cadence_gem: initial version of device model
[qemu.git] / hw / mc146818rtc.c
blob8b5cf8c81f8dba17b111177ee4987adf3a5b817c
1 /*
2 * QEMU MC146818 RTC emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw.h"
25 #include "qemu-timer.h"
26 #include "sysemu.h"
27 #include "pc.h"
28 #include "isa.h"
29 #include "mc146818rtc.h"
31 #ifdef TARGET_I386
32 #include "apic.h"
33 #endif
35 //#define DEBUG_CMOS
36 //#define DEBUG_COALESCED
38 #ifdef DEBUG_CMOS
39 # define CMOS_DPRINTF(format, ...) printf(format, ## __VA_ARGS__)
40 #else
41 # define CMOS_DPRINTF(format, ...) do { } while (0)
42 #endif
44 #ifdef DEBUG_COALESCED
45 # define DPRINTF_C(format, ...) printf(format, ## __VA_ARGS__)
46 #else
47 # define DPRINTF_C(format, ...) do { } while (0)
48 #endif
50 #define RTC_REINJECT_ON_ACK_COUNT 20
52 #define RTC_SECONDS 0
53 #define RTC_SECONDS_ALARM 1
54 #define RTC_MINUTES 2
55 #define RTC_MINUTES_ALARM 3
56 #define RTC_HOURS 4
57 #define RTC_HOURS_ALARM 5
58 #define RTC_ALARM_DONT_CARE 0xC0
60 #define RTC_DAY_OF_WEEK 6
61 #define RTC_DAY_OF_MONTH 7
62 #define RTC_MONTH 8
63 #define RTC_YEAR 9
65 #define RTC_REG_A 10
66 #define RTC_REG_B 11
67 #define RTC_REG_C 12
68 #define RTC_REG_D 13
70 #define REG_A_UIP 0x80
72 #define REG_B_SET 0x80
73 #define REG_B_PIE 0x40
74 #define REG_B_AIE 0x20
75 #define REG_B_UIE 0x10
76 #define REG_B_SQWE 0x08
77 #define REG_B_DM 0x04
78 #define REG_B_24H 0x02
80 #define REG_C_UF 0x10
81 #define REG_C_IRQF 0x80
82 #define REG_C_PF 0x40
83 #define REG_C_AF 0x20
85 typedef struct RTCState {
86 ISADevice dev;
87 MemoryRegion io;
88 uint8_t cmos_data[128];
89 uint8_t cmos_index;
90 struct tm current_tm;
91 int32_t base_year;
92 qemu_irq irq;
93 qemu_irq sqw_irq;
94 int it_shift;
95 /* periodic timer */
96 QEMUTimer *periodic_timer;
97 int64_t next_periodic_time;
98 /* second update */
99 int64_t next_second_time;
100 uint16_t irq_reinject_on_ack_count;
101 uint32_t irq_coalesced;
102 uint32_t period;
103 QEMUTimer *coalesced_timer;
104 QEMUTimer *second_timer;
105 QEMUTimer *second_timer2;
106 Notifier clock_reset_notifier;
107 LostTickPolicy lost_tick_policy;
108 Notifier suspend_notifier;
109 } RTCState;
111 static void rtc_set_time(RTCState *s);
112 static void rtc_copy_date(RTCState *s);
114 #ifdef TARGET_I386
115 static void rtc_coalesced_timer_update(RTCState *s)
117 if (s->irq_coalesced == 0) {
118 qemu_del_timer(s->coalesced_timer);
119 } else {
120 /* divide each RTC interval to 2 - 8 smaller intervals */
121 int c = MIN(s->irq_coalesced, 7) + 1;
122 int64_t next_clock = qemu_get_clock_ns(rtc_clock) +
123 muldiv64(s->period / c, get_ticks_per_sec(), 32768);
124 qemu_mod_timer(s->coalesced_timer, next_clock);
128 static void rtc_coalesced_timer(void *opaque)
130 RTCState *s = opaque;
132 if (s->irq_coalesced != 0) {
133 apic_reset_irq_delivered();
134 s->cmos_data[RTC_REG_C] |= 0xc0;
135 DPRINTF_C("cmos: injecting from timer\n");
136 qemu_irq_raise(s->irq);
137 if (apic_get_irq_delivered()) {
138 s->irq_coalesced--;
139 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
140 s->irq_coalesced);
144 rtc_coalesced_timer_update(s);
146 #endif
148 static void rtc_timer_update(RTCState *s, int64_t current_time)
150 int period_code, period;
151 int64_t cur_clock, next_irq_clock;
153 period_code = s->cmos_data[RTC_REG_A] & 0x0f;
154 if (period_code != 0
155 && ((s->cmos_data[RTC_REG_B] & REG_B_PIE)
