
;
815 return (drive
->blk
!= NULL
&& drive
->media_changed
!= 1);
818 static const VMStateDescription vmstate_fdrive_media_changed
= {
819 .name
= "fdrive/media_changed",
821 .minimum_version_id
= 1,
822 .needed
= fdrive_media_changed_needed
,
823 .fields
= (VMStateField
[]) {
824 VMSTATE_UINT8(media_changed
, FDrive
),
825 VMSTATE_END_OF_LIST()
829 static bool fdrive_media_rate_needed(void *opaque
)
831 FDrive
*drive
= opaque
;
833 return drive
->fdctrl
->check_media_rate
;
836 static const VMStateDescription vmstate_fdrive_media_rate
= {
837 .name
= "fdrive/media_rate",
839 .minimum_version_id
= 1,
840 .needed
= fdrive_media_rate_needed
,
841 .fields
= (VMStateField
[]) {
842 VMSTATE_UINT8(media_rate
, FDrive
),
843 VMSTATE_END_OF_LIST()
847 static bool fdrive_perpendicular_needed(void *opaque
)
849 FDrive
*drive
= opaque
;
851 return drive
->perpendicular
!= 0;
854 static const VMStateDescription vmstate_fdrive_perpendicular
= {
855 .name
= "fdrive/perpendicular",
857 .minimum_version_id
= 1,
858 .needed
= fdrive_perpendicular_needed
,
859 .fields
= (VMStateField
[]) {
860 VMSTATE_UINT8(perpendicular
, FDrive
),
861 VMSTATE_END_OF_LIST()
865 static int fdrive_post_load(void *opaque
, int version_id
)
867 fd_revalidate(opaque
);
871 static const VMStateDescription vmstate_fdrive
= {
874 .minimum_version_id
= 1,
875 .post_load
= fdrive_post_load
,
876 .fields
= (VMStateField
[]) {
877 VMSTATE_UINT8(head
, FDrive
),
878 VMSTATE_UINT8(track
, FDrive
),
879 VMSTATE_UINT8(sect
, FDrive
),
880 VMSTATE_END_OF_LIST()
882 .subsections
= (const VMStateDescription
*[]) {
883 &vmstate_fdrive_media_changed
,
884 &vmstate_fdrive_media_rate
,
885 &vmstate_fdrive_perpendicular
,
891 * Reconstructs the phase from register values according to the logic that was
892 * implemented in qemu 2.3. This is the default value that is used if the phase
893 * subsection is not present on migration.
895 * Don't change this function to reflect newer qemu versions, it is part of
898 static int reconstruct_phase(FDCtrl
*fdctrl
)
900 if (fdctrl
->msr
& FD_MSR_NONDMA
) {
901 return FD_PHASE_EXECUTION
;
902 } else if ((fdctrl
->msr
& FD_MSR_RQM
) == 0) {
903 /* qemu 2.3 disabled RQM only during DMA transfers */
904 return FD_PHASE_EXECUTION
;
905 } else if (fdctrl
->msr
& FD_MSR_DIO
) {
906 return FD_PHASE_RESULT
;
908 return FD_PHASE_COMMAND
;
912 static void fdc_pre_save(void *opaque
)
916 s
->dor_vmstate
= s
->dor
| GET_CUR_DRV(s
);
919 static int fdc_pre_load(void *opaque
)
922 s
->phase
= FD_PHASE_RECONSTRUCT
;
926 static int fdc_post_load(void *opaque
, int version_id
)
930 SET_CUR_DRV(s
, s
->dor_vmstate
& FD_DOR_SELMASK
);
931 s
->dor
= s
->dor_vmstate
& ~FD_DOR_SELMASK
;
933 if (s
->phase
== FD_PHASE_RECONSTRUCT
) {
934 s
->phase
= reconstruct_phase(s
);
940 static bool fdc_reset_sensei_needed(void *opaque
)
944 return s
->reset_sensei
!= 0;
947 static const VMStateDescription vmstate_fdc_reset_sensei
= {
948 .name
= "fdc/reset_sensei",
950 .minimum_version_id
= 1,
951 .needed
= fdc_reset_sensei_needed
,
952 .fields
= (VMStateField
[]) {
953 VMSTATE_INT32(reset_sensei
, FDCtrl
),
954 VMSTATE_END_OF_LIST()
958 static bool fdc_result_timer_needed(void *opaque
)
962 return timer_pending(s
->result_timer
);
965 static const VMStateDescription vmstate_fdc_result_timer
= {
966 .name
= "fdc/result_timer",
968 .minimum_version_id
= 1,
969 .needed
= fdc_result_timer_needed
,
970 .fields
= (VMStateField
[]) {
971 VMSTATE_TIMER_PTR(result_timer
, FDCtrl
),
972 VMSTATE_END_OF_LIST()
976 static bool fdc_phase_needed(void *opaque
)
978 FDCtrl
*fdctrl
= opaque
;
980 return reconstruct_phase(fdctrl
) != fdctrl
->phase
;
983 static const VMStateDescription vmstate_fdc_phase
= {
986 .minimum_version_id
= 1,
987 .needed
= fdc_phase_needed
,
988 .fields
= (VMStateField
[]) {
989 VMSTATE_UINT8(phase
, FDCtrl
),
990 VMSTATE_END_OF_LIST()
994 static const VMStateDescription vmstate_fdc
= {
997 .minimum_version_id
= 2,
998 .pre_save
= fdc_pre_save
,
999 .pre_load
= fdc_pre_load
,
1000 .post_load
= fdc_post_load
,
1001 .fields
= (VMStateField
[]) {
1002 /* Controller State */
1003 VMSTATE_UINT8(sra
, FDCtrl
),
1004 VMSTATE_UINT8(srb
, FDCtrl
),
1005 VMSTATE_UINT8(dor_vmstate
, FDCtrl
),
1006 VMSTATE_UINT8(tdr
, FDCtrl
),
1007 VMSTATE_UINT8(dsr
, FDCtrl
),
1008 VMSTATE_UINT8(msr
, FDCtrl
),
1009 VMSTATE_UINT8(status0
, FDCtrl
),
1010 VMSTATE_UINT8(status1
, FDCtrl
),
1011 VMSTATE_UINT8(status2
, FDCtrl
),
1013 VMSTATE_VARRAY_INT32(fifo
, FDCtrl
, fifo_size
, 0, vmstate_info_uint8
,
1015 VMSTATE_UINT32(data_pos
, FDCtrl
),
1016 VMSTATE_UINT32(data_len
, FDCtrl
),
1017 VMSTATE_UINT8(data_state
, FDCtrl
),
1018 VMSTATE_UINT8(data_dir
, FDCtrl
),
1019 VMSTATE_UINT8(eot
, FDCtrl
),
1020 /* States kept only to be returned back */
1021 VMSTATE_UINT8(timer0
, FDCtrl
),
1022 VMSTATE_UINT8(timer1
, FDCtrl
),
1023 VMSTATE_UINT8(precomp_trk
, FDCtrl
),
1024 VMSTATE_UINT8(config
, FDCtrl
),
1025 VMSTATE_UINT8(lock
, FDCtrl
),
1026 VMSTATE_UINT8(pwrd
, FDCtrl
),
1027 VMSTATE_UINT8_EQUAL(num_floppies
, FDCtrl
),
1028 VMSTATE_STRUCT_ARRAY(drives
, FDCtrl
, MAX_FD
, 1,
1029 vmstate_fdrive
, FDrive
),
1030 VMSTATE_END_OF_LIST()
1032 .subsections
= (const VMStateDescription
*[]) {
1033 &vmstate_fdc_reset_sensei
,
1034 &vmstate_fdc_result_timer
,
1040 static void fdctrl_external_reset_sysbus(DeviceState
*d
)
1042 FDCtrlSysBus
*sys
= SYSBUS_FDC(d
);
1043 FDCtrl
*s
= &sys
->state
;
1048 static void fdctrl_external_reset_isa(DeviceState
*d
)
1050 FDCtrlISABus
*isa
= ISA_FDC(d
);
1051 FDCtrl
*s
= &isa
->state
;
1056 static void fdctrl_handle_tc(void *opaque
, int irq
, int level
)
1058 //FDCtrl *s = opaque;
1062 FLOPPY_DPRINTF("TC pulsed\n");
1066 /* Change IRQ state */
1067 static void fdctrl_reset_irq(FDCtrl
*fdctrl
)
1069 fdctrl
->status0
= 0;
1070 if (!(fdctrl
->sra
& FD_SRA_INTPEND
))
1072 FLOPPY_DPRINTF("Reset interrupt\n");
1073 qemu_set_irq(fdctrl
->irq
, 0);
1074 fdctrl
->sra
&= ~FD_SRA_INTPEND
;
1077 static void fdctrl_raise_irq(FDCtrl
*fdctrl
)
1079 if (!(fdctrl
->sra
& FD_SRA_INTPEND
)) {
1080 qemu_set_irq(fdctrl
->irq
, 1);
1081 fdctrl
->sra
|= FD_SRA_INTPEND
;
1084 fdctrl
