KVM: remove support for kernel-irqchip=off
[qemu.git] / tests / qtest / fuzz / generic_fuzz.c
blobafc1d203555eeb6f364300a5cb8cb73153c9009e
1 /*
2 * Generic Virtual-Device Fuzzing Target
4 * Copyright Red Hat Inc., 2020
6 * Authors:
7 * Alexander Bulekov <alxndr@bu.edu>
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
13 #include "qemu/osdep.h"
15 #include <wordexp.h>
17 #include "hw/core/cpu.h"
18 #include "tests/qtest/libqtest.h"
19 #include "tests/qtest/libqos/pci-pc.h"
20 #include "fuzz.h"
21 #include "fork_fuzz.h"
22 #include "string.h"
23 #include "exec/memory.h"
24 #include "exec/ramblock.h"
25 #include "hw/qdev-core.h"
26 #include "hw/pci/pci.h"
27 #include "hw/boards.h"
28 #include "generic_fuzz_configs.h"
29 #include "hw/mem/sparse-mem.h"
32 * SEPARATOR is used to separate "operations" in the fuzz input
34 #define SEPARATOR "FUZZ"
36 enum cmds {
37 OP_IN,
38 OP_OUT,
39 OP_READ,
40 OP_WRITE,
41 OP_PCI_READ,
42 OP_PCI_WRITE,
43 OP_DISABLE_PCI,
44 OP_ADD_DMA_PATTERN,
45 OP_CLEAR_DMA_PATTERNS,
46 OP_CLOCK_STEP,
49 #define DEFAULT_TIMEOUT_US 100000
50 #define USEC_IN_SEC 1000000000
52 #define MAX_DMA_FILL_SIZE 0x10000
54 #define PCI_HOST_BRIDGE_CFG 0xcf8
55 #define PCI_HOST_BRIDGE_DATA 0xcfc
57 typedef struct {
58 ram_addr_t addr;
59 ram_addr_t size; /* The number of bytes until the end of the I/O region */
60 } address_range;
62 static useconds_t timeout = DEFAULT_TIMEOUT_US;
64 static bool qtest_log_enabled;
66 MemoryRegion *sparse_mem_mr;
69 * A pattern used to populate a DMA region or perform a memwrite. This is
70 * useful for e.g. populating tables of unique addresses.
71 * Example {.index = 1; .stride = 2; .len = 3; .data = "\x00\x01\x02"}
72 * Renders as: 00 01 02 00 03 02 00 05 02 00 07 02 ...
74 typedef struct {
75 uint8_t index; /* Index of a byte to increment by stride */
76 uint8_t stride; /* Increment each index'th byte by this amount */
77 size_t len;
78 const uint8_t *data;
79 } pattern;
81 /* Avoid filling the same DMA region between MMIO/PIO commands ? */
82 static bool avoid_double_fetches;
84 static QTestState *qts_global; /* Need a global for the DMA callback */
87 * List of memory regions that are children of QOM objects specified by the
88 * user for fuzzing.
90 static GHashTable *fuzzable_memoryregions;
91 static GPtrArray *fuzzable_pci_devices;
93 struct get_io_cb_info {
94 int index;
95 int found;
96 address_range result;
99 static bool get_io_address_cb(Int128 start, Int128 size,
100 const MemoryRegion *mr,
101 hwaddr offset_in_region,
102 void *opaque)
104 struct get_io_cb_info *info = opaque;
105 if (g_hash_table_lookup(fuzzable_memoryregions, mr)) {
106 if (info->index == 0) {
107 info->result.addr = (ram_addr_t)start;
108 info->result.size = (ram_addr_t)size;
109 info->found = 1;
110 return true;
112 info->index--;
114 return false;
118 * List of dma regions populated since the last fuzzing command. Used to ensure
119 * that we only write to each DMA address once, to avoid race conditions when
120 * building reproducers.
122 static GArray *dma_regions;
124 static GArray *dma_patterns;
125 static int dma_pattern_index;
126 static bool pci_disabled;
129 * Allocate a block of memory and populate it with a pattern.