156 || ((s->cmos_data[RTC_REG_B] & REG_B_SQWE) && s->sqw_irq))) {
157 if (period_code <= 2)
158 period_code += 7;
159 /* period in 32 Khz cycles */
160 period = 1 << (period_code - 1);
161 #ifdef TARGET_I386
162 if (period != s->period) {
163 s->irq_coalesced = (s->irq_coalesced * s->period) / period;
164 DPRINTF_C("cmos: coalesced irqs scaled to %d\n", s->irq_coalesced);
166 s->period = period;
167 #endif
168 /* compute 32 khz clock */
169 cur_clock = muldiv64(current_time, 32768, get_ticks_per_sec());
170 next_irq_clock = (cur_clock & ~(period - 1)) + period;
171 s->next_periodic_time =
172 muldiv64(next_irq_clock, get_ticks_per_sec(), 32768) + 1;
173 qemu_mod_timer(s->periodic_timer, s->next_periodic_time);
174 } else {
175 #ifdef TARGET_I386
176 s->irq_coalesced = 0;
177 #endif
178 qemu_del_timer(s->periodic_timer);
182 static void rtc_periodic_timer(void *opaque)
184 RTCState *s = opaque;
186 rtc_timer_update(s, s->next_periodic_time);
187 s->cmos_data[RTC_REG_C] |= REG_C_PF;
188 if (s->cmos_data[RTC_REG_B] & REG_B_PIE) {
189 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
190 #ifdef TARGET_I386
191 if (s->lost_tick_policy == LOST_TICK_SLEW) {
192 if (s->irq_reinject_on_ack_count >= RTC_REINJECT_ON_ACK_COUNT)
193 s->irq_reinject_on_ack_count = 0;
194 apic_reset_irq_delivered();
195 qemu_irq_raise(s->irq);
196 if (!apic_get_irq_delivered()) {
197 s->irq_coalesced++;
198 rtc_coalesced_timer_update(s);
199 DPRINTF_C("cmos: coalesced irqs increased to %d\n",
200 s->irq_coalesced);
202 } else
203 #endif
204 qemu_irq_raise(s->irq);
206 if (s->cmos_data[RTC_REG_B] & REG_B_SQWE) {
207 /* Not square wave at all but we don't want 2048Hz interrupts!
208 Must be seen as a pulse. */
209 qemu_irq_raise(s->sqw_irq);
213 static void cmos_ioport_write(void *opaque, uint32_t addr, uint32_t data)
215 RTCState *s = opaque;
217 if ((addr & 1) == 0) {
218 s->cmos_index = data & 0x7f;
219 } else {
220 CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02x\n",
221 s->cmos_index, data);
222 switch(s->cmos_index) {
223 case RTC_SECONDS_ALARM:
224 case RTC_MINUTES_ALARM:
225 case RTC_HOURS_ALARM:
226 s->cmos_data[s->cmos_index] = data;
227 break;
228 case RTC_SECONDS:
229 case RTC_MINUTES:
230 case RTC_HOURS:
231 case RTC_DAY_OF_WEEK:
232 case RTC_DAY_OF_MONTH:
233 case RTC_MONTH:
234 case RTC_YEAR:
235 s->cmos_data[s->cmos_index] = data;
236 /* if in set mode, do not update the time */
237 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
238 rtc_set_time(s);
240 break;
241 case RTC_REG_A:
242 /* UIP bit is read only */
243 s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
244 (s->cmos_data[RTC_REG_A] & REG_A_UIP);
245 rtc_timer_update(s, qemu_get_clock_ns(rtc_clock));
246 break;
247 case RTC_REG_B:
248 if (data & REG_B_SET) {
249 /* set mode: reset UIP mode */
250 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
251 data &= ~REG_B_UIE;
252 } else {
253 /* if disabling set mode, update the time */
254 if (s->cmos_data[RTC_REG_B] & REG_B_SET) {
255 rtc_set_time(s);
258 if (((s->cmos_data[RTC_REG_B] ^ data) & (REG_B_DM | REG_B_24H)) &&
259 !(data & REG_B_SET)) {
260 /* If the time format has changed and not in set mode,
261 update the registers immediately. */
262 s->cmos_data[RTC_REG_B] = data;
263 rtc_copy_date(s);
264 } else {
265 s->cmos_data[RTC_REG_B] = data;
267 rtc_timer_update(s, qemu_get_clock_ns(rtc_clock));
268 break;