->reset_sensei
= 0;
1085 FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", fdctrl
->status0
);
1088 /* Reset controller */
1089 static void fdctrl_reset(FDCtrl
*fdctrl
, int do_irq
)
1093 FLOPPY_DPRINTF("reset controller\n");
1094 fdctrl_reset_irq(fdctrl
);
1095 /* Initialise controller */
1098 if (!fdctrl
->drives
[1].blk
) {
1099 fdctrl
->sra
|= FD_SRA_nDRV2
;
1101 fdctrl
->cur_drv
= 0;
1102 fdctrl
->dor
= FD_DOR_nRESET
;
1103 fdctrl
->dor
|= (fdctrl
->dma_chann
!= -1) ? FD_DOR_DMAEN
: 0;
1104 fdctrl
->msr
= FD_MSR_RQM
;
1105 fdctrl
->reset_sensei
= 0;
1106 timer_del(fdctrl
->result_timer
);
1108 fdctrl
->data_pos
= 0;
1109 fdctrl
->data_len
= 0;
1110 fdctrl
->data_state
= 0;
1111 fdctrl
->data_dir
= FD_DIR_WRITE
;
1112 for (i
= 0; i
< MAX_FD
; i
++)
1113 fd_recalibrate(&fdctrl
->drives
[i
]);
1114 fdctrl_to_command_phase(fdctrl
);
1116 fdctrl
->status0
|= FD_SR0_RDYCHG
;
1117 fdctrl_raise_irq(fdctrl
);
1118 fdctrl
->reset_sensei
= FD_RESET_SENSEI_COUNT
;
1122 static inline FDrive
*drv0(FDCtrl
*fdctrl
)
1124 return &fdctrl
->drives
[(fdctrl
->tdr
& FD_TDR_BOOTSEL
) >> 2];
1127 static inline FDrive
*drv1(FDCtrl
*fdctrl
)
1129 if ((fdctrl
->tdr
& FD_TDR_BOOTSEL
) < (1 << 2))
1130 return &fdctrl
->drives
[1];
1132 return &fdctrl
->drives
[0];
1136 static inline FDrive
*drv2(FDCtrl
*fdctrl
)
1138 if ((fdctrl
->tdr
& FD_TDR_BOOTSEL
) < (2 << 2))
1139 return &fdctrl
->drives
[2];
1141 return &fdctrl
->drives
[1];
1144 static inline FDrive
*drv3(FDCtrl
*fdctrl
)
1146 if ((fdctrl
->tdr
& FD_TDR_BOOTSEL
) < (3 << 2))
1147 return &fdctrl
->drives
[3];
1149 return &fdctrl
->drives
[2];
1153 static FDrive
*get_cur_drv(FDCtrl
*fdctrl
)
1155 switch (fdctrl
->cur_drv
) {
1156 case 0: return drv0(fdctrl
);
1157 case 1: return drv1(fdctrl
);
1159 case 2: return drv2(fdctrl
);
1160 case 3: return drv3(fdctrl
);
1162 default: return NULL
;
1166 /* Status A register : 0x00 (read-only) */
1167 static uint32_t fdctrl_read_statusA(FDCtrl
*fdctrl
)
1169 uint32_t retval
= fdctrl
->sra
;
1171 FLOPPY_DPRINTF("status register A: 0x%02x\n", retval
);
1176 /* Status B register : 0x01 (read-only) */
1177 static uint32_t fdctrl_read_statusB(FDCtrl
*fdctrl
)
1179 uint32_t retval
= fdctrl
->srb
;
1181 FLOPPY_DPRINTF("status register B: 0x%02x\n", retval
);
1186 /* Digital output register : 0x02 */
1187 static uint32_t fdctrl_read_dor(FDCtrl
*fdctrl
)
1189 uint32_t retval
= fdctrl
->dor
;
1191 /* Selected drive */
1192 retval
|= fdctrl
->cur_drv
;
1193 FLOPPY_DPRINTF("digital output register: 0x%02x\n", retval
);
1198 static void fdctrl_write_dor(FDCtrl
*fdctrl
, uint32_t value
)
1200 FLOPPY_DPRINTF("digital output register set to 0x%02x\n", value
);
1203 if (value
& FD_DOR_MOTEN0
)
1204 fdctrl
->srb
|= FD_SRB_MTR0
;
1206 fdctrl
->srb
&= ~FD_SRB_MTR0
;
1207 if (value
& FD_DOR_MOTEN1
)
1208 fdctrl
->srb
|= FD_SRB_MTR1
;
1210 fdctrl
->srb
&= ~FD_SRB_MTR1
;
1214 fdctrl
->srb
|= FD_SRB_DR0
;
1216 fdctrl
->srb
&= ~FD_SRB_DR0
;
1219 if (!(value
& FD_DOR_nRESET
)) {
1220 if (fdctrl
->dor
& FD_DOR_nRESET
) {
1221 FLOPPY_DPRINTF("controller enter RESET state\n");
1224 if (!(fdctrl
->dor
& FD_DOR_nRESET
)) {
1225 FLOPPY_DPRINTF("controller out of RESET state\n");
1226 fdctrl_reset(fdctrl
, 1);
1227 fdctrl
->dsr
&= ~FD_DSR_PWRDOWN
;
1230 /* Selected drive */
1231 fdctrl
->cur_drv
= value
& FD_DOR_SELMASK
;
1233 fdctrl
->dor
= value
;
1236 /* Tape drive register : 0x03 */
1237 static uint32_t fdctrl_read_tape(FDCtrl
*fdctrl
)
1239 uint32_t retval
= fdctrl
->tdr
;
1241 FLOPPY_DPRINTF("tape drive register: 0x%02x\n", retval
);
1246 static void fdctrl_write_tape(FDCtrl
*fdctrl
, uint32_t value
)
1249 if (!(fdctrl
->dor
& FD_DOR_nRESET
)) {
1250 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1253 FLOPPY_DPRINTF("tape drive register set to 0x%02x\n", value
);
1254 /* Disk boot selection indicator */
1255 fdctrl
->tdr
= value
& FD_TDR_BOOTSEL
;
1256 /* Tape indicators: never allow */
1259 /* Main status register : 0x04 (read) */
1260 static uint32_t fdctrl_read_main_status(FDCtrl
*fdctrl
)
1262 uint32_t retval
= fdctrl
->msr
;
1264 fdctrl
->dsr
&= ~FD_DSR_PWRDOWN
;
1265 fdctrl
->dor
|= FD_DOR_nRESET
;
1267 FLOPPY_DPRINTF("main status register: 0x%02x\n", retval
);
1272 /* Data select rate register : 0x04 (write) */
1273 static void fdctrl_write_rate(FDCtrl
*fdctrl
, uint32_t value
)
1276 if (!(fdctrl
->dor
& FD_DOR_nRESET
)) {
1277 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1280 FLOPPY_DPRINTF("select rate register set to 0x%02x\n", value
);
1281 /* Reset: autoclear */
1282 if (value
& FD_DSR_SWRESET
) {
1283 fdctrl
->dor
&= ~FD_DOR_nRESET
;
1284 fdctrl_reset(fdctrl
, 1);
1285 fdctrl
->dor
|= FD_DOR_nRESET
;
1287 if (value
& FD_DSR_PWRDOWN
) {
1288 fdctrl_reset(fdctrl
, 1);
1290 fdctrl
->dsr
= value
;
1293 /* Configuration control register: 0x07 (write) */
1294 static void fdctrl_write_ccr(FDCtrl
*fdctrl
, uint32_t value
)
1297 if (!(fdctrl
->dor
& FD_DOR_nRESET
)) {
1298 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1301 FLOPPY_DPRINTF("configuration control register set to 0x%02x\n", value
);
1303 /* Only the rate selection bits used in AT mode, and we
1304 * store those in the DSR.
1306 fdctrl
->dsr
= (fdctrl
->dsr
& ~FD_DSR_DRATEMASK
) |
1307 (value
& FD_DSR_DRATEMASK
);
1310 static int fdctrl_media_changed(FDrive
*drv
)
1312 return drv
->media_changed
;
1315 /* Digital input register : 0x07 (read-only) */
1316 static uint32_t fdctrl_read_dir(FDCtrl
*fdctrl
)
1318 uint32_t retval
= 0;
1320 if (fdctrl_media_changed(get_cur_drv(fdctrl
))) {
1321 retval
|= FD_DIR_DSKCHG
;
1324 FLOPPY_DPRINTF("Floppy digital input register: 0x%02x\n", retval
);
1330 /* Clear the FIFO and update the state for receiving the next command */
1331 static void fdctrl_to_command_phase(FDCtrl
*fdctrl
)
1333 fdctrl
->phase
= FD_PHASE_COMMAND
;
1334 fdctrl
->data_dir
= FD_DIR_WRITE
;
1335 fdctrl
->data_pos
= 0;
1336 fdctrl
->data_len
= 1; /* Accept command byte, adjust for params later */
1337 fdctrl
->msr
&= ~(FD_MSR_CMDBUSY
| FD_MSR_DIO
);
1338 fdctrl
->msr
|= FD_MSR_RQM
;
1341 /* Update the state to allow the guest to read out the command status.