131 static void *pattern_alloc(pattern p, size_t len)
133 int i;
134 uint8_t *buf = g_malloc(len);
135 uint8_t sum = 0;
137 for (i = 0; i < len; ++i) {
138 buf[i] = p.data[i % p.len];
139 if ((i % p.len) == p.index) {
140 buf[i] += sum;
141 sum += p.stride;
144 return buf;
147 static int fuzz_memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
149 unsigned access_size_max = mr->ops->valid.max_access_size;
152 * Regions are assumed to support 1-4 byte accesses unless
153 * otherwise specified.
155 if (access_size_max == 0) {
156 access_size_max = 4;
159 /* Bound the maximum access by the alignment of the address. */
160 if (!mr->ops->impl.unaligned) {
161 unsigned align_size_max = addr & -addr;
162 if (align_size_max != 0 && align_size_max < access_size_max) {
163 access_size_max = align_size_max;
167 /* Don't attempt accesses larger than the maximum. */
168 if (l > access_size_max) {
169 l = access_size_max;
171 l = pow2floor(l);
173 return l;
177 * Call-back for functions that perform DMA reads from guest memory. Confirm
178 * that the region has not already been populated since the last loop in
179 * generic_fuzz(), avoiding potential race-conditions, which we don't have
180 * a good way for reproducing right now.
182 void fuzz_dma_read_cb(size_t addr, size_t len, MemoryRegion *mr)
184 /* Are we in the generic-fuzzer or are we using another fuzz-target? */
185 if (!qts_global) {
186 return;
190 * Return immediately if:
191 * - We have no DMA patterns defined
192 * - The length of the DMA read request is zero
193 * - The DMA read is hitting an MR other than the machine's main RAM
194 * - The DMA request hits past the bounds of our RAM
196 if (dma_patterns->len == 0
197 || len == 0
198 || (mr != current_machine->ram && mr != sparse_mem_mr)) {
199 return;
203 * If we overlap with any existing dma_regions, split the range and only
204 * populate the non-overlapping parts.
206 address_range region;
207 bool double_fetch = false;
208 for (int i = 0;
209 i < dma_regions->len && (avoid_double_fetches || qtest_log_enabled);
210 ++i) {
211 region = g_array_index(dma_regions, address_range, i);
212 if (addr < region.addr + region.size && addr + len > region.addr) {
213 double_fetch = true;
214 if (addr < region.addr
215 && avoid_double_fetches) {
216 fuzz_dma_read_cb(addr, region.addr - addr, mr);
218 if (addr + len > region.addr + region.size
219 && avoid_double_fetches) {
220 fuzz_dma_read_cb(region.addr + region.size,
221 addr + len - (region.addr + region.size), mr);
223 return;
227 /* Cap the length of the DMA access to something reasonable */
228 len = MIN(len, MAX_DMA_FILL_SIZE);
230 address_range ar = {addr, len};
231 g_array_append_val(dma_regions, ar);
232 pattern p = g_array_index(dma_patterns, pattern, dma_pattern_index);
233 void *buf_base = pattern_alloc(p, ar.size);
234 void *buf = buf_base;
235 hwaddr l, addr1;
236 MemoryRegion *mr1;
237 while (len > 0) {
238 l = len;
239 mr1 = address_space_translate(first_cpu->as,
240 addr, &addr1, &l, true,
241 MEMTXATTRS_UNSPECIFIED);
244 * If mr1 isn't RAM, address_space_translate doesn't update l. Use
245 * fuzz_memory_access_size to identify the number of bytes that it
246 * is safe to write without accidentally writing to another
247 * MemoryRegion.
249 if (!memory_region_is_ram(mr1)) {
250 l = fuzz_memory_access_size(mr1, l, addr1);
252 if (memory_region_is_ram(mr1) ||
253 memory_region_is_romd(mr1) ||
254 mr1 == sparse_mem_mr) {
255 /* ROM/RAM case */
256 if (qtest_log_enabled) {
258 * With QTEST_LOG, use a normal, slow QTest memwrite. Prefix the log
259 * that will be written by qtest.c with a DMA tag, so we can reorder
260 * the resulting QTest trace so the DMA fills precede the last PIO/MMIO
261 * command.
263 fprintf(stderr, "[DMA] ");
264 if (double_fetch) {
265 fprintf(stderr, "[DOUBLE-FETCH] ");
267 fflush(stderr);
269 qtest_memwrite(qts_global, addr, buf, l);
271 len -= l;
272 buf += l;
273 addr += l;
276 g_free(buf_base);
278 /* Increment the index of the pattern for the next DMA access */
279 dma_pattern_index = (dma_pattern_index + 1) % dma_patterns->len;
283 * Here we want to convert a fuzzer-provided [io-region-index, offset] to
284 * a physical address. To do this, we iterate over all of the matched
285 * MemoryRegions. Check whether each region exists within the particular io
286 * space. Return the absolute address of the offset within the index'th region
287 * that is a subregion of the io_space and the distance until the end of the
288 * memory region.