269 case RTC_REG_C:
270 case RTC_REG_D:
271 /* cannot write to them */
272 break;
273 default:
274 s->cmos_data[s->cmos_index] = data;
275 break;
280 static inline int rtc_to_bcd(RTCState *s, int a)
282 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
283 return a;
284 } else {
285 return ((a / 10) << 4) | (a % 10);
289 static inline int rtc_from_bcd(RTCState *s, int a)
291 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
292 return a;
293 } else {
294 return ((a >> 4) * 10) + (a & 0x0f);
298 static void rtc_set_time(RTCState *s)
300 struct tm *tm = &s->current_tm;
302 tm->tm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
303 tm->tm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
304 tm->tm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
305 if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
306 tm->tm_hour %= 12;
307 if (s->cmos_data[RTC_HOURS] & 0x80) {
308 tm->tm_hour += 12;
311 tm->tm_wday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1;
312 tm->tm_mday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
313 tm->tm_mon = rtc_from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
314 tm->tm_year = rtc_from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year - 1900;
316 rtc_change_mon_event(tm);
319 static void rtc_copy_date(RTCState *s)
321 const struct tm *tm = &s->current_tm;
322 int year;
324 s->cmos_data[RTC_SECONDS] = rtc_to_bcd(s, tm->tm_sec);
325 s->cmos_data[RTC_MINUTES] = rtc_to_bcd(s, tm->tm_min);
326 if (s->cmos_data[RTC_REG_B] & REG_B_24H) {
327 /* 24 hour format */
328 s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour);
329 } else {
330 /* 12 hour format */
331 int h = (tm->tm_hour % 12) ? tm->tm_hour % 12 : 12;
332 s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, h);
333 if (tm->tm_hour >= 12)
334 s->cmos_data[RTC_HOURS] |= 0x80;
336 s->cmos_data[RTC_DAY_OF_WEEK] = rtc_to_bcd(s, tm->tm_wday + 1);
337 s->cmos_data[RTC_DAY_OF_MONTH] = rtc_to_bcd(s, tm->tm_mday);
338 s->cmos_data[RTC_MONTH] = rtc_to_bcd(s, tm->tm_mon + 1);
339 year = (tm->tm_year - s->base_year) % 100;
340 if (year < 0)
341 year += 100;
342 s->cmos_data[RTC_YEAR] = rtc_to_bcd(s, year);
345 /* month is between 0 and 11. */
346 static int get_days_in_month(int month, int year)
348 static const int days_tab[12] = {
349 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
351 int d;
352 if ((unsigned )month >= 12)
353 return 31;
354 d = days_tab[month];
355 if (month == 1) {
356 if ((year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0))
357 d++;
359 return d;
362 /* update 'tm' to the next second */
363 static void rtc_next_second(struct tm *tm)
365 int days_in_month;
367 tm->tm_sec++;
368 if ((unsigned)tm->tm_sec >= 60) {
369 tm->tm_sec = 0;
370 tm->tm_min++;
371 if ((unsigned)tm->tm_min >= 60) {
372 tm->tm_min = 0;
373 tm->tm_hour++;
374 if ((unsigned)tm->tm_hour >= 24) {
375 tm->tm_hour = 0;
376 /* next day */
377 tm->tm_wday++;
378 if ((unsigned)tm->tm_wday >= 7)
379 tm->tm_wday = 0;
380 days_in_month = get_days_in_month(tm->tm_mon,
381 tm->tm_year + 1900);
382 tm->tm_mday++;
383 if (tm->tm_mday < 1) {
384 tm->tm_mday = 1;
385 } else if (tm->tm_mday > days_in_month) {
386 tm->tm_mday = 1;
387 tm->tm_mon++;
388 if (tm->tm_mon >= 12) {
389 tm->tm_mon = 0;
390 tm->tm_year++;
399 static void rtc_update_second(void *opaque)
401 RTCState *s = opaque;
402 int64_t delay;