1342 * @fifo_len is the number of result bytes to be read out. */
1343 static void fdctrl_to_result_phase(FDCtrl
*fdctrl
, int fifo_len
)
1345 fdctrl
->phase
= FD_PHASE_RESULT
;
1346 fdctrl
->data_dir
= FD_DIR_READ
;
1347 fdctrl
->data_len
= fifo_len
;
1348 fdctrl
->data_pos
= 0;
1349 fdctrl
->msr
|= FD_MSR_CMDBUSY
| FD_MSR_RQM
| FD_MSR_DIO
;
1352 /* Set an error: unimplemented/unknown command */
1353 static void fdctrl_unimplemented(FDCtrl
*fdctrl
, int direction
)
1355 qemu_log_mask(LOG_UNIMP
, "fdc: unimplemented command 0x%02x\n",
1357 fdctrl
->fifo
[0] = FD_SR0_INVCMD
;
1358 fdctrl_to_result_phase(fdctrl
, 1);
1361 /* Seek to next sector
1362 * returns 0 when end of track reached (for DBL_SIDES on head 1)
1363 * otherwise returns 1
1365 static int fdctrl_seek_to_next_sect(FDCtrl
*fdctrl
, FDrive
*cur_drv
)
1367 FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n",
1368 cur_drv
->head
, cur_drv
->track
, cur_drv
->sect
,
1369 fd_sector(cur_drv
));
1370 /* XXX: cur_drv->sect >= cur_drv->last_sect should be an
1372 uint8_t new_head
= cur_drv
->head
;
1373 uint8_t new_track
= cur_drv
->track
;
1374 uint8_t new_sect
= cur_drv
->sect
;
1378 if (new_sect
>= cur_drv
->last_sect
||
1379 new_sect
== fdctrl
->eot
) {
1381 if (FD_MULTI_TRACK(fdctrl
->data_state
)) {
1382 if (new_head
== 0 &&
1383 (cur_drv
->flags
& FDISK_DBL_SIDES
) != 0) {
1388 fdctrl
->status0
|= FD_SR0_SEEK
;
1389 if ((cur_drv
->flags
& FDISK_DBL_SIDES
) == 0) {
1394 fdctrl
->status0
|= FD_SR0_SEEK
;
1399 FLOPPY_DPRINTF("seek to next track (%d %02x %02x => %d)\n",
1400 new_head
, new_track
, new_sect
, fd_sector(cur_drv
));
1405 fd_seek(cur_drv
, new_head
, new_track
, new_sect
, 1);
1409 /* Callback for transfer end (stop or abort) */
1410 static void fdctrl_stop_transfer(FDCtrl
*fdctrl
, uint8_t status0
,
1411 uint8_t status1
, uint8_t status2
)
1414 cur_drv
= get_cur_drv(fdctrl
);
1416 fdctrl
->status0
&= ~(FD_SR0_DS0
| FD_SR0_DS1
| FD_SR0_HEAD
);
1417 fdctrl
->status0
|= GET_CUR_DRV(fdctrl
);
1418 if (cur_drv
->head
) {
1419 fdctrl
->status0
|= FD_SR0_HEAD
;
1421 fdctrl
->status0
|= status0
;
1423 FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n",
1424 status0
, status1
, status2
, fdctrl
->status0
);
1425 fdctrl
->fifo
[0] = fdctrl
->status0
;
1426 fdctrl
->fifo
[1] = status1
;
1427 fdctrl
->fifo
[2] = status2
;
1428 fdctrl
->fifo
[3] = cur_drv
->track
;
1429 fdctrl
->fifo
[4] = cur_drv
->head
;
1430 fdctrl
->fifo
[5] = cur_drv
->sect
;
1431 fdctrl
->fifo
[6] = FD_SECTOR_SC
;
1432 fdctrl
->data_dir
= FD_DIR_READ
;
1433 if (!(fdctrl
->msr
& FD_MSR_NONDMA
)) {
1434 IsaDmaClass
*k
= ISADMA_GET_CLASS(fdctrl
->dma
);
1435 k
->release_DREQ(fdctrl
->dma
, fdctrl
->dma_chann
);
1437 fdctrl
->msr
|= FD_MSR_RQM
| FD_MSR_DIO
;
1438 fdctrl
->msr
&= ~FD_MSR_NONDMA
;
1440 fdctrl_to_result_phase(fdctrl
, 7);
1441 fdctrl_raise_irq(fdctrl
);
1444 /* Prepare a data transfer (either DMA or FIFO) */
1445 static void fdctrl_start_transfer(FDCtrl
*fdctrl
, int direction
)
1450 SET_CUR_DRV(fdctrl
, fdctrl
->fifo
[1] & FD_DOR_SELMASK
);
1451 cur_drv
= get_cur_drv(fdctrl
);
1452 kt
= fdctrl
->fifo
[2];
1453 kh
= fdctrl
->fifo
[3];
1454 ks
= fdctrl
->fifo
[4];
1455 FLOPPY_DPRINTF("Start transfer at %d %d %02x %02x (%d)\n",
1456 GET_CUR_DRV(fdctrl
), kh
, kt
, ks
,
1457 fd_sector_calc(kh
, kt
, ks
, cur_drv
->last_sect
,
1458 NUM_SIDES(cur_drv
)));
1459 switch (fd_seek(cur_drv
, kh
, kt
, ks
, fdctrl
->config
& FD_CONFIG_EIS
)) {
1462 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, 0x00, 0x00);
1463 fdctrl
->fifo
[3] = kt
;
1464 fdctrl
->fifo
[4] = kh
;
1465 fdctrl
->fifo
[5] = ks
;
1469 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, FD_SR1_EC
, 0x00);
1470 fdctrl
->fifo
[3] = kt
;
1471 fdctrl
->fifo
[4] = kh
;
1472 fdctrl
->fifo
[5] = ks
;
1475 /* No seek enabled */
1476 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, 0x00, 0x00);
1477 fdctrl
->fifo
[3] = kt
;
1478 fdctrl
->fifo
[4] = kh
;
1479 fdctrl
->fifo
[5] = ks
;
1482 fdctrl
->status0
|= FD_SR0_SEEK
;
1488 /* Check the data rate. If the programmed data rate does not match
1489 * the currently inserted medium, the operation has to fail. */
1490 if (fdctrl
->check_media_rate
&&
1491 (fdctrl
->dsr
& FD_DSR_DRATEMASK
) != cur_drv
->media_rate
) {
1492 FLOPPY_DPRINTF("data rate mismatch (fdc=%d, media=%d)\n",
1493 fdctrl
->dsr
& FD_DSR_DRATEMASK
, cur_drv
->media_rate
);
1494 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, FD_SR1_MA
, 0x00);
1495 fdctrl
->fifo
[3] = kt
;
1496 fdctrl
->fifo
[4] = kh
;
1497 fdctrl
->fifo
[5] = ks
;
1501 /* Set the FIFO state */
1502 fdctrl
->data_dir
= direction
;
1503 fdctrl
->data_pos
= 0;
1504 assert(fdctrl
->msr
& FD_MSR_CMDBUSY
);
1505 if (fdctrl
->fifo
[0] & 0x80)
1506 fdctrl
->data_state
|= FD_STATE_MULTI
;
1508 fdctrl
->data_state
&= ~FD_STATE_MULTI
;
1509 if (fdctrl
->fifo
[5] == 0) {
1510 fdctrl
->data_len
= fdctrl
->fifo
[8];
1513 fdctrl
->data_len
= 128 << (fdctrl
->fifo
[5] > 7 ? 7 : fdctrl
->fifo
[5]);
1514 tmp
= (fdctrl
->fifo
[6] - ks
+ 1);
1515 if (fdctrl
->fifo
[0] & 0x80)
1516 tmp
+= fdctrl
->fifo
[6];
1517 fdctrl
->data_len
*= tmp
;
1519 fdctrl
->eot
= fdctrl
->fifo
[6];
1520 if (fdctrl
->dor
& FD_DOR_DMAEN
) {
1521 IsaDmaTransferMode dma_mode
;
1522 IsaDmaClass
*k
= ISADMA_GET_CLASS(fdctrl
->dma
);
1524 /* DMA transfer are enabled. Check if DMA channel is well programmed */
1525 dma_mode
= k
->get_transfer_mode(fdctrl
->dma
, fdctrl
->dma_chann
);
1526 FLOPPY_DPRINTF("dma_mode=%d direction=%d (%d - %d)\n",
1527 dma_mode
, direction
,
1528 (128 << fdctrl
->fifo
[5]) *
1529 (cur_drv
->last_sect
- ks
+ 1), fdctrl
->data_len
);
1530 switch (direction
) {
1534 dma_mode_ok
= (dma_mode
== ISADMA_TRANSFER_VERIFY
);
1537 dma_mode_ok
= (dma_mode
== ISADMA_TRANSFER_WRITE
);
1540 dma_mode_ok
= (dma_mode
== ISADMA_TRANSFER_READ
);
1546 dma_mode_ok
= false;
1550 /* No access is allowed until DMA transfer has completed */
1551 fdctrl
->msr
&= ~FD_MSR_RQM
;
1552 if (direction
!= FD_DIR_VERIFY
) {
1553 /* Now, we just have to wait for the DMA controller to
1556 k
->hold_DREQ(fdctrl
->dma
, fdctrl
->dma_chann
);
1557 k
->schedule(fdctrl
->dma
);
1559 /* Start transfer */
1560 fdctrl_transfer_handler(fdctrl
, fdctrl
->dma_chann
, 0,
1565 FLOPPY_DPRINTF("bad dma_mode=%d direction=%d\n", dma_mode
,
1569 FLOPPY_DPRINTF("start non-DMA transfer\n");
1570 fdctrl
->msr
|= FD_MSR_NONDMA
| FD_MSR_RQM
;
1571 if (direction
!= FD_DIR_WRITE
)
1572 fdctrl
->msr
|= FD_MSR_DIO
;
1573 /* IO based transfer: calculate len */
1574 fdctrl_raise_irq(fdctrl
);
1577 /* Prepare a transfer of deleted data */
1578 static void fdctrl_start_transfer_del(FDCtrl
*fdctrl
, int direction
)
1580 qemu_log_mask(LOG_UNIMP