290 static bool get_io_address(address_range *result, AddressSpace *as,
291 uint8_t index,
292 uint32_t offset) {
293 FlatView *view;
294 view = as->current_map;
295 g_assert(view);
296 struct get_io_cb_info cb_info = {};
298 cb_info.index = index;
301 * Loop around the FlatView until we match "index" number of
302 * fuzzable_memoryregions, or until we know that there are no matching
303 * memory_regions.
305 do {
306 flatview_for_each_range(view, get_io_address_cb , &cb_info);
307 } while (cb_info.index != index && !cb_info.found);
309 *result = cb_info.result;
310 if (result->size) {
311 offset = offset % result->size;
312 result->addr += offset;
313 result->size -= offset;
315 return cb_info.found;
318 static bool get_pio_address(address_range *result,
319 uint8_t index, uint16_t offset)
322 * PIO BARs can be set past the maximum port address (0xFFFF). Thus, result
323 * can contain an addr that extends past the PIO space. When we pass this
324 * address to qtest_in/qtest_out, it is cast to a uint16_t, so we might end
325 * up fuzzing a completely different MemoryRegion/Device. Therefore, check
326 * that the address here is within the PIO space limits.
328 bool found = get_io_address(result, &address_space_io, index, offset);
329 return result->addr <= 0xFFFF ? found : false;
332 static bool get_mmio_address(address_range *result,
333 uint8_t index, uint32_t offset)
335 return get_io_address(result, &address_space_memory, index, offset);
338 static void op_in(QTestState *s, const unsigned char * data, size_t len)
340 enum Sizes {Byte, Word, Long, end_sizes};
341 struct {
342 uint8_t size;
343 uint8_t base;
344 uint16_t offset;
345 } a;
346 address_range abs;
348 if (len < sizeof(a)) {
349 return;
351 memcpy(&a, data, sizeof(a));
352 if (get_pio_address(&abs, a.base, a.offset) == 0) {
353 return;
356 switch (a.size %= end_sizes) {
357 case Byte:
358 qtest_inb(s, abs.addr);
359 break;
360 case Word:
361 if (abs.size >= 2) {
362 qtest_inw(s, abs.addr);
364 break;
365 case Long:
366 if (abs.size >= 4) {
367 qtest_inl(s, abs.addr);
369 break;
373 static void op_out(QTestState *s, const unsigned char * data, size_t len)
375 enum Sizes {Byte, Word, Long, end_sizes};
376 struct {
377 uint8_t size;
378 uint8_t base;
379 uint16_t offset;
380 uint32_t value;
381 } a;
382 address_range abs;
384 if (len < sizeof(a)) {
385 return;
387 memcpy(&a, data, sizeof(a));
389 if (get_pio_address(&abs, a.base, a.offset) == 0) {
390 return;
393 switch (a.size %= end_sizes) {
394 case Byte:
395 qtest_outb(s, abs.addr, a.value & 0xFF);
396 break;
397 case Word:
398 if (abs.size >= 2) {
399 qtest_outw(s, abs.addr, a.value & 0xFFFF);
401 break;
402 case Long:
403 if (abs.size >= 4) {
404 qtest_outl(s, abs.addr, a.value);
406 break;
410 static void op_read(QTestState *s, const unsigned char * data, size_t len)
412 enum Sizes {Byte, Word, Long, Quad, end_sizes};
413 struct {
414 uint8_t size;
415 uint8_t base;
416 uint32_t offset;
417 } a;
418 address_range abs;
420 if (len < sizeof(a)) {
421 return;
423 memcpy(&a, data, sizeof(a));