404 /* if the oscillator is not in normal operation, we do not update */
405 if ((s->cmos_data[RTC_REG_A] & 0x70) != 0x20) {
406 s->next_second_time += get_ticks_per_sec();
407 qemu_mod_timer(s->second_timer, s->next_second_time);
408 } else {
409 rtc_next_second(&s->current_tm);
411 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
412 /* update in progress bit */
413 s->cmos_data[RTC_REG_A] |= REG_A_UIP;
415 /* should be 244 us = 8 / 32768 seconds, but currently the
416 timers do not have the necessary resolution. */
417 delay = (get_ticks_per_sec() * 1) / 100;
418 if (delay < 1)
419 delay = 1;
420 qemu_mod_timer(s->second_timer2,
421 s->next_second_time + delay);
425 static void rtc_update_second2(void *opaque)
427 RTCState *s = opaque;
429 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
430 rtc_copy_date(s);
433 /* check alarm */
434 if (((s->cmos_data[RTC_SECONDS_ALARM] & 0xc0) == 0xc0 ||
435 rtc_from_bcd(s, s->cmos_data[RTC_SECONDS_ALARM]) == s->current_tm.tm_sec) &&
436 ((s->cmos_data[RTC_MINUTES_ALARM] & 0xc0) == 0xc0 ||
437 rtc_from_bcd(s, s->cmos_data[RTC_MINUTES_ALARM]) == s->current_tm.tm_min) &&
438 ((s->cmos_data[RTC_HOURS_ALARM] & 0xc0) == 0xc0 ||
439 rtc_from_bcd(s, s->cmos_data[RTC_HOURS_ALARM]) == s->current_tm.tm_hour)) {
441 s->cmos_data[RTC_REG_C] |= REG_C_AF;
442 if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
443 qemu_system_wakeup_request(QEMU_WAKEUP_REASON_RTC);
444 qemu_irq_raise(s->irq);
445 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
449 /* update ended interrupt */
450 s->cmos_data[RTC_REG_C] |= REG_C_UF;
451 if (s->cmos_data[RTC_REG_B] & REG_B_UIE) {
452 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
453 qemu_irq_raise(s->irq);
456 /* clear update in progress bit */
457 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
459 s->next_second_time += get_ticks_per_sec();
460 qemu_mod_timer(s->second_timer, s->next_second_time);
463 static uint32_t cmos_ioport_read(void *opaque, uint32_t addr)
465 RTCState *s = opaque;
466 int ret;
467 if ((addr & 1) == 0) {
468 return 0xff;
469 } else {
470 switch(s->cmos_index) {
471 case RTC_SECONDS:
472 case RTC_MINUTES:
473 case RTC_HOURS:
474 case RTC_DAY_OF_WEEK:
475 case RTC_DAY_OF_MONTH:
476 case RTC_MONTH:
477 case RTC_YEAR:
478 ret = s->cmos_data[s->cmos_index];
479 break;
480 case RTC_REG_A:
481 ret = s->cmos_data[s->cmos_index];
482 break;
483 case RTC_REG_C:
484 ret = s->cmos_data[s->cmos_index];
485 qemu_irq_lower(s->irq);
486 s->cmos_data[RTC_REG_C] = 0x00;
487 #ifdef TARGET_I386
488 if(s->irq_coalesced &&
489 (s->cmos_data[RTC_REG_B] & REG_B_PIE) &&
490 s->irq_reinject_on_ack_count < RTC_REINJECT_ON_ACK_COUNT) {
491 s->irq_reinject_on_ack_count++;
492 s->cmos_data[RTC_REG_C] |= REG_C_IRQF | REG_C_PF;
493 apic_reset_irq_delivered();
494 DPRINTF_C("cmos: injecting on ack\n");
495 qemu_irq_raise(s->irq);
496 if (apic_get_irq_delivered()) {
497 s->irq_coalesced--;
498 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
499 s->irq_coalesced);
502 #endif
503 break;
504 default:
505 ret = s->cmos_data[s->cmos_index];
506 break;
508 CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n",
509 s->cmos_index, ret);
510 return ret;
514 void rtc_set_memory(ISADevice *dev, int addr, int val)
516 RTCState *s = DO_UPCAST(RTCState, dev, dev);
517 if (addr >= 0 && addr <= 127)
518 s->cmos_data[addr] = val;
521 void rtc_set_date(ISADevice *dev, const struct tm *tm)