, "fdctrl_start_transfer_del() unimplemented\n");
1582 /* We don't handle deleted data,
1583 * so we don't return *ANYTHING*
1585 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
| FD_SR0_SEEK
, 0x00, 0x00);
1588 /* handlers for DMA transfers */
1589 static int fdctrl_transfer_handler (void *opaque
, int nchan
,
1590 int dma_pos
, int dma_len
)
1594 int len
, start_pos
, rel_pos
;
1595 uint8_t status0
= 0x00, status1
= 0x00, status2
= 0x00;
1599 if (fdctrl
->msr
& FD_MSR_RQM
) {
1600 FLOPPY_DPRINTF("Not in DMA transfer mode !\n");
1603 k
= ISADMA_GET_CLASS(fdctrl
->dma
);
1604 cur_drv
= get_cur_drv(fdctrl
);
1605 if (fdctrl
->data_dir
== FD_DIR_SCANE
|| fdctrl
->data_dir
== FD_DIR_SCANL
||
1606 fdctrl
->data_dir
== FD_DIR_SCANH
)
1607 status2
= FD_SR2_SNS
;
1608 if (dma_len
> fdctrl
->data_len
)
1609 dma_len
= fdctrl
->data_len
;
1610 if (cur_drv
->blk
== NULL
) {
1611 if (fdctrl
->data_dir
== FD_DIR_WRITE
)
1612 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
| FD_SR0_SEEK
, 0x00, 0x00);
1614 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, 0x00, 0x00);
1616 goto transfer_error
;
1618 rel_pos
= fdctrl
->data_pos
% FD_SECTOR_LEN
;
1619 for (start_pos
= fdctrl
->data_pos
; fdctrl
->data_pos
< dma_len
;) {
1620 len
= dma_len
- fdctrl
->data_pos
;
1621 if (len
+ rel_pos
> FD_SECTOR_LEN
)
1622 len
= FD_SECTOR_LEN
- rel_pos
;
1623 FLOPPY_DPRINTF("copy %d bytes (%d %d %d) %d pos %d %02x "
1624 "(%d-0x%08x 0x%08x)\n", len
, dma_len
, fdctrl
->data_pos
,
1625 fdctrl
->data_len
, GET_CUR_DRV(fdctrl
), cur_drv
->head
,
1626 cur_drv
->track
, cur_drv
->sect
, fd_sector(cur_drv
),
1627 fd_sector(cur_drv
) * FD_SECTOR_LEN
);
1628 if (fdctrl
->data_dir
!= FD_DIR_WRITE
||
1629 len
< FD_SECTOR_LEN
|| rel_pos
!= 0) {
1630 /* READ & SCAN commands and realign to a sector for WRITE */
1631 if (blk_read(cur_drv
->blk
, fd_sector(cur_drv
),
1632 fdctrl
->fifo
, 1) < 0) {
1633 FLOPPY_DPRINTF("Floppy: error getting sector %d\n",
1634 fd_sector(cur_drv
));
1635 /* Sure, image size is too small... */
1636 memset(fdctrl
->fifo
, 0, FD_SECTOR_LEN
);
1639 switch (fdctrl
->data_dir
) {
1642 k
->write_memory(fdctrl
->dma
, nchan
, fdctrl
->fifo
+ rel_pos
,
1643 fdctrl
->data_pos
, len
);
1646 /* WRITE commands */
1648 /* Handle readonly medium early, no need to do DMA, touch the
1649 * LED or attempt any writes. A real floppy doesn't attempt
1650 * to write to readonly media either. */
1651 fdctrl_stop_transfer(fdctrl
,
1652 FD_SR0_ABNTERM
| FD_SR0_SEEK
, FD_SR1_NW
,
1654 goto transfer_error
;
1657 k
->read_memory(fdctrl
->dma
, nchan
, fdctrl
->fifo
+ rel_pos
,
1658 fdctrl
->data_pos
, len
);
1659 if (blk_write(cur_drv
->blk
, fd_sector(cur_drv
),
1660 fdctrl
->fifo
, 1) < 0) {
1661 FLOPPY_DPRINTF("error writing sector %d\n",
1662 fd_sector(cur_drv
));
1663 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
| FD_SR0_SEEK
, 0x00, 0x00);
1664 goto transfer_error
;
1668 /* VERIFY commands */
1673 uint8_t tmpbuf
[FD_SECTOR_LEN
];
1675 k
->read_memory(fdctrl
->dma
, nchan
, tmpbuf
, fdctrl
->data_pos
,
1677 ret
= memcmp(tmpbuf
, fdctrl
->fifo
+ rel_pos
, len
);
1679 status2
= FD_SR2_SEH
;
1682 if ((ret
< 0 && fdctrl
->data_dir
== FD_DIR_SCANL
) ||
1683 (ret
> 0 && fdctrl
->data_dir
== FD_DIR_SCANH
)) {
1690 fdctrl
->data_pos
+= len
;
1691 rel_pos
= fdctrl
->data_pos
% FD_SECTOR_LEN
;
1693 /* Seek to next sector */
1694 if (!fdctrl_seek_to_next_sect(fdctrl
, cur_drv
))
1699 len
= fdctrl
->data_pos
- start_pos
;
1700 FLOPPY_DPRINTF("end transfer %d %d %d\n",
1701 fdctrl
->data_pos
, len
, fdctrl
->data_len
);
1702 if (fdctrl
->data_dir
== FD_DIR_SCANE
||
1703 fdctrl
->data_dir
== FD_DIR_SCANL
||
1704 fdctrl
->data_dir
== FD_DIR_SCANH
)
1705 status2
= FD_SR2_SEH
;
1706 fdctrl
->data_len
-= len
;
1707 fdctrl_stop_transfer(fdctrl
, status0
, status1
, status2
);
1713 /* Data register : 0x05 */
1714 static uint32_t fdctrl_read_data(FDCtrl
*fdctrl
)
1717 uint32_t retval
= 0;
1720 cur_drv
= get_cur_drv(fdctrl
);
1721 fdctrl
->dsr
&= ~FD_DSR_PWRDOWN
;
1722 if (!(fdctrl
->msr
& FD_MSR_RQM
) || !(fdctrl
->msr
& FD_MSR_DIO
)) {
1723 FLOPPY_DPRINTF("error: controller not ready for reading\n");
1727 /* If data_len spans multiple sectors, the current position in the FIFO
1728 * wraps around while fdctrl->data_pos is the real position in the whole
1730 pos
= fdctrl
->data_pos
;
1731 pos
%= FD_SECTOR_LEN
;
1733 switch (fdctrl
->phase
) {
1734 case FD_PHASE_EXECUTION
:
1735 assert(fdctrl
->msr
& FD_MSR_NONDMA
);
1737 if (fdctrl
->data_pos
!= 0)
1738 if (!fdctrl_seek_to_next_sect(fdctrl
, cur_drv
)) {
1739 FLOPPY_DPRINTF("error seeking to next sector %d\n",
1740 fd_sector(cur_drv
));
1743 if (blk_read(cur_drv
->blk
, fd_sector(cur_drv
), fdctrl
->fifo
, 1)
1745 FLOPPY_DPRINTF("error getting sector %d\n",
1746 fd_sector(cur_drv
));
1747 /* Sure, image size is too small... */
1748 memset(fdctrl
->fifo
, 0, FD_SECTOR_LEN
);
1752 if (++fdctrl
->data_pos
== fdctrl
->data_len
) {
1753 fdctrl
->msr
&= ~FD_MSR_RQM
;
1754 fdctrl_stop_transfer(fdctrl
, 0x00, 0x00, 0x00);
1758 case FD_PHASE_RESULT
:
1759 assert(!(fdctrl
->msr
& FD_MSR_NONDMA
));
1760 if (++fdctrl
->data_pos
== fdctrl
->data_len
) {
1761 fdctrl
->msr
&= ~FD_MSR_RQM
;
1762 fdctrl_to_command_phase(fdctrl
);
1763 fdctrl_reset_irq(fdctrl
);
1767 case FD_PHASE_COMMAND
:
1772 retval
= fdctrl
->fifo
[pos
];
1773 FLOPPY_DPRINTF("data register: 0x%02x\n", retval
);
1778 static void fdctrl_format_sector(FDCtrl
*fdctrl
)
1783 SET_CUR_DRV(fdctrl
, fdctrl
->fifo
[1] & FD_DOR_SELMASK
);
1784 cur_drv
= get_cur_drv(fdctrl
);
1785 kt
= fdctrl
->fifo
[6];
1786 kh
= fdctrl
->fifo
[7];
1787 ks
= fdctrl
->fifo
[8];
1788 FLOPPY_DPRINTF("format sector at %d %d %02x %02x (%d)\n",
1789 GET_CUR_DRV(fdctrl
), kh
, kt
, ks
,
1790 fd_sector_calc(kh
, kt
, ks
, cur_drv
->last_sect
,
1791 NUM_SIDES(cur_drv
)));
1792 switch (fd_seek(cur_drv
, kh
, kt
, ks
, fdctrl
->config
& FD_CONFIG_EIS
)) {
1795 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, 0x00, 0x00);
1796 fdctrl
->fifo
[3] = kt
;
1797 fdctrl
->fifo
[4] = kh
;
1798 fdctrl
->fifo
[5] = ks
;
1802 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, FD_SR1_EC
, 0x00);
1803 fdctrl
->fifo
[3] = kt
;
1804 fdctrl
->fifo
[4] = kh
;
1805 fdctrl
->fifo
[5] = ks
;
1808 /* No seek enabled */
1809 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, 0x00, 0x00);
1810 fdctrl
->fifo
[3] = kt
;
1811 fdctrl
->fifo
[4] = kh
;
1812 fdctrl
->fifo
[5] = ks
;
1815 fdctrl
->status0
|= FD_SR0_SEEK
;
1820 memset(fdctrl
->fifo
, 0, FD_SECTOR_LEN
);
1821 if (cur_drv
->blk
== NULL
||
1822 blk_write(cur_drv
->blk
, fd_sector(cur_drv
), fdctrl
->fifo
, 1) < 0) {
1823 FLOPPY_DPRINTF("error formatting sector %d\n", fd_sector(cur_drv
