qom: Simplify object_property_get_enum()
[qemu.git] / tcg / tcg-op-gvec.c
blob327d9588e01028524d51742e5e8fe3ee6d7c69ba
1 /*
2 * Generic vector operation expansion
4 * Copyright (c) 2018 Linaro
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "tcg/tcg.h"
22 #include "tcg/tcg-op.h"
23 #include "tcg/tcg-op-gvec.h"
24 #include "qemu/main-loop.h"
25 #include "tcg/tcg-gvec-desc.h"
27 #define MAX_UNROLL 4
29 #ifdef CONFIG_DEBUG_TCG
30 static const TCGOpcode vecop_list_empty[1] = { 0 };
31 #else
32 #define vecop_list_empty NULL
33 #endif
36 /* Verify vector size and alignment rules. OFS should be the OR of all
37 of the operand offsets so that we can check them all at once. */
38 static void check_size_align(uint32_t oprsz, uint32_t maxsz, uint32_t ofs)
40 uint32_t opr_align = oprsz >= 16 ? 15 : 7;
41 uint32_t max_align = maxsz >= 16 || oprsz >= 16 ? 15 : 7;
42 tcg_debug_assert(oprsz > 0);
43 tcg_debug_assert(oprsz <= maxsz);
44 tcg_debug_assert((oprsz & opr_align) == 0);
45 tcg_debug_assert((maxsz & max_align) == 0);
46 tcg_debug_assert((ofs & max_align) == 0);
49 /* Verify vector overlap rules for two operands. */
50 static void check_overlap_2(uint32_t d, uint32_t a, uint32_t s)
52 tcg_debug_assert(d == a || d + s <= a || a + s <= d);
55 /* Verify vector overlap rules for three operands. */
56 static void check_overlap_3(uint32_t d, uint32_t a, uint32_t b, uint32_t s)
58 check_overlap_2(d, a, s);
59 check_overlap_2(d, b, s);
60 check_overlap_2(a, b, s);
63 /* Verify vector overlap rules for four operands. */
64 static void check_overlap_4(uint32_t d, uint32_t a, uint32_t b,
65 uint32_t c, uint32_t s)
67 check_overlap_2(d, a, s);
68 check_overlap_2(d, b, s);
69 check_overlap_2(d, c, s);
70 check_overlap_2(a, b, s);
71 check_overlap_2(a, c, s);
72 check_overlap_2(b, c, s);
75 /* Create a descriptor from components. */
76 uint32_t simd_desc(uint32_t oprsz, uint32_t maxsz, int32_t data)
78 uint32_t desc = 0;
80 assert(oprsz % 8 == 0 && oprsz <= (8 << SIMD_OPRSZ_BITS));
81 assert(maxsz % 8 == 0 && maxsz <= (8 << SIMD_MAXSZ_BITS));
82 assert(data == sextract32(data, 0, SIMD_DATA_BITS));
84 oprsz = (oprsz / 8) - 1;
85 maxsz = (maxsz / 8) - 1;
86 desc = deposit32(desc, SIMD_OPRSZ_SHIFT, SIMD_OPRSZ_BITS, oprsz);
87 desc = deposit32(desc, SIMD_MAXSZ_SHIFT, SIMD_MAXSZ_BITS, maxsz);
88 desc = deposit32(desc, SIMD_DATA_SHIFT, SIMD_DATA_BITS, data);
90 return desc;
93 /* Generate a call to a gvec-style helper with two vector operands. */
94 void tcg_gen_gvec_2_ool(uint32_t dofs, uint32_t aofs,
95 uint32_t oprsz, uint32_t maxsz, int32_t data,
96 gen_helper_gvec_2 *fn)
98 TCGv_ptr a0, a1;
99 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
101 a0 = tcg_temp_new_ptr();
102 a1 = tcg_temp_new_ptr();
104 tcg_gen_addi_ptr(a0, cpu_env, dofs);
105 tcg_gen_addi_ptr(a1, cpu_env, aofs);
107 fn(a0, a1, desc);
109 tcg_temp_free_ptr(a0);
110 tcg_temp_free_ptr(a1);
111 tcg_temp_free_i32(desc);
114 /* Generate a call to a gvec-style helper with two vector operands
115 and one scalar operand. */
116 void tcg_gen_gvec_2i_ool(uint32_t dofs, uint32_t aofs, TCGv_i64 c,
117 uint32_t oprsz, uint32_t maxsz, int32_t data,
118 gen_helper_gvec_2i *fn)
120 TCGv_ptr a0, a1;
121 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
123 a0 = tcg_temp_new_ptr();
124 a1 = tcg_temp_new_ptr();
126 tcg_gen_addi_ptr(a0, cpu_env, dofs);
127 tcg_gen_addi_ptr(a1, cpu_env, aofs);
129 fn(a0, a1, c, desc);
131 tcg_temp_free_ptr(a0);
132 tcg_temp_free_ptr(a1);
133 tcg_temp_free_i32(desc);
136 /* Generate a call to a gvec-style helper with three vector operands. */
137 void tcg_gen_gvec_3_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs,
138 uint32_t oprsz, uint32_t maxsz, int32_t data,
139 gen_helper_gvec_3 *fn)
141 TCGv_ptr a0, a1, a2;
142 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
144 a0 = tcg_temp_new_ptr();
145 a1 = tcg_temp_new_ptr();
146 a2 = tcg_temp_new_ptr();
148 tcg_gen_addi_ptr(a0, cpu_env, dofs);
149 tcg_gen_addi_ptr(a1, cpu_env, aofs);
150 tcg_gen_addi_ptr(a2, cpu_env, bofs);
152 fn(a0, a1, a2, desc);
154 tcg_temp_free_ptr(a0);
155 tcg_temp_free_ptr(a1);
156 tcg_temp_free_ptr(a2);
157 tcg_temp_free_i32(desc);
160 /* Generate a call to a gvec-style helper with four vector operands. */
161 void tcg_gen_gvec_4_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs,
162 uint32_t cofs, uint32_t oprsz, uint32_t maxsz,
163 int32_t data, gen_helper_gvec_4 *fn)
165 TCGv_ptr a0, a1, a2, a3;
166 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
168 a0 = tcg_temp_new_ptr();
169 a1 = tcg_temp_new_ptr();
170 a2 = tcg_temp_new_ptr();
171 a3 = tcg_temp_new_ptr();
173 tcg_gen_addi_ptr(a0, cpu_env, dofs);
174 tcg_gen_addi_ptr(a1, cpu_env, aofs);
175 tcg_gen_addi_ptr(a2, cpu_env, bofs);
176 tcg_gen_addi_ptr(a3, cpu_env, cofs);
178 fn(a0, a1, a2, a3, desc);
180 tcg_temp_free_ptr(a0);
181 tcg_temp_free_ptr(a1);
182 tcg_temp_free_ptr(a2);
183 tcg_temp_free_ptr(a3);
184 tcg_temp_free_i32(desc);
187 /* Generate a call to a gvec-style helper with five vector operands. */
188 void tcg_gen_gvec_5_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs,
189 uint32_t cofs, uint32_t xofs, uint32_t oprsz,
190 uint32_t maxsz, int32_t data, gen_helper_gvec_5 *fn)
192 TCGv_ptr a0, a1, a2, a3, a4;
193 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
195 a0 = tcg_temp_new_ptr();
196 a1 = tcg_temp_new_ptr();
197 a2 = tcg_temp_new_ptr();
198 a3 = tcg_temp_new_ptr();
199 a4 = tcg_temp_new_ptr();
201 tcg_gen_addi_ptr(a0, cpu_env, dofs);
202 tcg_gen_addi_ptr(a1, cpu_env, aofs);
203 tcg_gen_addi_ptr(a2, cpu_env, bofs);
204 tcg_gen_addi_ptr(a3, cpu_env, cofs);
205 tcg_gen_addi_ptr(a4, cpu_env, xofs);
207 fn(a0, a1, a2, a3, a4, desc);
209 tcg_temp_free_ptr(a0);
210 tcg_temp_free_ptr(a1);
211 tcg_temp_free_ptr(a2);
212 tcg_temp_free_ptr(a3);
213 tcg_temp_free_ptr(a4);
214 tcg_temp_free_i32(desc);
217 /* Generate a call to a gvec-style helper with three vector operands
218 and an extra pointer operand. */
219 void tcg_gen_gvec_2_ptr(uint32_t dofs, uint32_t aofs,
220 TCGv_ptr ptr, uint32_t oprsz, uint32_t maxsz,
221 int32_t data, gen_helper_gvec_2_ptr *fn)
223 TCGv_ptr a0, a1;
224 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
226 a0 = tcg_temp_new_ptr();
227 a1 = tcg_temp_new_ptr();
229 tcg_gen_addi_ptr(a0, cpu_env, dofs);
230 tcg_gen_addi_ptr(a1, cpu_env, aofs);
232 fn(a0, a1, ptr, desc);
234 tcg_temp_free_ptr(a0);
235 tcg_temp_free_ptr(a1);
236 tcg_temp_free_i32(desc);
239 /* Generate a call to a gvec-style helper with three vector operands
240 and an extra pointer operand. */
241 void tcg_gen_gvec_3_ptr(uint32_t dofs, uint32_t aofs, uint32_t bofs,
242 TCGv_ptr ptr, uint32_t oprsz, uint32_t maxsz,
243 int32_t data, gen_helper_gvec_3_ptr *fn)
245 TCGv_ptr a0, a1, a2;
246 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
248 a0 = tcg_temp_new_ptr();
249 a1 = tcg_temp_new_ptr();
250 a2 = tcg_temp_new_ptr();
252 tcg_gen_addi_ptr(a0, cpu_env, dofs);
253 tcg_gen_addi_ptr(a1, cpu_env, aofs);
254 tcg_gen_addi_ptr(a2, cpu_env, bofs);
256 fn(a0, a1, a2, ptr, desc);
258 tcg_temp_free_ptr(a0);
259 tcg_temp_free_ptr(a1);
260 tcg_temp_free_ptr(a2);
261 tcg_temp_free_i32(desc);
264 /* Generate a call to a gvec-style helper with four vector operands
265 and an extra pointer operand. */
266 void tcg_gen_gvec_4_ptr(uint32_t dofs, uint32_t aofs, uint32_t bofs,
267 uint32_t cofs, TCGv_ptr ptr, uint32_t oprsz,
268 uint32_t maxsz, int32_t data,
269 gen_helper_gvec_4_ptr *fn)
271 TCGv_ptr a0, a1, a2, a3;
272 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
274 a0 = tcg_temp_new_ptr();
275 a1 = tcg_temp_new_ptr();
276 a2 = tcg_temp_new_ptr();
277 a3 = tcg_temp_new_ptr();
279 tcg_gen_addi_ptr(a0, cpu_env, dofs);
280 tcg_gen_addi_ptr(a1, cpu_env, aofs);
281 tcg_gen_addi_ptr(a2, cpu_env, bofs);
282 tcg_gen_addi_ptr(a3, cpu_env, cofs);
284 fn(a0, a1, a2, a3, ptr, desc);
286 tcg_temp_free_ptr(a0);
287 tcg_temp_free_ptr(a1);
288 tcg_temp_free_ptr(a2);
289 tcg_temp_free_ptr(a3);
290 tcg_temp_free_i32(desc);
293 /* Generate a call to a gvec-style helper with five vector operands
294 and an extra pointer operand. */
295 void tcg_gen_gvec_5_ptr(uint32_t dofs, uint32_t aofs, uint32_t bofs,
296 uint32_t cofs, uint32_t eofs, TCGv_ptr ptr,
297 uint32_t oprsz, uint32_t maxsz, int32_t data,
298 gen_helper_gvec_5_ptr *fn)
300 TCGv_ptr a0, a1, a2, a3, a4;
301 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
303 a0 = tcg_temp_new_ptr();
304 a1 = tcg_temp_new_ptr();
305 a2 = tcg_temp_new_ptr();
306 a3 = tcg_temp_new_ptr();
307 a4 = tcg_temp_new_ptr();
309 tcg_gen_addi_ptr(a0, cpu_env, dofs);
310 tcg_gen_addi_ptr(a1, cpu_env, aofs);
311 tcg_gen_addi_ptr(a2, cpu_env, bofs);
312 tcg_gen_addi_ptr(a3, cpu_env, cofs);
313 tcg_gen_addi_ptr(a4, cpu_env, eofs);
315 fn(a0, a1, a2, a3, a4, ptr, desc);
317 tcg_temp_free_ptr(a0);
318 tcg_temp_free_ptr(a1);
319 tcg_temp_free_ptr(a2);
320 tcg_temp_free_ptr(a3);
321 tcg_temp_free_ptr(a4);
322 tcg_temp_free_i32(desc);
325 /* Return true if we want to implement something of OPRSZ bytes
326 in units of LNSZ. This limits the expansion of inline code. */
327 static inline bool check_size_impl(uint32_t oprsz, uint32_t lnsz)
329 if (oprsz % lnsz == 0) {
330 uint32_t lnct = oprsz / lnsz;
331 return lnct >= 1 && lnct <= MAX_UNROLL;
333 return false;
336 static void expand_clr(uint32_t dofs, uint32_t maxsz);
338 /* Duplicate C as per VECE. */
339 uint64_t (dup_const)(unsigned vece, uint64_t c)
341 switch (vece) {
342 case MO_8:
343 return 0x0101010101010101ull * (uint8_t)c;
344 case MO_16:
345 return 0x0001000100010001ull * (uint16_t)c;
346 case MO_32:
347 return 0x0000000100000001ull * (uint32_t)c;
348 case MO_64:
349 return c;
350 default:
351 g_assert_not_reached();
355 /* Duplicate IN into OUT as per VECE. */
356 static void gen_dup_i32(unsigned vece, TCGv_i32 out, TCGv_i32 in)
358 switch (vece) {
359 case MO_8:
360 tcg_gen_ext8u_i32(out, in);
361 tcg_gen_muli_i32(out, out, 0x01010101);
362 break;
363 case MO_16:
364 tcg_gen_deposit_i32(out, in, in, 16, 16);
365 break;
366 case MO_32:
367 tcg_gen_mov_i32(out, in);
368 break;
369 default:
370 g_assert_not_reached();
374 static void gen_dup_i64(unsigned vece, TCGv_i64 out, TCGv_i64 in)
376 switch (vece) {
377 case MO_8:
378 tcg_gen_ext8u_i64(out, in);
379 tcg_gen_muli_i64(out, out, 0x0101010101010101ull);
380 break;
381 case MO_16:
382 tcg_gen_ext16u_i64(out, in);
383 tcg_gen_muli_i64(out, out, 0x0001000100010001ull);
384 break;
385 case MO_32:
386 tcg_gen_deposit_i64(out, in, in, 32, 32);
387 break;
388 case MO_64:
389 tcg_gen_mov_i64(out, in);
390 break;
391 default:
392 g_assert_not_reached();
396 /* Select a supported vector type for implementing an operation on SIZE
397 * bytes. If OP is 0, assume that the real operation to be performed is
398 * required by all backends. Otherwise, make sure than OP can be performed
399 * on elements of size VECE in the selected type. Do not select V64 if
400 * PREFER_I64 is true. Return 0 if no vector type is selected.