425 if (get_mmio_address(&abs, a.base, a.offset) == 0) {
426 return;
429 switch (a.size %= end_sizes) {
430 case Byte:
431 qtest_readb(s, abs.addr);
432 break;
433 case Word:
434 if (abs.size >= 2) {
435 qtest_readw(s, abs.addr);
437 break;
438 case Long:
439 if (abs.size >= 4) {
440 qtest_readl(s, abs.addr);
442 break;
443 case Quad:
444 if (abs.size >= 8) {
445 qtest_readq(s, abs.addr);
447 break;
451 static void op_write(QTestState *s, const unsigned char * data, size_t len)
453 enum Sizes {Byte, Word, Long, Quad, end_sizes};
454 struct {
455 uint8_t size;
456 uint8_t base;
457 uint32_t offset;
458 uint64_t value;
459 } a;
460 address_range abs;
462 if (len < sizeof(a)) {
463 return;
465 memcpy(&a, data, sizeof(a));
467 if (get_mmio_address(&abs, a.base, a.offset) == 0) {
468 return;
471 switch (a.size %= end_sizes) {
472 case Byte:
473 qtest_writeb(s, abs.addr, a.value & 0xFF);
474 break;
475 case Word:
476 if (abs.size >= 2) {
477 qtest_writew(s, abs.addr, a.value & 0xFFFF);
479 break;
480 case Long:
481 if (abs.size >= 4) {
482 qtest_writel(s, abs.addr, a.value & 0xFFFFFFFF);
484 break;
485 case Quad:
486 if (abs.size >= 8) {
487 qtest_writeq(s, abs.addr, a.value);
489 break;
493 static void op_pci_read(QTestState *s, const unsigned char * data, size_t len)
495 enum Sizes {Byte, Word, Long, end_sizes};
496 struct {
497 uint8_t size;
498 uint8_t base;
499 uint8_t offset;
500 } a;
501 if (len < sizeof(a) || fuzzable_pci_devices->len == 0 || pci_disabled) {
502 return;
504 memcpy(&a, data, sizeof(a));
505 PCIDevice *dev = g_ptr_array_index(fuzzable_pci_devices,
506 a.base % fuzzable_pci_devices->len);
507 int devfn = dev->devfn;
508 qtest_outl(s, PCI_HOST_BRIDGE_CFG, (1U << 31) | (devfn << 8) | a.offset);
509 switch (a.size %= end_sizes) {
510 case Byte:
511 qtest_inb(s, PCI_HOST_BRIDGE_DATA);
512 break;
513 case Word:
514 qtest_inw(s, PCI_HOST_BRIDGE_DATA);
515 break;
516 case Long:
517 qtest_inl(s, PCI_HOST_BRIDGE_DATA);
518 break;
522 static void op_pci_write(QTestState *s, const unsigned char * data, size_t len)
524 enum Sizes {Byte, Word, Long, end_sizes};
525 struct {
526 uint8_t size;
527 uint8_t base;
528 uint8_t offset;
529 uint32_t value;
530 } a;
531 if (len < sizeof(a) || fuzzable_pci_devices->len == 0 || pci_disabled) {
532 return;
534 memcpy(&a, data, sizeof(a));
535 PCIDevice *dev = g_ptr_array_index(fuzzable_pci_devices,
536 a.base % fuzzable_pci_devices->len);
537 int devfn = dev->devfn;
538 qtest_outl(s, PCI_HOST_BRIDGE_CFG, (1U << 31) | (devfn << 8) | a.offset);
539 switch (a.size %= end_sizes) {
540 case Byte:
541 qtest_outb(s, PCI_HOST_BRIDGE_DATA, a.value & 0xFF);
542 break;
543 case Word:
544 qtest_outw(s, PCI_HOST_BRIDGE_DATA, a.value & 0xFFFF);
545 break;
546 case Long:
547 qtest_outl(s, PCI_HOST_BRIDGE_DATA, a.value & 0xFFFFFFFF);
548 break;
552 static void op_add_dma_pattern(QTestState *s,
553 const unsigned char *data, size_t len)
555 struct {
557 * index and stride can be used to increment the index-th byte of the
558 * pattern by the value stride, for each loop of the pattern.