));
1824 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
| FD_SR0_SEEK
, 0x00, 0x00);
1826 if (cur_drv
->sect
== cur_drv
->last_sect
) {
1827 fdctrl
->data_state
&= ~FD_STATE_FORMAT
;
1828 /* Last sector done */
1829 fdctrl_stop_transfer(fdctrl
, 0x00, 0x00, 0x00);
1832 fdctrl
->data_pos
= 0;
1833 fdctrl
->data_len
= 4;
1838 static void fdctrl_handle_lock(FDCtrl
*fdctrl
, int direction
)
1840 fdctrl
->lock
= (fdctrl
->fifo
[0] & 0x80) ? 1 : 0;
1841 fdctrl
->fifo
[0] = fdctrl
->lock
<< 4;
1842 fdctrl_to_result_phase(fdctrl
, 1);
1845 static void fdctrl_handle_dumpreg(FDCtrl
*fdctrl
, int direction
)
1847 FDrive
*cur_drv
= get_cur_drv(fdctrl
);
1849 /* Drives position */
1850 fdctrl
->fifo
[0] = drv0(fdctrl
)->track
;
1851 fdctrl
->fifo
[1] = drv1(fdctrl
)->track
;
1853 fdctrl
->fifo
[2] = drv2(fdctrl
)->track
;
1854 fdctrl
->fifo
[3] = drv3(fdctrl
)->track
;
1856 fdctrl
->fifo
[2] = 0;
1857 fdctrl
->fifo
[3] = 0;
1860 fdctrl
->fifo
[4] = fdctrl
->timer0
;
1861 fdctrl
->fifo
[5] = (fdctrl
->timer1
<< 1) | (fdctrl
->dor
& FD_DOR_DMAEN
? 1 : 0);
1862 fdctrl
->fifo
[6] = cur_drv
->last_sect
;
1863 fdctrl
->fifo
[7] = (fdctrl
->lock
<< 7) |
1864 (cur_drv
->perpendicular
<< 2);
1865 fdctrl
->fifo
[8] = fdctrl
->config
;
1866 fdctrl
->fifo
[9] = fdctrl
->precomp_trk
;
1867 fdctrl_to_result_phase(fdctrl
, 10);
1870 static void fdctrl_handle_version(FDCtrl
*fdctrl
, int direction
)
1872 /* Controller's version */
1873 fdctrl
->fifo
[0] = fdctrl
->version
;
1874 fdctrl_to_result_phase(fdctrl
, 1);
1877 static void fdctrl_handle_partid(FDCtrl
*fdctrl
, int direction
)
1879 fdctrl
->fifo
[0] = 0x41; /* Stepping 1 */
1880 fdctrl_to_result_phase(fdctrl
, 1);
1883 static void fdctrl_handle_restore(FDCtrl
*fdctrl
, int direction
)
1885 FDrive
*cur_drv
= get_cur_drv(fdctrl
);
1887 /* Drives position */
1888 drv0(fdctrl
)->track
= fdctrl
->fifo
[3];
1889 drv1(fdctrl
)->track
= fdctrl
->fifo
[4];
1891 drv2(fdctrl
)->track
= fdctrl
->fifo
[5];
1892 drv3(fdctrl
)->track
= fdctrl
->fifo
[6];
1895 fdctrl
->timer0
= fdctrl
->fifo
[7];
1896 fdctrl
->timer1
= fdctrl
->fifo
[8];
1897 cur_drv
->last_sect
= fdctrl
->fifo
[9];
1898 fdctrl
->lock
= fdctrl
->fifo
[10] >> 7;
1899 cur_drv
->perpendicular
= (fdctrl
->fifo
[10] >> 2) & 0xF;
1900 fdctrl
->config
= fdctrl
->fifo
[11];
1901 fdctrl
->precomp_trk
= fdctrl
->fifo
[12];
1902 fdctrl
->pwrd
= fdctrl
->fifo
[13];
1903 fdctrl_to_command_phase(fdctrl
);
1906 static void fdctrl_handle_save(FDCtrl
*fdctrl
, int direction
)
1908 FDrive
*cur_drv
= get_cur_drv(fdctrl
);
1910 fdctrl
->fifo
[0] = 0;
1911 fdctrl
->fifo
[1] = 0;
1912 /* Drives position */
1913 fdctrl
->fifo
[2] = drv0(fdctrl
)->track
;
1914 fdctrl
->fifo
[3] = drv1(fdctrl
)->track
;
1916 fdctrl
->fifo
[4] = drv2(fdctrl
)->track
;
1917 fdctrl
->fifo
[5] = drv3(fdctrl
)->track
;
1919 fdctrl
->fifo
[4] = 0;
1920 fdctrl
->fifo
[5] = 0;
1923 fdctrl
->fifo
[6] = fdctrl
->timer0
;
1924 fdctrl
->fifo
[7] = fdctrl
->timer1
;
1925 fdctrl
->fifo
[8] = cur_drv
->last_sect
;
1926 fdctrl
->fifo
[9] = (fdctrl
->lock
<< 7) |
1927 (cur_drv
->perpendicular
<< 2);
1928 fdctrl
->fifo
[10] = fdctrl
->config
;
1929 fdctrl
->fifo
[11] = fdctrl
->precomp_trk
;
1930 fdctrl
->fifo
[12] = fdctrl
->pwrd
;
1931 fdctrl
->fifo
[13] = 0;
1932 fdctrl
->fifo
[14] = 0;
1933 fdctrl_to_result_phase(fdctrl
, 15);
1936 static void fdctrl_handle_readid(FDCtrl
*fdctrl
, int direction
)
1938 FDrive
*cur_drv
= get_cur_drv(fdctrl
);
1940 cur_drv
->head
= (fdctrl
->fifo
[1] >> 2) & 1;
1941 timer_mod(fdctrl
->result_timer
,
1942 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) + (get_ticks_per_sec() / 50));
1945 static void fdctrl_handle_format_track(FDCtrl
*fdctrl
, int direction
)
1949 SET_CUR_DRV(fdctrl
, fdctrl
->fifo
[1] & FD_DOR_SELMASK
);
1950 cur_drv
= get_cur_drv(fdctrl
);
1951 fdctrl
->data_state
|= FD_STATE_FORMAT
;
1952 if (fdctrl
->fifo
[0] & 0x80)
1953 fdctrl
->data_state
|= FD_STATE_MULTI
;
1955 fdctrl
->data_state
&= ~FD_STATE_MULTI
;
1957 fdctrl
->fifo
[2] > 7 ? 16384 : 128 << fdctrl
->fifo
[2];
1959 cur_drv
->last_sect
=
1960 cur_drv
->flags
& FDISK_DBL_SIDES
? fdctrl
->fifo
[3] :
1961 fdctrl
->fifo
[3] / 2;
1963 cur_drv
->last_sect
= fdctrl
->fifo
[3];
1965 /* TODO: implement format using DMA expected by the Bochs BIOS
1966 * and Linux fdformat (read 3 bytes per sector via DMA and fill
1967 * the sector with the specified fill byte
1969 fdctrl
->data_state
&= ~FD_STATE_FORMAT
;
1970 fdctrl_stop_transfer(fdctrl
, 0x00, 0x00, 0x00);
1973 static void fdctrl_handle_specify(FDCtrl
*fdctrl
, int direction
)
1975 fdctrl
->timer0
= (fdctrl
->fifo
[1] >> 4) & 0xF;
1976 fdctrl
->timer1
= fdctrl
->fifo
[2] >> 1;
1977 if (fdctrl
->fifo
[2] & 1)
1978 fdctrl
->dor
&= ~FD_DOR_DMAEN
;
1980 fdctrl
->dor
|= FD_DOR_DMAEN
;
1981 /* No result back */
1982 fdctrl_to_command_phase(fdctrl
);
1985 static void fdctrl_handle_sense_drive_status(FDCtrl
*fdctrl
, int direction
)
1989 SET_CUR_DRV(fdctrl
, fdctrl
->fifo
[1] & FD_DOR_SELMASK
);
1990 cur_drv
= get_cur_drv(fdctrl
);
1991 cur_drv
->head
= (fdctrl
->fifo
[1] >> 2) & 1;
1992 /* 1 Byte status back */
1993 fdctrl
->fifo
[0] = (cur_drv
->ro
<< 6) |
1994 (cur_drv
->track
== 0 ? 0x10 : 0x00) |
1995 (cur_drv
->head
<< 2) |
1996 GET_CUR_DRV(fdctrl
) |
1998 fdctrl_to_result_phase(fdctrl
, 1);
2001 static void fdctrl_handle_recalibrate(FDCtrl
*fdctrl
, int direction
)
2005 SET_CUR_DRV(fdctrl
, fdctrl
->fifo
[1] & FD_DOR_SELMASK
);
2006 cur_drv
= get_cur_drv(fdctrl
);
2007 fd_recalibrate(cur_drv
);
2008 fdctrl_to_command_phase(fdctrl
);
2009 /* Raise Interrupt */
2010 fdctrl
->status0
|= FD_SR0_SEEK
;
2011 fdctrl_raise_irq(fdctrl
);
2014 static void fdctrl_handle_sense_interrupt_status(FDCtrl
*fdctrl
, int direction
)
2016 FDrive
*cur_drv
= get_cur_drv(fdctrl
);
2018 if (fdctrl
->reset_sensei
> 0) {
2020 FD_SR0_RDYCHG
+ FD_RESET_SENSEI_COUNT
- fdctrl
->reset_sensei
;
2021 fdctrl
->reset_sensei
--;
2022 } else if (!(fdctrl
->sra
& FD_SRA_INTPEND
)) {
2023 fdctrl
->fifo
[0] = FD_SR0_INVCMD
;
2024 fdctrl_to_result_phase(fdctrl
, 1);
2028 (fdctrl
->status0
& ~(FD_SR0_HEAD
| FD_SR0_DS1
| FD_SR0_DS0
))
2029 | GET_CUR_DRV(fdctrl
);
2032 fdctrl
->fifo
[1] = cur_drv
->track
;
2033 fdctrl_to_result_phase(fdctrl
, 2);
2034 fdctrl_reset_irq(fdctrl
);
2035 fdctrl
->status0
= FD_SR0_RDYCHG
;
2038 static void fdctrl_handle_seek(FDCtrl
*fdctrl
, int direction
)
2042 SET_CUR_DRV(fdctrl
, fdctrl
->fifo
[1] & FD_DOR_SELMASK
);
2043 cur_drv
= get_cur_drv(fdctrl
);
2044 fdctrl_to_command_phase(fdctrl
);
2045 /* The seek command just sends step pulses to the drive and doesn't care if
2046 * there is a medium inserted of if it's banging the head against the drive.