523 RTCState *s = DO_UPCAST(RTCState, dev, dev);
524 s->current_tm = *tm;
525 rtc_copy_date(s);
528 /* PC cmos mappings */
529 #define REG_IBM_CENTURY_BYTE 0x32
530 #define REG_IBM_PS2_CENTURY_BYTE 0x37
532 static void rtc_set_date_from_host(ISADevice *dev)
534 RTCState *s = DO_UPCAST(RTCState, dev, dev);
535 struct tm tm;
536 int val;
538 /* set the CMOS date */
539 qemu_get_timedate(&tm, 0);
540 rtc_set_date(dev, &tm);
542 val = rtc_to_bcd(s, (tm.tm_year / 100) + 19);
543 rtc_set_memory(dev, REG_IBM_CENTURY_BYTE, val);
544 rtc_set_memory(dev, REG_IBM_PS2_CENTURY_BYTE, val);
547 static int rtc_post_load(void *opaque, int version_id)
549 #ifdef TARGET_I386
550 RTCState *s = opaque;
552 if (version_id >= 2) {
553 if (s->lost_tick_policy == LOST_TICK_SLEW) {
554 rtc_coalesced_timer_update(s);
557 #endif
558 return 0;
561 static const VMStateDescription vmstate_rtc = {
562 .name = "mc146818rtc",
563 .version_id = 2,
564 .minimum_version_id = 1,
565 .minimum_version_id_old = 1,
566 .post_load = rtc_post_load,
567 .fields = (VMStateField []) {
568 VMSTATE_BUFFER(cmos_data, RTCState),
569 VMSTATE_UINT8(cmos_index, RTCState),
570 VMSTATE_INT32(current_tm.tm_sec, RTCState),
571 VMSTATE_INT32(current_tm.tm_min, RTCState),
572 VMSTATE_INT32(current_tm.tm_hour, RTCState),
573 VMSTATE_INT32(current_tm.tm_wday, RTCState),
574 VMSTATE_INT32(current_tm.tm_mday, RTCState),
575 VMSTATE_INT32(current_tm.tm_mon, RTCState),
576 VMSTATE_INT32(current_tm.tm_year, RTCState),
577 VMSTATE_TIMER(periodic_timer, RTCState),
578 VMSTATE_INT64(next_periodic_time, RTCState),
579 VMSTATE_INT64(next_second_time, RTCState),
580 VMSTATE_TIMER(second_timer, RTCState),
581 VMSTATE_TIMER(second_timer2, RTCState),
582 VMSTATE_UINT32_V(irq_coalesced, RTCState, 2),
583 VMSTATE_UINT32_V(period, RTCState, 2),
584 VMSTATE_END_OF_LIST()
588 static void rtc_notify_clock_reset(Notifier *notifier, void *data)
590 RTCState *s = container_of(notifier, RTCState, clock_reset_notifier);
591 int64_t now = *(int64_t *)data;
593 rtc_set_date_from_host(&s->dev);
594 s->next_second_time = now + (get_ticks_per_sec() * 99) / 100;
595 qemu_mod_timer(s->second_timer2, s->next_second_time);
596 rtc_timer_update(s, now);
597 #ifdef TARGET_I386
598 if (s->lost_tick_policy == LOST_TICK_SLEW) {
599 rtc_coalesced_timer_update(s);
601 #endif
604 /* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE)
605 BIOS will read it and start S3 resume at POST Entry */
606 static void rtc_notify_suspend(Notifier *notifier, void *data)
608 RTCState *s = container_of(notifier, RTCState, suspend_notifier);
609 rtc_set_memory(&s->dev, 0xF, 0xFE);
612 static void rtc_reset(void *opaque)
614 RTCState *s = opaque;
616 s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE);
617 s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF);
619 qemu_irq_lower(s->irq);
621 #ifdef TARGET_I386
622 if (s->lost_tick_policy == LOST_TICK_SLEW) {
623 s->irq_coalesced = 0;
625 #endif
628 static const MemoryRegionPortio cmos_portio[] = {
629 {0, 2, 1, .read = cmos_ioport_read, .write = cmos_ioport_write },
630 PORTIO_END_OF_LIST(),
633 static const MemoryRegionOps cmos_ops = {
634 .old_portio = cmos_portio
637 // FIXME add int32 visitor
638 static void visit_type_int32(Visitor *v, int *value, const char *name, Error **errp)
640 int64_t val = *value;
641 visit_type_int(v, &val, name, errp);