402 static TCGType choose_vector_type(const TCGOpcode *list, unsigned vece,
403 uint32_t size, bool prefer_i64)
405 if (TCG_TARGET_HAS_v256 && check_size_impl(size, 32)) {
407 * Recall that ARM SVE allows vector sizes that are not a
408 * power of 2, but always a multiple of 16. The intent is
409 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
410 * It is hard to imagine a case in which v256 is supported
411 * but v128 is not, but check anyway.
413 if (tcg_can_emit_vecop_list(list, TCG_TYPE_V256, vece)
414 && (size % 32 == 0
415 || tcg_can_emit_vecop_list(list, TCG_TYPE_V128, vece))) {
416 return TCG_TYPE_V256;
419 if (TCG_TARGET_HAS_v128 && check_size_impl(size, 16)
420 && tcg_can_emit_vecop_list(list, TCG_TYPE_V128, vece)) {
421 return TCG_TYPE_V128;
423 if (TCG_TARGET_HAS_v64 && !prefer_i64 && check_size_impl(size, 8)
424 && tcg_can_emit_vecop_list(list, TCG_TYPE_V64, vece)) {
425 return TCG_TYPE_V64;
427 return 0;
430 static void do_dup_store(TCGType type, uint32_t dofs, uint32_t oprsz,
431 uint32_t maxsz, TCGv_vec t_vec)
433 uint32_t i = 0;
435 switch (type) {
436 case TCG_TYPE_V256:
438 * Recall that ARM SVE allows vector sizes that are not a
439 * power of 2, but always a multiple of 16. The intent is
440 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
442 for (; i + 32 <= oprsz; i += 32) {
443 tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V256);
445 /* fallthru */
446 case TCG_TYPE_V128:
447 for (; i + 16 <= oprsz; i += 16) {
448 tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V128);
450 break;
451 case TCG_TYPE_V64:
452 for (; i < oprsz; i += 8) {
453 tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V64);
455 break;
456 default:
457 g_assert_not_reached();
460 if (oprsz < maxsz) {
461 expand_clr(dofs + oprsz, maxsz - oprsz);
465 /* Set OPRSZ bytes at DOFS to replications of IN_32, IN_64 or IN_C.
466 * Only one of IN_32 or IN_64 may be set;
467 * IN_C is used if IN_32 and IN_64 are unset.
469 static void do_dup(unsigned vece, uint32_t dofs, uint32_t oprsz,
470 uint32_t maxsz, TCGv_i32 in_32, TCGv_i64 in_64,
471 uint64_t in_c)
473 TCGType type;
474 TCGv_i64 t_64;
475 TCGv_i32 t_32, t_desc;
476 TCGv_ptr t_ptr;
477 uint32_t i;
479 assert(vece <= (in_32 ? MO_32 : MO_64));
480 assert(in_32 == NULL || in_64 == NULL);
482 /* If we're storing 0, expand oprsz to maxsz. */
483 if (in_32 == NULL && in_64 == NULL) {
484 in_c = dup_const(vece, in_c);
485 if (in_c == 0) {
486 oprsz = maxsz;
490 /* Implement inline with a vector type, if possible.
491 * Prefer integer when 64-bit host and no variable dup.
493 type = choose_vector_type(NULL, vece, oprsz,
494 (TCG_TARGET_REG_BITS == 64 && in_32 == NULL
495 && (in_64 == NULL || vece == MO_64)));
496 if (type != 0) {
497 TCGv_vec t_vec = tcg_temp_new_vec(type);
499 if (in_32) {
500 tcg_gen_dup_i32_vec(vece, t_vec, in_32);
501 } else if (in_64) {
502 tcg_gen_dup_i64_vec(vece, t_vec, in_64);
503 } else {
504 tcg_gen_dupi_vec(vece, t_vec, in_c);
506 do_dup_store(type, dofs, oprsz, maxsz, t_vec);
507 tcg_temp_free_vec(t_vec);
508 return;
511 /* Otherwise, inline with an integer type, unless "large". */
512 if (check_size_impl(oprsz, TCG_TARGET_REG_BITS / 8)) {
513 t_64 = NULL;
514 t_32 = NULL;
516 if (in_32) {
517 /* We are given a 32-bit variable input. For a 64-bit host,
518 use a 64-bit operation unless the 32-bit operation would
519 be simple enough. */
520 if (TCG_TARGET_REG_BITS == 64
521 && (vece != MO_32 || !check_size_impl(oprsz, 4))) {
522 t_64 = tcg_temp_new_i64();
523 tcg_gen_extu_i32_i64(t_64, in_32);
524 gen_dup_i64(vece, t_64, t_64);
525 } else {
526 t_32 = tcg_temp_new_i32();
527 gen_dup_i32(vece, t_32, in_32);
529 } else if (in_64) {
530 /* We are given a 64-bit variable input. */
531 t_64 = tcg_temp_new_i64();
532 gen_dup_i64(vece, t_64, in_64);
533 } else {
534 /* We are given a constant input. */
535 /* For 64-bit hosts, use 64-bit constants for "simple" constants
536 or when we'd need too many 32-bit stores, or when a 64-bit
537 constant is really required. */
538 if (vece == MO_64
539 || (TCG_TARGET_REG_BITS == 64
540 && (in_c == 0 || in_c == -1
541 || !check_size_impl(oprsz, 4)))) {
542 t_64 = tcg_const_i64(in_c);
543 } else {
544 t_32 = tcg_const_i32(in_c);
548 /* Implement inline if we picked an implementation size above. */
549 if (t_32) {
550 for (i = 0; i < oprsz; i += 4) {
551 tcg_gen_st_i32(t_32, cpu_env, dofs + i);
553 tcg_temp_free_i32(t_32);
554 goto done;
556 if (t_64) {
557 for (i = 0; i < oprsz; i += 8) {
558 tcg_gen_st_i64(t_64, cpu_env, dofs + i);
560 tcg_temp_free_i64(t_64);
561 goto done;
565 /* Otherwise implement out of line. */
566 t_ptr = tcg_temp_new_ptr();
567 tcg_gen_addi_ptr(t_ptr, cpu_env, dofs);
568 t_desc = tcg_const_i32(simd_desc(oprsz, maxsz, 0));
570 if (vece == MO_64) {
571 if (in_64) {
572 gen_helper_gvec_dup64(t_ptr, t_desc, in_64);
573 } else {
574 t_64 = tcg_const_i64(in_c);
575 gen_helper_gvec_dup64(t_ptr, t_desc, t_64);
576 tcg_temp_free_i64(t_64);
578 } else {
579 typedef void dup_fn(TCGv_ptr, TCGv_i32, TCGv_i32);
580 static dup_fn * const fns[3] = {
581 gen_helper_gvec_dup8,
582 gen_helper_gvec_dup16,
583 gen_helper_gvec_dup32
586 if (in_32) {
587 fns[vece](t_ptr, t_desc, in_32);
588 } else {
589 t_32 = tcg_temp_new_i32();
590 if (in_64) {
591 tcg_gen_extrl_i64_i32(t_32, in_64);
592 } else if (vece == MO_8) {
593 tcg_gen_movi_i32(t_32, in_c & 0xff);
594 } else if (vece == MO_16) {
595 tcg_gen_movi_i32(t_32, in_c & 0xffff);
596 } else {
597 tcg_gen_movi_i32(t_32, in_c);
599 fns[vece](t_ptr, t_desc, t_32);
600 tcg_temp_free_i32(t_32);
604 tcg_temp_free_ptr(t_ptr);
605 tcg_temp_free_i32(t_desc);
606 return;
608 done:
609 if (oprsz < maxsz) {
610 expand_clr(dofs + oprsz, maxsz - oprsz);
614 /* Likewise, but with zero. */
615 static void expand_clr(uint32_t dofs, uint32_t maxsz)
617 do_dup(MO_8, dofs, maxsz, maxsz, NULL, NULL, 0);
620 /* Expand OPSZ bytes worth of two-operand operations using i32 elements. */
621 static void expand_2_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
622 void (*fni)(TCGv_i32, TCGv_i32))
624 TCGv_i32 t0 = tcg_temp_new_i32();
625 uint32_t i;
627 for (i = 0; i < oprsz; i += 4) {
628 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
629 fni(t0, t0);
630 tcg_gen_st_i32(t0, cpu_env, dofs + i);
632 tcg_temp_free_i32(t0);
635 static void expand_2i_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
636 int32_t c, bool load_dest,
637 void (*fni)(TCGv_i32, TCGv_i32, int32_t))
639 TCGv_i32 t0 = tcg_temp_new_i32();
640 TCGv_i32 t1 = tcg_temp_new_i32();
641 uint32_t i;
643 for (i = 0; i < oprsz; i += 4) {
644 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
645 if (load_dest) {
646 tcg_gen_ld_i32(t1, cpu_env, dofs + i);
648 fni(t1, t0, c);
649 tcg_gen_st_i32(t1, cpu_env, dofs + i);
651 tcg_temp_free_i32(t0);
652 tcg_temp_free_i32(t1);
655 static void expand_2s_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
656 TCGv_i32 c, bool scalar_first,
657 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32))
659 TCGv_i32 t0 = tcg_temp_new_i32();
660 TCGv_i32 t1 = tcg_temp_new_i32();
661 uint32_t i;
663 for (i = 0; i < oprsz; i += 4) {
664 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
665 if (scalar_first) {
666 fni(t1, c, t0);
667 } else {
668 fni(t1, t0, c);
670 tcg_gen_st_i32(t1, cpu_env, dofs + i);
672 tcg_temp_free_i32(t0);
673 tcg_temp_free_i32(t1);
676 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
677 static void expand_3_i32(uint32_t dofs, uint32_t aofs,
678 uint32_t bofs, uint32_t oprsz, bool load_dest,
679 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32))
681 TCGv_i32 t0 = tcg_temp_new_i32();
682 TCGv_i32 t1 = tcg_temp_new_i32();
683 TCGv_i32 t2 = tcg_temp_new_i32();
684 uint32_t i;
686 for (i = 0; i < oprsz; i += 4) {
687 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
688 tcg_gen_ld_i32(t1, cpu_env, bofs + i);
689 if (load_dest) {
690 tcg_gen_ld_i32(t2, cpu_env, dofs + i);
692 fni(t2, t0, t1);
693 tcg_gen_st_i32(t2, cpu_env, dofs + i);
695 tcg_temp_free_i32(t2);
696 tcg_temp_free_i32(t1);
697 tcg_temp_free_i32(t0);
700 static void expand_3i_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs,
701 uint32_t oprsz, int32_t c, bool load_dest,
702 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32, int32_t))
704 TCGv_i32 t0 = tcg_temp_new_i32();
705 TCGv_i32 t1 = tcg_temp_new_i32();
706 TCGv_i32 t2 = tcg_temp_new_i32();
707 uint32_t i;
709 for (i = 0; i < oprsz; i += 4) {
710 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
711 tcg_gen_ld_i32(t1, cpu_env, bofs + i);
712 if (load_dest) {
713 tcg_gen_ld_i32(t2, cpu_env, dofs + i);
715 fni(t2, t0, t1, c);
716 tcg_gen_st_i32(t2, cpu_env, dofs + i);
718 tcg_temp_free_i32(t0);
719 tcg_temp_free_i32(t1);
720 tcg_temp_free_i32(t2);
723 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
724 static void expand_4_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs,
725 uint32_t cofs, uint32_t oprsz, bool write_aofs,
726 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_i32))
728 TCGv_i32 t0 = tcg_temp_new_i32();
729 TCGv_i32 t1 = tcg_temp_new_i32();
730 TCGv_i32 t2 = tcg_temp_new_i32();
731 TCGv_i32 t3 = tcg_temp_new_i32();
732 uint32_t i;
734 for (i = 0; i < oprsz; i += 4) {
735 tcg_gen_ld_i32(t1, cpu_env, aofs + i);
736 tcg_gen_ld_i32(t2, cpu_env, bofs + i);
737 tcg_gen_ld_i32(t3, cpu_env, cofs + i);
738 fni(t0, t1, t2, t3);
739 tcg_gen_st_i32(t0, cpu_env, dofs + i);
740 if (write_aofs) {
741 tcg_gen_st_i32(t1, cpu_env, aofs + i);
744 tcg_temp_free_i32(t3);
745 tcg_temp_free_i32(t2);
746 tcg_temp_free_i32(t1);
747 tcg_temp_free_i32(t0);
750 /* Expand OPSZ bytes worth of two-operand operations using i64 elements. */
751 static void expand_2_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
752 void (*fni)(TCGv_i64, TCGv_i64))
754 TCGv_i64 t0 = tcg_temp_new_i64();
755 uint32_t i;
757 for (i = 0; i < oprsz; i += 8) {
758 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
759 fni(t0, t0);
760 tcg_gen_st_i64(t0, cpu_env, dofs + i);
762 tcg_temp_free_i64(t0);
765 static void expand_2i_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
766 int64_t c, bool load_dest,
767 void (*fni)(TCGv_i64, TCGv_i64, int64_t))
769 TCGv_i64 t0 = tcg_temp_new_i64();
770 TCGv_i64 t1 = tcg_temp_new_i64();
771 uint32_t i;
773 for (i = 0; i < oprsz; i += 8) {
774 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
775 if (load_dest) {
776 tcg_gen_ld_i64(t1, cpu_env, dofs + i);
778 fni(t1, t0, c);
779 tcg_gen_st_i64(t1, cpu_env, dofs + i);
781 tcg_temp_free_i64(t0);
782 tcg_temp_free_i64(t1);
785 static void expand_2s_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
786 TCGv_i64 c, bool scalar_first,
787 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64))
789 TCGv_i64 t0 = tcg_temp_new_i64();
790 TCGv_i64 t1 = tcg_temp_new_i64();
791 uint32_t i;
793 for (i = 0; i < oprsz; i += 8) {
794 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
795 if (scalar_first) {
796 fni(t1, c, t0);
797 } else {
798 fni(t1, t0, c);
800 tcg_gen_st_i64(t1, cpu_env, dofs + i);
802 tcg_temp_free_i64(t0);
803 tcg_temp_free_i64(t1);
806 /* Expand OPSZ bytes worth of three-operand operations using i64 elements. */
807 static void expand_3_i64(uint32_t dofs, uint32_t aofs,
808 uint32_t bofs, uint32_t oprsz, bool load_dest,
809 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64))
811 TCGv_i64 t0 = tcg_temp_new_i64();
812 TCGv_i64 t1 = tcg_temp_new_i64();
813 TCGv_i64 t2 = tcg_temp_new_i64();
814 uint32_t i;
816 for (i = 0; i < oprsz; i += 8) {
817 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
818 tcg_gen_ld_i64(t1, cpu_env, bofs + i);
819 if (load_dest) {
820 tcg_gen_ld_i64(t2, cpu_env, dofs + i);
822 fni(t2, t0, t1);
823 tcg_gen_st_i64(t2, cpu_env, dofs + i);
825 tcg_temp_free_i64(t2);
826 tcg_temp_free_i64(t1);
827 tcg_temp_free_i64(t0);
830 static void expand_3i_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs,
831 uint32_t oprsz, int64_t c, bool load_dest,
832 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64, int64_t))
834 TCGv_i64 t0 = tcg_temp_new_i64();
835 TCGv_i64 t1 = tcg_temp_new_i64();
836 TCGv_i64 t2 = tcg_temp_new_i64();
837 uint32_t i;
839 for (i = 0; i < oprsz; i += 8) {
840 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
841 tcg_gen_ld_i64(t1, cpu_env, bofs + i);
842 if (load_dest) {
843 tcg_gen_ld_i64(t2, cpu_env, dofs + i);
845 fni(t2, t0, t1, c);
846 tcg_gen_st_i64(t2, cpu_env, dofs + i);
848 tcg_temp_free_i64(t0);
849 tcg_temp_free_i64(t1);
850 tcg_temp_free_i64(t2);
853 /* Expand OPSZ bytes worth of three-operand operations using i64 elements. */
854 static void expand_4_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs,
855 uint32_t cofs, uint32_t oprsz, bool write_aofs,
856 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64))
858 TCGv_i64 t0 = tcg_temp_new_i64();
859 TCGv_i64 t1 = tcg_temp_new_i64();
860 TCGv_i64 t2 = tcg_temp_new_i64();
861 TCGv_i64 t3 = tcg_temp_new_i64();
862 uint32_t i;
864 for (i = 0; i < oprsz; i += 8) {
865 tcg_gen_ld_i64(t1, cpu_env, aofs + i);
866 tcg_gen_ld_i64(t2, cpu_env, bofs + i);
867 tcg_gen_ld_i64(t3, cpu_env, cofs + i);
868 fni(t0, t1, t2, t3);
869 tcg_gen_st_i64(t0, cpu_env, dofs + i);
870 if (write_aofs) {
871 tcg_gen_st_i64(t1, cpu_env, aofs + i);
874 tcg_temp_free_i64(t3);
875 tcg_temp_free_i64(t2);
876 tcg_temp_free_i64(t1);
877 tcg_temp_free_i64(t0);
880 /* Expand OPSZ bytes worth of two-operand operations using host vectors. */
881 static void expand_2_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
882 uint32_t oprsz, uint32_t tysz, TCGType type,
883 void (*fni)(unsigned, TCGv_vec, TCGv_vec))
885 TCGv_vec t0 = tcg_temp_new_vec(type);
886 uint32_t i;
888 for (i = 0; i < oprsz; i += tysz) {
889 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
890 fni(vece, t0, t0);
891 tcg_gen_st_vec(t0, cpu_env, dofs + i);
893 tcg_temp_free_vec(t0);
896 /* Expand OPSZ bytes worth of two-vector operands and an immediate operand
897 using host vectors. */
898 static void expand_2i_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
899 uint32_t oprsz, uint32_t tysz, TCGType type,
900 int64_t c, bool load_dest,
901 void (*fni)(unsigned, TCGv_vec, TCGv_vec, int64_t))
903 TCGv_vec t0 = tcg_temp_new_vec(type);
904 TCGv_vec t1 = tcg_temp_new_vec(type);
905 uint32_t i;
907 for (i = 0; i < oprsz; i += tysz) {
908 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
909 if (load_dest) {
910 tcg_gen_ld_vec(t1, cpu_env, dofs + i);
912 fni(vece, t1, t0, c);
913 tcg_gen_st_vec(t1, cpu_env, dofs + i);
915 tcg_temp_free_vec(t0);
916 tcg_temp_free_vec(t1);
919 static void expand_2s_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
920 uint32_t oprsz, uint32_t tysz, TCGType type,
921 TCGv_vec c, bool scalar_first,
922 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec))
924 TCGv_vec t0 = tcg_temp_new_vec(type);
925 TCGv_vec t1 = tcg_temp_new_vec(type);
926 uint32_t i;
928 for (i = 0; i < oprsz; i += tysz) {
929 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
930 if (scalar_first) {
931 fni(vece, t1, c, t0);
932 } else {
933 fni(vece, t1, t0, c);
935 tcg_gen_st_vec(t1, cpu_env, dofs + i);
937 tcg_temp_free_vec(t0);
938 tcg_temp_free_vec(t1);
941 /* Expand OPSZ bytes worth of three-operand operations using host vectors. */
942 static void expand_3_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
943 uint32_t bofs, uint32_t oprsz,
944 uint32_t tysz, TCGType type, bool load_dest,
945 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec))
947 TCGv_vec t0 = tcg_temp_new_vec(type);
948 TCGv_vec t1 = tcg_temp_new_vec(type);
949 TCGv_vec t2 = tcg_temp_new_vec(type);
950 uint32_t i;
952 for (i = 0; i < oprsz; i += tysz) {
953 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
954 tcg_gen_ld_vec(t1, cpu_env, bofs + i);
955 if (load_dest) {
956 tcg_gen_ld_vec(t2, cpu_env, dofs + i);
958 fni(vece, t2, t0, t1);
959 tcg_gen_st_vec(t2, cpu_env, dofs + i);
961 tcg_temp_free_vec(t2);
962 tcg_temp_free_vec(t1);
963 tcg_temp_free_vec(t0);
967 * Expand OPSZ bytes worth of three-vector operands and an immediate operand
968 * using host vectors.
