target-arm: make RFE usable with any register
[qemu.git] / exec.c
blob20e61a0c5b6302be88beebc27bc09cfc928c72d9
1 /*
2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26 #include <stdlib.h>
27 #include <stdio.h>
28 #include <stdarg.h>
29 #include <string.h>
30 #include <errno.h>
31 #include <unistd.h>
32 #include <inttypes.h>
34 #include "cpu.h"
35 #include "exec-all.h"
36 #include "qemu-common.h"
37 #include "tcg.h"
38 #include "hw/hw.h"
39 #include "osdep.h"
40 #include "kvm.h"
41 #if defined(CONFIG_USER_ONLY)
42 #include <qemu.h>
43 #include <signal.h>
44 #endif
46 //#define DEBUG_TB_INVALIDATE
47 //#define DEBUG_FLUSH
48 //#define DEBUG_TLB
49 //#define DEBUG_UNASSIGNED
51 /* make various TB consistency checks */
52 //#define DEBUG_TB_CHECK
53 //#define DEBUG_TLB_CHECK
55 //#define DEBUG_IOPORT
56 //#define DEBUG_SUBPAGE
58 #if !defined(CONFIG_USER_ONLY)
59 /* TB consistency checks only implemented for usermode emulation. */
60 #undef DEBUG_TB_CHECK
61 #endif
63 #define SMC_BITMAP_USE_THRESHOLD 10
65 static TranslationBlock *tbs;
66 int code_gen_max_blocks;
67 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
68 static int nb_tbs;
69 /* any access to the tbs or the page table must use this lock */
70 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
72 #if defined(__arm__) || defined(__sparc_v9__)
73 /* The prologue must be reachable with a direct jump. ARM and Sparc64
74 have limited branch ranges (possibly also PPC) so place it in a
75 section close to code segment. */
76 #define code_gen_section \
77 __attribute__((__section__(".gen_code"))) \
78 __attribute__((aligned (32)))
79 #elif defined(_WIN32)
80 /* Maximum alignment for Win32 is 16. */
81 #define code_gen_section \
82 __attribute__((aligned (16)))
83 #else
84 #define code_gen_section \
85 __attribute__((aligned (32)))
86 #endif
88 uint8_t code_gen_prologue[1024] code_gen_section;
89 static uint8_t *code_gen_buffer;
90 static unsigned long code_gen_buffer_size;
91 /* threshold to flush the translated code buffer */
92 static unsigned long code_gen_buffer_max_size;
93 uint8_t *code_gen_ptr;
95 #if !defined(CONFIG_USER_ONLY)
96 int phys_ram_fd;
97 uint8_t *phys_ram_dirty;
98 static int in_migration;
100 typedef struct RAMBlock {
101 uint8_t *host;
102 ram_addr_t offset;
103 ram_addr_t length;
104 struct RAMBlock *next;
105 } RAMBlock;
107 static RAMBlock *ram_blocks;
108 /* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
109 then we can no longer assume contiguous ram offsets, and external uses
110 of this variable will break. */
111 ram_addr_t last_ram_offset;
112 #endif
114 CPUState *first_cpu;
115 /* current CPU in the current thread. It is only valid inside
116 cpu_exec() */
117 CPUState *cpu_single_env;
118 /* 0 = Do not count executed instructions.
119 1 = Precise instruction counting.
120 2 = Adaptive rate instruction counting. */
121 int use_icount = 0;
122 /* Current instruction counter. While executing translated code this may
123 include some instructions that have not yet been executed. */
124 int64_t qemu_icount;
126 typedef struct PageDesc {
127 /* list of TBs intersecting this ram page */
128 TranslationBlock *first_tb;
129 /* in order to optimize self modifying code, we count the number
130 of lookups we do to a given page to use a bitmap */
131 unsigned int code_write_count;
132 uint8_t *code_bitmap;
133 #if defined(CONFIG_USER_ONLY)
134 unsigned long flags;
135 #endif
136 } PageDesc;
138 /* In system mode we want L1_MAP to be based on ram offsets,
139 while in user mode we want it to be based on virtual addresses. */
140 #if !defined(CONFIG_USER_ONLY)
141 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
142 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
143 #else
144 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
145 #endif
146 #else
147 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
148 #endif
150 /* Size of the L2 (and L3, etc) page tables. */
151 #define L2_BITS 10
152 #define L2_SIZE (1 << L2_BITS)
154 /* The bits remaining after N lower levels of page tables. */
155 #define P_L1_BITS_REM \
156 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
157 #define V_L1_BITS_REM \
158 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
160 /* Size of the L1 page table. Avoid silly small sizes. */
161 #if P_L1_BITS_REM < 4
162 #define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
163 #else
164 #define P_L1_BITS P_L1_BITS_REM
165 #endif
167 #if V_L1_BITS_REM < 4
168 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
169 #else
170 #define V_L1_BITS V_L1_BITS_REM
171 #endif
173 #define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
174 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
176 #define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
177 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
179 unsigned long qemu_real_host_page_size;
180 unsigned long qemu_host_page_bits;
181 unsigned long qemu_host_page_size;
182 unsigned long qemu_host_page_mask;
184 /* This is a multi-level map on the virtual address space.
185 The bottom level has pointers to PageDesc. */
186 static void *l1_map[V_L1_SIZE];
188 #if !defined(CONFIG_USER_ONLY)
189 typedef struct PhysPageDesc {
190 /* offset in host memory of the page + io_index in the low bits */
191 ram_addr_t phys_offset;
192 ram_addr_t region_offset;
193 } PhysPageDesc;
195 /* This is a multi-level map on the physical address space.
196 The bottom level has pointers to PhysPageDesc. */
197 static void *l1_phys_map[P_L1_SIZE];
199 static void io_mem_init(void);
201 /* io memory support */
202 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
203 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
204 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
205 static char io_mem_used[IO_MEM_NB_ENTRIES];
206 static int io_mem_watch;
207 #endif
209 /* log support */
210 #ifdef WIN32
211 static const char *logfilename = "qemu.log";
212 #else
213 static const char *logfilename = "/tmp/qemu.log";
214 #endif
215 FILE *logfile;
216 int loglevel;
217 static int log_append = 0;
219 /* statistics */
220 #if !defined(CONFIG_USER_ONLY)
221 static int tlb_flush_count;
222 #endif
223 static int tb_flush_count;
224 static int tb_phys_invalidate_count;
226 #ifdef _WIN32
227 static void map_exec(void *addr, long size)
229 DWORD old_protect;
230 VirtualProtect(addr, size,
231 PAGE_EXECUTE_READWRITE, &old_protect);
234 #else
235 static void map_exec(void *addr, long size)
237 unsigned long start, end, page_size;
239 page_size = getpagesize();
240 start = (unsigned long)addr;
241 start &= ~(page_size - 1);
243 end = (unsigned long)addr + size;
244 end += page_size - 1;
245 end &= ~(page_size - 1);
247 mprotect((void *)start, end - start,
248 PROT_READ | PROT_WRITE | PROT_EXEC);
250 #endif
252 static void page_init(void)
254 /* NOTE: we can always suppose that qemu_host_page_size >=
255 TARGET_PAGE_SIZE */
256 #ifdef _WIN32
258 SYSTEM_INFO system_info;
260 GetSystemInfo(&system_info);
261 qemu_real_host_page_size = system_info.dwPageSize;
263 #else
264 qemu_real_host_page_size = getpagesize();
265 #endif
266 if (qemu_host_page_size == 0)
267 qemu_host_page_size = qemu_real_host_page_size;
268 if (qemu_host_page_size < TARGET_PAGE_SIZE)
269 qemu_host_page_size = TARGET_PAGE_SIZE;
270 qemu_host_page_bits = 0;
271 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
272 qemu_host_page_bits++;
273 qemu_host_page_mask = ~(qemu_host_page_size - 1);
275 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
277 FILE *f;
279 last_brk = (unsigned long)sbrk(0);
281 f = fopen("/proc/self/maps", "r");
282 if (f) {
283 mmap_lock();
285 do {
286 unsigned long startaddr, endaddr;
287 int n;
289 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
291 if (n == 2 && h2g_valid(startaddr)) {
292 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
294 if (h2g_valid(endaddr)) {
295 endaddr = h2g(endaddr);
296 } else {
297 endaddr = ~0ul;
299 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
301 } while (!feof(f));
303 fclose(f);
304 mmap_unlock();
307 #endif
310 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
312 PageDesc *pd;
313 void **lp;
314 int i;
316 #if defined(CONFIG_USER_ONLY)
317 /* We can't use qemu_malloc because it may recurse into a locked mutex.
318 Neither can we record the new pages we reserve while allocating a
319 given page because that may recurse into an unallocated page table
320 entry. Stuff the allocations we do make into a queue and process
321 them after having completed one entire page table allocation. */
323 unsigned long reserve[2 * (V_L1_SHIFT / L2_BITS)];
324 int reserve_idx = 0;
326 # define ALLOC(P, SIZE) \
327 do { \
328 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
329 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
330 if (h2g_valid(P)) { \
331 reserve[reserve_idx] = h2g(P); \
332 reserve[reserve_idx + 1] = SIZE; \
333 reserve_idx += 2; \
335 } while (0)
336 #else
337 # define ALLOC(P, SIZE) \
338 do { P = qemu_mallocz(SIZE); } while (0)
339 #endif
341 /* Level 1. Always allocated. */
342 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
344 /* Level 2..N-1. */
345 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
346 void **p = *lp;
348 if (p == NULL) {
349 if (!alloc) {
350 return NULL;
352 ALLOC(p, sizeof(void *) * L2_SIZE);
353 *lp = p;
356 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
359 pd = *lp;
360 if (pd == NULL) {
361 if (!alloc) {
362 return NULL;
364 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
365 *lp = pd;
368 #undef ALLOC
369 #if defined(CONFIG_USER_ONLY)
370 for (i = 0; i < reserve_idx; i += 2) {
371 unsigned long addr = reserve[i];
372 unsigned long len = reserve[i + 1];
374 page_set_flags(addr & TARGET_PAGE_MASK,
375 TARGET_PAGE_ALIGN(addr + len),
376 PAGE_RESERVED);
378 #endif
380 return pd + (index & (L2_SIZE - 1));
383 static inline PageDesc *page_find(tb_page_addr_t index)
385 return page_find_alloc(index, 0);
388 #if !defined(CONFIG_USER_ONLY)
389 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
391 PhysPageDesc *pd;
392 void **lp;
393 int i;
395 /* Level 1. Always allocated. */
396 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
398 /* Level 2..N-1. */
399 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
400 void **p = *lp;
401 if (p == NULL) {
402 if (!alloc) {
403 return NULL;
405 *lp = p = qemu_mallocz(sizeof(void *) * L2_SIZE);
407 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
410 pd = *lp;
411 if (pd == NULL) {
412 int i;
414 if (!alloc) {
415 return NULL;
418 *lp = pd = qemu_malloc(sizeof(PhysPageDesc) * L2_SIZE);
420 for (i = 0; i < L2_SIZE; i++) {
421 pd[i].phys_offset = IO_MEM_UNASSIGNED;
422 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
426 return pd + (index & (L2_SIZE - 1));
429 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
431 return phys_page_find_alloc(index, 0);
434 static void tlb_protect_code(ram_addr_t ram_addr);
435 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
436 target_ulong vaddr);
437 #define mmap_lock() do { } while(0)
438 #define mmap_unlock() do { } while(0)
439 #endif
441 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
443 #if defined(CONFIG_USER_ONLY)
444 /* Currently it is not recommended to allocate big chunks of data in
445 user mode. It will change when a dedicated libc will be used */
446 #define USE_STATIC_CODE_GEN_BUFFER
447 #endif
449 #ifdef USE_STATIC_CODE_GEN_BUFFER
450 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
451 #endif
453 static void code_gen_alloc(unsigned long tb_size)
455 #ifdef USE_STATIC_CODE_GEN_BUFFER
456 code_gen_buffer = static_code_gen_buffer;
457 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
458 map_exec(code_gen_buffer, code_gen_buffer_size);
459 #else
460 code_gen_buffer_size = tb_size;
461 if (code_gen_buffer_size == 0) {
462 #if defined(CONFIG_USER_ONLY)
463 /* in user mode, phys_ram_size is not meaningful */
464 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
465 #else
466 /* XXX: needs adjustments */