2048 fd_seek(cur_drv
, cur_drv
->head
, fdctrl
->fifo
[2], cur_drv
->sect
, 1);
2049 /* Raise Interrupt */
2050 fdctrl
->status0
|= FD_SR0_SEEK
;
2051 fdctrl_raise_irq(fdctrl
);
2054 static void fdctrl_handle_perpendicular_mode(FDCtrl
*fdctrl
, int direction
)
2056 FDrive
*cur_drv
= get_cur_drv(fdctrl
);
2058 if (fdctrl
->fifo
[1] & 0x80)
2059 cur_drv
->perpendicular
= fdctrl
->fifo
[1] & 0x7;
2060 /* No result back */
2061 fdctrl_to_command_phase(fdctrl
);
2064 static void fdctrl_handle_configure(FDCtrl
*fdctrl
, int direction
)
2066 fdctrl
->config
= fdctrl
->fifo
[2];
2067 fdctrl
->precomp_trk
= fdctrl
->fifo
[3];
2068 /* No result back */
2069 fdctrl_to_command_phase(fdctrl
);
2072 static void fdctrl_handle_powerdown_mode(FDCtrl
*fdctrl
, int direction
)
2074 fdctrl
->pwrd
= fdctrl
->fifo
[1];
2075 fdctrl
->fifo
[0] = fdctrl
->fifo
[1];
2076 fdctrl_to_result_phase(fdctrl
, 1);
2079 static void fdctrl_handle_option(FDCtrl
*fdctrl
, int direction
)
2081 /* No result back */
2082 fdctrl_to_command_phase(fdctrl
);
2085 static void fdctrl_handle_drive_specification_command(FDCtrl
*fdctrl
, int direction
)
2087 FDrive
*cur_drv
= get_cur_drv(fdctrl
);
2090 pos
= fdctrl
->data_pos
- 1;
2091 pos
%= FD_SECTOR_LEN
;
2092 if (fdctrl
->fifo
[pos
] & 0x80) {
2093 /* Command parameters done */
2094 if (fdctrl
->fifo
[pos
] & 0x40) {
2095 fdctrl
->fifo
[0] = fdctrl
->fifo
[1];
2096 fdctrl
->fifo
[2] = 0;
2097 fdctrl
->fifo
[3] = 0;
2098 fdctrl_to_result_phase(fdctrl
, 4);
2100 fdctrl_to_command_phase(fdctrl
);
2102 } else if (fdctrl
->data_len
> 7) {
2104 fdctrl
->fifo
[0] = 0x80 |
2105 (cur_drv
->head
<< 2) | GET_CUR_DRV(fdctrl
);
2106 fdctrl_to_result_phase(fdctrl
, 1);
2110 static void fdctrl_handle_relative_seek_in(FDCtrl
*fdctrl
, int direction
)
2114 SET_CUR_DRV(fdctrl
, fdctrl
->fifo
[1] & FD_DOR_SELMASK
);
2115 cur_drv
= get_cur_drv(fdctrl
);
2116 if (fdctrl
->fifo
[2] + cur_drv
->track
>= cur_drv
->max_track
) {
2117 fd_seek(cur_drv
, cur_drv
->head
, cur_drv
->max_track
- 1,
2120 fd_seek(cur_drv
, cur_drv
->head
,
2121 cur_drv
->track
+ fdctrl
->fifo
[2], cur_drv
->sect
, 1);
2123 fdctrl_to_command_phase(fdctrl
);
2124 /* Raise Interrupt */
2125 fdctrl
->status0
|= FD_SR0_SEEK
;
2126 fdctrl_raise_irq(fdctrl
);
2129 static void fdctrl_handle_relative_seek_out(FDCtrl
*fdctrl
, int direction
)
2133 SET_CUR_DRV(fdctrl
, fdctrl
->fifo
[1] & FD_DOR_SELMASK
);
2134 cur_drv
= get_cur_drv(fdctrl
);
2135 if (fdctrl
->fifo
[2] > cur_drv
->track
) {
2136 fd_seek(cur_drv
, cur_drv
->head
, 0, cur_drv
->sect
, 1);
2138 fd_seek(cur_drv
, cur_drv
->head
,
2139 cur_drv
->track
- fdctrl
->fifo
[2], cur_drv
->sect
, 1);
2141 fdctrl_to_command_phase(fdctrl
);
2142 /* Raise Interrupt */
2143 fdctrl
->status0
|= FD_SR0_SEEK
;
2144 fdctrl_raise_irq(fdctrl
);
2148 * Handlers for the execution phase of each command
2150 typedef struct FDCtrlCommand
{
2155 void (*handler
)(FDCtrl
*fdctrl
, int direction
);
2159 static const FDCtrlCommand handlers
[] = {
2160 { FD_CMD_READ
, 0x1f, "READ", 8, fdctrl_start_transfer
, FD_DIR_READ
},
2161 { FD_CMD_WRITE
, 0x3f, "WRITE", 8, fdctrl_start_transfer
, FD_DIR_WRITE
},
2162 { FD_CMD_SEEK
, 0xff, "SEEK", 2, fdctrl_handle_seek
},
2163 { FD_CMD_SENSE_INTERRUPT_STATUS
, 0xff, "SENSE INTERRUPT STATUS", 0, fdctrl_handle_sense_interrupt_status
},
2164 { FD_CMD_RECALIBRATE
, 0xff, "RECALIBRATE", 1, fdctrl_handle_recalibrate
},
2165 { FD_CMD_FORMAT_TRACK
, 0xbf, "FORMAT TRACK", 5, fdctrl_handle_format_track
},
2166 { FD_CMD_READ_TRACK
, 0xbf, "READ TRACK", 8, fdctrl_start_transfer
, FD_DIR_READ
},
2167 { FD_CMD_RESTORE
, 0xff, "RESTORE", 17, fdctrl_handle_restore
}, /* part of READ DELETED DATA */
2168 { FD_CMD_SAVE
, 0xff, "SAVE", 0, fdctrl_handle_save
}, /* part of READ DELETED DATA */
2169 { FD_CMD_READ_DELETED
, 0x1f, "READ DELETED DATA", 8, fdctrl_start_transfer_del
, FD_DIR_READ
},
2170 { FD_CMD_SCAN_EQUAL
, 0x1f, "SCAN EQUAL", 8, fdctrl_start_transfer
, FD_DIR_SCANE
},
2171 { FD_CMD_VERIFY
, 0x1f, "VERIFY", 8, fdctrl_start_transfer
, FD_DIR_VERIFY
},
2172 { FD_CMD_SCAN_LOW_OR_EQUAL
, 0x1f, "SCAN LOW OR EQUAL", 8, fdctrl_start_transfer
, FD_DIR_SCANL
},
2173 { FD_CMD_SCAN_HIGH_OR_EQUAL
, 0x1f, "SCAN HIGH OR EQUAL", 8, fdctrl_start_transfer
, FD_DIR_SCANH
},
2174 { FD_CMD_WRITE_DELETED
, 0x3f, "WRITE DELETED DATA", 8, fdctrl_start_transfer_del
, FD_DIR_WRITE
},
2175 { FD_CMD_READ_ID
, 0xbf, "READ ID", 1, fdctrl_handle_readid
},
2176 { FD_CMD_SPECIFY
, 0xff, "SPECIFY", 2, fdctrl_handle_specify
},
2177 { FD_CMD_SENSE_DRIVE_STATUS
, 0xff, "SENSE DRIVE STATUS", 1, fdctrl_handle_sense_drive_status
},
2178 { FD_CMD_PERPENDICULAR_MODE
, 0xff, "PERPENDICULAR MODE", 1, fdctrl_handle_perpendicular_mode
},
2179 { FD_CMD_CONFIGURE
, 0xff, "CONFIGURE", 3, fdctrl_handle_configure
},
2180 { FD_CMD_POWERDOWN_MODE
, 0xff, "POWERDOWN MODE", 2, fdctrl_handle_powerdown_mode
},
2181 { FD_CMD_OPTION
, 0xff, "OPTION", 1, fdctrl_handle_option
},
2182 { FD_CMD_DRIVE_SPECIFICATION_COMMAND
, 0xff, "DRIVE SPECIFICATION COMMAND", 5, fdctrl_handle_drive_specification_command
},
2183 { FD_CMD_RELATIVE_SEEK_OUT
, 0xff, "RELATIVE SEEK OUT", 2, fdctrl_handle_relative_seek_out
},
2184 { FD_CMD_FORMAT_AND_WRITE
, 0xff, "FORMAT AND WRITE", 10, fdctrl_unimplemented
},
2185 { FD_CMD_RELATIVE_SEEK_IN
, 0xff, "RELATIVE SEEK IN", 2, fdctrl_handle_relative_seek_in
},
2186 { FD_CMD_LOCK
, 0x7f, "LOCK", 0, fdctrl_handle_lock
},
2187 { FD_CMD_DUMPREG
, 0xff, "DUMPREG", 0, fdctrl_handle_dumpreg
},
2188 { FD_CMD_VERSION
, 0xff, "VERSION", 0, fdctrl_handle_version
},
2189 { FD_CMD_PART_ID
, 0xff, "PART ID", 0, fdctrl_handle_partid
},
2190 { FD_CMD_WRITE
, 0x1f, "WRITE (BeOS)", 8, fdctrl_start_transfer
, FD_DIR_WRITE
}, /* not in specification ; BeOS 4.5 bug */
2191 { 0, 0, "unknown", 0, fdctrl_unimplemented
}, /* default handler */
2193 /* Associate command to an index in the 'handlers' array */
2194 static uint8_t command_to_handler
[256];
2196 static const FDCtrlCommand
*get_command(uint8_t cmd
)
2200 idx
= command_to_handler
[cmd
];
2201 FLOPPY_DPRINTF("%s command\n", handlers
[idx
].name
);
2202 return &handlers
[idx
];
2205 static void fdctrl_write_data(FDCtrl
*fdctrl
, uint32_t value
)
2208 const FDCtrlCommand
*cmd
;
2212 if (!(fdctrl
->dor
& FD_DOR_nRESET
)) {
2213 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
2216 if (!(fdctrl
->msr
& FD_MSR_RQM
) || (fdctrl
->msr
& FD_MSR_DIO
)) {
2217 FLOPPY_DPRINTF("error: controller not ready for writing\n");
2220 fdctrl
->dsr
&= ~FD_DSR_PWRDOWN
;
2222 FLOPPY_DPRINTF("%s: %02x\n", __func__
, value
);
2224 /* If data_len spans multiple sectors, the current position in the FIFO
2225 * wraps around while fdctrl->data_pos is the real position in the whole
2227 pos
= fdctrl
->data_pos
++;
2228 pos
%= FD_SECTOR_LEN
;
2229 fdctrl
->fifo
[pos
] = value
;
2231 if (fdctrl
->data_pos
== fdctrl
->data_len
) {
2232 fdctrl
->msr
&= ~FD_MSR_RQM
;
2235 switch (fdctrl
->phase
) {
2236 case FD_PHASE_EXECUTION
:
2237 /* For DMA requests, RQM should be cleared during execution phase, so
2238 * we would have errored out above. */
2239 assert(fdctrl
->msr
& FD_MSR_NONDMA
);
2241 /* FIFO data write */
2242 if (pos
== FD_SECTOR_LEN
- 1 ||
2243 fdctrl
->data_pos
== fdctrl
->data_len
) {
2244 cur_drv
= get_cur_drv(fdctrl
);
2245 if (blk_write(cur_drv
->blk
, fd_sector(cur_drv
), fdctrl
->fifo
, 1)
2247 FLOPPY_DPRINTF("error writing sector %d\n",
2248 fd_sector(cur_drv
));
2251 if (!fdctrl_seek_to_next_sect(fdctrl
, cur_drv
)) {
2252 FLOPPY_DPRINTF("error seeking to next sector %d\n",
2253 fd_sector(cur_drv
));
2258 /* Switch to result phase when done with the transfer */
2259 if (fdctrl
->data_pos
== fdctrl
->data_len
) {
2260 fdctrl_stop_transfer(fdctrl
, 0x00, 0x00, 0x00);
2264 case FD_PHASE_COMMAND
:
2265 assert(!(fdctrl
->msr
& FD_MSR_NONDMA
));
2266 assert(fdctrl
->data_pos
< FD_SECTOR_LEN
);
2269 /* The first byte specifies the command. Now we start reading
2270 * as many parameters as this command requires. */
2271 cmd
= get_command(value
);
2272 fdctrl
->data_len
= cmd
->parameters
+ 1;
2273 if (cmd
->parameters
) {
2274 fdctrl
->msr
|= FD_MSR_RQM
;
2276 fdctrl
->msr
|= FD_MSR_CMDBUSY
;
2279 if (fdctrl
->data_pos
== fdctrl
->data_len
) {
2280 /* We have all parameters now, execute the command */
2281 fdctrl
->phase
= FD_PHASE_EXECUTION
;
2283 if (fdctrl
->data_state
& FD_STATE_FORMAT
) {
2284 fdctrl_format_sector(fdctrl
);
2288 cmd
= get_command(fdctrl
->fifo
[0]);
2289 FLOPPY_DPRINTF("Calling handler for '%s'\n", cmd
->name
);
2290 cmd
->handler(fdctrl
, cmd
->direction
);
2294 case FD_PHASE_RESULT
:
2300 static void fdctrl_result_timer(void *opaque
)
2302 FDCtrl
*fdctrl
= opaque
;
2303 FDrive
*cur_drv
= get_cur_drv(fdctrl
);
2305 /* Pretend we are spinning.