970 static void expand_3i_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
971 uint32_t bofs, uint32_t oprsz, uint32_t tysz,
972 TCGType type, int64_t c, bool load_dest,
973 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec,
974 int64_t))
976 TCGv_vec t0 = tcg_temp_new_vec(type);
977 TCGv_vec t1 = tcg_temp_new_vec(type);
978 TCGv_vec t2 = tcg_temp_new_vec(type);
979 uint32_t i;
981 for (i = 0; i < oprsz; i += tysz) {
982 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
983 tcg_gen_ld_vec(t1, cpu_env, bofs + i);
984 if (load_dest) {
985 tcg_gen_ld_vec(t2, cpu_env, dofs + i);
987 fni(vece, t2, t0, t1, c);
988 tcg_gen_st_vec(t2, cpu_env, dofs + i);
990 tcg_temp_free_vec(t0);
991 tcg_temp_free_vec(t1);
992 tcg_temp_free_vec(t2);
995 /* Expand OPSZ bytes worth of four-operand operations using host vectors. */
996 static void expand_4_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
997 uint32_t bofs, uint32_t cofs, uint32_t oprsz,
998 uint32_t tysz, TCGType type, bool write_aofs,
999 void (*fni)(unsigned, TCGv_vec, TCGv_vec,
1000 TCGv_vec, TCGv_vec))
1002 TCGv_vec t0 = tcg_temp_new_vec(type);
1003 TCGv_vec t1 = tcg_temp_new_vec(type);
1004 TCGv_vec t2 = tcg_temp_new_vec(type);
1005 TCGv_vec t3 = tcg_temp_new_vec(type);
1006 uint32_t i;
1008 for (i = 0; i < oprsz; i += tysz) {
1009 tcg_gen_ld_vec(t1, cpu_env, aofs + i);
1010 tcg_gen_ld_vec(t2, cpu_env, bofs + i);
1011 tcg_gen_ld_vec(t3, cpu_env, cofs + i);
1012 fni(vece, t0, t1, t2, t3);
1013 tcg_gen_st_vec(t0, cpu_env, dofs + i);
1014 if (write_aofs) {
1015 tcg_gen_st_vec(t1, cpu_env, aofs + i);
1018 tcg_temp_free_vec(t3);
1019 tcg_temp_free_vec(t2);
1020 tcg_temp_free_vec(t1);
1021 tcg_temp_free_vec(t0);
1024 /* Expand a vector two-operand operation. */
1025 void tcg_gen_gvec_2(uint32_t dofs, uint32_t aofs,
1026 uint32_t oprsz, uint32_t maxsz, const GVecGen2 *g)
1028 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1029 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1030 TCGType type;
1031 uint32_t some;
1033 check_size_align(oprsz, maxsz, dofs | aofs);
1034 check_overlap_2(dofs, aofs, maxsz);
1036 type = 0;
1037 if (g->fniv) {
1038 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1040 switch (type) {
1041 case TCG_TYPE_V256:
1042 /* Recall that ARM SVE allows vector sizes that are not a
1043 * power of 2, but always a multiple of 16. The intent is
1044 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1046 some = QEMU_ALIGN_DOWN(oprsz, 32);
1047 expand_2_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256, g->fniv);
1048 if (some == oprsz) {
1049 break;
1051 dofs += some;
1052 aofs += some;
1053 oprsz -= some;
1054 maxsz -= some;
1055 /* fallthru */
1056 case TCG_TYPE_V128:
1057 expand_2_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128, g->fniv);
1058 break;
1059 case TCG_TYPE_V64:
1060 expand_2_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64, g->fniv);
1061 break;
1063 case 0:
1064 if (g->fni8 && check_size_impl(oprsz, 8)) {
1065 expand_2_i64(dofs, aofs, oprsz, g->fni8);
1066 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1067 expand_2_i32(dofs, aofs, oprsz, g->fni4);
1068 } else {
1069 assert(g->fno != NULL);
1070 tcg_gen_gvec_2_ool(dofs, aofs, oprsz, maxsz, g->data, g->fno);
1071 oprsz = maxsz;
1073 break;
1075 default:
1076 g_assert_not_reached();
1078 tcg_swap_vecop_list(hold_list);
1080 if (oprsz < maxsz) {
1081 expand_clr(dofs + oprsz, maxsz - oprsz);
1085 /* Expand a vector operation with two vectors and an immediate. */
1086 void tcg_gen_gvec_2i(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
1087 uint32_t maxsz, int64_t c, const GVecGen2i *g)
1089 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1090 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1091 TCGType type;
1092 uint32_t some;
1094 check_size_align(oprsz, maxsz, dofs | aofs);
1095 check_overlap_2(dofs, aofs, maxsz);
1097 type = 0;
1098 if (g->fniv) {
1099 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1101 switch (type) {
1102 case TCG_TYPE_V256:
1103 /* Recall that ARM SVE allows vector sizes that are not a
1104 * power of 2, but always a multiple of 16. The intent is
1105 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1107 some = QEMU_ALIGN_DOWN(oprsz, 32);
1108 expand_2i_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256,
1109 c, g->load_dest, g->fniv);
1110 if (some == oprsz) {
1111 break;
1113 dofs += some;
1114 aofs += some;
1115 oprsz -= some;
1116 maxsz -= some;
1117 /* fallthru */
1118 case TCG_TYPE_V128:
1119 expand_2i_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
1120 c, g->load_dest, g->fniv);
1121 break;
1122 case TCG_TYPE_V64:
1123 expand_2i_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
1124 c, g->load_dest, g->fniv);
1125 break;
1127 case 0:
1128 if (g->fni8 && check_size_impl(oprsz, 8)) {
1129 expand_2i_i64(dofs, aofs, oprsz, c, g->load_dest, g->fni8);
1130 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1131 expand_2i_i32(dofs, aofs, oprsz, c, g->load_dest, g->fni4);
1132 } else {
1133 if (g->fno) {
1134 tcg_gen_gvec_2_ool(dofs, aofs, oprsz, maxsz, c, g->fno);
1135 } else {
1136 TCGv_i64 tcg_c = tcg_const_i64(c);
1137 tcg_gen_gvec_2i_ool(dofs, aofs, tcg_c, oprsz,
1138 maxsz, c, g->fnoi);
1139 tcg_temp_free_i64(tcg_c);
1141 oprsz = maxsz;
1143 break;
1145 default:
1146 g_assert_not_reached();
1148 tcg_swap_vecop_list(hold_list);
1150 if (oprsz < maxsz) {
1151 expand_clr(dofs + oprsz, maxsz - oprsz);
1155 /* Expand a vector operation with two vectors and a scalar. */
1156 void tcg_gen_gvec_2s(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
1157 uint32_t maxsz, TCGv_i64 c, const GVecGen2s *g)
1159 TCGType type;
1161 check_size_align(oprsz, maxsz, dofs | aofs);
1162 check_overlap_2(dofs, aofs, maxsz);
1164 type = 0;
1165 if (g->fniv) {
1166 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1168 if (type != 0) {
1169 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1170 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1171 TCGv_vec t_vec = tcg_temp_new_vec(type);
1172 uint32_t some;
1174 tcg_gen_dup_i64_vec(g->vece, t_vec, c);
1176 switch (type) {
1177 case TCG_TYPE_V256:
1178 /* Recall that ARM SVE allows vector sizes that are not a
1179 * power of 2, but always a multiple of 16. The intent is
1180 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1182 some = QEMU_ALIGN_DOWN(oprsz, 32);
1183 expand_2s_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256,
1184 t_vec, g->scalar_first, g->fniv);
1185 if (some == oprsz) {
1186 break;
1188 dofs += some;
1189 aofs += some;
1190 oprsz -= some;
1191 maxsz -= some;
1192 /* fallthru */
1194 case TCG_TYPE_V128:
1195 expand_2s_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
1196 t_vec, g->scalar_first, g->fniv);
1197 break;
1199 case TCG_TYPE_V64:
1200 expand_2s_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
1201 t_vec, g->scalar_first, g->fniv);
1202 break;
1204 default:
1205 g_assert_not_reached();
1207 tcg_temp_free_vec(t_vec);
1208 tcg_swap_vecop_list(hold_list);
1209 } else if (g->fni8 && check_size_impl(oprsz, 8)) {
1210 TCGv_i64 t64 = tcg_temp_new_i64();
1212 gen_dup_i64(g->vece, t64, c);
1213 expand_2s_i64(dofs, aofs, oprsz, t64, g->scalar_first, g->fni8);
1214 tcg_temp_free_i64(t64);
1215 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1216 TCGv_i32 t32 = tcg_temp_new_i32();
1218 tcg_gen_extrl_i64_i32(t32, c);
1219 gen_dup_i32(g->vece, t32, t32);
1220 expand_2s_i32(dofs, aofs, oprsz, t32, g->scalar_first, g->fni4);
1221 tcg_temp_free_i32(t32);
1222 } else {
1223 tcg_gen_gvec_2i_ool(dofs, aofs, c, oprsz, maxsz, 0, g->fno);
1224 return;
1227 if (oprsz < maxsz) {
1228 expand_clr(dofs + oprsz, maxsz - oprsz);
1232 /* Expand a vector three-operand operation. */
1233 void tcg_gen_gvec_3(uint32_t dofs, uint32_t aofs, uint32_t bofs,
1234 uint32_t oprsz, uint32_t maxsz, const GVecGen3 *g)
1236 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1237 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1238 TCGType type;
1239 uint32_t some;
1241 check_size_align(oprsz, maxsz, dofs | aofs | bofs);
1242 check_overlap_3(dofs, aofs, bofs, maxsz);
1244 type = 0;
1245 if (g->fniv) {
1246 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1248 switch (type) {
1249 case TCG_TYPE_V256:
1250 /* Recall that ARM SVE allows vector sizes that are not a
1251 * power of 2, but always a multiple of 16. The intent is
1252 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1254 some = QEMU_ALIGN_DOWN(oprsz, 32);
1255 expand_3_vec(g->vece, dofs, aofs, bofs, some, 32, TCG_TYPE_V256,
1256 g->load_dest, g->fniv);
1257 if (some == oprsz) {
1258 break;
1260 dofs += some;
1261 aofs += some;
1262 bofs += some;
1263 oprsz -= some;
1264 maxsz -= some;
1265 /* fallthru */
1266 case TCG_TYPE_V128:
1267 expand_3_vec(g->vece, dofs, aofs, bofs, oprsz, 16, TCG_TYPE_V128,
1268 g->load_dest, g->fniv);
1269 break;
1270 case TCG_TYPE_V64:
1271 expand_3_vec(g->vece, dofs, aofs, bofs, oprsz, 8, TCG_TYPE_V64,
1272 g->load_dest, g->fniv);
1273 break;
1275 case 0:
1276 if (g->fni8 && check_size_impl(oprsz, 8)) {
1277 expand_3_i64(dofs, aofs, bofs, oprsz, g->load_dest, g->fni8);
1278 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1279 expand_3_i32(dofs, aofs, bofs, oprsz, g->load_dest, g->fni4);
1280 } else {
1281 assert(g->fno != NULL);
1282 tcg_gen_gvec_3_ool(dofs, aofs, bofs, oprsz,
1283 maxsz, g->data, g->fno);
1284 oprsz = maxsz;
1286 break;
1288 default:
1289 g_assert_not_reached();
1291 tcg_swap_vecop_list(hold_list);
1293 if (oprsz < maxsz) {
1294 expand_clr(dofs + oprsz, maxsz - oprsz);
1298 /* Expand a vector operation with three vectors and an immediate. */
1299 void tcg_gen_gvec_3i(uint32_t dofs, uint32_t aofs, uint32_t bofs,
1300 uint32_t oprsz, uint32_t maxsz, int64_t c,
1301 const GVecGen3i *g)
1303 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1304 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1305 TCGType type;
1306 uint32_t some;
1308 check_size_align(oprsz, maxsz, dofs | aofs | bofs);
1309 check_overlap_3(dofs, aofs, bofs, maxsz);
1311 type = 0;
1312 if (g->fniv) {
1313 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1315 switch (type) {
1316 case TCG_TYPE_V256:
1318 * Recall that ARM SVE allows vector sizes that are not a
1319 * power of 2, but always a multiple of 16. The intent is
1320 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1322 some = QEMU_ALIGN_DOWN(oprsz, 32);
1323 expand_3i_vec(g->vece, dofs, aofs, bofs, some, 32, TCG_TYPE_V256,
1324 c, g->load_dest, g->fniv);
1325 if (some == oprsz) {
1326 break;
1328 dofs += some;
1329 aofs += some;
1330 bofs += some;
1331 oprsz -= some;
1332 maxsz -= some;
1333 /* fallthru */
1334 case TCG_TYPE_V128:
1335 expand_3i_vec(g->vece, dofs, aofs, bofs, oprsz, 16, TCG_TYPE_V128,
1336 c, g->load_dest, g->fniv);
1337 break;
1338 case TCG_TYPE_V64:
1339 expand_3i_vec(g->vece, dofs, aofs, bofs, oprsz, 8, TCG_TYPE_V64,
1340 c, g->load_dest, g->fniv);
1341 break;
1343 case 0:
1344 if (g->fni8 && check_size_impl(oprsz, 8)) {
1345 expand_3i_i64(dofs, aofs, bofs, oprsz, c, g->load_dest, g->fni8);
1346 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1347 expand_3i_i32(dofs, aofs, bofs, oprsz, c, g->load_dest, g->fni4);