560 uint8_t index;
561 uint8_t stride;
562 } a;
564 if (len < sizeof(a) + 1) {
565 return;
567 memcpy(&a, data, sizeof(a));
568 pattern p = {a.index, a.stride, len - sizeof(a), data + sizeof(a)};
569 p.index = a.index % p.len;
570 g_array_append_val(dma_patterns, p);
571 return;
574 static void op_clear_dma_patterns(QTestState *s,
575 const unsigned char *data, size_t len)
577 g_array_set_size(dma_patterns, 0);
578 dma_pattern_index = 0;
581 static void op_clock_step(QTestState *s, const unsigned char *data, size_t len)
583 qtest_clock_step_next(s);
586 static void op_disable_pci(QTestState *s, const unsigned char *data, size_t len)
588 pci_disabled = true;
591 static void handle_timeout(int sig)
593 if (qtest_log_enabled) {
594 fprintf(stderr, "[Timeout]\n");
595 fflush(stderr);
599 * If there is a crash, libfuzzer/ASAN forks a child to run an
600 * "llvm-symbolizer" process for printing out a pretty stacktrace. It
601 * communicates with this child using a pipe. If we timeout+Exit, while
602 * libfuzzer is still communicating with the llvm-symbolizer child, we will
603 * be left with an orphan llvm-symbolizer process. Sometimes, this appears
604 * to lead to a deadlock in the forkserver. Use waitpid to check if there
605 * are any waitable children. If so, exit out of the signal-handler, and
606 * let libfuzzer finish communicating with the child, and exit, on its own.
608 if (waitpid(-1, NULL, WNOHANG) == 0) {
609 return;
612 _Exit(0);
616 * Here, we interpret random bytes from the fuzzer, as a sequence of commands.
617 * Some commands can be variable-width, so we use a separator, SEPARATOR, to
618 * specify the boundaries between commands. SEPARATOR is used to separate
619 * "operations" in the fuzz input. Why use a separator, instead of just using
620 * the operations' length to identify operation boundaries?
621 * 1. This is a simple way to support variable-length operations
622 * 2. This adds "stability" to the input.
623 * For example take the input "AbBcgDefg", where there is no separator and
624 * Opcodes are capitalized.
625 * Simply, by removing the first byte, we end up with a very different
626 * sequence:
627 * BbcGdefg...
628 * By adding a separator, we avoid this problem:
629 * Ab SEP Bcg SEP Defg -> B SEP Bcg SEP Defg
630 * Since B uses two additional bytes as operands, the first "B" will be
631 * ignored. The fuzzer actively tries to reduce inputs, so such unused
632 * bytes are likely to be pruned, eventually.
634 * SEPARATOR is trivial for the fuzzer to discover when using ASan. Optionally,
635 * SEPARATOR can be manually specified as a dictionary value (see libfuzzer's
636 * -dict), though this should not be necessary.
638 * As a result, the stream of bytes is converted into a sequence of commands.
639 * In a simplified example where SEPARATOR is 0xFF:
640 * 00 01 02 FF 03 04 05 06 FF 01 FF ...
641 * becomes this sequence of commands:
642 * 00 01 02 -> op00 (0102) -> in (0102, 2)
643 * 03 04 05 06 -> op03 (040506) -> write (040506, 3)
644 * 01 -> op01 (-,0) -> out (-,0)
645 * ...
647 * Note here that it is the job of the individual opcode functions to check
648 * that enough data was provided. I.e. in the last command out (,0), out needs
649 * to check that there is not enough data provided to select an address/value
650 * for the operation.
652 static void generic_fuzz(QTestState *s, const unsigned char *Data, size_t Size)
654 void (*ops[]) (QTestState *s, const unsigned char* , size_t) = {
655 [OP_IN] = op_in,
656 [OP_OUT] = op_out,
657 [OP_READ] = op_read,
658 [OP_WRITE] = op_write,
659 [OP_PCI_READ] = op_pci_read,
660 [OP_PCI_WRITE] = op_pci_write,
661 [OP_DISABLE_PCI] = op_disable_pci,
662 [OP_ADD_DMA_PATTERN] = op_add_dma_pattern,
663 [OP_CLEAR_DMA_PATTERNS] = op_clear_dma_patterns,
664 [OP_CLOCK_STEP] = op_clock_step,
666 const unsigned char *cmd = Data;
667 const unsigned char *nextcmd;
668 size_t cmd_len;
669 uint8_t op;
671 if (fork() == 0) {
672 struct sigaction sact;
673 struct itimerval timer;
674 sigset_t set;
676 * Sometimes the fuzzer will find inputs that take quite a long time to
677 * process. Often times, these inputs do not result in new coverage.