2306 * This is needed for Coherent, which uses READ ID to check for
2307 * sector interleaving.
2309 if (cur_drv
->last_sect
!= 0) {
2310 cur_drv
->sect
= (cur_drv
->sect
% cur_drv
->last_sect
) + 1;
2312 /* READ_ID can't automatically succeed! */
2313 if (fdctrl
->check_media_rate
&&
2314 (fdctrl
->dsr
& FD_DSR_DRATEMASK
) != cur_drv
->media_rate
) {
2315 FLOPPY_DPRINTF("read id rate mismatch (fdc=%d, media=%d)\n",
2316 fdctrl
->dsr
& FD_DSR_DRATEMASK
, cur_drv
->media_rate
);
2317 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, FD_SR1_MA
, 0x00);
2319 fdctrl_stop_transfer(fdctrl
, 0x00, 0x00, 0x00);
2323 static void fdctrl_change_cb(void *opaque
, bool load
)
2325 FDrive
*drive
= opaque
;
2327 drive
->media_changed
= 1;
2328 drive
->media_validated
= false;
2329 fd_revalidate(drive
);
2332 static const BlockDevOps fdctrl_block_ops
= {
2333 .change_media_cb
= fdctrl_change_cb
,
2336 /* Init functions */
2337 static void fdctrl_connect_drives(FDCtrl
*fdctrl
, Error
**errp
)
2342 for (i
= 0; i
< MAX_FD
; i
++) {
2343 drive
= &fdctrl
->drives
[i
];
2344 drive
->fdctrl
= fdctrl
;
2347 if (blk_get_on_error(drive
->blk
, 0) != BLOCKDEV_ON_ERROR_ENOSPC
) {
2348 error_setg(errp
, "fdc doesn't support drive option werror");
2351 if (blk_get_on_error(drive
->blk
, 1) != BLOCKDEV_ON_ERROR_REPORT
) {
2352 error_setg(errp
, "fdc doesn't support drive option rerror");
2359 blk_set_dev_ops(drive
->blk
, &fdctrl_block_ops
, drive
);
2360 pick_drive_type(drive
);
2362 fd_revalidate(drive
);
2366 ISADevice
*fdctrl_init_isa(ISABus
*bus
, DriveInfo
**fds
)
2371 isadev
= isa_try_create(bus
, TYPE_ISA_FDC
);
2375 dev
= DEVICE(isadev
);
2378 qdev_prop_set_drive(dev
, "driveA", blk_by_legacy_dinfo(fds
[0]),
2382 qdev_prop_set_drive(dev
, "driveB", blk_by_legacy_dinfo(fds
[1]),
2385 qdev_init_nofail(dev
);
2390 void fdctrl_init_sysbus(qemu_irq irq
, int dma_chann
,
2391 hwaddr mmio_base
, DriveInfo
**fds
)
2398 dev
= qdev_create(NULL
, "sysbus-fdc");
2399 sys
= SYSBUS_FDC(dev
);
2400 fdctrl
= &sys
->state
;
2401 fdctrl
->dma_chann
= dma_chann
; /* FIXME */
2403 qdev_prop_set_drive(dev
, "driveA", blk_by_legacy_dinfo(fds
[0]),
2407 qdev_prop_set_drive(dev
, "driveB", blk_by_legacy_dinfo(fds
[1]),
2410 qdev_init_nofail(dev
);
2411 sbd
= SYS_BUS_DEVICE(dev
);
2412 sysbus_connect_irq(sbd
, 0, irq
);
2413 sysbus_mmio_map(sbd
, 0, mmio_base
);
2416 void sun4m_fdctrl_init(qemu_irq irq
, hwaddr io_base
,
2417 DriveInfo
**fds
, qemu_irq
*fdc_tc
)
2422 dev
= qdev_create(NULL
, "SUNW,fdtwo");
2424 qdev_prop_set_drive(dev
, "drive", blk_by_legacy_dinfo(fds
[0]),
2427 qdev_init_nofail(dev
);
2428 sys
= SYSBUS_FDC(dev
);
2429 sysbus_connect_irq(SYS_BUS_DEVICE(sys
), 0, irq
);
2430 sysbus_mmio_map(SYS_BUS_DEVICE(sys
), 0, io_base
);
2431 *fdc_tc
= qdev_get_gpio_in(dev
, 0);
2434 static void fdctrl_realize_common(FDCtrl
*fdctrl
, Error
**errp
)
2437 static int command_tables_inited
= 0;
2439 if (fdctrl
->fallback
== FLOPPY_DRIVE_TYPE_AUTO
) {
2440 error_setg(errp
, "Cannot choose a fallback FDrive type of 'auto'");
2443 /* Fill 'command_to_handler' lookup table */
2444 if (!command_tables_inited
) {
2445 command_tables_inited
= 1;
2446 for (i
= ARRAY_SIZE(handlers
) - 1; i
>= 0; i
--) {
2447 for (j
= 0; j
< sizeof(command_to_handler
); j
++) {
2448 if ((j
& handlers
[i
].mask
) == handlers
[i
].value
) {
2449 command_to_handler
[j
] = i
;
2455 FLOPPY_DPRINTF("init controller\n");
2456 fdctrl
->fifo
= qemu_memalign(512, FD_SECTOR_LEN
);
2457 fdctrl
->fifo_size
= 512;
2458 fdctrl
->result_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
,
2459 fdctrl_result_timer
, fdctrl
);
2461 fdctrl
->version
= 0x90; /* Intel 82078 controller */
2462 fdctrl
->config
= FD_CONFIG_EIS
| FD_CONFIG_EFIFO
; /* Implicit seek, polling & FIFO enabled */
2463 fdctrl
->num_floppies
= MAX_FD
;
2465 if (fdctrl
->dma_chann
!= -1) {
2467 assert(fdctrl
->dma
);
2468 k
= ISADMA_GET_CLASS(fdctrl
->dma
);
2469 k
->register_channel(fdctrl
->dma
, fdctrl
->dma_chann
,
2470 &fdctrl_transfer_handler
, fdctrl
);
2472 fdctrl_connect_drives(fdctrl
, errp
);
2475 static const MemoryRegionPortio fdc_portio_list
[] = {
2476 { 1, 5, 1, .read
= fdctrl_read
, .write
= fdctrl_write
},
2477 { 7, 1, 1, .read
= fdctrl_read
, .write
= fdctrl_write
},
2478 PORTIO_END_OF_LIST(),
2481 static void isabus_fdc_realize(DeviceState
*dev
, Error
**errp
)
2483 ISADevice
*isadev
= ISA_DEVICE(dev
);
2484 FDCtrlISABus
*isa
= ISA_FDC(dev
);
2485 FDCtrl
*fdctrl
= &isa
->state
;
2488 isa_register_portio_list(isadev
, isa
->iobase
, fdc_portio_list
, fdctrl
,
2491 isa_init_irq(isadev
, &fdctrl
->irq
, isa
->irq
);
2492 fdctrl
->dma_chann
= isa
->dma
;
2493 if (fdctrl
->dma_chann
!= -1) {
2494 fdctrl
->dma
= isa_get_dma(isa_bus_from_device(isadev
), isa
->dma
);
2495 assert(fdctrl
->dma
);
2498 qdev_set_legacy_instance_id(dev
, isa
->iobase
, 2);
2499 fdctrl_realize_common(fdctrl
, &err
);
2501 error_propagate(errp
, err
);
2506 static void sysbus_fdc_initfn(Object
*obj
)
2508 SysBusDevice
*sbd
= SYS_BUS_DEVICE(obj
);
2509 FDCtrlSysBus
*sys
= SYSBUS_FDC(obj
);
2510 FDCtrl
*fdctrl
= &sys
->state
;
2512 fdctrl
->dma_chann
= -1;
2514 memory_region_init_io(&fdctrl
->iomem
, obj
, &fdctrl_mem_ops
, fdctrl
,
2516 sysbus_init_mmio(sbd
, &fdctrl
->iomem
);
2519 static void sun4m_fdc_initfn(Object
*obj
)
2521 SysBusDevice
*sbd
= SYS_BUS_DEVICE(obj
);
2522 FDCtrlSysBus
*sys
= SYSBUS_FDC(obj
);
2523 FDCtrl
*fdctrl
= &sys
->state
;
2525 fdctrl
->dma_chann
= -1;
2527 memory_region_init_io(&fdctrl
->iomem
, obj
, &fdctrl_mem_strict_ops
,
2528 fdctrl
, "fdctrl", 0x08);
2529 sysbus_init_mmio(sbd
, &fdctrl