1348 } else {
1349 assert(g->fno != NULL);
1350 tcg_gen_gvec_3_ool(dofs, aofs, bofs, oprsz, maxsz, c, g->fno);
1351 oprsz = maxsz;
1353 break;
1355 default:
1356 g_assert_not_reached();
1358 tcg_swap_vecop_list(hold_list);
1360 if (oprsz < maxsz) {
1361 expand_clr(dofs + oprsz, maxsz - oprsz);
1365 /* Expand a vector four-operand operation. */
1366 void tcg_gen_gvec_4(uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t cofs,
1367 uint32_t oprsz, uint32_t maxsz, const GVecGen4 *g)
1369 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1370 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1371 TCGType type;
1372 uint32_t some;
1374 check_size_align(oprsz, maxsz, dofs | aofs | bofs | cofs);
1375 check_overlap_4(dofs, aofs, bofs, cofs, maxsz);
1377 type = 0;
1378 if (g->fniv) {
1379 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1381 switch (type) {
1382 case TCG_TYPE_V256:
1383 /* Recall that ARM SVE allows vector sizes that are not a
1384 * power of 2, but always a multiple of 16. The intent is
1385 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1387 some = QEMU_ALIGN_DOWN(oprsz, 32);
1388 expand_4_vec(g->vece, dofs, aofs, bofs, cofs, some,
1389 32, TCG_TYPE_V256, g->write_aofs, g->fniv);
1390 if (some == oprsz) {
1391 break;
1393 dofs += some;
1394 aofs += some;
1395 bofs += some;
1396 cofs += some;
1397 oprsz -= some;
1398 maxsz -= some;
1399 /* fallthru */
1400 case TCG_TYPE_V128:
1401 expand_4_vec(g->vece, dofs, aofs, bofs, cofs, oprsz,
1402 16, TCG_TYPE_V128, g->write_aofs, g->fniv);
1403 break;
1404 case TCG_TYPE_V64:
1405 expand_4_vec(g->vece, dofs, aofs, bofs, cofs, oprsz,
1406 8, TCG_TYPE_V64, g->write_aofs, g->fniv);
1407 break;
1409 case 0:
1410 if (g->fni8 && check_size_impl(oprsz, 8)) {
1411 expand_4_i64(dofs, aofs, bofs, cofs, oprsz,
1412 g->write_aofs, g->fni8);
1413 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1414 expand_4_i32(dofs, aofs, bofs, cofs, oprsz,
1415 g->write_aofs, g->fni4);
1416 } else {
1417 assert(g->fno != NULL);
1418 tcg_gen_gvec_4_ool(dofs, aofs, bofs, cofs,
1419 oprsz, maxsz, g->data, g->fno);
1420 oprsz = maxsz;
1422 break;
1424 default:
1425 g_assert_not_reached();
1427 tcg_swap_vecop_list(hold_list);
1429 if (oprsz < maxsz) {
1430 expand_clr(dofs + oprsz, maxsz - oprsz);
1435 * Expand specific vector operations.
1438 static void vec_mov2(unsigned vece, TCGv_vec a, TCGv_vec b)
1440 tcg_gen_mov_vec(a, b);
1443 void tcg_gen_gvec_mov(unsigned vece, uint32_t dofs, uint32_t aofs,
1444 uint32_t oprsz, uint32_t maxsz)
1446 static const GVecGen2 g = {
1447 .fni8 = tcg_gen_mov_i64,
1448 .fniv = vec_mov2,
1449 .fno = gen_helper_gvec_mov,
1450 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1452 if (dofs != aofs) {
1453 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g);
1454 } else {
1455 check_size_align(oprsz, maxsz, dofs);
1456 if (oprsz < maxsz) {
1457 expand_clr(dofs + oprsz, maxsz - oprsz);
1462 void tcg_gen_gvec_dup_i32(unsigned vece, uint32_t dofs, uint32_t oprsz,
1463 uint32_t maxsz, TCGv_i32 in)
1465 check_size_align(oprsz, maxsz, dofs);
1466 tcg_debug_assert(vece <= MO_32);
1467 do_dup(vece, dofs, oprsz, maxsz, in, NULL, 0);
1470 void tcg_gen_gvec_dup_i64(unsigned vece, uint32_t dofs, uint32_t oprsz,
1471 uint32_t maxsz, TCGv_i64 in)
1473 check_size_align(oprsz, maxsz, dofs);
1474 tcg_debug_assert(vece <= MO_64);
1475 do_dup(vece, dofs, oprsz, maxsz, NULL, in, 0);
1478 void tcg_gen_gvec_dup_mem(unsigned vece, uint32_t dofs, uint32_t aofs,
1479 uint32_t oprsz, uint32_t maxsz)
1481 check_size_align(oprsz, maxsz, dofs);
1482 if (vece <= MO_64) {
1483 TCGType type = choose_vector_type(NULL, vece, oprsz, 0);
1484 if (type != 0) {
1485 TCGv_vec t_vec = tcg_temp_new_vec(type);
1486 tcg_gen_dup_mem_vec(vece, t_vec, cpu_env, aofs);
1487 do_dup_store(type, dofs, oprsz, maxsz, t_vec);
1488 tcg_temp_free_vec(t_vec);
1489 } else if (vece <= MO_32) {
1490 TCGv_i32 in = tcg_temp_new_i32();
1491 switch (vece) {
1492 case MO_8:
1493 tcg_gen_ld8u_i32(in, cpu_env, aofs);
1494 break;
1495 case MO_16:
1496 tcg_gen_ld16u_i32(in, cpu_env, aofs);
1497 break;
1498 default:
1499 tcg_gen_ld_i32(in, cpu_env, aofs);
1500 break;
1502 do_dup(vece, dofs, oprsz, maxsz, in, NULL, 0);
1503 tcg_temp_free_i32(in);
1504 } else {
1505 TCGv_i64 in = tcg_temp_new_i64();
1506 tcg_gen_ld_i64(in, cpu_env, aofs);
1507 do_dup(vece, dofs, oprsz, maxsz, NULL, in, 0);
1508 tcg_temp_free_i64(in);
1510 } else {
1511 /* 128-bit duplicate. */
1512 /* ??? Dup to 256-bit vector. */
1513 int i;
1515 tcg_debug_assert(vece == 4);
1516 tcg_debug_assert(oprsz >= 16);
1517 if (TCG_TARGET_HAS_v128) {
1518 TCGv_vec in = tcg_temp_new_vec(TCG_TYPE_V128);
1520 tcg_gen_ld_vec(in, cpu_env, aofs);
1521 for (i = 0; i < oprsz; i += 16) {
1522 tcg_gen_st_vec(in, cpu_env, dofs + i);
1524 tcg_temp_free_vec(in);
1525 } else {
1526 TCGv_i64 in0 = tcg_temp_new_i64();
1527 TCGv_i64 in1 = tcg_temp_new_i64();
1529 tcg_gen_ld_i64(in0, cpu_env, aofs);
1530 tcg_gen_ld_i64(in1, cpu_env, aofs + 8);
1531 for (i = 0; i < oprsz; i += 16) {
1532 tcg_gen_st_i64(in0, cpu_env, dofs + i);
1533 tcg_gen_st_i64(in1, cpu_env, dofs + i + 8);
1535 tcg_temp_free_i64(in0);
1536 tcg_temp_free_i64(in1);
1538 if (oprsz < maxsz) {
1539 expand_clr(dofs + oprsz, maxsz - oprsz);
1544 void tcg_gen_gvec_dup64i(uint32_t dofs, uint32_t oprsz,
1545 uint32_t maxsz, uint64_t x)
1547 check_size_align(oprsz, maxsz, dofs);
1548 do_dup(MO_64, dofs, oprsz, maxsz, NULL, NULL, x);
1551 void tcg_gen_gvec_dup32i(uint32_t dofs, uint32_t oprsz,
1552 uint32_t maxsz, uint32_t x)
1554 check_size_align(oprsz, maxsz, dofs);
1555 do_dup(MO_32, dofs, oprsz, maxsz, NULL, NULL, x);
1558 void tcg_gen_gvec_dup16i(uint32_t dofs, uint32_t oprsz,
1559 uint32_t maxsz, uint16_t x)
1561 check_size_align(oprsz, maxsz, dofs);
1562 do_dup(MO_16, dofs, oprsz, maxsz, NULL, NULL, x);
1565 void tcg_gen_gvec_dup8i(uint32_t dofs, uint32_t oprsz,
1566 uint32_t maxsz, uint8_t x)
1568 check_size_align(oprsz, maxsz, dofs);
1569 do_dup(MO_8, dofs, oprsz, maxsz, NULL, NULL, x);
1572 void tcg_gen_gvec_not(unsigned vece, uint32_t dofs, uint32_t aofs,
1573 uint32_t oprsz, uint32_t maxsz)
1575 static const GVecGen2 g = {
1576 .fni8 = tcg_gen_not_i64,
1577 .fniv = tcg_gen_not_vec,
1578 .fno = gen_helper_gvec_not,
1579 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1581 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g);
1584 /* Perform a vector addition using normal addition and a mask. The mask
1585 should be the sign bit of each lane. This 6-operation form is more
1586 efficient than separate additions when there are 4 or more lanes in
1587 the 64-bit operation. */
1588 static void gen_addv_mask(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b, TCGv_i64 m)
1590 TCGv_i64 t1 = tcg_temp_new_i64();
1591 TCGv_i64 t2 = tcg_temp_new_i64();
1592 TCGv_i64 t3 = tcg_temp_new_i64();
1594 tcg_gen_andc_i64(t1, a, m);
1595 tcg_gen_andc_i64(t2, b, m);
1596 tcg_gen_xor_i64(t3, a, b);
1597 tcg_gen_add_i64(d, t1, t2);
1598 tcg_gen_and_i64(t3, t3, m);
1599 tcg_gen_xor_i64(d, d, t3);
1601 tcg_temp_free_i64(t1);
1602 tcg_temp_free_i64(t2);
1603 tcg_temp_free_i64(t3);
1606 void tcg_gen_vec_add8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1608 TCGv_i64 m = tcg_const_i64(dup_const(MO_8, 0x80));
1609 gen_addv_mask(d, a, b, m);
1610 tcg_temp_free_i64(m);
1613 void tcg_gen_vec_add16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1615 TCGv_i64 m = tcg_const_i64(dup_const(MO_16, 0x8000));
1616 gen_addv_mask(d, a, b, m);
1617 tcg_temp_free_i64(m);
1620 void tcg_gen_vec_add32_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1622 TCGv_i64 t1 = tcg_temp_new_i64();
1623 TCGv_i64 t2 = tcg_temp_new_i64();
1625 tcg_gen_andi_i64(t1, a, ~0xffffffffull);
1626 tcg_gen_add_i64(t2, a, b);
1627 tcg_gen_add_i64(t1, t1, b);
1628 tcg_gen_deposit_i64(d, t1, t2, 0, 32);
1630 tcg_temp_free_i64(t1);
1631 tcg_temp_free_i64(t2);
1634 static const TCGOpcode vecop_list_add[] = { INDEX_op_add_vec, 0 };
1636 void tcg_gen_gvec_add(unsigned vece, uint32_t dofs, uint32_t aofs,
1637 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1639 static const GVecGen3 g[4] = {
1640 { .fni8 = tcg_gen_vec_add8_i64,
1641 .fniv = tcg_gen_add_vec,
1642 .fno = gen_helper_gvec_add8,
1643 .opt_opc = vecop_list_add,
1644 .vece = MO_8 },
1645 { .fni8 = tcg_gen_vec_add16_i64,
1646 .fniv = tcg_gen_add_vec,
1647 .fno = gen_helper_gvec_add16,
1648 .opt_opc = vecop_list_add,
1649 .vece = MO_16 },
1650 { .fni4 = tcg_gen_add_i32,
1651 .fniv = tcg_gen_add_vec,
1652 .fno = gen_helper_gvec_add32,
1653 .opt_opc = vecop_list_add,
1654 .vece = MO_32 },
1655 { .fni8 = tcg_gen_add_i64,
1656 .fniv = tcg_gen_add_vec,
1657 .fno = gen_helper_gvec_add64,
1658 .opt_opc = vecop_list_add,
1659 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1660 .vece = MO_64 },
1663 tcg_debug_assert(vece <= MO_64);
1664 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1667 void tcg_gen_gvec_adds(unsigned vece, uint32_t dofs, uint32_t aofs,
1668 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
1670 static const GVecGen2s g[4] = {
1671 { .fni8 = tcg_gen_vec_add8_i64,
1672 .fniv = tcg_gen_add_vec,
1673 .fno = gen_helper_gvec_adds8,
1674 .opt_opc = vecop_list_add,
1675 .vece = MO_8 },
1676 { .fni8 = tcg_gen_vec_add16_i64,
1677 .fniv = tcg_gen_add_vec,
1678 .fno = gen_helper_gvec_adds16,
1679 .opt_opc = vecop_list_add,
1680 .vece = MO_16 },
1681 { .fni4 = tcg_gen_add_i32,
1682 .fniv = tcg_gen_add_vec,
1683 .fno = gen_helper_gvec_adds32,
1684 .opt_opc = vecop_list_add,
1685 .vece = MO_32 },
1686 { .fni8 = tcg_gen_add_i64,
1687 .fniv = tcg_gen_add_vec,
1688 .fno = gen_helper_gvec_adds64,
1689 .opt_opc = vecop_list_add,
1690 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1691 .vece = MO_64 },
1694 tcg_debug_assert(vece <= MO_64);
1695 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]);
1698 void tcg_gen_gvec_addi(unsigned vece, uint32_t dofs, uint32_t aofs,
1699 int64_t c, uint32_t oprsz, uint32_t maxsz)
1701 TCGv_i64 tmp = tcg_const_i64(c);
1702 tcg_gen_gvec_adds(vece, dofs, aofs, tmp, oprsz, maxsz);
1703 tcg_temp_free_i64(tmp);
1706 static const TCGOpcode vecop_list_sub[] = { INDEX_op_sub_vec, 0 };
1708 void tcg_gen_gvec_subs(unsigned vece, uint32_t dofs, uint32_t aofs,
1709 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
1711 static const GVecGen2s g[4] = {
1712 { .fni8 = tcg_gen_vec_sub8_i64,
1713 .fniv = tcg_gen_sub_vec,
1714 .fno = gen_helper_gvec_subs8,
1715 .opt_opc = vecop_list_sub,
1716 .vece = MO_8 },
1717 { .fni8 = tcg_gen_vec_sub16_i64,
1718 .fniv = tcg_gen_sub_vec,
1719 .fno = gen_helper_gvec_subs16,
1720 .opt_opc = vecop_list_sub,
1721 .vece = MO_16 },
1722 { .fni4 = tcg_gen_sub_i32,
1723 .fniv = tcg_gen_sub_vec,
1724 .fno = gen_helper_gvec_subs32,
1725 .opt_opc = vecop_list_sub,
1726 .vece = MO_32 },
1727 { .fni8 = tcg_gen_sub_i64,
1728 .fniv = tcg_gen_sub_vec,
1729 .fno = gen_helper_gvec_subs64,
1730 .opt_opc = vecop_list_sub,
1731 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1732 .vece = MO_64 },
1735 tcg_debug_assert(vece <= MO_64);
1736 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]);
1739 /* Perform a vector subtraction using normal subtraction and a mask.