678 * Even if these inputs might be interesting, they can slow down the
679 * fuzzer, overall. Set a timeout for each command to avoid hurting
680 * performance, too much
682 if (timeout) {
684 sigemptyset(&sact.sa_mask);
685 sact.sa_flags = SA_NODEFER;
686 sact.sa_handler = handle_timeout;
687 sigaction(SIGALRM, &sact, NULL);
689 sigemptyset(&set);
690 sigaddset(&set, SIGALRM);
691 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
693 memset(&timer, 0, sizeof(timer));
694 timer.it_value.tv_sec = timeout / USEC_IN_SEC;
695 timer.it_value.tv_usec = timeout % USEC_IN_SEC;
698 op_clear_dma_patterns(s, NULL, 0);
699 pci_disabled = false;
701 while (cmd && Size) {
702 /* Reset the timeout, each time we run a new command */
703 if (timeout) {
704 setitimer(ITIMER_REAL, &timer, NULL);
707 /* Get the length until the next command or end of input */
708 nextcmd = memmem(cmd, Size, SEPARATOR, strlen(SEPARATOR));
709 cmd_len = nextcmd ? nextcmd - cmd : Size;
711 if (cmd_len > 0) {
712 /* Interpret the first byte of the command as an opcode */
713 op = *cmd % (sizeof(ops) / sizeof((ops)[0]));
714 ops[op](s, cmd + 1, cmd_len - 1);
716 /* Run the main loop */
717 flush_events(s);
719 /* Advance to the next command */
720 cmd = nextcmd ? nextcmd + sizeof(SEPARATOR) - 1 : nextcmd;
721 Size = Size - (cmd_len + sizeof(SEPARATOR) - 1);
722 g_array_set_size(dma_regions, 0);
724 _Exit(0);
725 } else {
726 flush_events(s);
727 wait(0);
731 static void usage(void)
733 printf("Please specify the following environment variables:\n");
734 printf("QEMU_FUZZ_ARGS= the command line arguments passed to qemu\n");
735 printf("QEMU_FUZZ_OBJECTS= "
736 "a space separated list of QOM type names for objects to fuzz\n");
737 printf("Optionally: QEMU_AVOID_DOUBLE_FETCH= "
738 "Try to avoid racy DMA double fetch bugs? %d by default\n",
739 avoid_double_fetches);
740 printf("Optionally: QEMU_FUZZ_TIMEOUT= Specify a custom timeout (us). "
741 "0 to disable. %d by default\n", timeout);
742 exit(0);
745 static int locate_fuzz_memory_regions(Object *child, void *opaque)
747 MemoryRegion *mr;
748 if (object_dynamic_cast(child, TYPE_MEMORY_REGION)) {
749 mr = MEMORY_REGION(child);
750 if ((memory_region_is_ram(mr) ||
751 memory_region_is_ram_device(mr) ||
752 memory_region_is_rom(mr)) == false) {
754 * We don't want duplicate pointers to the same MemoryRegion, so
755 * try to remove copies of the pointer, before adding it.
757 g_hash_table_insert(fuzzable_memoryregions, mr, (gpointer)true);
760 return 0;
763 static int locate_fuzz_objects(Object *child, void *opaque)
765 GString *type_name;
766 GString *path_name;
767 char *pattern = opaque;
769 type_name = g_string_new(object_get_typename(child));
770 g_string_ascii_down(type_name);
771 if (g_pattern_match_simple(pattern, type_name->str)) {
772 /* Find and save ptrs to any child MemoryRegions */
773 object_child_foreach_recursive(child, locate_fuzz_memory_regions, NULL);
776 * We matched an object. If its a PCI device, store a pointer to it so
777 * we can map BARs and fuzz its config space.
779 if (object_dynamic_cast(OBJECT(child), TYPE_PCI_DEVICE)) {
781 * Don't want duplicate pointers to the same PCIDevice, so remove
782 * copies of the pointer, before adding it.