644 static void rtc_get_date(Object *obj, Visitor *v, void *opaque,
645 const char *name, Error **errp)
647 ISADevice *isa = ISA_DEVICE(obj);
648 RTCState *s = DO_UPCAST(RTCState, dev, isa);
650 visit_start_struct(v, NULL, "struct tm", name, 0, errp);
651 visit_type_int32(v, &s->current_tm.tm_year, "tm_year", errp);
652 visit_type_int32(v, &s->current_tm.tm_mon, "tm_mon", errp);
653 visit_type_int32(v, &s->current_tm.tm_mday, "tm_mday", errp);
654 visit_type_int32(v, &s->current_tm.tm_hour, "tm_hour", errp);
655 visit_type_int32(v, &s->current_tm.tm_min, "tm_min", errp);
656 visit_type_int32(v, &s->current_tm.tm_sec, "tm_sec", errp);
657 visit_end_struct(v, errp);
660 static int rtc_initfn(ISADevice *dev)
662 RTCState *s = DO_UPCAST(RTCState, dev, dev);
663 int base = 0x70;
665 s->cmos_data[RTC_REG_A] = 0x26;
666 s->cmos_data[RTC_REG_B] = 0x02;
667 s->cmos_data[RTC_REG_C] = 0x00;
668 s->cmos_data[RTC_REG_D] = 0x80;
670 rtc_set_date_from_host(dev);
672 #ifdef TARGET_I386
673 switch (s->lost_tick_policy) {
674 case LOST_TICK_SLEW:
675 s->coalesced_timer =
676 qemu_new_timer_ns(rtc_clock, rtc_coalesced_timer, s);
677 break;
678 case LOST_TICK_DISCARD:
679 break;
680 default:
681 return -EINVAL;
683 #endif
685 s->periodic_timer = qemu_new_timer_ns(rtc_clock, rtc_periodic_timer, s);
686 s->second_timer = qemu_new_timer_ns(rtc_clock, rtc_update_second, s);
687 s->second_timer2 = qemu_new_timer_ns(rtc_clock, rtc_update_second2, s);
689 s->clock_reset_notifier.notify = rtc_notify_clock_reset;
690 qemu_register_clock_reset_notifier(rtc_clock, &s->clock_reset_notifier);
692 s->suspend_notifier.notify = rtc_notify_suspend;
693 qemu_register_suspend_notifier(&s->suspend_notifier);
695 s->next_second_time =
696 qemu_get_clock_ns(rtc_clock) + (get_ticks_per_sec() * 99) / 100;
697 qemu_mod_timer(s->second_timer2, s->next_second_time);
699 memory_region_init_io(&s->io, &cmos_ops, s, "rtc", 2);
700 isa_register_ioport(dev, &s->io, base);
702 qdev_set_legacy_instance_id(&dev->qdev, base, 2);
703 qemu_register_reset(rtc_reset, s);
705 object_property_add(OBJECT(s), "date", "struct tm",
706 rtc_get_date, NULL, NULL, s, NULL);
708 return 0;
711 ISADevice *rtc_init(ISABus *bus, int base_year, qemu_irq intercept_irq)
713 ISADevice *dev;
714 RTCState *s;
716 dev = isa_create(bus, "mc146818rtc");
717 s = DO_UPCAST(RTCState, dev, dev);
718 qdev_prop_set_int32(&dev->qdev, "base_year", base_year);
719 qdev_init_nofail(&dev->qdev);
720 if (intercept_irq) {
721 s->irq = intercept_irq;
722 } else {
723 isa_init_irq(dev, &s->irq, RTC_ISA_IRQ);
725 return dev;
728 static Property mc146818rtc_properties[] = {
729 DEFINE_PROP_INT32("base_year", RTCState, base_year, 1980),
730 DEFINE_PROP_LOSTTICKPOLICY("lost_tick_policy", RTCState,
731 lost_tick_policy, LOST_TICK_DISCARD),
732 DEFINE_PROP_END_OF_LIST(),
735 static void rtc_class_initfn(ObjectClass *klass, void *data)
737 DeviceClass *dc = DEVICE_CLASS(klass);
738 ISADeviceClass *ic = ISA_DEVICE_CLASS(klass);
739 ic->init = rtc_initfn;
740 dc->no_user = 1;
741 dc->vmsd = &vmstate_rtc;
742 dc->props = mc146818rtc_properties;
745 static TypeInfo mc146818rtc_info = {
746 .name = "mc146818rtc",
747 .parent = TYPE_ISA_DEVICE,
748 .instance_size = sizeof(RTCState),
749 .class_init = rtc_class_initfn,
752 static void mc146818rtc_register_types(void)
754 type_register_static(&mc146818rtc_info);
757 type_init(mc146818rtc_register_types)