1740 Compare gen_addv_mask above. */
1741 static void gen_subv_mask(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b, TCGv_i64 m)
1743 TCGv_i64 t1 = tcg_temp_new_i64();
1744 TCGv_i64 t2 = tcg_temp_new_i64();
1745 TCGv_i64 t3 = tcg_temp_new_i64();
1747 tcg_gen_or_i64(t1, a, m);
1748 tcg_gen_andc_i64(t2, b, m);
1749 tcg_gen_eqv_i64(t3, a, b);
1750 tcg_gen_sub_i64(d, t1, t2);
1751 tcg_gen_and_i64(t3, t3, m);
1752 tcg_gen_xor_i64(d, d, t3);
1754 tcg_temp_free_i64(t1);
1755 tcg_temp_free_i64(t2);
1756 tcg_temp_free_i64(t3);
1759 void tcg_gen_vec_sub8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1761 TCGv_i64 m = tcg_const_i64(dup_const(MO_8, 0x80));
1762 gen_subv_mask(d, a, b, m);
1763 tcg_temp_free_i64(m);
1766 void tcg_gen_vec_sub16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1768 TCGv_i64 m = tcg_const_i64(dup_const(MO_16, 0x8000));
1769 gen_subv_mask(d, a, b, m);
1770 tcg_temp_free_i64(m);
1773 void tcg_gen_vec_sub32_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1775 TCGv_i64 t1 = tcg_temp_new_i64();
1776 TCGv_i64 t2 = tcg_temp_new_i64();
1778 tcg_gen_andi_i64(t1, b, ~0xffffffffull);
1779 tcg_gen_sub_i64(t2, a, b);
1780 tcg_gen_sub_i64(t1, a, t1);
1781 tcg_gen_deposit_i64(d, t1, t2, 0, 32);
1783 tcg_temp_free_i64(t1);
1784 tcg_temp_free_i64(t2);
1787 void tcg_gen_gvec_sub(unsigned vece, uint32_t dofs, uint32_t aofs,
1788 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1790 static const GVecGen3 g[4] = {
1791 { .fni8 = tcg_gen_vec_sub8_i64,
1792 .fniv = tcg_gen_sub_vec,
1793 .fno = gen_helper_gvec_sub8,
1794 .opt_opc = vecop_list_sub,
1795 .vece = MO_8 },
1796 { .fni8 = tcg_gen_vec_sub16_i64,
1797 .fniv = tcg_gen_sub_vec,
1798 .fno = gen_helper_gvec_sub16,
1799 .opt_opc = vecop_list_sub,
1800 .vece = MO_16 },
1801 { .fni4 = tcg_gen_sub_i32,
1802 .fniv = tcg_gen_sub_vec,
1803 .fno = gen_helper_gvec_sub32,
1804 .opt_opc = vecop_list_sub,
1805 .vece = MO_32 },
1806 { .fni8 = tcg_gen_sub_i64,
1807 .fniv = tcg_gen_sub_vec,
1808 .fno = gen_helper_gvec_sub64,
1809 .opt_opc = vecop_list_sub,
1810 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1811 .vece = MO_64 },
1814 tcg_debug_assert(vece <= MO_64);
1815 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1818 static const TCGOpcode vecop_list_mul[] = { INDEX_op_mul_vec, 0 };
1820 void tcg_gen_gvec_mul(unsigned vece, uint32_t dofs, uint32_t aofs,
1821 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1823 static const GVecGen3 g[4] = {
1824 { .fniv = tcg_gen_mul_vec,
1825 .fno = gen_helper_gvec_mul8,
1826 .opt_opc = vecop_list_mul,
1827 .vece = MO_8 },
1828 { .fniv = tcg_gen_mul_vec,
1829 .fno = gen_helper_gvec_mul16,
1830 .opt_opc = vecop_list_mul,
1831 .vece = MO_16 },
1832 { .fni4 = tcg_gen_mul_i32,
1833 .fniv = tcg_gen_mul_vec,
1834 .fno = gen_helper_gvec_mul32,
1835 .opt_opc = vecop_list_mul,
1836 .vece = MO_32 },
1837 { .fni8 = tcg_gen_mul_i64,
1838 .fniv = tcg_gen_mul_vec,
1839 .fno = gen_helper_gvec_mul64,
1840 .opt_opc = vecop_list_mul,
1841 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1842 .vece = MO_64 },
1845 tcg_debug_assert(vece <= MO_64);
1846 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1849 void tcg_gen_gvec_muls(unsigned vece, uint32_t dofs, uint32_t aofs,
1850 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
1852 static const GVecGen2s g[4] = {
1853 { .fniv = tcg_gen_mul_vec,
1854 .fno = gen_helper_gvec_muls8,
1855 .opt_opc = vecop_list_mul,
1856 .vece = MO_8 },
1857 { .fniv = tcg_gen_mul_vec,
1858 .fno = gen_helper_gvec_muls16,
1859 .opt_opc = vecop_list_mul,
1860 .vece = MO_16 },
1861 { .fni4 = tcg_gen_mul_i32,
1862 .fniv = tcg_gen_mul_vec,
1863 .fno = gen_helper_gvec_muls32,
1864 .opt_opc = vecop_list_mul,
1865 .vece = MO_32 },
1866 { .fni8 = tcg_gen_mul_i64,
1867 .fniv = tcg_gen_mul_vec,
1868 .fno = gen_helper_gvec_muls64,
1869 .opt_opc = vecop_list_mul,
1870 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1871 .vece = MO_64 },
1874 tcg_debug_assert(vece <= MO_64);
1875 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]);
1878 void tcg_gen_gvec_muli(unsigned vece, uint32_t dofs, uint32_t aofs,
1879 int64_t c, uint32_t oprsz, uint32_t maxsz)
1881 TCGv_i64 tmp = tcg_const_i64(c);
1882 tcg_gen_gvec_muls(vece, dofs, aofs, tmp, oprsz, maxsz);
1883 tcg_temp_free_i64(tmp);
1886 void tcg_gen_gvec_ssadd(unsigned vece, uint32_t dofs, uint32_t aofs,
1887 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1889 static const TCGOpcode vecop_list[] = { INDEX_op_ssadd_vec, 0 };
1890 static const GVecGen3 g[4] = {
1891 { .fniv = tcg_gen_ssadd_vec,
1892 .fno = gen_helper_gvec_ssadd8,
1893 .opt_opc = vecop_list,
1894 .vece = MO_8 },
1895 { .fniv = tcg_gen_ssadd_vec,
1896 .fno = gen_helper_gvec_ssadd16,
1897 .opt_opc = vecop_list,
1898 .vece = MO_16 },
1899 { .fniv = tcg_gen_ssadd_vec,
1900 .fno = gen_helper_gvec_ssadd32,
1901 .opt_opc = vecop_list,
1902 .vece = MO_32 },
1903 { .fniv = tcg_gen_ssadd_vec,
1904 .fno = gen_helper_gvec_ssadd64,
1905 .opt_opc = vecop_list,
1906 .vece = MO_64 },
1908 tcg_debug_assert(vece <= MO_64);
1909 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1912 void tcg_gen_gvec_sssub(unsigned vece, uint32_t dofs, uint32_t aofs,
1913 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1915 static const TCGOpcode vecop_list[] = { INDEX_op_sssub_vec, 0 };
1916 static const GVecGen3 g[4] = {
1917 { .fniv = tcg_gen_sssub_vec,
1918 .fno = gen_helper_gvec_sssub8,
1919 .opt_opc = vecop_list,
1920 .vece = MO_8 },
1921 { .fniv = tcg_gen_sssub_vec,
1922 .fno = gen_helper_gvec_sssub16,
1923 .opt_opc = vecop_list,
1924 .vece = MO_16 },
1925 { .fniv = tcg_gen_sssub_vec,
1926 .fno = gen_helper_gvec_sssub32,
1927 .opt_opc = vecop_list,
1928 .vece = MO_32 },
1929 { .fniv = tcg_gen_sssub_vec,
1930 .fno = gen_helper_gvec_sssub64,
1931 .opt_opc = vecop_list,
1932 .vece = MO_64 },
1934 tcg_debug_assert(vece <= MO_64);
1935 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1938 static void tcg_gen_usadd_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
1940 TCGv_i32 max = tcg_const_i32(-1);
1941 tcg_gen_add_i32(d, a, b);
1942 tcg_gen_movcond_i32(TCG_COND_LTU, d, d, a, max, d);
1943 tcg_temp_free_i32(max);
1946 static void tcg_gen_usadd_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1948 TCGv_i64 max = tcg_const_i64(-1);
1949 tcg_gen_add_i64(d, a, b);
1950 tcg_gen_movcond_i64(TCG_COND_LTU, d, d, a, max, d);
1951 tcg_temp_free_i64(max);
1954 void tcg_gen_gvec_usadd(unsigned vece, uint32_t dofs, uint32_t aofs,
1955 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1957 static const TCGOpcode vecop_list[] = { INDEX_op_usadd_vec, 0 };
1958 static const GVecGen3 g[4] = {
1959 { .fniv = tcg_gen_usadd_vec,
1960 .fno = gen_helper_gvec_usadd8,
1961 .opt_opc = vecop_list,
1962 .vece = MO_8 },
1963 { .fniv = tcg_gen_usadd_vec,
1964 .fno = gen_helper_gvec_usadd16,
1965 .opt_opc = vecop_list,
1966 .vece = MO_16 },
1967 { .fni4 = tcg_gen_usadd_i32,
1968 .fniv = tcg_gen_usadd_vec,
1969 .fno = gen_helper_gvec_usadd32,
1970 .opt_opc = vecop_list,
1971 .vece = MO_32 },
1972 { .fni8 = tcg_gen_usadd_i64,
1973 .fniv = tcg_gen_usadd_vec,
1974 .fno = gen_helper_gvec_usadd64,
1975 .opt_opc = vecop_list,
1976 .vece = MO_64 }
1978 tcg_debug_assert(vece <= MO_64);
1979 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1982 static void tcg_gen_ussub_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
1984 TCGv_i32 min = tcg_const_i32(0);
1985 tcg_gen_sub_i32(d, a, b);
1986 tcg_gen_movcond_i32(TCG_COND_LTU, d, a, b, min, d);
1987 tcg_temp_free_i32(min);
1990 static void tcg_gen_ussub_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1992 TCGv_i64 min = tcg_const_i64(0);
1993 tcg_gen_sub_i64(d, a, b);
1994 tcg_gen_movcond_i64(TCG_COND_LTU, d, a, b, min, d);
1995 tcg_temp_free_i64(min);
1998 void tcg_gen_gvec_ussub(unsigned vece, uint32_t dofs, uint32_t aofs,
1999 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2001 static const TCGOpcode vecop_list[] = { INDEX_op_ussub_vec, 0 };
2002 static const GVecGen3 g[4] = {
2003 { .fniv = tcg_gen_ussub_vec,
2004 .fno = gen_helper_gvec_ussub8,
2005 .opt_opc = vecop_list,
2006 .vece = MO_8 },
2007 { .fniv = tcg_gen_ussub_vec,
2008 .fno = gen_helper_gvec_ussub16,
2009 .opt_opc = vecop_list,
2010 .vece = MO_16 },
2011 { .fni4 = tcg_gen_ussub_i32,
2012 .fniv = tcg_gen_ussub_vec,
2013 .fno = gen_helper_gvec_ussub32,
2014 .opt_opc = vecop_list,
2015 .vece = MO_32 },
2016 { .fni8 = tcg_gen_ussub_i64,
2017 .fniv = tcg_gen_ussub_vec,
2018 .fno = gen_helper_gvec_ussub64,
2019 .opt_opc = vecop_list,
2020 .vece = MO_64 }
2022 tcg_debug_assert(vece <= MO_64);
2023 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2026 void tcg_gen_gvec_smin(unsigned vece, uint32_t dofs, uint32_t aofs,
2027 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2029 static const TCGOpcode vecop_list[] = { INDEX_op_smin_vec, 0 };
2030 static const GVecGen3 g[4] = {
2031 { .fniv = tcg_gen_smin_vec,
2032 .fno = gen_helper_gvec_smin8,
2033 .opt_opc = vecop_list,
2034 .vece = MO_8 },
2035 { .fniv = tcg_gen_smin_vec,
2036 .fno = gen_helper_gvec_smin16,
2037 .opt_opc = vecop_list,
2038 .vece = MO_16 },
2039 { .fni4 = tcg_gen_smin_i32,
2040 .fniv = tcg_gen_smin_vec,
2041 .fno = gen_helper_gvec_smin32,
2042 .opt_opc = vecop_list,
2043 .vece = MO_32 },
2044 { .fni8 = tcg_gen_smin_i64,
2045 .fniv = tcg_gen_smin_vec,
2046 .fno = gen_helper_gvec_smin64,
2047 .opt_opc = vecop_list,
2048 .vece = MO_64 }
2050 tcg_debug_assert(vece <= MO_64);
2051 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2054 void tcg_gen_gvec_umin(unsigned vece, uint32_t dofs, uint32_t aofs,
2055 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2057 static const TCGOpcode vecop_list[] = { INDEX_op_umin_vec, 0 };
2058 static const GVecGen3 g[4] = {
2059 { .fniv = tcg_gen_umin_vec,
2060 .fno = gen_helper_gvec_umin8,
2061 .opt_opc = vecop_list,
2062 .vece = MO_8 },
2063 { .fniv = tcg_gen_umin_vec,
2064 .fno = gen_helper_gvec_umin16,
2065 .opt_opc = vecop_list,
2066 .vece = MO_16 },
2067 { .fni4 = tcg_gen_umin_i32,
2068 .fniv = tcg_gen_umin_vec,
2069 .fno = gen_helper_gvec_umin32,
2070 .opt_opc = vecop_list,
2071 .vece = MO_32 },
2072 { .fni8 = tcg_gen_umin_i64,
2073 .fniv = tcg_gen_umin_vec,
2074 .fno = gen_helper_gvec_umin64,
2075 .opt_opc = vecop_list,
2076 .vece = MO_64 }
2078 tcg_debug_assert(vece <= MO_64);
2079 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2082 void tcg_gen_gvec_smax(unsigned vece, uint32_t dofs, uint32_t aofs,
2083 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2085 static const TCGOpcode vecop_list[] = { INDEX_op_smax_vec, 0 };
2086 static const GVecGen3 g[4] = {
2087 { .fniv = tcg_gen_smax_vec,
2088 .fno = gen_helper_gvec_smax8,
2089 .opt_opc = vecop_list,
2090 .vece = MO_8 },
2091 { .fniv = tcg_gen_smax_vec,
2092 .fno = gen_helper_gvec_smax16,
2093 .opt_opc = vecop_list,
2094 .vece = MO_16 },
2095 { .fni4 = tcg_gen_smax_i32,
2096 .fniv = tcg_gen_smax_vec,
2097 .fno = gen_helper_gvec_smax32,
2098 .opt_opc = vecop_list,
2099 .vece = MO_32 },
2100 { .fni8 = tcg_gen_smax_i64,
2101 .fniv = tcg_gen_smax_vec,
2102 .fno = gen_helper_gvec_smax64,
2103 .opt_opc = vecop_list,
2104 .vece = MO_64 }
2106 tcg_debug_assert(vece <= MO_64);
2107 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2110 void tcg_gen_gvec_umax(unsigned vece, uint32_t dofs, uint32_t aofs,
2111 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2113 static const TCGOpcode vecop_list[] = { INDEX_op_umax_vec, 0 };
2114 static const GVecGen3 g[4] = {
2115 { .fniv = tcg_gen_umax_vec,
2116 .fno = gen_helper_gvec_umax8,
2117 .opt_opc = vecop_list,
2118 .vece = MO_8 },
2119 { .fniv = tcg_gen_umax_vec,
2120 .fno = gen_helper_gvec_umax16,
2121 .opt_opc = vecop_list,
2122 .vece = MO_16 },
2123 { .fni4 = tcg_gen_umax_i32,
2124 .fniv = tcg_gen_umax_vec,
2125 .fno = gen_helper_gvec_umax32,
2126 .opt_opc = vecop_list,
2127 .vece = MO_32 },
2128 { .fni8 = tcg_gen_umax_i64,
2129 .fniv = tcg_gen_umax_vec,
2130 .fno = gen_helper_gvec_umax64,
2131 .opt_opc = vecop_list,
2132 .vece = MO_64 }
2134 tcg_debug_assert(vece <= MO_64);
2135 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2138 /* Perform a vector negation using normal negation and a mask.