467 code_gen_buffer_size = (unsigned long)(ram_size / 4);
468 #endif
470 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
471 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
472 /* The code gen buffer location may have constraints depending on
473 the host cpu and OS */
474 #if defined(__linux__)
476 int flags;
477 void *start = NULL;
479 flags = MAP_PRIVATE | MAP_ANONYMOUS;
480 #if defined(__x86_64__)
481 flags |= MAP_32BIT;
482 /* Cannot map more than that */
483 if (code_gen_buffer_size > (800 * 1024 * 1024))
484 code_gen_buffer_size = (800 * 1024 * 1024);
485 #elif defined(__sparc_v9__)
486 // Map the buffer below 2G, so we can use direct calls and branches
487 flags |= MAP_FIXED;
488 start = (void *) 0x60000000UL;
489 if (code_gen_buffer_size > (512 * 1024 * 1024))
490 code_gen_buffer_size = (512 * 1024 * 1024);
491 #elif defined(__arm__)
492 /* Map the buffer below 32M, so we can use direct calls and branches */
493 flags |= MAP_FIXED;
494 start = (void *) 0x01000000UL;
495 if (code_gen_buffer_size > 16 * 1024 * 1024)
496 code_gen_buffer_size = 16 * 1024 * 1024;
497 #endif
498 code_gen_buffer = mmap(start, code_gen_buffer_size,
499 PROT_WRITE | PROT_READ | PROT_EXEC,
500 flags, -1, 0);
501 if (code_gen_buffer == MAP_FAILED) {
502 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
503 exit(1);
506 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
508 int flags;
509 void *addr = NULL;
510 flags = MAP_PRIVATE | MAP_ANONYMOUS;
511 #if defined(__x86_64__)
512 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
513 * 0x40000000 is free */
514 flags |= MAP_FIXED;
515 addr = (void *)0x40000000;
516 /* Cannot map more than that */
517 if (code_gen_buffer_size > (800 * 1024 * 1024))
518 code_gen_buffer_size = (800 * 1024 * 1024);
519 #endif
520 code_gen_buffer = mmap(addr, code_gen_buffer_size,
521 PROT_WRITE | PROT_READ | PROT_EXEC,
522 flags, -1, 0);
523 if (code_gen_buffer == MAP_FAILED) {
524 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
525 exit(1);
528 #else
529 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
530 map_exec(code_gen_buffer, code_gen_buffer_size);
531 #endif
532 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
533 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
534 code_gen_buffer_max_size = code_gen_buffer_size -
535 code_gen_max_block_size();
536 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
537 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
540 /* Must be called before using the QEMU cpus. 'tb_size' is the size
541 (in bytes) allocated to the translation buffer. Zero means default
542 size. */
543 void cpu_exec_init_all(unsigned long tb_size)
545 cpu_gen_init();
546 code_gen_alloc(tb_size);
547 code_gen_ptr = code_gen_buffer;
548 page_init();
549 #if !defined(CONFIG_USER_ONLY)
550 io_mem_init();
551 #endif
554 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
556 static int cpu_common_post_load(void *opaque, int version_id)
558 CPUState *env = opaque;
560 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
561 version_id is increased. */
562 env->interrupt_request &= ~0x01;
563 tlb_flush(env, 1);
565 return 0;
568 static const VMStateDescription vmstate_cpu_common = {
569 .name = "cpu_common",
570 .version_id = 1,
571 .minimum_version_id = 1,
572 .minimum_version_id_old = 1,
573 .post_load = cpu_common_post_load,
574 .fields = (VMStateField []) {
575 VMSTATE_UINT32(halted, CPUState),
576 VMSTATE_UINT32(interrupt_request, CPUState),
577 VMSTATE_END_OF_LIST()
580 #endif
582 CPUState *qemu_get_cpu(int cpu)
584 CPUState *env = first_cpu;
586 while (env) {
587 if (env->cpu_index == cpu)
588 break;
589 env = env->next_cpu;
592 return env;
595 void cpu_exec_init(CPUState *env)
597 CPUState **penv;
598 int cpu_index;
600 #if defined(CONFIG_USER_ONLY)
601 cpu_list_lock();
602 #endif
603 env->next_cpu = NULL;
604 penv = &first_cpu;
605 cpu_index = 0;
606 while (*penv != NULL) {
607 penv = &(*penv)->next_cpu;
608 cpu_index++;
610 env->cpu_index = cpu_index;
611 env->numa_node = 0;
612 QTAILQ_INIT(&env->breakpoints);
613 QTAILQ_INIT(&env->watchpoints);
614 *penv = env;
615 #if defined(CONFIG_USER_ONLY)
616 cpu_list_unlock();
617 #endif
618 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
619 vmstate_register(cpu_index, &vmstate_cpu_common, env);
620 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
621 cpu_save, cpu_load, env);
622 #endif
625 static inline void invalidate_page_bitmap(PageDesc *p)
627 if (p->code_bitmap) {
628 qemu_free(p->code_bitmap);
629 p->code_bitmap = NULL;
631 p->code_write_count = 0;
634 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
636 static void page_flush_tb_1 (int level, void **lp)
638 int i;
640 if (*lp == NULL) {
641 return;
643 if (level == 0) {
644 PageDesc *pd = *lp;
645 for (i = 0; i < L2_BITS; ++i) {
646 pd[i].first_tb = NULL;
647 invalidate_page_bitmap(pd + i);
649 } else {
650 void **pp = *lp;
651 for (i = 0; i < L2_BITS; ++i) {
652 page_flush_tb_1 (level - 1, pp + i);
657 static void page_flush_tb(void)
659 int i;
660 for (i = 0; i < V_L1_SIZE; i++) {
661 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
665 /* flush all the translation blocks */
666 /* XXX: tb_flush is currently not thread safe */
667 void tb_flush(CPUState *env1)
669 CPUState *env;
670 #if defined(DEBUG_FLUSH)
671 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
672 (unsigned long)(code_gen_ptr - code_gen_buffer),
673 nb_tbs, nb_tbs > 0 ?
674 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
675 #endif
676 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
677 cpu_abort(env1, "Internal error: code buffer overflow\n");
679 nb_tbs = 0;
681 for(env = first_cpu; env != NULL; env = env->next_cpu) {
682 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
685 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
686 page_flush_tb();
688 code_gen_ptr = code_gen_buffer;
689 /* XXX: flush processor icache at this point if cache flush is
690 expensive */
691 tb_flush_count++;
694 #ifdef DEBUG_TB_CHECK
696 static void tb_invalidate_check(target_ulong address)
698 TranslationBlock *tb;
699 int i;
700 address &= TARGET_PAGE_MASK;
701 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
702 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
703 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
704 address >= tb->pc + tb->size)) {
705 printf("ERROR invalidate: address=" TARGET_FMT_lx
706 " PC=%08lx size=%04x\n",
707 address, (long)tb->pc, tb->size);
713 /* verify that all the pages have correct rights for code */
714 static void tb_page_check(void)
716 TranslationBlock *tb;
717 int i, flags1, flags2;
719 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
720 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
721 flags1 = page_get_flags(tb->pc);
722 flags2 = page_get_flags(tb->pc + tb->size - 1);
723 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
724 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
725 (long)tb->pc, tb->size, flags1, flags2);
731 #endif
733 /* invalidate one TB */
734 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
735 int next_offset)
737 TranslationBlock *tb1;
738 for(;;) {
739 tb1 = *ptb;
740 if (tb1 == tb) {
741 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
742 break;
744 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
748 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
750 TranslationBlock *tb1;
751 unsigned int n1;
753 for(;;) {
754 tb1 = *ptb;
755 n1 = (long)tb1 & 3;
756 tb1 = (TranslationBlock *)((long)tb1 & ~3);
757 if (tb1 == tb) {
758 *ptb = tb1->page_next[n1];
759 break;
761 ptb = &tb1->page_next[n1];
765 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
767 TranslationBlock *tb1, **ptb;
768 unsigned int n1;
770 ptb = &tb->jmp_next[n];
771 tb1 = *ptb;
772 if (tb1) {
773 /* find tb(n) in circular list */
774 for(;;) {
775 tb1 = *ptb;
776 n1 = (long)tb1 & 3;
777 tb1 = (TranslationBlock *)((long)tb1 & ~3);
778 if (n1 == n && tb1 == tb)
779 break;
780 if (n1 == 2) {
781 ptb = &tb1->jmp_first;
782 } else {
783 ptb = &tb1->jmp_next[n1];
786 /* now we can suppress tb(n) from the list */
787 *ptb = tb->jmp_next[n];
789 tb->jmp_next[n] = NULL;
793 /* reset the jump entry 'n' of a TB so that it is not chained to
794 another TB */
795 static inline void tb_reset_jump(TranslationBlock *tb, int n)
797 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
800 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
802 CPUState *env;
803 PageDesc *p;
804 unsigned int h, n1;
805 tb_page_addr_t phys_pc;
806 TranslationBlock *tb1, *tb2;
808 /* remove the TB from the hash list */
809 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
810 h = tb_phys_hash_func(phys_pc);
811 tb_remove(&tb_phys_hash[h], tb,
812 offsetof(TranslationBlock, phys_hash_next));
814 /* remove the TB from the page list */
815 if (tb->page_addr[0] != page_addr) {
816 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
817 tb_page_remove(&p->first_tb, tb);
818 invalidate_page_bitmap(p);
820 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
821 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
822 tb_page_remove(&p->first_tb, tb);
823 invalidate_page_bitmap(p);
826 tb_invalidated_flag = 1;
828 /* remove the TB from the hash list */
829 h = tb_jmp_cache_hash_func(tb->pc);
830 for(env = first_cpu; env != NULL; env = env->next_cpu) {
831 if (env->tb_jmp_cache[h] == tb)
832 env->tb_jmp_cache[h] = NULL;
835 /* suppress this TB from the two jump lists */
836 tb_jmp_remove(tb, 0);
837 tb_jmp_remove(tb, 1);
839 /* suppress any remaining jumps to this TB */
840 tb1 = tb->jmp_first;
841 for(;;) {
842 n1 = (long)tb1 & 3;
843 if (n1 == 2)
844 break;
845 tb1 = (TranslationBlock *)((long)tb1 & ~3);
846 tb2 = tb1->jmp_next[n1];
847 tb_reset_jump(tb1, n1);
848 tb1->jmp_next[n1] = NULL;
849 tb1 = tb2;
851 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
853 tb_phys_invalidate_count++;
856 static inline void set_bits(uint8_t *tab, int start, int len)
858 int end, mask, end1;
860 end = start + len;
861 tab += start >> 3;
862 mask = 0xff << (start & 7);
863 if ((start & ~7) == (end & ~7)) {
864 if (start < end) {
865 mask &= ~(0xff << (end & 7));
866 *tab |= mask;
868 } else {
869 *tab++ |= mask;
870 start = (start + 8) & ~7;
871 end1 = end & ~7;
872 while (start < end1) {
873 *tab++ = 0xff;
874 start += 8;
876 if (start < end) {
877 mask = ~(0xff << (end & 7));
878 *tab |= mask;
883 static void build_page_bitmap(PageDesc *p)
885 int n, tb_start, tb_end;
886 TranslationBlock *tb;
888 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
890 tb = p->first_tb;
891 while (tb != NULL) {
892 n = (long)tb & 3;
893 tb = (TranslationBlock *)((long)tb & ~3);
894 /* NOTE: this is subtle as a TB may span two physical pages */
895 if (n == 0) {
896 /* NOTE: tb_end may be after the end of the page, but
897 it is not a problem */
898 tb_start = tb->pc & ~TARGET_PAGE_MASK;
899 tb_end = tb_start + tb->size;
900 if (tb_end > TARGET_PAGE_SIZE)
901 tb_end = TARGET_PAGE_SIZE;
902 } else {
903 tb_start = 0;
904 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
906 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
907 tb = tb->page_next[n];
911 TranslationBlock *tb_gen_code(CPUState *env,
912 target_ulong pc, target_ulong cs_base,
913 int flags, int cflags)
915 TranslationBlock *tb;
916 uint8_t *tc_ptr;
917 tb_page_addr_t phys_pc, phys_page2;
918 target_ulong virt_page2;
919 int code_gen_size;
921 phys_pc = get_page_addr_code(env, pc);
922 tb = tb_alloc(pc);
923 if (!tb) {
924 /* flush must be done */
925 tb_flush(env);
926 /* cannot fail at this point */
927 tb = tb_alloc(pc);
928 /* Don't forget to invalidate previous TB info. */
929 tb_invalidated_flag = 1;
931 tc_ptr = code_gen_ptr;
932 tb->tc_ptr = tc_ptr;
933 tb->cs_base = cs_base;
934 tb->flags = flags;
935 tb->cflags = cflags;
936 cpu_gen_code(env, tb, &code_gen_size);
937 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
939 /* check next page if needed */
940 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