784 g_ptr_array_remove_fast(fuzzable_pci_devices, PCI_DEVICE(child));
785 g_ptr_array_add(fuzzable_pci_devices, PCI_DEVICE(child));
787 } else if (object_dynamic_cast(OBJECT(child), TYPE_MEMORY_REGION)) {
788 path_name = g_string_new(object_get_canonical_path_component(child));
789 g_string_ascii_down(path_name);
790 if (g_pattern_match_simple(pattern, path_name->str)) {
791 MemoryRegion *mr;
792 mr = MEMORY_REGION(child);
793 if ((memory_region_is_ram(mr) ||
794 memory_region_is_ram_device(mr) ||
795 memory_region_is_rom(mr)) == false) {
796 g_hash_table_insert(fuzzable_memoryregions, mr, (gpointer)true);
799 g_string_free(path_name, true);
801 g_string_free(type_name, true);
802 return 0;
806 static void pci_enum(gpointer pcidev, gpointer bus)
808 PCIDevice *dev = pcidev;
809 QPCIDevice *qdev;
810 int i;
812 qdev = qpci_device_find(bus, dev->devfn);
813 g_assert(qdev != NULL);
814 for (i = 0; i < 6; i++) {
815 if (dev->io_regions[i].size) {
816 qpci_iomap(qdev, i, NULL);
819 qpci_device_enable(qdev);
820 g_free(qdev);
823 static void generic_pre_fuzz(QTestState *s)
825 GHashTableIter iter;
826 MemoryRegion *mr;
827 QPCIBus *pcibus;
828 char **result;
829 GString *name_pattern;
831 if (!getenv("QEMU_FUZZ_OBJECTS")) {
832 usage();
834 if (getenv("QTEST_LOG")) {
835 qtest_log_enabled = 1;
837 if (getenv("QEMU_AVOID_DOUBLE_FETCH")) {
838 avoid_double_fetches = 1;
840 if (getenv("QEMU_FUZZ_TIMEOUT")) {
841 timeout = g_ascii_strtoll(getenv("QEMU_FUZZ_TIMEOUT"), NULL, 0);
843 qts_global = s;
846 * Create a special device that we can use to back DMA buffers at very
847 * high memory addresses
849 sparse_mem_mr = sparse_mem_init(0, UINT64_MAX);
851 dma_regions = g_array_new(false, false, sizeof(address_range));
852 dma_patterns = g_array_new(false, false, sizeof(pattern));
854 fuzzable_memoryregions = g_hash_table_new(NULL, NULL);
855 fuzzable_pci_devices = g_ptr_array_new();
857 result = g_strsplit(getenv("QEMU_FUZZ_OBJECTS"), " ", -1);
858 for (int i = 0; result[i] != NULL; i++) {
859 name_pattern = g_string_new(result[i]);
861 * Make the pattern lowercase. We do the same for all the MemoryRegion
862 * and Type names so the configs are case-insensitive.
864 g_string_ascii_down(name_pattern);
865 printf("Matching objects by name %s\n", result[i]);
866 object_child_foreach_recursive(qdev_get_machine(),
867 locate_fuzz_objects,
868 name_pattern->str);
869 g_string_free(name_pattern, true);
871 g_strfreev(result);
872 printf("This process will try to fuzz the following MemoryRegions:\n");
874 g_hash_table_iter_init(&iter, fuzzable_memoryregions);
875 while (g_hash_table_iter_next(&iter, (gpointer)&mr, NULL)) {
876 printf(" * %s (size 0x%" PRIx64 ")\n",
877 object_get_canonical_path_component(&(mr->parent_obj)),
878 memory_region_size(mr));
881 if (!g_hash_table_size(fuzzable_memoryregions)) {
882 printf("No fuzzable memory regions found...\n");
883 exit(1);
886 pcibus = qpci_new_pc(s, NULL);
887 g_ptr_array_foreach(fuzzable_pci_devices, pci_enum, pcibus);
888 qpci_free_pc(pcibus);
890 counter_shm_init();
894 * When libfuzzer gives us two inputs to combine, return a new input with the
895 * following structure:
897 * Input 1 (data1)
898 * SEPARATOR
899 * Clear out the DMA Patterns
900 * SEPARATOR
901 * Disable the pci_read/write instructions
902 * SEPARATOR
903 * Input 2 (data2)
905 * The idea is to collate the core behaviors of the two inputs.
906 * For example:
907 * Input 1: maps a device's BARs, sets up three DMA patterns, and triggers
908 * device functionality A
909 * Input 2: maps a device's BARs, sets up one DMA pattern, and triggers device
910 * functionality B
912 * This function attempts to produce an input that:
913 * Ouptut: maps a device's BARs, set up three DMA patterns, triggers
914 * functionality A device, replaces the DMA patterns with a single
915 * patten, and triggers device functionality B.