2139 Compare gen_subv_mask above. */
2140 static void gen_negv_mask(TCGv_i64 d, TCGv_i64 b, TCGv_i64 m)
2142 TCGv_i64 t2 = tcg_temp_new_i64();
2143 TCGv_i64 t3 = tcg_temp_new_i64();
2145 tcg_gen_andc_i64(t3, m, b);
2146 tcg_gen_andc_i64(t2, b, m);
2147 tcg_gen_sub_i64(d, m, t2);
2148 tcg_gen_xor_i64(d, d, t3);
2150 tcg_temp_free_i64(t2);
2151 tcg_temp_free_i64(t3);
2154 void tcg_gen_vec_neg8_i64(TCGv_i64 d, TCGv_i64 b)
2156 TCGv_i64 m = tcg_const_i64(dup_const(MO_8, 0x80));
2157 gen_negv_mask(d, b, m);
2158 tcg_temp_free_i64(m);
2161 void tcg_gen_vec_neg16_i64(TCGv_i64 d, TCGv_i64 b)
2163 TCGv_i64 m = tcg_const_i64(dup_const(MO_16, 0x8000));
2164 gen_negv_mask(d, b, m);
2165 tcg_temp_free_i64(m);
2168 void tcg_gen_vec_neg32_i64(TCGv_i64 d, TCGv_i64 b)
2170 TCGv_i64 t1 = tcg_temp_new_i64();
2171 TCGv_i64 t2 = tcg_temp_new_i64();
2173 tcg_gen_andi_i64(t1, b, ~0xffffffffull);
2174 tcg_gen_neg_i64(t2, b);
2175 tcg_gen_neg_i64(t1, t1);
2176 tcg_gen_deposit_i64(d, t1, t2, 0, 32);
2178 tcg_temp_free_i64(t1);
2179 tcg_temp_free_i64(t2);
2182 void tcg_gen_gvec_neg(unsigned vece, uint32_t dofs, uint32_t aofs,
2183 uint32_t oprsz, uint32_t maxsz)
2185 static const TCGOpcode vecop_list[] = { INDEX_op_neg_vec, 0 };
2186 static const GVecGen2 g[4] = {
2187 { .fni8 = tcg_gen_vec_neg8_i64,
2188 .fniv = tcg_gen_neg_vec,
2189 .fno = gen_helper_gvec_neg8,
2190 .opt_opc = vecop_list,
2191 .vece = MO_8 },
2192 { .fni8 = tcg_gen_vec_neg16_i64,
2193 .fniv = tcg_gen_neg_vec,
2194 .fno = gen_helper_gvec_neg16,
2195 .opt_opc = vecop_list,
2196 .vece = MO_16 },
2197 { .fni4 = tcg_gen_neg_i32,
2198 .fniv = tcg_gen_neg_vec,
2199 .fno = gen_helper_gvec_neg32,
2200 .opt_opc = vecop_list,
2201 .vece = MO_32 },
2202 { .fni8 = tcg_gen_neg_i64,
2203 .fniv = tcg_gen_neg_vec,
2204 .fno = gen_helper_gvec_neg64,
2205 .opt_opc = vecop_list,
2206 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2207 .vece = MO_64 },
2210 tcg_debug_assert(vece <= MO_64);
2211 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g[vece]);
2214 static void gen_absv_mask(TCGv_i64 d, TCGv_i64 b, unsigned vece)
2216 TCGv_i64 t = tcg_temp_new_i64();
2217 int nbit = 8 << vece;
2219 /* Create -1 for each negative element. */
2220 tcg_gen_shri_i64(t, b, nbit - 1);
2221 tcg_gen_andi_i64(t, t, dup_const(vece, 1));
2222 tcg_gen_muli_i64(t, t, (1 << nbit) - 1);
2225 * Invert (via xor -1) and add one (via sub -1).
2226 * Because of the ordering the msb is cleared,
2227 * so we never have carry into the next element.
2229 tcg_gen_xor_i64(d, b, t);
2230 tcg_gen_sub_i64(d, d, t);
2232 tcg_temp_free_i64(t);
2235 static void tcg_gen_vec_abs8_i64(TCGv_i64 d, TCGv_i64 b)
2237 gen_absv_mask(d, b, MO_8);
2240 static void tcg_gen_vec_abs16_i64(TCGv_i64 d, TCGv_i64 b)
2242 gen_absv_mask(d, b, MO_16);
2245 void tcg_gen_gvec_abs(unsigned vece, uint32_t dofs, uint32_t aofs,
2246 uint32_t oprsz, uint32_t maxsz)
2248 static const TCGOpcode vecop_list[] = { INDEX_op_abs_vec, 0 };
2249 static const GVecGen2 g[4] = {
2250 { .fni8 = tcg_gen_vec_abs8_i64,
2251 .fniv = tcg_gen_abs_vec,
2252 .fno = gen_helper_gvec_abs8,
2253 .opt_opc = vecop_list,
2254 .vece = MO_8 },
2255 { .fni8 = tcg_gen_vec_abs16_i64,
2256 .fniv = tcg_gen_abs_vec,
2257 .fno = gen_helper_gvec_abs16,
2258 .opt_opc = vecop_list,
2259 .vece = MO_16 },
2260 { .fni4 = tcg_gen_abs_i32,
2261 .fniv = tcg_gen_abs_vec,
2262 .fno = gen_helper_gvec_abs32,
2263 .opt_opc = vecop_list,
2264 .vece = MO_32 },
2265 { .fni8 = tcg_gen_abs_i64,
2266 .fniv = tcg_gen_abs_vec,
2267 .fno = gen_helper_gvec_abs64,
2268 .opt_opc = vecop_list,
2269 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2270 .vece = MO_64 },
2273 tcg_debug_assert(vece <= MO_64);
2274 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g[vece]);
2277 void tcg_gen_gvec_and(unsigned vece, uint32_t dofs, uint32_t aofs,
2278 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2280 static const GVecGen3 g = {
2281 .fni8 = tcg_gen_and_i64,
2282 .fniv = tcg_gen_and_vec,
2283 .fno = gen_helper_gvec_and,
2284 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2287 if (aofs == bofs) {
2288 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2289 } else {
2290 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2294 void tcg_gen_gvec_or(unsigned vece, uint32_t dofs, uint32_t aofs,
2295 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2297 static const GVecGen3 g = {
2298 .fni8 = tcg_gen_or_i64,
2299 .fniv = tcg_gen_or_vec,
2300 .fno = gen_helper_gvec_or,
2301 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2304 if (aofs == bofs) {
2305 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2306 } else {
2307 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2311 void tcg_gen_gvec_xor(unsigned vece, uint32_t dofs, uint32_t aofs,
2312 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2314 static const GVecGen3 g = {
2315 .fni8 = tcg_gen_xor_i64,
2316 .fniv = tcg_gen_xor_vec,
2317 .fno = gen_helper_gvec_xor,
2318 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2321 if (aofs == bofs) {
2322 tcg_gen_gvec_dup8i(dofs, oprsz, maxsz, 0);
2323 } else {
2324 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2328 void tcg_gen_gvec_andc(unsigned vece, uint32_t dofs, uint32_t aofs,
2329 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2331 static const GVecGen3 g = {
2332 .fni8 = tcg_gen_andc_i64,
2333 .fniv = tcg_gen_andc_vec,
2334 .fno = gen_helper_gvec_andc,
2335 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2338 if (aofs == bofs) {
2339 tcg_gen_gvec_dup8i(dofs, oprsz, maxsz, 0);
2340 } else {
2341 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2345 void tcg_gen_gvec_orc(unsigned vece, uint32_t dofs, uint32_t aofs,
2346 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2348 static const GVecGen3 g = {
2349 .fni8 = tcg_gen_orc_i64,
2350 .fniv = tcg_gen_orc_vec,
2351 .fno = gen_helper_gvec_orc,
2352 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2355 if (aofs == bofs) {
2356 tcg_gen_gvec_dup8i(dofs, oprsz, maxsz, -1);
2357 } else {
2358 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2362 void tcg_gen_gvec_nand(unsigned vece, uint32_t dofs, uint32_t aofs,
2363 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2365 static const GVecGen3 g = {
2366 .fni8 = tcg_gen_nand_i64,
2367 .fniv = tcg_gen_nand_vec,
2368 .fno = gen_helper_gvec_nand,
2369 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2372 if (aofs == bofs) {
2373 tcg_gen_gvec_not(vece, dofs, aofs, oprsz, maxsz);
2374 } else {
2375 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2379 void tcg_gen_gvec_nor(unsigned vece, uint32_t dofs, uint32_t aofs,
2380 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2382 static const GVecGen3 g = {
2383 .fni8 = tcg_gen_nor_i64,
2384 .fniv = tcg_gen_nor_vec,
2385 .fno = gen_helper_gvec_nor,
2386 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2389 if (aofs == bofs) {
2390 tcg_gen_gvec_not(vece, dofs, aofs, oprsz, maxsz);
2391 } else {
2392 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2396 void tcg_gen_gvec_eqv(unsigned vece, uint32_t dofs, uint32_t aofs,
2397 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2399 static const GVecGen3 g = {
2400 .fni8 = tcg_gen_eqv_i64,
2401 .fniv = tcg_gen_eqv_vec,
2402 .fno = gen_helper_gvec_eqv,
2403 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2406 if (aofs == bofs) {
2407 tcg_gen_gvec_dup8i(dofs, oprsz, maxsz, -1);
2408 } else {
2409 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2413 static const GVecGen2s gop_ands = {
2414 .fni8 = tcg_gen_and_i64,
2415 .fniv = tcg_gen_and_vec,
2416 .fno = gen_helper_gvec_ands,
2417 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2418 .vece = MO_64
2421 void tcg_gen_gvec_ands(unsigned vece, uint32_t dofs, uint32_t aofs,
2422 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
2424 TCGv_i64 tmp = tcg_temp_new_i64();
2425 gen_dup_i64(vece, tmp, c);
2426 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ands);
2427 tcg_temp_free_i64(tmp);
2430 void tcg_gen_gvec_andi(unsigned vece, uint32_t dofs, uint32_t aofs,
2431 int64_t c, uint32_t oprsz, uint32_t maxsz)
2433 TCGv_i64 tmp = tcg_const_i64(dup_const(vece, c));
2434 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ands);
2435 tcg_temp_free_i64(tmp);
2438 static const GVecGen2s gop_xors = {
2439 .fni8 = tcg_gen_xor_i64,
2440 .fniv = tcg_gen_xor_vec,
2441 .fno = gen_helper_gvec_xors,
2442 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2443 .vece = MO_64
2446 void tcg_gen_gvec_xors(unsigned vece, uint32_t dofs, uint32_t aofs,
2447 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
2449 TCGv_i64 tmp = tcg_temp_new_i64();
2450 gen_dup_i64(vece, tmp, c);
2451 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_xors);
2452 tcg_temp_free_i64(tmp);
2455 void tcg_gen_gvec_xori(unsigned vece, uint32_t dofs, uint32_t aofs,
2456 int64_t c, uint32_t oprsz, uint32_t maxsz)
2458 TCGv_i64 tmp = tcg_const_i64(dup_const(vece, c));
2459 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_xors);
2460 tcg_temp_free_i64(tmp);
2463 static const GVecGen2s gop_ors = {
2464 .fni8 = tcg_gen_or_i64,
2465 .fniv = tcg_gen_or_vec,
2466 .fno = gen_helper_gvec_ors,
2467 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2468 .vece = MO_64
2471 void tcg_gen_gvec_ors(unsigned vece, uint32_t dofs, uint32_t aofs,
2472 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
2474 TCGv_i64 tmp = tcg_temp_new_i64();
2475 gen_dup_i64(vece, tmp, c);
2476 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ors);
2477 tcg_temp_free_i64(tmp);
2480 void tcg_gen_gvec_ori(unsigned vece, uint32_t dofs, uint32_t aofs,
2481 int64_t c, uint32_t oprsz, uint32_t maxsz)
2483 TCGv_i64 tmp = tcg_const_i64(dup_const(vece, c));
2484 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ors);
2485 tcg_temp_free_i64(tmp);
2488 void tcg_gen_vec_shl8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2490 uint64_t mask = dup_const(MO_8, 0xff << c);
2491 tcg_gen_shli_i64(d, a, c);
2492 tcg_gen_andi_i64(d, d, mask);
2495 void tcg_gen_vec_shl16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2497 uint64_t mask = dup_const(MO_16, 0xffff << c);
2498 tcg_gen_shli_i64(d, a, c);
2499 tcg_gen_andi_i64(d, d, mask);
2502 void tcg_gen_gvec_shli(unsigned vece, uint32_t dofs, uint32_t aofs,
2503 int64_t shift, uint32_t oprsz, uint32_t maxsz)
2505 static const TCGOpcode vecop_list[] = { INDEX_op_shli_vec, 0 };
2506 static const GVecGen2i g[4] = {
2507 { .fni8 = tcg_gen_vec_shl8i_i64,
2508 .fniv = tcg_gen_shli_vec,
2509 .fno = gen_helper_gvec_shl8i,
2510 .opt_opc = vecop_list,
2511 .vece = MO_8 },
2512 { .fni8 = tcg_gen_vec_shl16i_i64,
2513 .fniv = tcg_gen_shli_vec,
2514 .fno = gen_helper_gvec_shl16i,
2515 .opt_opc = vecop_list,
2516 .vece = MO_16 },