941 phys_page2 = -1;
942 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
943 phys_page2 = get_page_addr_code(env, virt_page2);
945 tb_link_page(tb, phys_pc, phys_page2);
946 return tb;
949 /* invalidate all TBs which intersect with the target physical page
950 starting in range [start;end[. NOTE: start and end must refer to
951 the same physical page. 'is_cpu_write_access' should be true if called
952 from a real cpu write access: the virtual CPU will exit the current
953 TB if code is modified inside this TB. */
954 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
955 int is_cpu_write_access)
957 TranslationBlock *tb, *tb_next, *saved_tb;
958 CPUState *env = cpu_single_env;
959 tb_page_addr_t tb_start, tb_end;
960 PageDesc *p;
961 int n;
962 #ifdef TARGET_HAS_PRECISE_SMC
963 int current_tb_not_found = is_cpu_write_access;
964 TranslationBlock *current_tb = NULL;
965 int current_tb_modified = 0;
966 target_ulong current_pc = 0;
967 target_ulong current_cs_base = 0;
968 int current_flags = 0;
969 #endif /* TARGET_HAS_PRECISE_SMC */
971 p = page_find(start >> TARGET_PAGE_BITS);
972 if (!p)
973 return;
974 if (!p->code_bitmap &&
975 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
976 is_cpu_write_access) {
977 /* build code bitmap */
978 build_page_bitmap(p);
981 /* we remove all the TBs in the range [start, end[ */
982 /* XXX: see if in some cases it could be faster to invalidate all the code */
983 tb = p->first_tb;
984 while (tb != NULL) {
985 n = (long)tb & 3;
986 tb = (TranslationBlock *)((long)tb & ~3);
987 tb_next = tb->page_next[n];
988 /* NOTE: this is subtle as a TB may span two physical pages */
989 if (n == 0) {
990 /* NOTE: tb_end may be after the end of the page, but
991 it is not a problem */
992 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
993 tb_end = tb_start + tb->size;
994 } else {
995 tb_start = tb->page_addr[1];
996 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
998 if (!(tb_end <= start || tb_start >= end)) {
999 #ifdef TARGET_HAS_PRECISE_SMC
1000 if (current_tb_not_found) {
1001 current_tb_not_found = 0;
1002 current_tb = NULL;
1003 if (env->mem_io_pc) {
1004 /* now we have a real cpu fault */
1005 current_tb = tb_find_pc(env->mem_io_pc);
1008 if (current_tb == tb &&
1009 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1010 /* If we are modifying the current TB, we must stop
1011 its execution. We could be more precise by checking
1012 that the modification is after the current PC, but it
1013 would require a specialized function to partially
1014 restore the CPU state */
1016 current_tb_modified = 1;
1017 cpu_restore_state(current_tb, env,
1018 env->mem_io_pc, NULL);
1019 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1020 &current_flags);
1022 #endif /* TARGET_HAS_PRECISE_SMC */
1023 /* we need to do that to handle the case where a signal
1024 occurs while doing tb_phys_invalidate() */
1025 saved_tb = NULL;
1026 if (env) {
1027 saved_tb = env->current_tb;
1028 env->current_tb = NULL;
1030 tb_phys_invalidate(tb, -1);
1031 if (env) {
1032 env->current_tb = saved_tb;
1033 if (env->interrupt_request && env->current_tb)
1034 cpu_interrupt(env, env->interrupt_request);
1037 tb = tb_next;
1039 #if !defined(CONFIG_USER_ONLY)
1040 /* if no code remaining, no need to continue to use slow writes */
1041 if (!p->first_tb) {
1042 invalidate_page_bitmap(p);
1043 if (is_cpu_write_access) {
1044 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1047 #endif
1048 #ifdef TARGET_HAS_PRECISE_SMC
1049 if (current_tb_modified) {
1050 /* we generate a block containing just the instruction
1051 modifying the memory. It will ensure that it cannot modify
1052 itself */
1053 env->current_tb = NULL;
1054 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1055 cpu_resume_from_signal(env, NULL);
1057 #endif
1060 /* len must be <= 8 and start must be a multiple of len */
1061 static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1063 PageDesc *p;
1064 int offset, b;
1065 #if 0
1066 if (1) {
1067 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1068 cpu_single_env->mem_io_vaddr, len,
1069 cpu_single_env->eip,
1070 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1072 #endif
1073 p = page_find(start >> TARGET_PAGE_BITS);
1074 if (!p)
1075 return;
1076 if (p->code_bitmap) {
1077 offset = start & ~TARGET_PAGE_MASK;
1078 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1079 if (b & ((1 << len) - 1))
1080 goto do_invalidate;
1081 } else {
1082 do_invalidate:
1083 tb_invalidate_phys_page_range(start, start + len, 1);
1087 #if !defined(CONFIG_SOFTMMU)
1088 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1089 unsigned long pc, void *puc)
1091 TranslationBlock *tb;
1092 PageDesc *p;
1093 int n;
1094 #ifdef TARGET_HAS_PRECISE_SMC
1095 TranslationBlock *current_tb = NULL;
1096 CPUState *env = cpu_single_env;
1097 int current_tb_modified = 0;
1098 target_ulong current_pc = 0;
1099 target_ulong current_cs_base = 0;
1100 int current_flags = 0;
1101 #endif
1103 addr &= TARGET_PAGE_MASK;
1104 p = page_find(addr >> TARGET_PAGE_BITS);
1105 if (!p)
1106 return;
1107 tb = p->first_tb;
1108 #ifdef TARGET_HAS_PRECISE_SMC
1109 if (tb && pc != 0) {
1110 current_tb = tb_find_pc(pc);
1112 #endif
1113 while (tb != NULL) {
1114 n = (long)tb & 3;
1115 tb = (TranslationBlock *)((long)tb & ~3);
1116 #ifdef TARGET_HAS_PRECISE_SMC
1117 if (current_tb == tb &&
1118 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1119 /* If we are modifying the current TB, we must stop
1120 its execution. We could be more precise by checking
1121 that the modification is after the current PC, but it
1122 would require a specialized function to partially
1123 restore the CPU state */
1125 current_tb_modified = 1;
1126 cpu_restore_state(current_tb, env, pc, puc);
1127 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1128 &current_flags);
1130 #endif /* TARGET_HAS_PRECISE_SMC */
1131 tb_phys_invalidate(tb, addr);
1132 tb = tb->page_next[n];
1134 p->first_tb = NULL;
1135 #ifdef TARGET_HAS_PRECISE_SMC
1136 if (current_tb_modified) {
1137 /* we generate a block containing just the instruction
1138 modifying the memory. It will ensure that it cannot modify
1139 itself */
1140 env->current_tb = NULL;
1141 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1142 cpu_resume_from_signal(env, puc);
1144 #endif
1146 #endif
1148 /* add the tb in the target page and protect it if necessary */
1149 static inline void tb_alloc_page(TranslationBlock *tb,
1150 unsigned int n, tb_page_addr_t page_addr)
1152 PageDesc *p;
1153 TranslationBlock *last_first_tb;
1155 tb->page_addr[n] = page_addr;
1156 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1157 tb->page_next[n] = p->first_tb;
1158 last_first_tb = p->first_tb;
1159 p->first_tb = (TranslationBlock *)((long)tb | n);
1160 invalidate_page_bitmap(p);
1162 #if defined(TARGET_HAS_SMC) || 1
1164 #if defined(CONFIG_USER_ONLY)
1165 if (p->flags & PAGE_WRITE) {
1166 target_ulong addr;
1167 PageDesc *p2;
1168 int prot;
1170 /* force the host page as non writable (writes will have a
1171 page fault + mprotect overhead) */
1172 page_addr &= qemu_host_page_mask;
1173 prot = 0;
1174 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1175 addr += TARGET_PAGE_SIZE) {
1177 p2 = page_find (addr >> TARGET_PAGE_BITS);
1178 if (!p2)
1179 continue;
1180 prot |= p2->flags;
1181 p2->flags &= ~PAGE_WRITE;
1182 page_get_flags(addr);
1184 mprotect(g2h(page_addr), qemu_host_page_size,
1185 (prot & PAGE_BITS) & ~PAGE_WRITE);
1186 #ifdef DEBUG_TB_INVALIDATE
1187 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1188 page_addr);
1189 #endif
1191 #else
1192 /* if some code is already present, then the pages are already
1193 protected. So we handle the case where only the first TB is
1194 allocated in a physical page */
1195 if (!last_first_tb) {
1196 tlb_protect_code(page_addr);
1198 #endif
1200 #endif /* TARGET_HAS_SMC */
1203 /* Allocate a new translation block. Flush the translation buffer if
1204 too many translation blocks or too much generated code. */
1205 TranslationBlock *tb_alloc(target_ulong pc)
1207 TranslationBlock *tb;
1209 if (nb_tbs >= code_gen_max_blocks ||
1210 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
1211 return NULL;
1212 tb = &tbs[nb_tbs++];
1213 tb->pc = pc;
1214 tb->cflags = 0;
1215 return tb;
1218 void tb_free(TranslationBlock *tb)
1220 /* In practice this is mostly used for single use temporary TB
1221 Ignore the hard cases and just back up if this TB happens to
1222 be the last one generated. */
1223 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1224 code_gen_ptr = tb->tc_ptr;
1225 nb_tbs--;
1229 /* add a new TB and link it to the physical page tables. phys_page2 is
1230 (-1) to indicate that only one page contains the TB. */
1231 void tb_link_page(TranslationBlock *tb,
1232 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
1234 unsigned int h;
1235 TranslationBlock **ptb;
1237 /* Grab the mmap lock to stop another thread invalidating this TB
1238 before we are done. */
1239 mmap_lock();
1240 /* add in the physical hash table */
1241 h = tb_phys_hash_func(phys_pc);
1242 ptb = &tb_phys_hash[h];
1243 tb->phys_hash_next = *ptb;
1244 *ptb = tb;
1246 /* add in the page list */
1247 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1248 if (phys_page2 != -1)
1249 tb_alloc_page(tb, 1, phys_page2);
1250 else
1251 tb->page_addr[1] = -1;
1253 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1254 tb->jmp_next[0] = NULL;
1255 tb->jmp_next[1] = NULL;
1257 /* init original jump addresses */
1258 if (tb->tb_next_offset[0] != 0xffff)
1259 tb_reset_jump(tb, 0);
1260 if (tb->tb_next_offset[1] != 0xffff)
1261 tb_reset_jump(tb, 1);
1263 #ifdef DEBUG_TB_CHECK
1264 tb_page_check();
1265 #endif
1266 mmap_unlock();
1269 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1270 tb[1].tc_ptr. Return NULL if not found */
1271 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1273 int m_min, m_max, m;
1274 unsigned long v;
1275 TranslationBlock *tb;
1277 if (nb_tbs <= 0)
1278 return NULL;
1279 if (tc_ptr < (unsigned long)code_gen_buffer ||
1280 tc_ptr >= (unsigned long)code_gen_ptr)
1281 return NULL;
1282 /* binary search (cf Knuth) */
1283 m_min = 0;
1284 m_max = nb_tbs - 1;
1285 while (m_min <= m_max) {
1286 m = (m_min + m_max) >> 1;
1287 tb = &tbs[m];
1288 v = (unsigned long)tb->tc_ptr;
1289 if (v == tc_ptr)
1290 return tb;
1291 else if (tc_ptr < v) {
1292 m_max = m - 1;
1293 } else {
1294 m_min = m + 1;
1297 return &tbs[m_max];
1300 static void tb_reset_jump_recursive(TranslationBlock *tb);
1302 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1304 TranslationBlock *tb1, *tb_next, **ptb;
1305 unsigned int n1;
1307 tb1 = tb->jmp_next[n];
1308 if (tb1 != NULL) {
1309 /* find head of list */
1310 for(;;) {
1311 n1 = (long)tb1 & 3;
1312 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1313 if (n1 == 2)
1314 break;
1315 tb1 = tb1->jmp_next[n1];
1317 /* we are now sure now that tb jumps to tb1 */
1318 tb_next = tb1;
1320 /* remove tb from the jmp_first list */
1321 ptb = &tb_next->jmp_first;
1322 for(;;) {
1323 tb1 = *ptb;
1324 n1 = (long)tb1 & 3;
1325 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1326 if (n1 == n && tb1 == tb)
1327 break;
1328 ptb = &tb1->jmp_next[n1];
1330 *ptb = tb->jmp_next[n];
1331 tb->jmp_next[n] = NULL;
1333 /* suppress the jump to next tb in generated code */
1334 tb_reset_jump(tb, n);
1336 /* suppress jumps in the tb on which we could have jumped */
1337 tb_reset_jump_recursive(tb_next);
1341 static void tb_reset_jump_recursive(TranslationBlock *tb)
1343 tb_reset_jump_recursive2(tb, 0);
1344 tb_reset_jump_recursive2(tb, 1);
1347 #if defined(TARGET_HAS_ICE)
1348 #if defined(CONFIG_USER_ONLY)
1349 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1351 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1353 #else
1354 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1356 target_phys_addr_t addr;
1357 target_ulong pd;
1358 ram_addr_t ram_addr;
1359 PhysPageDesc *p;