->iomem
);
2532 static void sysbus_fdc_common_initfn(Object
*obj
)
2534 DeviceState
*dev
= DEVICE(obj
);
2535 SysBusDevice
*sbd
= SYS_BUS_DEVICE(dev
);
2536 FDCtrlSysBus
*sys
= SYSBUS_FDC(obj
);
2537 FDCtrl
*fdctrl
= &sys
->state
;
2539 qdev_set_legacy_instance_id(dev
, 0 /* io */, 2); /* FIXME */
2541 sysbus_init_irq(sbd
, &fdctrl
->irq
);
2542 qdev_init_gpio_in(dev
, fdctrl_handle_tc
, 1);
2545 static void sysbus_fdc_common_realize(DeviceState
*dev
, Error
**errp
)
2547 FDCtrlSysBus
*sys
= SYSBUS_FDC(dev
);
2548 FDCtrl
*fdctrl
= &sys
->state
;
2550 fdctrl_realize_common(fdctrl
, errp
);
2553 FloppyDriveType
isa_fdc_get_drive_type(ISADevice
*fdc
, int i
)
2555 FDCtrlISABus
*isa
= ISA_FDC(fdc
);
2557 return isa
->state
.drives
[i
].drive
;
2560 static const VMStateDescription vmstate_isa_fdc
={
2563 .minimum_version_id
= 2,
2564 .fields
= (VMStateField
[]) {
2565 VMSTATE_STRUCT(state
, FDCtrlISABus
, 0, vmstate_fdc
, FDCtrl
),
2566 VMSTATE_END_OF_LIST()
2570 static Property isa_fdc_properties
[] = {
2571 DEFINE_PROP_UINT32("iobase", FDCtrlISABus
, iobase
, 0x3f0),
2572 DEFINE_PROP_UINT32("irq", FDCtrlISABus
, irq
, 6),
2573 DEFINE_PROP_UINT32("dma", FDCtrlISABus
, dma
, 2),
2574 DEFINE_PROP_DRIVE("driveA", FDCtrlISABus
, state
.drives
[0].blk
),
2575 DEFINE_PROP_DRIVE("driveB", FDCtrlISABus
, state
.drives
[1].blk
),
2576 DEFINE_PROP_BIT("check_media_rate", FDCtrlISABus
, state
.check_media_rate
,
2578 DEFINE_PROP_DEFAULT("fdtypeA", FDCtrlISABus
, state
.drives
[0].drive
,
2579 FLOPPY_DRIVE_TYPE_AUTO
, qdev_prop_fdc_drive_type
,
2581 DEFINE_PROP_DEFAULT("fdtypeB", FDCtrlISABus
, state
.drives
[1].drive
,
2582 FLOPPY_DRIVE_TYPE_AUTO
, qdev_prop_fdc_drive_type
,
2584 DEFINE_PROP_DEFAULT("fallback", FDCtrlISABus
, state
.fallback
,
2585 FLOPPY_DRIVE_TYPE_288
, qdev_prop_fdc_drive_type
,
2587 DEFINE_PROP_END_OF_LIST(),
2590 static void isabus_fdc_class_init(ObjectClass
*klass
, void *data
)
2592 DeviceClass
*dc
= DEVICE_CLASS(klass
);
2594 dc
->realize
= isabus_fdc_realize
;
2595 dc
->fw_name
= "fdc";
2596 dc
->reset
= fdctrl_external_reset_isa
;
2597 dc
->vmsd
= &vmstate_isa_fdc
;
2598 dc
->props
= isa_fdc_properties
;
2599 set_bit(DEVICE_CATEGORY_STORAGE
, dc
->categories
);
2602 static void isabus_fdc_instance_init(Object
*obj
)
2604 FDCtrlISABus
*isa
= ISA_FDC(obj
);
2606 device_add_bootindex_property(obj
, &isa
->bootindexA
,
2607 "bootindexA", "/floppy@0",
2609 device_add_bootindex_property(obj
, &isa
->bootindexB
,
2610 "bootindexB", "/floppy@1",
2614 static const TypeInfo isa_fdc_info
= {
2615 .name
= TYPE_ISA_FDC
,
2616 .parent
= TYPE_ISA_DEVICE
,
2617 .instance_size
= sizeof(FDCtrlISABus
),
2618 .class_init
= isabus_fdc_class_init
,
2619 .instance_init
= isabus_fdc_instance_init
,
2622 static const VMStateDescription vmstate_sysbus_fdc
={
2625 .minimum_version_id
= 2,
2626 .fields
= (VMStateField
[]) {
2627 VMSTATE_STRUCT(state
, FDCtrlSysBus
, 0, vmstate_fdc
, FDCtrl
),
2628 VMSTATE_END_OF_LIST()
2632 static Property sysbus_fdc_properties
[] = {
2633 DEFINE_PROP_DRIVE("driveA", FDCtrlSysBus
, state
.drives
[0].blk
),
2634 DEFINE_PROP_DRIVE("driveB", FDCtrlSysBus
, state
.drives
[1].blk
),
2635 DEFINE_PROP_DEFAULT("fdtypeA", FDCtrlSysBus
, state
.drives
[0].drive
,
2636 FLOPPY_DRIVE_TYPE_AUTO
, qdev_prop_fdc_drive_type
,
2638 DEFINE_PROP_DEFAULT("fdtypeB", FDCtrlSysBus
, state
.drives
[1].drive
,
2639 FLOPPY_DRIVE_TYPE_AUTO
, qdev_prop_fdc_drive_type
,
2641 DEFINE_PROP_DEFAULT("fallback", FDCtrlISABus
, state
.fallback
,
2642 FLOPPY_DRIVE_TYPE_144
, qdev_prop_fdc_drive_type
,
2644 DEFINE_PROP_END_OF_LIST(),
2647 static void sysbus_fdc_class_init(ObjectClass
*klass
, void *data
)
2649 DeviceClass
*dc
= DEVICE_CLASS(klass
);
2651 dc
->props
= sysbus_fdc_properties
;
2652 set_bit(DEVICE_CATEGORY_STORAGE
, dc
->categories
);
2655 static const TypeInfo sysbus_fdc_info
= {
2656 .name
= "sysbus-fdc",
2657 .parent
= TYPE_SYSBUS_FDC
,
2658 .instance_init
= sysbus_fdc_initfn
,
2659 .class_init
= sysbus_fdc_class_init
,
2662 static Property sun4m_fdc_properties
[] = {
2663 DEFINE_PROP_DRIVE("drive", FDCtrlSysBus
, state
.drives
[0].blk
),
2664 DEFINE_PROP_DEFAULT("fdtype", FDCtrlSysBus
, state
.drives
[0].drive
,
2665 FLOPPY_DRIVE_TYPE_AUTO
, qdev_prop_fdc_drive_type
,
2667 DEFINE_PROP_DEFAULT("fallback", FDCtrlISABus
, state
.fallback
,
2668 FLOPPY_DRIVE_TYPE_144
, qdev_prop_fdc_drive_type
,
2670 DEFINE_PROP_END_OF_LIST(),
2673 static void sun4m_fdc_class_init(ObjectClass
*klass
, void *data
)
2675 DeviceClass
*dc
= DEVICE_CLASS(klass
);
2677 dc
->props
= sun4m_fdc_properties
;
2678 set_bit(DEVICE_CATEGORY_STORAGE
, dc
->categories
);
2681 static const TypeInfo sun4m_fdc_info
= {
2682 .name
= "SUNW,fdtwo",
2683 .parent
= TYPE_SYSBUS_FDC
,
2684 .instance_init
= sun4m_fdc_initfn
,
2685 .class_init
= sun4m_fdc_class_init
,
2688 static void sysbus_fdc_common_class_init(ObjectClass
*klass
, void *data
)
2690 DeviceClass
*dc
= DEVICE_CLASS(klass
);
2692 dc
->realize
= sysbus_fdc_common_realize
;
2693 dc
->reset
= fdctrl_external_reset_sysbus
;
2694 dc
->vmsd
= &vmstate_sysbus_fdc
;
2697 static const TypeInfo sysbus_fdc_type_info
= {
2698 .name
= TYPE_SYSBUS_FDC
,
2699 .parent
= TYPE_SYS_BUS_DEVICE
,
2700 .instance_size
= sizeof(FDCtrlSysBus
),
2701 .instance_init
= sysbus_fdc_common_initfn
,
2703 .class_init
= sysbus_fdc_common_class_init
,
2706 static void fdc_register_types(void)
2708 type_register_static(&isa_fdc_info
);
2709 type_register_static(&sysbus_fdc_type_info
);
2710 type_register_static(&sysbus_fdc_info
);
2711 type_register_static(&sun4m_fdc_info
);
2714 type_init(fdc_register_types
)