2517 { .fni4 = tcg_gen_shli_i32,
2518 .fniv = tcg_gen_shli_vec,
2519 .fno = gen_helper_gvec_shl32i,
2520 .opt_opc = vecop_list,
2521 .vece = MO_32 },
2522 { .fni8 = tcg_gen_shli_i64,
2523 .fniv = tcg_gen_shli_vec,
2524 .fno = gen_helper_gvec_shl64i,
2525 .opt_opc = vecop_list,
2526 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2527 .vece = MO_64 },
2530 tcg_debug_assert(vece <= MO_64);
2531 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
2532 if (shift == 0) {
2533 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2534 } else {
2535 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
2539 void tcg_gen_vec_shr8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2541 uint64_t mask = dup_const(MO_8, 0xff >> c);
2542 tcg_gen_shri_i64(d, a, c);
2543 tcg_gen_andi_i64(d, d, mask);
2546 void tcg_gen_vec_shr16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2548 uint64_t mask = dup_const(MO_16, 0xffff >> c);
2549 tcg_gen_shri_i64(d, a, c);
2550 tcg_gen_andi_i64(d, d, mask);
2553 void tcg_gen_gvec_shri(unsigned vece, uint32_t dofs, uint32_t aofs,
2554 int64_t shift, uint32_t oprsz, uint32_t maxsz)
2556 static const TCGOpcode vecop_list[] = { INDEX_op_shri_vec, 0 };
2557 static const GVecGen2i g[4] = {
2558 { .fni8 = tcg_gen_vec_shr8i_i64,
2559 .fniv = tcg_gen_shri_vec,
2560 .fno = gen_helper_gvec_shr8i,
2561 .opt_opc = vecop_list,
2562 .vece = MO_8 },
2563 { .fni8 = tcg_gen_vec_shr16i_i64,
2564 .fniv = tcg_gen_shri_vec,
2565 .fno = gen_helper_gvec_shr16i,
2566 .opt_opc = vecop_list,
2567 .vece = MO_16 },
2568 { .fni4 = tcg_gen_shri_i32,
2569 .fniv = tcg_gen_shri_vec,
2570 .fno = gen_helper_gvec_shr32i,
2571 .opt_opc = vecop_list,
2572 .vece = MO_32 },
2573 { .fni8 = tcg_gen_shri_i64,
2574 .fniv = tcg_gen_shri_vec,
2575 .fno = gen_helper_gvec_shr64i,
2576 .opt_opc = vecop_list,
2577 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2578 .vece = MO_64 },
2581 tcg_debug_assert(vece <= MO_64);
2582 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
2583 if (shift == 0) {
2584 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2585 } else {
2586 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
2590 void tcg_gen_vec_sar8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2592 uint64_t s_mask = dup_const(MO_8, 0x80 >> c);
2593 uint64_t c_mask = dup_const(MO_8, 0xff >> c);
2594 TCGv_i64 s = tcg_temp_new_i64();
2596 tcg_gen_shri_i64(d, a, c);
2597 tcg_gen_andi_i64(s, d, s_mask); /* isolate (shifted) sign bit */
2598 tcg_gen_muli_i64(s, s, (2 << c) - 2); /* replicate isolated signs */
2599 tcg_gen_andi_i64(d, d, c_mask); /* clear out bits above sign */
2600 tcg_gen_or_i64(d, d, s); /* include sign extension */
2601 tcg_temp_free_i64(s);
2604 void tcg_gen_vec_sar16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2606 uint64_t s_mask = dup_const(MO_16, 0x8000 >> c);
2607 uint64_t c_mask = dup_const(MO_16, 0xffff >> c);
2608 TCGv_i64 s = tcg_temp_new_i64();
2610 tcg_gen_shri_i64(d, a, c);
2611 tcg_gen_andi_i64(s, d, s_mask); /* isolate (shifted) sign bit */
2612 tcg_gen_andi_i64(d, d, c_mask); /* clear out bits above sign */
2613 tcg_gen_muli_i64(s, s, (2 << c) - 2); /* replicate isolated signs */
2614 tcg_gen_or_i64(d, d, s); /* include sign extension */
2615 tcg_temp_free_i64(s);
2618 void tcg_gen_gvec_sari(unsigned vece, uint32_t dofs, uint32_t aofs,
2619 int64_t shift, uint32_t oprsz, uint32_t maxsz)
2621 static const TCGOpcode vecop_list[] = { INDEX_op_sari_vec, 0 };
2622 static const GVecGen2i g[4] = {
2623 { .fni8 = tcg_gen_vec_sar8i_i64,
2624 .fniv = tcg_gen_sari_vec,
2625 .fno = gen_helper_gvec_sar8i,
2626 .opt_opc = vecop_list,
2627 .vece = MO_8 },
2628 { .fni8 = tcg_gen_vec_sar16i_i64,
2629 .fniv = tcg_gen_sari_vec,
2630 .fno = gen_helper_gvec_sar16i,
2631 .opt_opc = vecop_list,
2632 .vece = MO_16 },
2633 { .fni4 = tcg_gen_sari_i32,
2634 .fniv = tcg_gen_sari_vec,
2635 .fno = gen_helper_gvec_sar32i,
2636 .opt_opc = vecop_list,
2637 .vece = MO_32 },
2638 { .fni8 = tcg_gen_sari_i64,
2639 .fniv = tcg_gen_sari_vec,
2640 .fno = gen_helper_gvec_sar64i,
2641 .opt_opc = vecop_list,
2642 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2643 .vece = MO_64 },
2646 tcg_debug_assert(vece <= MO_64);
2647 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
2648 if (shift == 0) {
2649 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2650 } else {
2651 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
2656 * Specialized generation vector shifts by a non-constant scalar.
2659 typedef struct {
2660 void (*fni4)(TCGv_i32, TCGv_i32, TCGv_i32);
2661 void (*fni8)(TCGv_i64, TCGv_i64, TCGv_i64);
2662 void (*fniv_s)(unsigned, TCGv_vec, TCGv_vec, TCGv_i32);
2663 void (*fniv_v)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec);
2664 gen_helper_gvec_2 *fno[4];
2665 TCGOpcode s_list[2];
2666 TCGOpcode v_list[2];
2667 } GVecGen2sh;
2669 static void expand_2sh_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
2670 uint32_t oprsz, uint32_t tysz, TCGType type,
2671 TCGv_i32 shift,
2672 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_i32))
2674 TCGv_vec t0 = tcg_temp_new_vec(type);
2675 uint32_t i;
2677 for (i = 0; i < oprsz; i += tysz) {
2678 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
2679 fni(vece, t0, t0, shift);
2680 tcg_gen_st_vec(t0, cpu_env, dofs + i);
2682 tcg_temp_free_vec(t0);
2685 static void
2686 do_gvec_shifts(unsigned vece, uint32_t dofs, uint32_t aofs, TCGv_i32 shift,
2687 uint32_t oprsz, uint32_t maxsz, const GVecGen2sh *g)
2689 TCGType type;
2690 uint32_t some;
2692 check_size_align(oprsz, maxsz, dofs | aofs);
2693 check_overlap_2(dofs, aofs, maxsz);
2695 /* If the backend has a scalar expansion, great. */
2696 type = choose_vector_type(g->s_list, vece, oprsz, vece == MO_64);
2697 if (type) {
2698 const TCGOpcode *hold_list = tcg_swap_vecop_list(NULL);
2699 switch (type) {
2700 case TCG_TYPE_V256:
2701 some = QEMU_ALIGN_DOWN(oprsz, 32);
2702 expand_2sh_vec(vece, dofs, aofs, some, 32,
2703 TCG_TYPE_V256, shift, g->fniv_s);
2704 if (some == oprsz) {
2705 break;
2707 dofs += some;
2708 aofs += some;
2709 oprsz -= some;
2710 maxsz -= some;
2711 /* fallthru */
2712 case TCG_TYPE_V128:
2713 expand_2sh_vec(vece, dofs, aofs, oprsz, 16,
2714 TCG_TYPE_V128, shift, g->fniv_s);
2715 break;
2716 case TCG_TYPE_V64:
2717 expand_2sh_vec(vece, dofs, aofs, oprsz, 8,
2718 TCG_TYPE_V64, shift, g->fniv_s);
2719 break;
2720 default:
2721 g_assert_not_reached();
2723 tcg_swap_vecop_list(hold_list);
2724 goto clear_tail;
2727 /* If the backend supports variable vector shifts, also cool. */
2728 type = choose_vector_type(g->v_list, vece, oprsz, vece == MO_64);
2729 if (type) {
2730 const TCGOpcode *hold_list = tcg_swap_vecop_list(NULL);
2731 TCGv_vec v_shift = tcg_temp_new_vec(type);
2733 if (vece == MO_64) {
2734 TCGv_i64 sh64 = tcg_temp_new_i64();
2735 tcg_gen_extu_i32_i64(sh64, shift);
2736 tcg_gen_dup_i64_vec(MO_64, v_shift, sh64);
2737 tcg_temp_free_i64(sh64);
2738 } else {
2739 tcg_gen_dup_i32_vec(vece, v_shift, shift);
2742 switch (type) {
2743 case TCG_TYPE_V256:
2744 some = QEMU_ALIGN_DOWN(oprsz, 32);
2745 expand_2s_vec(vece, dofs, aofs, some, 32, TCG_TYPE_V256,
2746 v_shift, false, g->fniv_v);
2747 if (some == oprsz) {
2748 break;
2750 dofs += some;
2751 aofs += some;
2752 oprsz -= some;
2753 maxsz -= some;
2754 /* fallthru */
2755 case TCG_TYPE_V128:
2756 expand_2s_vec(vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
2757 v_shift, false, g->fniv_v);
2758 break;
2759 case TCG_TYPE_V64:
2760 expand_2s_vec(vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
2761 v_shift, false, g->fniv_v);
2762 break;
2763 default:
2764 g_assert_not_reached();
2766 tcg_temp_free_vec(v_shift);
2767 tcg_swap_vecop_list(hold_list);
2768 goto clear_tail;
2771 /* Otherwise fall back to integral... */
2772 if (vece == MO_32 && check_size_impl(oprsz, 4)) {
2773 expand_2s_i32(dofs, aofs, oprsz, shift, false, g->fni4);
2774 } else if (vece == MO_64 && check_size_impl(oprsz, 8)) {
2775 TCGv_i64 sh64 = tcg_temp_new_i64();
2776 tcg_gen_extu_i32_i64(sh64, shift);
2777 expand_2s_i64(dofs, aofs, oprsz, sh64, false, g->fni8);
2778 tcg_temp_free_i64(sh64);
2779 } else {
2780 TCGv_ptr a0 = tcg_temp_new_ptr();
2781 TCGv_ptr a1 = tcg_temp_new_ptr();
2782 TCGv_i32 desc = tcg_temp_new_i32();
2784 tcg_gen_shli_i32(desc, shift, SIMD_DATA_SHIFT);
2785 tcg_gen_ori_i32(desc, desc, simd_desc(oprsz, maxsz, 0));
2786 tcg_gen_addi_ptr(a0, cpu_env, dofs);
2787 tcg_gen_addi_ptr(a1, cpu_env, aofs);
2789 g->fno[vece](a0, a1, desc);
2791 tcg_temp_free_ptr(a0);
2792 tcg_temp_free_ptr(a1);
2793 tcg_temp_free_i32(desc);
2794 return;
2797 clear_tail:
2798 if (oprsz < maxsz) {
2799 expand_clr(dofs + oprsz, maxsz - oprsz);
2803 void tcg_gen_gvec_shls(unsigned vece, uint32_t dofs, uint32_t aofs,
2804 TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz)
2806 static const GVecGen2sh g = {
2807 .fni4 = tcg_gen_shl_i32,
2808 .fni8 = tcg_gen_shl_i64,
2809 .fniv_s = tcg_gen_shls_vec,
2810 .fniv_v = tcg_gen_shlv_vec,
2811 .fno = {
2812 gen_helper_gvec_shl8i,
2813 gen_helper_gvec_shl16i,
2814 gen_helper_gvec_shl32i,
2815 gen_helper_gvec_shl64i,
2817 .s_list = { INDEX_op_shls_vec, 0 },
2818 .v_list = { INDEX_op_shlv_vec, 0 },
2821 tcg_debug_assert(vece <= MO_64);
2822 do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g);
2825 void tcg_gen_gvec_shrs(unsigned vece, uint32_t dofs, uint32_t aofs,
2826 TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz)
2828 static const GVecGen2sh g = {
2829 .fni4 = tcg_gen_shr_i32,
2830 .fni8 = tcg_gen_shr_i64,
2831 .fniv_s = tcg_gen_shrs_vec,
2832 .fniv_v = tcg_gen_shrv_vec,
2833 .fno = {
2834 gen_helper_gvec_shr8i,
2835 gen_helper_gvec_shr16i,
2836 gen_helper_gvec_shr32i,
2837 gen_helper_gvec_shr64i,
2839 .s_list = { INDEX_op_shrs_vec, 0 },
2840 .v_list = { INDEX_op_shrv_vec, 0 },
2843 tcg_debug_assert(vece <= MO_64);
2844 do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g);
2847 void tcg_gen_gvec_sars(unsigned vece, uint32_t dofs, uint32_t aofs,
2848 TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz)
2850 static const GVecGen2sh g = {
2851 .fni4 = tcg_gen_sar_i32,
2852 .fni8 = tcg_gen_sar_i64,
2853 .fniv_s = tcg_gen_sars_vec,
2854 .fniv_v = tcg_gen_sarv_vec,
2855 .fno = {
2856 gen_helper_gvec_sar8i,
2857 gen_helper_gvec_sar16i,
2858 gen_helper_gvec_sar32i,
2859 gen_helper_gvec_sar64i,
2861 .s_list = { INDEX_op_sars_vec, 0 },
2862 .v_list = { INDEX_op_sarv_vec, 0 },
2865 tcg_debug_assert(vece <= MO_64);
2866 do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g);
2870 * Expand D = A << (B % element bits)
2872 * Unlike scalar shifts, where it is easy for the target front end
2873 * to include the modulo as part of the expansion. If the target
2874 * naturally includes the modulo as part of the operation, great!