1361 addr = cpu_get_phys_page_debug(env, pc);
1362 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1363 if (!p) {
1364 pd = IO_MEM_UNASSIGNED;
1365 } else {
1366 pd = p->phys_offset;
1368 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1369 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1371 #endif
1372 #endif /* TARGET_HAS_ICE */
1374 #if defined(CONFIG_USER_ONLY)
1375 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1380 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1381 int flags, CPUWatchpoint **watchpoint)
1383 return -ENOSYS;
1385 #else
1386 /* Add a watchpoint. */
1387 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1388 int flags, CPUWatchpoint **watchpoint)
1390 target_ulong len_mask = ~(len - 1);
1391 CPUWatchpoint *wp;
1393 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1394 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1395 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1396 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1397 return -EINVAL;
1399 wp = qemu_malloc(sizeof(*wp));
1401 wp->vaddr = addr;
1402 wp->len_mask = len_mask;
1403 wp->flags = flags;
1405 /* keep all GDB-injected watchpoints in front */
1406 if (flags & BP_GDB)
1407 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1408 else
1409 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1411 tlb_flush_page(env, addr);
1413 if (watchpoint)
1414 *watchpoint = wp;
1415 return 0;
1418 /* Remove a specific watchpoint. */
1419 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1420 int flags)
1422 target_ulong len_mask = ~(len - 1);
1423 CPUWatchpoint *wp;
1425 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1426 if (addr == wp->vaddr && len_mask == wp->len_mask
1427 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1428 cpu_watchpoint_remove_by_ref(env, wp);
1429 return 0;
1432 return -ENOENT;
1435 /* Remove a specific watchpoint by reference. */
1436 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1438 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1440 tlb_flush_page(env, watchpoint->vaddr);
1442 qemu_free(watchpoint);
1445 /* Remove all matching watchpoints. */
1446 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1448 CPUWatchpoint *wp, *next;
1450 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1451 if (wp->flags & mask)
1452 cpu_watchpoint_remove_by_ref(env, wp);
1455 #endif
1457 /* Add a breakpoint. */
1458 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1459 CPUBreakpoint **breakpoint)
1461 #if defined(TARGET_HAS_ICE)
1462 CPUBreakpoint *bp;
1464 bp = qemu_malloc(sizeof(*bp));
1466 bp->pc = pc;
1467 bp->flags = flags;
1469 /* keep all GDB-injected breakpoints in front */
1470 if (flags & BP_GDB)
1471 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1472 else
1473 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1475 breakpoint_invalidate(env, pc);
1477 if (breakpoint)
1478 *breakpoint = bp;
1479 return 0;
1480 #else
1481 return -ENOSYS;
1482 #endif
1485 /* Remove a specific breakpoint. */
1486 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1488 #if defined(TARGET_HAS_ICE)
1489 CPUBreakpoint *bp;
1491 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1492 if (bp->pc == pc && bp->flags == flags) {
1493 cpu_breakpoint_remove_by_ref(env, bp);
1494 return 0;
1497 return -ENOENT;
1498 #else
1499 return -ENOSYS;
1500 #endif
1503 /* Remove a specific breakpoint by reference. */
1504 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1506 #if defined(TARGET_HAS_ICE)
1507 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1509 breakpoint_invalidate(env, breakpoint->pc);
1511 qemu_free(breakpoint);
1512 #endif
1515 /* Remove all matching breakpoints. */
1516 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1518 #if defined(TARGET_HAS_ICE)
1519 CPUBreakpoint *bp, *next;
1521 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1522 if (bp->flags & mask)
1523 cpu_breakpoint_remove_by_ref(env, bp);
1525 #endif
1528 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1529 CPU loop after each instruction */
1530 void cpu_single_step(CPUState *env, int enabled)
1532 #if defined(TARGET_HAS_ICE)
1533 if (env->singlestep_enabled != enabled) {
1534 env->singlestep_enabled = enabled;
1535 if (kvm_enabled())
1536 kvm_update_guest_debug(env, 0);
1537 else {
1538 /* must flush all the translated code to avoid inconsistencies */
1539 /* XXX: only flush what is necessary */
1540 tb_flush(env);
1543 #endif
1546 /* enable or disable low levels log */
1547 void cpu_set_log(int log_flags)
1549 loglevel = log_flags;
1550 if (loglevel && !logfile) {
1551 logfile = fopen(logfilename, log_append ? "a" : "w");
1552 if (!logfile) {
1553 perror(logfilename);
1554 _exit(1);
1556 #if !defined(CONFIG_SOFTMMU)
1557 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1559 static char logfile_buf[4096];
1560 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1562 #elif !defined(_WIN32)
1563 /* Win32 doesn't support line-buffering and requires size >= 2 */
1564 setvbuf(logfile, NULL, _IOLBF, 0);
1565 #endif
1566 log_append = 1;
1568 if (!loglevel && logfile) {
1569 fclose(logfile);
1570 logfile = NULL;
1574 void cpu_set_log_filename(const char *filename)
1576 logfilename = strdup(filename);
1577 if (logfile) {
1578 fclose(logfile);
1579 logfile = NULL;
1581 cpu_set_log(loglevel);
1584 static void cpu_unlink_tb(CPUState *env)
1586 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1587 problem and hope the cpu will stop of its own accord. For userspace
1588 emulation this often isn't actually as bad as it sounds. Often
1589 signals are used primarily to interrupt blocking syscalls. */
1590 TranslationBlock *tb;
1591 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1593 spin_lock(&interrupt_lock);
1594 tb = env->current_tb;
1595 /* if the cpu is currently executing code, we must unlink it and
1596 all the potentially executing TB */
1597 if (tb) {
1598 env->current_tb = NULL;
1599 tb_reset_jump_recursive(tb);
1601 spin_unlock(&interrupt_lock);
1604 /* mask must never be zero, except for A20 change call */
1605 void cpu_interrupt(CPUState *env, int mask)
1607 int old_mask;
1609 old_mask = env->interrupt_request;
1610 env->interrupt_request |= mask;
1612 #ifndef CONFIG_USER_ONLY
1614 * If called from iothread context, wake the target cpu in
1615 * case its halted.
1617 if (!qemu_cpu_self(env)) {
1618 qemu_cpu_kick(env);
1619 return;
1621 #endif
1623 if (use_icount) {
1624 env->icount_decr.u16.high = 0xffff;
1625 #ifndef CONFIG_USER_ONLY
1626 if (!can_do_io(env)
1627 && (mask & ~old_mask) != 0) {
1628 cpu_abort(env, "Raised interrupt while not in I/O function");
1630 #endif
1631 } else {
1632 cpu_unlink_tb(env);
1636 void cpu_reset_interrupt(CPUState *env, int mask)
1638 env->interrupt_request &= ~mask;
1641 void cpu_exit(CPUState *env)
1643 env->exit_request = 1;
1644 cpu_unlink_tb(env);
1647 const CPULogItem cpu_log_items[] = {
1648 { CPU_LOG_TB_OUT_ASM, "out_asm",
1649 "show generated host assembly code for each compiled TB" },
1650 { CPU_LOG_TB_IN_ASM, "in_asm",
1651 "show target assembly code for each compiled TB" },
1652 { CPU_LOG_TB_OP, "op",
1653 "show micro ops for each compiled TB" },
1654 { CPU_LOG_TB_OP_OPT, "op_opt",
1655 "show micro ops "
1656 #ifdef TARGET_I386
1657 "before eflags optimization and "
1658 #endif
1659 "after liveness analysis" },
1660 { CPU_LOG_INT, "int",
1661 "show interrupts/exceptions in short format" },
1662 { CPU_LOG_EXEC, "exec",
1663 "show trace before each executed TB (lots of logs)" },
1664 { CPU_LOG_TB_CPU, "cpu",
1665 "show CPU state before block translation" },
1666 #ifdef TARGET_I386
1667 { CPU_LOG_PCALL, "pcall",
1668 "show protected mode far calls/returns/exceptions" },
1669 { CPU_LOG_RESET, "cpu_reset",
1670 "show CPU state before CPU resets" },
1671 #endif
1672 #ifdef DEBUG_IOPORT
1673 { CPU_LOG_IOPORT, "ioport",
1674 "show all i/o ports accesses" },
1675 #endif
1676 { 0, NULL, NULL },
1679 #ifndef CONFIG_USER_ONLY
1680 static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1681 = QLIST_HEAD_INITIALIZER(memory_client_list);
1683 static void cpu_notify_set_memory(target_phys_addr_t start_addr,
1684 ram_addr_t size,
1685 ram_addr_t phys_offset)
1687 CPUPhysMemoryClient *client;
1688 QLIST_FOREACH(client, &memory_client_list, list) {
1689 client->set_memory(client, start_addr, size, phys_offset);
1693 static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
1694 target_phys_addr_t end)
1696 CPUPhysMemoryClient *client;
1697 QLIST_FOREACH(client, &memory_client_list, list) {
1698 int r = client->sync_dirty_bitmap(client, start, end);
1699 if (r < 0)
1700 return r;
1702 return 0;
1705 static int cpu_notify_migration_log(int enable)
1707 CPUPhysMemoryClient *client;
1708 QLIST_FOREACH(client, &memory_client_list, list) {
1709 int r = client->migration_log(client, enable);
1710 if (r < 0)
1711 return r;
1713 return 0;
1716 static void phys_page_for_each_1(CPUPhysMemoryClient *client,
1717 int level, void **lp)
1719 int i;
1721 if (*lp == NULL) {
1722 return;
1724 if (level == 0) {
1725 PhysPageDesc *pd = *lp;
1726 for (i = 0; i < L2_BITS; ++i) {
1727 if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
1728 client->set_memory(client, pd[i].region_offset,
1729 TARGET_PAGE_SIZE, pd[i].phys_offset);
1732 } else {
1733 void **pp = *lp;
1734 for (i = 0; i < L2_BITS; ++i) {
1735 phys_page_for_each_1(client, level - 1, pp + i);
1740 static void phys_page_for_each(CPUPhysMemoryClient *client)
1742 int i;
1743 for (i = 0; i < P_L1_SIZE; ++i) {
1744 phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
1745 l1_phys_map + 1);
1749 void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1751 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1752 phys_page_for_each(client);
1755 void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1757 QLIST_REMOVE(client, list);
1759 #endif
1761 static int cmp1(const char *s1, int n, const char *s2)
1763 if (strlen(s2) != n)
1764 return 0;
1765 return memcmp(s1, s2, n) == 0;
1768 /* takes a comma separated list of log masks. Return 0 if error. */
1769 int cpu_str_to_log_mask(const char *str)
1771 const CPULogItem *item;
1772 int mask;
1773 const char *p, *p1;
1775 p = str;
1776 mask = 0;
1777 for(;;) {
1778 p1 = strchr(p, ',');
1779 if (!p1)
1780 p1 = p + strlen(p);
1781 if(cmp1(p,p1-p,"all")) {
1782 for(item = cpu_log_items; item->mask != 0; item++) {
1783 mask |= item->mask;
1785 } else {
1786 for(item = cpu_log_items; item->mask != 0; item++) {
1787 if (cmp1(p, p1 - p, item->name))
1788 goto found;
1790 return 0;
1792 found:
1793 mask |= item->mask;
1794 if (*p1 != ',')
1795 break;
1796 p = p1 + 1;
1798 return mask;
1801 void cpu_abort(CPUState *env, const char *fmt, ...)
1803 va_list ap;
1804 va_list ap2;
1806 va_start(ap, fmt);
1807 va_copy(ap2, ap);
1808 fprintf(stderr, "qemu: fatal: ");
1809 vfprintf(stderr, fmt, ap);
1810 fprintf(stderr, "\n");
1811 #ifdef TARGET_I386
1812 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1813 #else
1814 cpu_dump_state(env, stderr, fprintf, 0);
1815 #endif
1816 if (qemu_log_enabled()) {
1817 qemu_log("qemu: fatal: ");
1818 qemu_log_vprintf(fmt, ap2);
1819 qemu_log("\n");
1820 #ifdef TARGET_I386
1821 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1822 #else
1823 log_cpu_state(env, 0);
1824 #endif
1825 qemu_log_flush();
1826 qemu_log_close();
1828 va_end(ap2);
1829 va_end(ap);
1830 #if defined(CONFIG_USER_ONLY)
1832 struct sigaction act;
1833 sigfillset(&act.sa_mask);
1834 act.sa_handler = SIG_DFL;
1835 sigaction(SIGABRT, &act, NULL);
1837 #endif
1838 abort();
1841 CPUState *cpu_copy(CPUState *env)
1843 CPUState *new_env = cpu_init(env->cpu_model_str);
1844 CPUState *next_cpu = new_env->next_cpu;
1845 int cpu_index = new_env->cpu_index;
1846 #if defined(TARGET_HAS_ICE)
1847 CPUBreakpoint *bp;
1848 CPUWatchpoint *wp;
1849 #endif
1851 memcpy(new_env, env, sizeof(CPUState));
1853 /* Preserve chaining and index. */
1854 new_env->next_cpu = next_cpu;
1855 new_env->cpu_index = cpu_index;
1857 /* Clone all break/watchpoints.