917 static size_t generic_fuzz_crossover(const uint8_t *data1, size_t size1, const
918 uint8_t *data2, size_t size2, uint8_t *out,
919 size_t max_out_size, unsigned int seed)
921 size_t copy_len = 0, size = 0;
923 /* Check that we have enough space for data1 and at least part of data2 */
924 if (max_out_size <= size1 + strlen(SEPARATOR) * 3 + 2) {
925 return 0;
928 /* Copy_Len in the first input */
929 copy_len = size1;
930 memcpy(out + size, data1, copy_len);
931 size += copy_len;
932 max_out_size -= copy_len;
934 /* Append a separator */
935 copy_len = strlen(SEPARATOR);
936 memcpy(out + size, SEPARATOR, copy_len);
937 size += copy_len;
938 max_out_size -= copy_len;
940 /* Clear out the DMA Patterns */
941 copy_len = 1;
942 if (copy_len) {
943 out[size] = OP_CLEAR_DMA_PATTERNS;
945 size += copy_len;
946 max_out_size -= copy_len;
948 /* Append a separator */
949 copy_len = strlen(SEPARATOR);
950 memcpy(out + size, SEPARATOR, copy_len);
951 size += copy_len;
952 max_out_size -= copy_len;
954 /* Disable PCI ops. Assume data1 took care of setting up PCI */
955 copy_len = 1;
956 if (copy_len) {
957 out[size] = OP_DISABLE_PCI;
959 size += copy_len;
960 max_out_size -= copy_len;
962 /* Append a separator */
963 copy_len = strlen(SEPARATOR);
964 memcpy(out + size, SEPARATOR, copy_len);
965 size += copy_len;
966 max_out_size -= copy_len;
968 /* Copy_Len over the second input */
969 copy_len = MIN(size2, max_out_size);
970 memcpy(out + size, data2, copy_len);
971 size += copy_len;
972 max_out_size -= copy_len;
974 return size;
978 static GString *generic_fuzz_cmdline(FuzzTarget *t)
980 GString *cmd_line = g_string_new(TARGET_NAME);
981 if (!getenv("QEMU_FUZZ_ARGS")) {
982 usage();
984 g_string_append_printf(cmd_line, " -display none \
985 -machine accel=qtest, \
986 -m 512M %s ", getenv("QEMU_FUZZ_ARGS"));
987 return cmd_line;
990 static GString *generic_fuzz_predefined_config_cmdline(FuzzTarget *t)
992 gchar *args;
993 const generic_fuzz_config *config;
994 g_assert(t->opaque);
996 config = t->opaque;
997 g_setenv("QEMU_AVOID_DOUBLE_FETCH", "1", 1);
998 if (config->argfunc) {
999 args = config->argfunc();
1000 g_setenv("QEMU_FUZZ_ARGS", args, 1);
1001 g_free(args);
1002 } else {
1003 g_assert_nonnull(config->args);
1004 g_setenv("QEMU_FUZZ_ARGS", config->args, 1);
1006 g_setenv("QEMU_FUZZ_OBJECTS", config->objects, 1);
1007 return generic_fuzz_cmdline(t);
1010 static void register_generic_fuzz_targets(void)
1012 fuzz_add_target(&(FuzzTarget){
1013 .name = "generic-fuzz",
1014 .description = "Fuzz based on any qemu command-line args. ",
1015 .get_init_cmdline = generic_fuzz_cmdline,
1016 .pre_fuzz = generic_pre_fuzz,
1017 .fuzz = generic_fuzz,
1018 .crossover = generic_fuzz_crossover
1021 GString *name;
1022 const generic_fuzz_config *config;
1024 for (int i = 0;
1025 i < sizeof(predefined_configs) / sizeof(generic_fuzz_config);
1026 i++) {
1027 config = predefined_configs + i;
1028 name = g_string_new("generic-fuzz");
1029 g_string_append_printf(name, "-%s", config->name);
1030 fuzz_add_target(&(FuzzTarget){
1031 .name = name->str,
1032 .description = "Predefined generic-fuzz config.",
1033 .get_init_cmdline = generic_fuzz_predefined_config_cmdline,
1034 .pre_fuzz = generic_pre_fuzz,
1035 .fuzz = generic_fuzz,
1036 .crossover = generic_fuzz_crossover,
1037 .opaque = (void *)config
1042 fuzz_target_init(register_generic_fuzz_targets);