2875 * If the target has some other behaviour from out-of-range shifts,
2876 * then it could not use this function anyway, and would need to
2877 * do it's own expansion with custom functions.
2879 static void tcg_gen_shlv_mod_vec(unsigned vece, TCGv_vec d,
2880 TCGv_vec a, TCGv_vec b)
2882 TCGv_vec t = tcg_temp_new_vec_matching(d);
2884 tcg_gen_dupi_vec(vece, t, (8 << vece) - 1);
2885 tcg_gen_and_vec(vece, t, t, b);
2886 tcg_gen_shlv_vec(vece, d, a, t);
2887 tcg_temp_free_vec(t);
2890 static void tcg_gen_shl_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
2892 TCGv_i32 t = tcg_temp_new_i32();
2894 tcg_gen_andi_i32(t, b, 31);
2895 tcg_gen_shl_i32(d, a, t);
2896 tcg_temp_free_i32(t);
2899 static void tcg_gen_shl_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
2901 TCGv_i64 t = tcg_temp_new_i64();
2903 tcg_gen_andi_i64(t, b, 63);
2904 tcg_gen_shl_i64(d, a, t);
2905 tcg_temp_free_i64(t);
2908 void tcg_gen_gvec_shlv(unsigned vece, uint32_t dofs, uint32_t aofs,
2909 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2911 static const TCGOpcode vecop_list[] = { INDEX_op_shlv_vec, 0 };
2912 static const GVecGen3 g[4] = {
2913 { .fniv = tcg_gen_shlv_mod_vec,
2914 .fno = gen_helper_gvec_shl8v,
2915 .opt_opc = vecop_list,
2916 .vece = MO_8 },
2917 { .fniv = tcg_gen_shlv_mod_vec,
2918 .fno = gen_helper_gvec_shl16v,
2919 .opt_opc = vecop_list,
2920 .vece = MO_16 },
2921 { .fni4 = tcg_gen_shl_mod_i32,
2922 .fniv = tcg_gen_shlv_mod_vec,
2923 .fno = gen_helper_gvec_shl32v,
2924 .opt_opc = vecop_list,
2925 .vece = MO_32 },
2926 { .fni8 = tcg_gen_shl_mod_i64,
2927 .fniv = tcg_gen_shlv_mod_vec,
2928 .fno = gen_helper_gvec_shl64v,
2929 .opt_opc = vecop_list,
2930 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2931 .vece = MO_64 },
2934 tcg_debug_assert(vece <= MO_64);
2935 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2939 * Similarly for logical right shifts.
2942 static void tcg_gen_shrv_mod_vec(unsigned vece, TCGv_vec d,
2943 TCGv_vec a, TCGv_vec b)
2945 TCGv_vec t = tcg_temp_new_vec_matching(d);
2947 tcg_gen_dupi_vec(vece, t, (8 << vece) - 1);
2948 tcg_gen_and_vec(vece, t, t, b);
2949 tcg_gen_shrv_vec(vece, d, a, t);
2950 tcg_temp_free_vec(t);
2953 static void tcg_gen_shr_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
2955 TCGv_i32 t = tcg_temp_new_i32();
2957 tcg_gen_andi_i32(t, b, 31);
2958 tcg_gen_shr_i32(d, a, t);
2959 tcg_temp_free_i32(t);
2962 static void tcg_gen_shr_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
2964 TCGv_i64 t = tcg_temp_new_i64();
2966 tcg_gen_andi_i64(t, b, 63);
2967 tcg_gen_shr_i64(d, a, t);
2968 tcg_temp_free_i64(t);
2971 void tcg_gen_gvec_shrv(unsigned vece, uint32_t dofs, uint32_t aofs,
2972 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2974 static const TCGOpcode vecop_list[] = { INDEX_op_shrv_vec, 0 };
2975 static const GVecGen3 g[4] = {
2976 { .fniv = tcg_gen_shrv_mod_vec,
2977 .fno = gen_helper_gvec_shr8v,
2978 .opt_opc = vecop_list,
2979 .vece = MO_8 },
2980 { .fniv = tcg_gen_shrv_mod_vec,
2981 .fno = gen_helper_gvec_shr16v,
2982 .opt_opc = vecop_list,
2983 .vece = MO_16 },
2984 { .fni4 = tcg_gen_shr_mod_i32,
2985 .fniv = tcg_gen_shrv_mod_vec,
2986 .fno = gen_helper_gvec_shr32v,
2987 .opt_opc = vecop_list,
2988 .vece = MO_32 },
2989 { .fni8 = tcg_gen_shr_mod_i64,
2990 .fniv = tcg_gen_shrv_mod_vec,
2991 .fno = gen_helper_gvec_shr64v,
2992 .opt_opc = vecop_list,
2993 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2994 .vece = MO_64 },
2997 tcg_debug_assert(vece <= MO_64);
2998 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
3002 * Similarly for arithmetic right shifts.
3005 static void tcg_gen_sarv_mod_vec(unsigned vece, TCGv_vec d,
3006 TCGv_vec a, TCGv_vec b)
3008 TCGv_vec t = tcg_temp_new_vec_matching(d);
3010 tcg_gen_dupi_vec(vece, t, (8 << vece) - 1);
3011 tcg_gen_and_vec(vece, t, t, b);
3012 tcg_gen_sarv_vec(vece, d, a, t);
3013 tcg_temp_free_vec(t);
3016 static void tcg_gen_sar_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
3018 TCGv_i32 t = tcg_temp_new_i32();
3020 tcg_gen_andi_i32(t, b, 31);
3021 tcg_gen_sar_i32(d, a, t);
3022 tcg_temp_free_i32(t);
3025 static void tcg_gen_sar_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
3027 TCGv_i64 t = tcg_temp_new_i64();
3029 tcg_gen_andi_i64(t, b, 63);
3030 tcg_gen_sar_i64(d, a, t);
3031 tcg_temp_free_i64(t);
3034 void tcg_gen_gvec_sarv(unsigned vece, uint32_t dofs, uint32_t aofs,
3035 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
3037 static const TCGOpcode vecop_list[] = { INDEX_op_sarv_vec, 0 };
3038 static const GVecGen3 g[4] = {
3039 { .fniv = tcg_gen_sarv_mod_vec,
3040 .fno = gen_helper_gvec_sar8v,
3041 .opt_opc = vecop_list,
3042 .vece = MO_8 },
3043 { .fniv = tcg_gen_sarv_mod_vec,
3044 .fno = gen_helper_gvec_sar16v,
3045 .opt_opc = vecop_list,
3046 .vece = MO_16 },
3047 { .fni4 = tcg_gen_sar_mod_i32,
3048 .fniv = tcg_gen_sarv_mod_vec,
3049 .fno = gen_helper_gvec_sar32v,
3050 .opt_opc = vecop_list,
3051 .vece = MO_32 },
3052 { .fni8 = tcg_gen_sar_mod_i64,
3053 .fniv = tcg_gen_sarv_mod_vec,
3054 .fno = gen_helper_gvec_sar64v,
3055 .opt_opc = vecop_list,
3056 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3057 .vece = MO_64 },
3060 tcg_debug_assert(vece <= MO_64);
3061 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
3064 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
3065 static void expand_cmp_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs,
3066 uint32_t oprsz, TCGCond cond)
3068 TCGv_i32 t0 = tcg_temp_new_i32();
3069 TCGv_i32 t1 = tcg_temp_new_i32();
3070 uint32_t i;
3072 for (i = 0; i < oprsz; i += 4) {
3073 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
3074 tcg_gen_ld_i32(t1, cpu_env, bofs + i);
3075 tcg_gen_setcond_i32(cond, t0, t0, t1);
3076 tcg_gen_neg_i32(t0, t0);
3077 tcg_gen_st_i32(t0, cpu_env, dofs + i);
3079 tcg_temp_free_i32(t1);
3080 tcg_temp_free_i32(t0);
3083 static void expand_cmp_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs,
3084 uint32_t oprsz, TCGCond cond)
3086 TCGv_i64 t0 = tcg_temp_new_i64();
3087 TCGv_i64 t1 = tcg_temp_new_i64();
3088 uint32_t i;
3090 for (i = 0; i < oprsz; i += 8) {
3091 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
3092 tcg_gen_ld_i64(t1, cpu_env, bofs + i);
3093 tcg_gen_setcond_i64(cond, t0, t0, t1);
3094 tcg_gen_neg_i64(t0, t0);
3095 tcg_gen_st_i64(t0, cpu_env, dofs + i);
3097 tcg_temp_free_i64(t1);
3098 tcg_temp_free_i64(t0);
3101 static void expand_cmp_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
3102 uint32_t bofs, uint32_t oprsz, uint32_t tysz,
3103 TCGType type, TCGCond cond)
3105 TCGv_vec t0 = tcg_temp_new_vec(type);
3106 TCGv_vec t1 = tcg_temp_new_vec(type);
3107 uint32_t i;
3109 for (i = 0; i < oprsz; i += tysz) {
3110 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
3111 tcg_gen_ld_vec(t1, cpu_env, bofs + i);
3112 tcg_gen_cmp_vec(cond, vece, t0, t0, t1);
3113 tcg_gen_st_vec(t0, cpu_env, dofs + i);
3115 tcg_temp_free_vec(t1);
3116 tcg_temp_free_vec(t0);
3119 void tcg_gen_gvec_cmp(TCGCond cond, unsigned vece, uint32_t dofs,
3120 uint32_t aofs, uint32_t bofs,
3121 uint32_t oprsz, uint32_t maxsz)
3123 static const TCGOpcode cmp_list[] = { INDEX_op_cmp_vec, 0 };
3124 static gen_helper_gvec_3 * const eq_fn[4] = {
3125 gen_helper_gvec_eq8, gen_helper_gvec_eq16,
3126 gen_helper_gvec_eq32, gen_helper_gvec_eq64
3128 static gen_helper_gvec_3 * const ne_fn[4] = {
3129 gen_helper_gvec_ne8, gen_helper_gvec_ne16,
3130 gen_helper_gvec_ne32, gen_helper_gvec_ne64
3132 static gen_helper_gvec_3 * const lt_fn[4] = {
3133 gen_helper_gvec_lt8, gen_helper_gvec_lt16,
3134 gen_helper_gvec_lt32, gen_helper_gvec_lt64
3136 static gen_helper_gvec_3 * const le_fn[4] = {
3137 gen_helper_gvec_le8, gen_helper_gvec_le16,
3138 gen_helper_gvec_le32, gen_helper_gvec_le64
3140 static gen_helper_gvec_3 * const ltu_fn[4] = {
3141 gen_helper_gvec_ltu8, gen_helper_gvec_ltu16,
3142 gen_helper_gvec_ltu32, gen_helper_gvec_ltu64
3144 static gen_helper_gvec_3 * const leu_fn[4] = {
3145 gen_helper_gvec_leu8, gen_helper_gvec_leu16,
3146 gen_helper_gvec_leu32, gen_helper_gvec_leu64
3148 static gen_helper_gvec_3 * const * const fns[16] = {
3149 [TCG_COND_EQ] = eq_fn,
3150 [TCG_COND_NE] = ne_fn,
3151 [TCG_COND_LT] = lt_fn,
3152 [TCG_COND_LE] = le_fn,
3153 [TCG_COND_LTU] = ltu_fn,
3154 [TCG_COND_LEU] = leu_fn,
3157 const TCGOpcode *hold_list;
3158 TCGType type;
3159 uint32_t some;
3161 check_size_align(oprsz, maxsz, dofs | aofs | bofs);
3162 check_overlap_3(dofs, aofs, bofs, maxsz);
3164 if (cond == TCG_COND_NEVER || cond == TCG_COND_ALWAYS) {
3165 do_dup(MO_8, dofs, oprsz, maxsz,
3166 NULL, NULL, -(cond == TCG_COND_ALWAYS));
3167 return;
3171 * Implement inline with a vector type, if possible.
3172 * Prefer integer when 64-bit host and 64-bit comparison.
3174 hold_list = tcg_swap_vecop_list(cmp_list);
3175 type = choose_vector_type(cmp_list, vece, oprsz,
3176 TCG_TARGET_REG_BITS == 64 && vece == MO_64);
3177 switch (type) {
3178 case TCG_TYPE_V256:
3179 /* Recall that ARM SVE allows vector sizes that are not a
3180 * power of 2, but always a multiple of 16. The intent is
3181 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
3183 some = QEMU_ALIGN_DOWN(oprsz, 32);
3184 expand_cmp_vec(vece, dofs, aofs, bofs, some, 32, TCG_TYPE_V256, cond);
3185 if (some == oprsz) {
3186 break;
3188 dofs += some;
3189 aofs += some;
3190 bofs += some;
3191 oprsz -= some;
3192 maxsz -= some;
3193 /* fallthru */
3194 case TCG_TYPE_V128:
3195 expand_cmp_vec(vece, dofs, aofs, bofs, oprsz, 16, TCG_TYPE_V128, cond);
3196 break;
3197 case TCG_TYPE_V64:
3198 expand_cmp_vec(vece, dofs, aofs, bofs, oprsz, 8, TCG_TYPE_V64, cond);
3199 break;
3201 case 0:
3202 if (vece == MO_64 && check_size_impl(oprsz, 8)) {
3203 expand_cmp_i64(dofs, aofs, bofs, oprsz, cond);
3204 } else if (vece == MO_32 && check_size_impl(oprsz, 4)) {
3205 expand_cmp_i32(dofs, aofs, bofs, oprsz, cond);
3206 } else {
3207 gen_helper_gvec_3 * const *fn = fns[cond];
3209 if (fn == NULL) {
3210 uint32_t tmp;
3211 tmp = aofs, aofs = bofs, bofs = tmp;
3212 cond = tcg_swap_cond(cond);
3213 fn = fns[cond];
3214 assert(fn != NULL);
3216 tcg_gen_gvec_3_ool(dofs, aofs, bofs, oprsz, maxsz, 0, fn[vece]);
3217 oprsz = maxsz;
3219 break;
3221 default:
3222 g_assert_not_reached();
3224 tcg_swap_vecop_list(hold_list);
3226 if (oprsz < maxsz) {
3227 expand_clr(dofs + oprsz, maxsz - oprsz);
3231 static void tcg_gen_bitsel_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b, TCGv_i64 c)
3233 TCGv_i64 t = tcg_temp_new_i64();
3235 tcg_gen_and_i64(t, b, a);
3236 tcg_gen_andc_i64(d, c, a);
3237 tcg_gen_or_i64(d, d, t);
3238 tcg_temp_free_i64(t);
3241 void tcg_gen_gvec_bitsel(unsigned vece, uint32_t dofs, uint32_t aofs,
3242 uint32_t bofs, uint32_t cofs,
3243 uint32_t oprsz, uint32_t maxsz)
3245 static const GVecGen4 g = {
3246 .fni8 = tcg_gen_bitsel_i64,
3247 .fniv = tcg_gen_bitsel_vec,
3248 .fno = gen_helper_gvec_bitsel,
3251 tcg_gen_gvec_4(dofs, aofs, bofs, cofs, oprsz, maxsz, &g);