1858 Note: Once we support ptrace with hw-debug register access, make sure
1859 BP_CPU break/watchpoints are handled correctly on clone. */
1860 QTAILQ_INIT(&env->breakpoints);
1861 QTAILQ_INIT(&env->watchpoints);
1862 #if defined(TARGET_HAS_ICE)
1863 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1864 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1866 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1867 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1868 wp->flags, NULL);
1870 #endif
1872 return new_env;
1875 #if !defined(CONFIG_USER_ONLY)
1877 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1879 unsigned int i;
1881 /* Discard jump cache entries for any tb which might potentially
1882 overlap the flushed page. */
1883 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1884 memset (&env->tb_jmp_cache[i], 0,
1885 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1887 i = tb_jmp_cache_hash_page(addr);
1888 memset (&env->tb_jmp_cache[i], 0,
1889 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1892 static CPUTLBEntry s_cputlb_empty_entry = {
1893 .addr_read = -1,
1894 .addr_write = -1,
1895 .addr_code = -1,
1896 .addend = -1,
1899 /* NOTE: if flush_global is true, also flush global entries (not
1900 implemented yet) */
1901 void tlb_flush(CPUState *env, int flush_global)
1903 int i;
1905 #if defined(DEBUG_TLB)
1906 printf("tlb_flush:\n");
1907 #endif
1908 /* must reset current TB so that interrupts cannot modify the
1909 links while we are modifying them */
1910 env->current_tb = NULL;
1912 for(i = 0; i < CPU_TLB_SIZE; i++) {
1913 int mmu_idx;
1914 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1915 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
1919 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1921 tlb_flush_count++;
1924 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1926 if (addr == (tlb_entry->addr_read &
1927 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1928 addr == (tlb_entry->addr_write &
1929 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1930 addr == (tlb_entry->addr_code &
1931 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1932 *tlb_entry = s_cputlb_empty_entry;
1936 void tlb_flush_page(CPUState *env, target_ulong addr)
1938 int i;
1939 int mmu_idx;
1941 #if defined(DEBUG_TLB)
1942 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1943 #endif
1944 /* must reset current TB so that interrupts cannot modify the
1945 links while we are modifying them */
1946 env->current_tb = NULL;
1948 addr &= TARGET_PAGE_MASK;
1949 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1950 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1951 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
1953 tlb_flush_jmp_cache(env, addr);
1956 /* update the TLBs so that writes to code in the virtual page 'addr'
1957 can be detected */
1958 static void tlb_protect_code(ram_addr_t ram_addr)
1960 cpu_physical_memory_reset_dirty(ram_addr,
1961 ram_addr + TARGET_PAGE_SIZE,
1962 CODE_DIRTY_FLAG);
1965 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1966 tested for self modifying code */
1967 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1968 target_ulong vaddr)
1970 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1973 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1974 unsigned long start, unsigned long length)
1976 unsigned long addr;
1977 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1978 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1979 if ((addr - start) < length) {
1980 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1985 /* Note: start and end must be within the same ram block. */
1986 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1987 int dirty_flags)
1989 CPUState *env;
1990 unsigned long length, start1;
1991 int i, mask, len;
1992 uint8_t *p;
1994 start &= TARGET_PAGE_MASK;
1995 end = TARGET_PAGE_ALIGN(end);
1997 length = end - start;
1998 if (length == 0)
1999 return;
2000 len = length >> TARGET_PAGE_BITS;
2001 mask = ~dirty_flags;
2002 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
2003 for(i = 0; i < len; i++)
2004 p[i] &= mask;
2006 /* we modify the TLB cache so that the dirty bit will be set again
2007 when accessing the range */
2008 start1 = (unsigned long)qemu_get_ram_ptr(start);
2009 /* Chek that we don't span multiple blocks - this breaks the
2010 address comparisons below. */
2011 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
2012 != (end - 1) - start) {
2013 abort();
2016 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2017 int mmu_idx;
2018 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2019 for(i = 0; i < CPU_TLB_SIZE; i++)
2020 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2021 start1, length);
2026 int cpu_physical_memory_set_dirty_tracking(int enable)
2028 int ret = 0;
2029 in_migration = enable;
2030 ret = cpu_notify_migration_log(!!enable);
2031 return ret;
2034 int cpu_physical_memory_get_dirty_tracking(void)
2036 return in_migration;
2039 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2040 target_phys_addr_t end_addr)
2042 int ret;
2044 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
2045 return ret;
2048 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2050 ram_addr_t ram_addr;
2051 void *p;
2053 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2054 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2055 + tlb_entry->addend);
2056 ram_addr = qemu_ram_addr_from_host(p);
2057 if (!cpu_physical_memory_is_dirty(ram_addr)) {
2058 tlb_entry->addr_write |= TLB_NOTDIRTY;
2063 /* update the TLB according to the current state of the dirty bits */
2064 void cpu_tlb_update_dirty(CPUState *env)
2066 int i;
2067 int mmu_idx;
2068 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2069 for(i = 0; i < CPU_TLB_SIZE; i++)
2070 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2074 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
2076 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2077 tlb_entry->addr_write = vaddr;
2080 /* update the TLB corresponding to virtual page vaddr
2081 so that it is no longer dirty */
2082 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
2084 int i;
2085 int mmu_idx;
2087 vaddr &= TARGET_PAGE_MASK;
2088 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2089 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2090 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
2093 /* add a new TLB entry. At most one entry for a given virtual address
2094 is permitted. Return 0 if OK or 2 if the page could not be mapped
2095 (can only happen in non SOFTMMU mode for I/O pages or pages
2096 conflicting with the host address space). */
2097 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2098 target_phys_addr_t paddr, int prot,
2099 int mmu_idx, int is_softmmu)
2101 PhysPageDesc *p;
2102 unsigned long pd;
2103 unsigned int index;
2104 target_ulong address;
2105 target_ulong code_address;
2106 target_phys_addr_t addend;
2107 int ret;
2108 CPUTLBEntry *te;
2109 CPUWatchpoint *wp;
2110 target_phys_addr_t iotlb;
2112 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
2113 if (!p) {
2114 pd = IO_MEM_UNASSIGNED;
2115 } else {
2116 pd = p->phys_offset;
2118 #if defined(DEBUG_TLB)
2119 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2120 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
2121 #endif
2123 ret = 0;
2124 address = vaddr;
2125 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2126 /* IO memory case (romd handled later) */
2127 address |= TLB_MMIO;
2129 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
2130 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2131 /* Normal RAM. */
2132 iotlb = pd & TARGET_PAGE_MASK;
2133 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2134 iotlb |= IO_MEM_NOTDIRTY;
2135 else
2136 iotlb |= IO_MEM_ROM;
2137 } else {
2138 /* IO handlers are currently passed a physical address.
2139 It would be nice to pass an offset from the base address
2140 of that region. This would avoid having to special case RAM,
2141 and avoid full address decoding in every device.
2142 We can't use the high bits of pd for this because
2143 IO_MEM_ROMD uses these as a ram address. */
2144 iotlb = (pd & ~TARGET_PAGE_MASK);
2145 if (p) {
2146 iotlb += p->region_offset;
2147 } else {
2148 iotlb += paddr;
2152 code_address = address;
2153 /* Make accesses to pages with watchpoints go via the
2154 watchpoint trap routines. */
2155 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2156 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2157 iotlb = io_mem_watch + paddr;
2158 /* TODO: The memory case can be optimized by not trapping
2159 reads of pages with a write breakpoint. */
2160 address |= TLB_MMIO;
2164 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2165 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2166 te = &env->tlb_table[mmu_idx][index];
2167 te->addend = addend - vaddr;
2168 if (prot & PAGE_READ) {
2169 te->addr_read = address;
2170 } else {
2171 te->addr_read = -1;
2174 if (prot & PAGE_EXEC) {
2175 te->addr_code = code_address;
2176 } else {
2177 te->addr_code = -1;
2179 if (prot & PAGE_WRITE) {
2180 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2181 (pd & IO_MEM_ROMD)) {
2182 /* Write access calls the I/O callback. */
2183 te->addr_write = address | TLB_MMIO;
2184 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2185 !cpu_physical_memory_is_dirty(pd)) {
2186 te->addr_write = address | TLB_NOTDIRTY;
2187 } else {
2188 te->addr_write = address;
2190 } else {
2191 te->addr_write = -1;
2193 return ret;
2196 #else
2198 void tlb_flush(CPUState *env, int flush_global)
2202 void tlb_flush_page(CPUState *env, target_ulong addr)
2207 * Walks guest process memory "regions" one by one
2208 * and calls callback function 'fn' for each region.
2211 struct walk_memory_regions_data
2213 walk_memory_regions_fn fn;
2214 void *priv;
2215 unsigned long start;
2216 int prot;
2219 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2220 abi_ulong end, int new_prot)
2222 if (data->start != -1ul) {
2223 int rc = data->fn(data->priv, data->start, end, data->prot);
2224 if (rc != 0) {
2225 return rc;
2229 data->start = (new_prot ? end : -1ul);
2230 data->prot = new_prot;
2232 return 0;
2235 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2236 abi_ulong base, int level, void **lp)
2238 abi_ulong pa;
2239 int i, rc;
2241 if (*lp == NULL) {
2242 return walk_memory_regions_end(data, base, 0);
2245 if (level == 0) {
2246 PageDesc *pd = *lp;
2247 for (i = 0; i < L2_BITS; ++i) {
2248 int prot = pd[i].flags;
2250 pa = base | (i << TARGET_PAGE_BITS);
2251 if (prot != data->prot) {
2252 rc = walk_memory_regions_end(data, pa, prot);
2253 if (rc != 0) {
2254 return rc;
2258 } else {
2259 void **pp = *lp;
2260 for (i = 0; i < L2_BITS; ++i) {
2261 pa = base | ((abi_ulong)i <<
2262 (TARGET_PAGE_BITS + L2_BITS * level));
2263 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2264 if (rc != 0) {
2265 return rc;
2270 return 0;
2273 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2275 struct walk_memory_regions_data data;
2276 unsigned long i;
2278 data.fn = fn;
2279 data.priv = priv;
2280 data.start = -1ul;
2281 data.prot = 0;
2283 for (i = 0; i < V_L1_SIZE; i++) {
2284 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
2285 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2286 if (rc != 0) {
2287 return rc;
2291 return walk_memory_regions_end(&data, 0, 0);
2294 static int dump_region(void *priv, abi_ulong start,
2295 abi_ulong end, unsigned long prot)
2297 FILE *f = (FILE *)priv;
2299 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2300 " "TARGET_ABI_FMT_lx" %c%c%c\n",
2301 start, end, end - start,
2302 ((prot & PAGE_READ) ? 'r' : '-'),
2303 ((prot & PAGE_WRITE) ? 'w' : '-'),
2304 ((prot & PAGE_EXEC) ? 'x' : '-'));
2306 return (0);
2309 /* dump memory mappings */
2310 void page_dump(FILE *f)
2312 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2313 "start", "end", "size", "prot");
2314 walk_memory_regions(f, dump_region);
2317 int page_get_flags(target_ulong address)
2319 PageDesc *p;
2321 p = page_find(address >> TARGET_PAGE_BITS);
2322 if (!p)
2323 return 0;
2324 return p->flags;
2327 /* Modify the flags of a page and invalidate the code if necessary.
2328 The flag PAGE_WRITE_ORG is positioned automatically depending
2329 on PAGE_WRITE. The mmap_lock should already be held. */
2330 void page_set_flags(target_ulong start, target_ulong end, int flags)
2332 target_ulong addr, len;
2334 /* This function should never be called with addresses outside the
2335 guest address space. If this assert fires, it probably indicates
2336 a missing call to h2g_valid. */
2337 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2338 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2339 #endif
2340 assert(start < end);
2342 start = start & TARGET_PAGE_MASK;
2343 end = TARGET_PAGE_ALIGN(end);
2345 if (flags & PAGE_WRITE) {
2346 flags |= PAGE_WRITE_ORG;
2349 for (addr = start, len = end - start;
2350 len != 0;
2351 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2352 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2354 /* If the write protection bit is set, then we invalidate
2355 the code inside. */
2356 if (!(p->flags & PAGE_WRITE) &&
2357 (flags & PAGE_WRITE) &&
2358 p->first_tb) {
2359 tb_invalidate_phys_page(addr, 0, NULL);
2361 p->flags = flags;
2365 int page_check_range(target_ulong start, target_ulong len, int flags)
2367 PageDesc *p;
2368 target_ulong end;
2369 target_ulong addr;
2371 /* This function should never be called with addresses outside the
2372 guest address space. If this assert fires, it probably indicates
2373 a missing call to h2g_valid. */
2374 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2375 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2376 #endif
2378 if (start + len - 1 < start) {
2379 /* We've wrapped around. */
2380 return -1;
2383 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2384 start = start & TARGET_PAGE_MASK;
2386 for (addr = start, len = end - start;
2387 len != 0;
2388 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2389 p = page_find(addr >> TARGET_PAGE_BITS);
2390 if( !p )
2391 return -1;
2392 if( !(p->flags & PAGE_VALID) )
2393 return -1;
2395 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2396 return -1;
2397 if (flags & PAGE_WRITE) {
2398 if (!(p->flags & PAGE_WRITE_ORG))
2399 return -1;
2400 /* unprotect the page if it was put read-only because it
2401 contains translated code */
2402 if (!(p->flags & PAGE_WRITE)) {
2403 if (!page_unprotect(addr, 0, NULL))
2404 return -1;
2406 return 0;
2409 return 0;
2412 /* called from signal handler: invalidate the code and unprotect the
2413 page. Return TRUE if the fault was successfully handled. */
2414 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2416 unsigned int page_index, prot, pindex;
2417 PageDesc *p, *p1;
2418 target_ulong host_start, host_end, addr;
2420 /* Technically this isn't safe inside a signal handler. However we
2421 know this only ever happens in a synchronous SEGV handler, so in
2422 practice it seems to be ok. */
2423 mmap_lock();
2425 host_start = address & qemu_host_page_mask;
2426 page_index = host_start >> TARGET_PAGE_BITS;
2427 p1 = page_find(page_index);
2428 if (!p1) {
2429 mmap_unlock();
2430 return 0;
2432 host_end = host_start + qemu_host_page_size;
2433 p = p1;
2434 prot = 0;
2435 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2436 prot |= p->flags;
2437 p++;
2439 /* if the page was really writable, then we change its
2440 protection back to writable */
2441 if (prot & PAGE_WRITE_ORG) {
2442 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2443 if (!(p1[pindex].flags & PAGE_WRITE)) {
2444 mprotect((void *)g2h(host_start), qemu_host_page_size,
2445 (prot & PAGE_BITS) | PAGE_WRITE);
2446 p1[pindex].flags |= PAGE_WRITE;
2447 /* and since the content will be modified, we must invalidate
2448 the corresponding translated code. */
2449 tb_invalidate_phys_page(address, pc, puc);
2450 #ifdef DEBUG_TB_CHECK
2451 tb_invalidate_check(address);
2452 #endif
2453 mmap_unlock();
2454 return 1;
2457 mmap_unlock();
2458 return 0;
2461 static inline void tlb_set_dirty(CPUState *env,
2462 unsigned long addr, target_ulong vaddr)
2465 #endif /* defined(CONFIG_USER_ONLY) */
2467 #if !defined(CONFIG_USER_ONLY)
2469 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2470 typedef struct subpage_t {
2471 target_phys_addr_t base;
2472 CPUReadMemoryFunc * const *mem_read[TARGET_PAGE_SIZE][4];
2473 CPUWriteMemoryFunc * const *mem_write[TARGET_PAGE_SIZE][4];
2474 void *opaque[TARGET_PAGE_SIZE][2][4];
2475 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
2476 } subpage_t;
2478 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2479 ram_addr_t memory, ram_addr_t region_offset);
2480 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2481 ram_addr_t orig_memory, ram_addr_t region_offset);
2482 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2483 need_subpage) \
2484 do { \
2485 if (addr > start_addr) \
2486 start_addr2 = 0; \
2487 else { \
2488 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2489 if (start_addr2 > 0) \
2490 need_subpage = 1; \
2493 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2494 end_addr2 = TARGET_PAGE_SIZE - 1; \
2495 else { \
2496 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2497 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2498 need_subpage = 1; \
2500 } while (0)
2502 /* register physical memory.
2503 For RAM, 'size' must be a multiple of the target page size.
2504 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2505 io memory page. The address used when calling the IO function is
2506 the offset from the start of the region, plus region_offset. Both
2507 start_addr and region_offset are rounded down to a page boundary
2508 before calculating this offset. This should not be a problem unless
2509 the low bits of start_addr and region_offset differ. */
2510 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2511 ram_addr_t size,
2512 ram_addr_t phys_offset,
2513 ram_addr_t region_offset)
2515 target_phys_addr_t addr, end_addr;
2516 PhysPageDesc *p;
2517 CPUState *env;
2518 ram_addr_t orig_size = size;
2519 void *subpage;
2521 cpu_notify_set_memory(start_addr, size, phys_offset);
2523 if (phys_offset == IO_MEM_UNASSIGNED) {
2524 region_offset = start_addr;
2526 region_offset &= TARGET_PAGE_MASK;
2527 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2528 end_addr = start_addr + (target_phys_addr_t)size;
2529 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2530 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2531 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2532 ram_addr_t orig_memory = p->phys_offset;
2533 target_phys_addr_t start_addr2, end_addr2;
2534 int need_subpage = 0;
2536 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2537 need_subpage);
2538 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2539 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2540 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2541 &p->phys_offset, orig_memory,
2542 p->region_offset);
2543 } else {
2544 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2545 >> IO_MEM_SHIFT];
2547 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2548 region_offset);
2549 p->region_offset = 0;
2550 } else {
2551 p->phys_offset = phys_offset;
2552 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2553 (phys_offset & IO_MEM_ROMD))
2554 phys_offset += TARGET_PAGE_SIZE;
2556 } else {
2557 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2558 p->phys_offset = phys_offset;
2559 p->region_offset = region_offset;
2560 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2561 (phys_offset & IO_MEM_ROMD)) {
2562 phys_offset += TARGET_PAGE_SIZE;
2563 } else {
2564 target_phys_addr_t start_addr2, end_addr2;
2565 int need_subpage = 0;
2567 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2568 end_addr2, need_subpage);
2570 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2571 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2572 &p->phys_offset, IO_MEM_UNASSIGNED,
2573 addr & TARGET_PAGE_MASK);
2574 subpage_register(subpage, start_addr2, end_addr2,
2575 phys_offset, region_offset);
2576 p->region_offset = 0;
2580 region_offset += TARGET_PAGE_SIZE;
2583 /* since each CPU stores ram addresses in its TLB cache, we must
2584 reset the modified entries */
2585 /* XXX: slow ! */
2586 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2587 tlb_flush(env, 1);
2591 /* XXX: temporary until new memory mapping API */
2592 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2594 PhysPageDesc *p;
2596 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2597 if (!p)
2598 return IO_MEM_UNASSIGNED;
2599 return p->phys_offset;
2602 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2604 if (kvm_enabled())
2605 kvm_coalesce_mmio_region(addr, size);
2608 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2610 if (kvm_enabled())
2611 kvm_uncoalesce_mmio_region(addr, size);
2614 void qemu_flush_coalesced_mmio_buffer(void)
2616 if (kvm_enabled())
2617 kvm_flush_coalesced_mmio_buffer();
2620 #if defined(__linux__) && !defined(TARGET_S390X)
2622 #include <sys/vfs.h>
2624 #define HUGETLBFS_MAGIC 0x958458f6
2626 static long gethugepagesize(const char *path)
2628 struct statfs fs;
2629 int ret;
2631 do {
2632 ret = statfs(path, &fs);
2633 } while (ret != 0 && errno == EINTR);
2635 if (ret != 0) {
2636 perror("statfs");
2637 return 0;
2640 if (fs.f_type != HUGETLBFS_MAGIC)
2641 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2643 return fs.f_bsize;
2646 static void *file_ram_alloc(ram_addr_t memory, const char *path)
2648 char *filename;
2649 void *area;
2650 int fd;
2651 #ifdef MAP_POPULATE
2652 int flags;
2653 #endif
2654 unsigned long hpagesize;
2656 hpagesize = gethugepagesize(path);
2657 if (!hpagesize) {
2658 return NULL;
2661 if (memory < hpagesize) {
2662 return NULL;
2665 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2666 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2667 return NULL;
2670 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2671 return NULL;
2674 fd = mkstemp(filename);
2675 if (fd < 0) {
2676 perror("mkstemp");
2677 free(filename);
2678 return NULL;
2680 unlink(filename);
2681 free(filename);
2683 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2686 * ftruncate is not supported by hugetlbfs in older
2687 * hosts, so don't bother bailing out on errors.
2688 * If anything goes wrong with it under other filesystems,
2689 * mmap will fail.
2691 if (ftruncate(fd, memory))
2692 perror("ftruncate");
2694 #ifdef MAP_POPULATE
2695 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2696 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2697 * to sidestep this quirk.
2699 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2700 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2701 #else
2702 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2703 #endif
2704 if (area == MAP_FAILED) {
2705 perror("file_ram_alloc: can't mmap RAM pages");
2706 close(fd);
2707 return (NULL);
2709 return area;
2711 #endif
2713 ram_addr_t qemu_ram_alloc(ram_addr_t size)
2715 RAMBlock *new_block;
2717 size = TARGET_PAGE_ALIGN(size);
2718 new_block = qemu_malloc(sizeof(*new_block));
2720 if (mem_path) {
2721 #if defined (__linux__) && !defined(TARGET_S390X)
2722 new_block->host = file_ram_alloc(size, mem_path);
2723 if (!new_block->host)
2724 exit(1);
2725 #else
2726 fprintf(stderr, "-mem-path option unsupported\n");
2727 exit(1);
2728 #endif
2729 } else {
2730 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2731 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2732 new_block->host = mmap((void*)0x1000000, size,
2733 PROT_EXEC|PROT_READ|PROT_WRITE,
2734 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
2735 #else
2736 new_block->host = qemu_vmalloc(size);
2737 #endif
2738 #ifdef MADV_MERGEABLE
2739 madvise(new_block->host, size, MADV_MERGEABLE);
2740 #endif
2742 new_block->offset = last_ram_offset;
2743 new_block->length = size;
2745 new_block->next = ram_blocks;
2746 ram_blocks = new_block;
2748 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2749 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2750 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2751 0xff, size >> TARGET_PAGE_BITS);
2753 last_ram_offset += size;
2755 if (kvm_enabled())
2756 kvm_setup_guest_memory(new_block->host, size);
2758 return new_block->offset;
2761 void qemu_ram_free(ram_addr_t addr)
2763 /* TODO: implement this. */
2766 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2767 With the exception of the softmmu code in this file, this should
2768 only be used for local memory (e.g. video ram) that the device owns,
2769 and knows it isn't going to access beyond the end of the block.
2771 It should not be used for general purpose DMA.
2772 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2774 void *qemu_get_ram_ptr(ram_addr_t addr)
2776 RAMBlock *prev;
2777 RAMBlock **prevp;
2778 RAMBlock *block;
2780 prev = NULL;
2781 prevp = &ram_blocks;
2782 block = ram_blocks;
2783 while (block && (block->offset > addr
2784 || block->offset + block->length <= addr)) {
2785 if (prev)
2786 prevp = &prev->next;
2787 prev = block;
2788 block = block->next;
2790 if (!block) {
2791 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2792 abort();
2794 /* Move this entry to to start of the list. */
2795 if (prev) {
2796 prev->next = block->next;
2797 block->next = *prevp;
2798 *prevp = block;
2800 return block->host + (addr - block->offset);
2803 /* Some of the softmmu routines need to translate from a host pointer
2804 (typically a TLB entry) back to a ram offset. */
2805 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2807 RAMBlock *prev;
2808 RAMBlock *block;
2809 uint8_t *host = ptr;
2811 prev = NULL;
2812 block = ram_blocks;
2813 while (block && (block->host > host
2814 || block->host + block->length <= host)) {
2815 prev = block;
2816 block = block->next;
2818 if (!block) {
2819 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2820 abort();
2822 return block->offset + (host - block->host);
2825 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2827 #ifdef DEBUG_UNASSIGNED
2828 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2829 #endif
2830 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2831 do_unassigned_access(addr, 0, 0, 0, 1);
2832 #endif
2833 return 0;
2836 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2838 #ifdef DEBUG_UNASSIGNED
2839 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2840 #endif
2841 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2842 do_unassigned_access(addr, 0, 0, 0, 2);
2843 #endif
2844 return 0;
2847 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2849 #ifdef DEBUG_UNASSIGNED
2850 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2851 #endif
2852 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2853 do_unassigned_access(addr, 0, 0, 0, 4);
2854 #endif
2855 return 0;
2858 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2860 #ifdef DEBUG_UNASSIGNED
2861 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2862 #endif
2863 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2864 do_unassigned_access(addr, 1, 0, 0, 1);
2865 #endif
2868 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2870 #ifdef DEBUG_UNASSIGNED
2871 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2872 #endif
2873 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2874 do_unassigned_access(addr, 1, 0, 0, 2);
2875 #endif
2878 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2880 #ifdef DEBUG_UNASSIGNED
2881 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2882 #endif
2883 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2884 do_unassigned_access(addr, 1, 0, 0, 4);
2885 #endif
2888 static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
2889 unassigned_mem_readb,
2890 unassigned_mem_readw,
2891 unassigned_mem_readl,
2894 static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
2895 unassigned_mem_writeb,
2896 unassigned_mem_writew,
2897 unassigned_mem_writel,
2900 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2901 uint32_t val)
2903 int dirty_flags;
2904 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2905 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2906 #if !defined(CONFIG_USER_ONLY)
2907 tb_invalidate_phys_page_fast(ram_addr, 1);
2908 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2909 #endif
2911 stb_p(qemu_get_ram_ptr(ram_addr), val);
2912 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2913 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2914 /* we remove the notdirty callback only if the code has been
2915 flushed */
2916 if (dirty_flags == 0xff)
2917 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2920 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2921 uint32_t val)
2923 int dirty_flags;
2924 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2925 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2926 #if !defined(CONFIG_USER_ONLY)
2927 tb_invalidate_phys_page_fast(ram_addr, 2);
2928 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2929 #endif
2931 stw_p(qemu_get_ram_ptr(ram_addr), val);
2932 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2933 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2934 /* we remove the notdirty callback only if the code has been
2935 flushed */
2936 if (dirty_flags == 0xff)
2937 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2940 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2941 uint32_t val)
2943 int dirty_flags;
2944 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2945 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2946 #if !defined(CONFIG_USER_ONLY)
2947 tb_invalidate_phys_page_fast(ram_addr, 4);
2948 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2949 #endif
2951 stl_p(qemu_get_ram_ptr(ram_addr), val);
2952 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2953 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2954 /* we remove the notdirty callback only if the code has been
2955 flushed */
2956 if (dirty_flags == 0xff)
2957 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2960 static CPUReadMemoryFunc * const error_mem_read[3] = {
2961 NULL, /* never used */
2962 NULL, /* never used */
2963 NULL, /* never used */
2966 static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
2967 notdirty_mem_writeb,
2968 notdirty_mem_writew,
2969 notdirty_mem_writel,
2972 /* Generate a debug exception if a watchpoint has been hit. */
2973 static void check_watchpoint(int offset, int len_mask, int flags)
2975 CPUState *env = cpu_single_env;
2976 target_ulong pc, cs_base;
2977 TranslationBlock *tb;
2978 target_ulong vaddr;
2979 CPUWatchpoint *wp;
2980 int cpu_flags;
2982 if (env->watchpoint_hit) {
2983 /* We re-entered the check after replacing the TB. Now raise
2984 * the debug interrupt so that is will trigger after the
2985 * current instruction. */
2986 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2987 return;
2989 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2990 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2991 if ((vaddr == (wp->vaddr & len_mask) ||
2992 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
2993 wp->flags |= BP_WATCHPOINT_HIT;
2994 if (!env->watchpoint_hit) {
2995 env->watchpoint_hit = wp;
2996 tb = tb_find_pc(env->mem_io_pc);
2997 if (!tb) {
2998 cpu_abort(env, "check_watchpoint: could not find TB for "
2999 "pc=%p", (void *)env->mem_io_pc);
3001 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
3002 tb_phys_invalidate(tb, -1);
3003 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3004 env->exception_index = EXCP_DEBUG;
3005 } else {
3006 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3007 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3009 cpu_resume_from_signal(env, NULL);
3011 } else {
3012 wp->flags &= ~BP_WATCHPOINT_HIT;
3017 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3018 so these check for a hit then pass through to the normal out-of-line
3019 phys routines. */
3020 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
3022 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
3023 return ldub_phys(addr);
3026 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
3028 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
3029 return lduw_phys(addr);
3032 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
3034 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
3035 return ldl_phys(addr);
3038 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
3039 uint32_t val)
3041 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
3042 stb_phys(addr, val);
3045 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
3046 uint32_t val)
3048 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
3049 stw_phys(addr, val);
3052 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
3053 uint32_t val)
3055 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
3056 stl_phys(addr, val);
3059 static CPUReadMemoryFunc * const watch_mem_read[3] = {
3060 watch_mem_readb,
3061 watch_mem_readw,
3062 watch_mem_readl,
3065 static CPUWriteMemoryFunc * const watch_mem_write[3] = {
3066 watch_mem_writeb,
3067 watch_mem_writew,
3068 watch_mem_writel,
3071 static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
3072 unsigned int len)
3074 uint32_t ret;
3075 unsigned int idx;
3077 idx = SUBPAGE_IDX(addr);
3078 #if defined(DEBUG_SUBPAGE)
3079 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3080 mmio, len, addr, idx);
3081 #endif
3082 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
3083 addr + mmio->region_offset[idx][0][len]);
3085 return ret;
3088 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
3089 uint32_t value, unsigned int len)
3091 unsigned int idx;
3093 idx = SUBPAGE_IDX(addr);
3094 #if defined(DEBUG_SUBPAGE)
3095 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
3096 mmio, len, addr, idx, value);
3097 #endif
3098 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
3099 addr + mmio->region_offset[idx][1][len],
3100 value);
3103 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
3105 #if defined(DEBUG_SUBPAGE)
3106 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
3107 #endif
3109 return subpage_readlen(opaque, addr, 0);
3112 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
3113 uint32_t value)
3115 #if defined(DEBUG_SUBPAGE)
3116 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
3117 #endif
3118 subpage_writelen(opaque, addr, value, 0);
3121 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
3123 #if defined(DEBUG_SUBPAGE)
3124 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
3125 #endif
3127 return subpage_readlen(opaque, addr, 1);
3130 static void subpage_writew (void *opaque, target_phys_addr_t addr,
3131 uint32_t value)
3133 #if defined(DEBUG_SUBPAGE)
3134 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
3135 #endif
3136 subpage_writelen(opaque, addr, value, 1);
3139 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
3141 #if defined(DEBUG_SUBPAGE)
3142 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
3143 #endif
3145 return subpage_readlen(opaque, addr, 2);
3148 static void subpage_writel (void *opaque,
3149 target_phys_addr_t addr, uint32_t value)
3151 #if defined(DEBUG_SUBPAGE)
3152 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
3153 #endif
3154 subpage_writelen(opaque, addr, value, 2);
3157 static CPUReadMemoryFunc * const subpage_read[] = {
3158 &subpage_readb,
3159 &subpage_readw,
3160 &subpage_readl,
3163 static CPUWriteMemoryFunc * const subpage_write[] = {
3164 &subpage_writeb,
3165 &subpage_writew,
3166 &subpage_writel,
3169 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3170 ram_addr_t memory, ram_addr_t region_offset)
3172 int idx, eidx;
3173 unsigned int i;
3175 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3176 return -1;
3177 idx = SUBPAGE_IDX(start);
3178 eidx = SUBPAGE_IDX(end);
3179 #if defined(DEBUG_SUBPAGE)
3180 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
3181 mmio, start, end, idx, eidx, memory);
3182 #endif
3183 memory >>= IO_MEM_SHIFT;
3184 for (; idx <= eidx; idx++) {
3185 for (i = 0; i < 4; i++) {
3186 if (io_mem_read[memory][i]) {
3187 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
3188 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
3189 mmio->region_offset[idx][0][i] = region_offset;
3191 if (io_mem_write[memory][i]) {
3192 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
3193 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
3194 mmio->region_offset[idx][1][i] = region_offset;
3199 return 0;
3202 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3203 ram_addr_t orig_memory, ram_addr_t region_offset)
3205 subpage_t *mmio;
3206 int subpage_memory;
3208 mmio = qemu_mallocz(sizeof(subpage_t));
3210 mmio->base = base;
3211 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
3212 #if defined(DEBUG_SUBPAGE)
3213 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3214 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
3215 #endif
3216 *phys = subpage_memory | IO_MEM_SUBPAGE;
3217 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
3218 region_offset);
3220 return mmio;
3223 static int get_free_io_mem_idx(void)
3225 int i;
3227 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3228 if (!io_mem_used[i]) {
3229 io_mem_used[i] = 1;
3230 return i;
3232 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
3233 return -1;
3236 /* mem_read and mem_write are arrays of functions containing the
3237 function to access byte (index 0), word (index 1) and dword (index
3238 2). Functions can be omitted with a NULL function pointer.
3239 If io_index is non zero, the corresponding io zone is
3240 modified. If it is zero, a new io zone is allocated. The return
3241 value can be used with cpu_register_physical_memory(). (-1) is
3242 returned if error. */
3243 static int cpu_register_io_memory_fixed(int io_index,
3244 CPUReadMemoryFunc * const *mem_read,
3245 CPUWriteMemoryFunc * const *mem_write,
3246 void *opaque)
3248 int i, subwidth = 0;
3250 if (io_index <= 0) {
3251 io_index = get_free_io_mem_idx();
3252 if (io_index == -1)
3253 return io_index;
3254 } else {
3255 io_index >>= IO_MEM_SHIFT;
3256 if (io_index >= IO_MEM_NB_ENTRIES)
3257 return -1;
3260 for(i = 0;i < 3; i++) {
3261 if (!mem_read[i] || !mem_write[i])
3262 subwidth = IO_MEM_SUBWIDTH;
3263 io_mem_read[io_index][i] = mem_read[i];
3264 io_mem_write[io_index][i] = mem_write[i];
3266 io_mem_opaque[io_index] = opaque;
3267 return (io_index << IO_MEM_SHIFT) | subwidth;
3270 int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3271 CPUWriteMemoryFunc * const *mem_write,
3272 void *opaque)
3274 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3277 void cpu_unregister_io_memory(int io_table_address)
3279 int i;
3280 int io_index = io_table_address >> IO_MEM_SHIFT;
3282 for (i=0;i < 3; i++) {
3283 io_mem_read[io_index][i] = unassigned_mem_read[i];
3284 io_mem_write[io_index][i] = unassigned_mem_write[i];
3286 io_mem_opaque[io_index] = NULL;
3287 io_mem_used[io_index] = 0;
3290 static void io_mem_init(void)
3292 int i;
3294 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
3295 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
3296 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
3297 for (i=0; i<5; i++)
3298 io_mem_used[i] = 1;
3300 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3301 watch_mem_write, NULL);
3304 #endif /* !defined(CONFIG_USER_ONLY) */
3306 /* physical memory access (slow version, mainly for debug) */
3307 #if defined(CONFIG_USER_ONLY)
3308 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3309 uint8_t *buf, int len, int is_write)
3311 int l, flags;
3312 target_ulong page;
3313 void * p;
3315 while (len > 0) {
3316 page = addr & TARGET_PAGE_MASK;
3317 l = (page + TARGET_PAGE_SIZE) - addr;
3318 if (l > len)
3319 l = len;
3320 flags = page_get_flags(page);
3321 if (!(flags & PAGE_VALID))
3322 return -1;
3323 if (is_write) {
3324 if (!(flags & PAGE_WRITE))
3325 return -1;
3326 /* XXX: this code should not depend on lock_user */
3327 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3328 return -1;
3329 memcpy(p, buf, l);
3330 unlock_user(p, addr, l);
3331 } else {
3332 if (!(flags & PAGE_READ))
3333 return -1;
3334 /* XXX: this code should not depend on lock_user */
3335 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3336 return -1;
3337 memcpy(buf, p, l);
3338 unlock_user(p, addr, 0);
3340 len -= l;
3341 buf += l;
3342 addr += l;
3344 return 0;
3347 #else
3348 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3349 int len, int is_write)
3351 int l, io_index;
3352 uint8_t *ptr;
3353 uint32_t val;
3354 target_phys_addr_t page;
3355 unsigned long pd;
3356 PhysPageDesc *p;
3358 while (len > 0) {
3359 page = addr & TARGET_PAGE_MASK;
3360 l = (page + TARGET_PAGE_SIZE) - addr;
3361 if (l > len)
3362 l = len;
3363 p = phys_page_find(page >> TARGET_PAGE_BITS);
3364 if (!p) {
3365 pd = IO_MEM_UNASSIGNED;
3366 } else {
3367 pd = p->phys_offset;
3370 if (is_write) {
3371 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3372 target_phys_addr_t addr1 = addr;
3373 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3374 if (p)
3375 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3376 /* XXX: could force cpu_single_env to NULL to avoid
3377 potential bugs */
3378 if (l >= 4 && ((addr1 & 3) == 0)) {
3379 /* 32 bit write access */
3380 val = ldl_p(buf);
3381 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
3382 l = 4;
3383 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3384 /* 16 bit write access */
3385 val = lduw_p(buf);
3386 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
3387 l = 2;
3388 } else {
3389 /* 8 bit write access */
3390 val = ldub_p(buf);
3391 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
3392 l = 1;
3394 } else {
3395 unsigned long addr1;
3396 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3397 /* RAM case */
3398 ptr = qemu_get_ram_ptr(addr1);
3399 memcpy(ptr, buf, l);
3400 if (!cpu_physical_memory_is_dirty(addr1)) {
3401 /* invalidate code */
3402 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3403 /* set dirty bit */
3404 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3405 (0xff & ~CODE_DIRTY_FLAG);
3408 } else {
3409 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3410 !(pd & IO_MEM_ROMD)) {
3411 target_phys_addr_t addr1 = addr;
3412 /* I/O case */
3413 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3414 if (p)
3415 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3416 if (l >= 4 && ((addr1 & 3) == 0)) {
3417 /* 32 bit read access */
3418 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
3419 stl_p(buf, val);
3420 l = 4;
3421 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3422 /* 16 bit read access */
3423 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
3424 stw_p(buf, val);
3425 l = 2;
3426 } else {
3427 /* 8 bit read access */
3428 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
3429 stb_p(buf, val);
3430 l = 1;
3432 } else {
3433 /* RAM case */
3434 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3435 (addr & ~TARGET_PAGE_MASK);
3436 memcpy(buf, ptr, l);
3439 len -= l;
3440 buf += l;
3441 addr += l;
3445 /* used for ROM loading : can write in RAM and ROM */
3446 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3447 const uint8_t *buf, int len)
3449 int l;
3450 uint8_t *ptr;
3451 target_phys_addr_t page;
3452 unsigned long pd;
3453 PhysPageDesc *p;
3455 while (len > 0) {
3456 page = addr & TARGET_PAGE_MASK;
3457 l = (page + TARGET_PAGE_SIZE) - addr;
3458 if (l > len)
3459 l = len;
3460 p = phys_page_find(page >> TARGET_PAGE_BITS);
3461 if (!p) {
3462 pd = IO_MEM_UNASSIGNED;
3463 } else {
3464 pd = p->phys_offset;
3467 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
3468 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3469 !(pd & IO_MEM_ROMD)) {
3470 /* do nothing */
3471 } else {
3472 unsigned long addr1;
3473 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3474 /* ROM/RAM case */
3475 ptr = qemu_get_ram_ptr(addr1);
3476 memcpy(ptr, buf, l);
3478 len -= l;
3479 buf += l;
3480 addr += l;
3484 typedef struct {
3485 void *buffer;
3486 target_phys_addr_t addr;
3487 target_phys_addr_t len;
3488 } BounceBuffer;
3490 static BounceBuffer bounce;
3492 typedef struct MapClient {
3493 void *opaque;
3494 void (*callback)(void *opaque);
3495 QLIST_ENTRY(MapClient) link;
3496 } MapClient;
3498 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3499 = QLIST_HEAD_INITIALIZER(map_client_list);
3501 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3503 MapClient *client = qemu_malloc(sizeof(*client));
3505 client->opaque = opaque;
3506 client->callback = callback;
3507 QLIST_INSERT_HEAD(&map_client_list, client, link);
3508 return client;
3511 void cpu_unregister_map_client(void *_client)
3513 MapClient *client = (MapClient *)_client;
3515 QLIST_REMOVE(client, link);
3516 qemu_free(client);
3519 static void cpu_notify_map_clients(void)
3521 MapClient *client;
3523 while (!QLIST_EMPTY(&map_client_list)) {
3524 client = QLIST_FIRST(&map_client_list);
3525 client->callback(client->opaque);
3526 cpu_unregister_map_client(client);
3530 /* Map a physical memory region into a host virtual address.
3531 * May map a subset of the requested range, given by and returned in *plen.
3532 * May return NULL if resources needed to perform the mapping are exhausted.
3533 * Use only for reads OR writes - not for read-modify-write operations.
3534 * Use cpu_register_map_client() to know when retrying the map operation is
3535 * likely to succeed.
3537 void *cpu_physical_memory_map(target_phys_addr_t addr,
3538 target_phys_addr_t *plen,
3539 int is_write)
3541 target_phys_addr_t len = *plen;
3542 target_phys_addr_t done = 0;
3543 int l;
3544 uint8_t *ret = NULL;
3545 uint8_t *ptr;
3546 target_phys_addr_t page;
3547 unsigned long pd;
3548 PhysPageDesc *p;
3549 unsigned long addr1;
3551 while (len > 0) {
3552 page = addr & TARGET_PAGE_MASK;
3553 l = (page + TARGET_PAGE_SIZE) - addr;
3554 if (l > len)
3555 l = len;
3556 p = phys_page_find(page >> TARGET_PAGE_BITS);
3557 if (!p) {
3558 pd = IO_MEM_UNASSIGNED;
3559 } else {
3560 pd = p->phys_offset;
3563 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3564 if (done || bounce.buffer) {
3565 break;
3567 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3568 bounce.addr = addr;
3569 bounce.len = l;
3570 if (!is_write) {
3571 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3573 ptr = bounce.buffer;
3574 } else {
3575 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3576 ptr = qemu_get_ram_ptr(addr1);
3578 if (!done) {
3579 ret = ptr;
3580 } else if (ret + done != ptr) {
3581 break;
3584 len -= l;
3585 addr += l;
3586 done += l;
3588 *plen = done;
3589 return ret;
3592 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3593 * Will also mark the memory as dirty if is_write == 1. access_len gives
3594 * the amount of memory that was actually read or written by the caller.
3596 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3597 int is_write, target_phys_addr_t access_len)
3599 if (buffer != bounce.buffer) {
3600 if (is_write) {
3601 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
3602 while (access_len) {
3603 unsigned l;
3604 l = TARGET_PAGE_SIZE;
3605 if (l > access_len)
3606 l = access_len;
3607 if (!cpu_physical_memory_is_dirty(addr1)) {
3608 /* invalidate code */
3609 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3610 /* set dirty bit */
3611 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3612 (0xff & ~CODE_DIRTY_FLAG);
3614 addr1 += l;
3615 access_len -= l;
3618 return;
3620 if (is_write) {
3621 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3623 qemu_vfree(bounce.buffer);
3624 bounce.buffer = NULL;
3625 cpu_notify_map_clients();
3628 /* warning: addr must be aligned */
3629 uint32_t ldl_phys(target_phys_addr_t addr)
3631 int io_index;
3632 uint8_t *ptr;
3633 uint32_t val;
3634 unsigned long pd;
3635 PhysPageDesc *p;
3637 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3638 if (!p) {
3639 pd = IO_MEM_UNASSIGNED;
3640 } else {
3641 pd = p->phys_offset;
3644 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3645 !(pd & IO_MEM_ROMD)) {
3646 /* I/O case */
3647 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3648 if (p)
3649 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3650 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3651 } else {
3652 /* RAM case */
3653 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3654 (addr & ~TARGET_PAGE_MASK);
3655 val = ldl_p(ptr);
3657 return val;
3660 /* warning: addr must be aligned */
3661 uint64_t ldq_phys(target_phys_addr_t addr)
3663 int io_index;
3664 uint8_t *ptr;
3665 uint64_t val;
3666 unsigned long pd;
3667 PhysPageDesc *p;
3669 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3670 if (!p) {
3671 pd = IO_MEM_UNASSIGNED;
3672 } else {
3673 pd = p->phys_offset;
3676 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3677 !(pd & IO_MEM_ROMD)) {
3678 /* I/O case */
3679 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3680 if (p)
3681 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3682 #ifdef TARGET_WORDS_BIGENDIAN
3683 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3684 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3685 #else
3686 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3687 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3688 #endif
3689 } else {
3690 /* RAM case */
3691 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3692 (addr & ~TARGET_PAGE_MASK);
3693 val = ldq_p(ptr);
3695 return val;
3698 /* XXX: optimize */
3699 uint32_t ldub_phys(target_phys_addr_t addr)
3701 uint8_t val;
3702 cpu_physical_memory_read(addr, &val, 1);
3703 return val;
3706 /* XXX: optimize */
3707 uint32_t lduw_phys(target_phys_addr_t addr)
3709 uint16_t val;
3710 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3711 return tswap16(val);
3714 /* warning: addr must be aligned. The ram page is not masked as dirty
3715 and the code inside is not invalidated. It is useful if the dirty
3716 bits are used to track modified PTEs */
3717 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3719 int io_index;
3720 uint8_t *ptr;
3721 unsigned long pd;
3722 PhysPageDesc *p;
3724 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3725 if (!p) {
3726 pd = IO_MEM_UNASSIGNED;
3727 } else {
3728 pd = p->phys_offset;
3731 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3732 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3733 if (p)
3734 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3735 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3736 } else {
3737 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3738 ptr = qemu_get_ram_ptr(addr1);
3739 stl_p(ptr, val);
3741 if (unlikely(in_migration)) {
3742 if (!cpu_physical_memory_is_dirty(addr1)) {
3743 /* invalidate code */
3744 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3745 /* set dirty bit */
3746 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3747 (0xff & ~CODE_DIRTY_FLAG);
3753 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3755 int io_index;
3756 uint8_t *ptr;
3757 unsigned long pd;
3758 PhysPageDesc *p;
3760 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3761 if (!p) {
3762 pd = IO_MEM_UNASSIGNED;
3763 } else {
3764 pd = p->phys_offset;
3767 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3768 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3769 if (p)
3770 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3771 #ifdef TARGET_WORDS_BIGENDIAN
3772 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3773 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3774 #else
3775 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3776 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3777 #endif
3778 } else {
3779 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3780 (addr & ~TARGET_PAGE_MASK);
3781 stq_p(ptr, val);
3785 /* warning: addr must be aligned */
3786 void stl_phys(target_phys_addr_t addr, uint32_t val)
3788 int io_index;
3789 uint8_t *ptr;
3790 unsigned long pd;
3791 PhysPageDesc *p;
3793 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3794 if (!p) {
3795 pd = IO_MEM_UNASSIGNED;
3796 } else {
3797 pd = p->phys_offset;
3800 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3801 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3802 if (p)
3803 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3804 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3805 } else {
3806 unsigned long addr1;
3807 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3808 /* RAM case */
3809 ptr = qemu_get_ram_ptr(addr1);
3810 stl_p(ptr, val);
3811 if (!cpu_physical_memory_is_dirty(addr1)) {
3812 /* invalidate code */
3813 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3814 /* set dirty bit */
3815 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3816 (0xff & ~CODE_DIRTY_FLAG);
3821 /* XXX: optimize */
3822 void stb_phys(target_phys_addr_t addr, uint32_t val)
3824 uint8_t v = val;
3825 cpu_physical_memory_write(addr, &v, 1);
3828 /* XXX: optimize */
3829 void stw_phys(target_phys_addr_t addr, uint32_t val)
3831 uint16_t v = tswap16(val);
3832 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3835 /* XXX: optimize */
3836 void stq_phys(target_phys_addr_t addr, uint64_t val)
3838 val = tswap64(val);
3839 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3842 /* virtual memory access for debug (includes writing to ROM) */
3843 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3844 uint8_t *buf, int len, int is_write)
3846 int l;
3847 target_phys_addr_t phys_addr;
3848 target_ulong page;
3850 while (len > 0) {
3851 page = addr & TARGET_PAGE_MASK;
3852 phys_addr = cpu_get_phys_page_debug(env, page);
3853 /* if no physical page mapped, return an error */
3854 if (phys_addr == -1)
3855 return -1;
3856 l = (page + TARGET_PAGE_SIZE) - addr;
3857 if (l > len)
3858 l = len;
3859 phys_addr += (addr & ~TARGET_PAGE_MASK);
3860 if (is_write)
3861 cpu_physical_memory_write_rom(phys_addr, buf, l);
3862 else
3863 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
3864 len -= l;
3865 buf += l;
3866 addr += l;
3868 return 0;
3870 #endif
3872 /* in deterministic execution mode, instructions doing device I/Os
3873 must be at the end of the TB */
3874 void cpu_io_recompile(CPUState *env, void *retaddr)
3876 TranslationBlock *tb;
3877 uint32_t n, cflags;
3878 target_ulong pc, cs_base;
3879 uint64_t flags;
3881 tb = tb_find_pc((unsigned long)retaddr);
3882 if (!tb) {
3883 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3884 retaddr);
3886 n = env->icount_decr.u16.low + tb->icount;
3887 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3888 /* Calculate how many instructions had been executed before the fault
3889 occurred. */
3890 n = n - env->icount_decr.u16.low;
3891 /* Generate a new TB ending on the I/O insn. */
3892 n++;
3893 /* On MIPS and SH, delay slot instructions can only be restarted if
3894 they were already the first instruction in the TB. If this is not
3895 the first instruction in a TB then re-execute the preceding
3896 branch. */
3897 #if defined(TARGET_MIPS)
3898 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3899 env->active_tc.PC -= 4;
3900 env->icount_decr.u16.low++;
3901 env->hflags &= ~MIPS_HFLAG_BMASK;
3903 #elif defined(TARGET_SH4)
3904 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3905 && n > 1) {
3906 env->pc -= 2;
3907 env->icount_decr.u16.low++;
3908 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3910 #endif
3911 /* This should never happen. */
3912 if (n > CF_COUNT_MASK)
3913 cpu_abort(env, "TB too big during recompile");
3915 cflags = n | CF_LAST_IO;
3916 pc = tb->pc;
3917 cs_base = tb->cs_base;
3918 flags = tb->flags;
3919 tb_phys_invalidate(tb, -1);
3920 /* FIXME: In theory this could raise an exception. In practice
3921 we have already translated the block once so it's probably ok. */
3922 tb_gen_code(env, pc, cs_base, flags, cflags);
3923 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
3924 the first in the TB) then we end up generating a whole new TB and
3925 repeating the fault, which is horribly inefficient.
3926 Better would be to execute just this insn uncached, or generate a
3927 second new TB. */
3928 cpu_resume_from_signal(env, NULL);
3931 #if !defined(CONFIG_USER_ONLY)
3933 void dump_exec_info(FILE *f,
3934 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3936 int i, target_code_size, max_target_code_size;
3937 int direct_jmp_count, direct_jmp2_count, cross_page;
3938 TranslationBlock *tb;
3940 target_code_size = 0;
3941 max_target_code_size = 0;
3942 cross_page = 0;
3943 direct_jmp_count = 0;
3944 direct_jmp2_count = 0;
3945 for(i = 0; i < nb_tbs; i++) {
3946 tb = &tbs[i];
3947 target_code_size += tb->size;
3948 if (tb->size > max_target_code_size)
3949 max_target_code_size = tb->size;
3950 if (tb->page_addr[1] != -1)
3951 cross_page++;
3952 if (tb->tb_next_offset[0] != 0xffff) {
3953 direct_jmp_count++;
3954 if (tb->tb_next_offset[1] != 0xffff) {
3955 direct_jmp2_count++;
3959 /* XXX: avoid using doubles ? */
3960 cpu_fprintf(f, "Translation buffer state:\n");
3961 cpu_fprintf(f, "gen code size %ld/%ld\n",
3962 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3963 cpu_fprintf(f, "TB count %d/%d\n",
3964 nb_tbs, code_gen_max_blocks);
3965 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
3966 nb_tbs ? target_code_size / nb_tbs : 0,
3967 max_target_code_size);
3968 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
3969 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3970 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
3971 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3972 cross_page,
3973 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3974 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
3975 direct_jmp_count,
3976 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3977 direct_jmp2_count,
3978 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
3979 cpu_fprintf(f, "\nStatistics:\n");
3980 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3981 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3982 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
3983 tcg_dump_info(f, cpu_fprintf);
3986 #define MMUSUFFIX _cmmu
3987 #define GETPC() NULL
3988 #define env cpu_single_env
3989 #define SOFTMMU_CODE_ACCESS
3991 #define SHIFT 0
3992 #include "softmmu_template.h"
3994 #define SHIFT 1
3995 #include "softmmu_template.h"
3997 #define SHIFT 2
3998 #include "softmmu_template.h"
4000 #define SHIFT 3
4001 #include "softmmu_template.h"
4003 #undef env
4005 #endif