virtio-serial-bus: Simplify handle_output() function
[qemu.git] / hw / lm32_boards.c
blob85190f0bfa4c955b3f1b8008d7168bde1a75c021
1 /*
2 * QEMU models for LatticeMico32 uclinux and evr32 boards.
4 * Copyright (c) 2010 Michael Walle <michael@walle.cc>
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "sysbus.h"
21 #include "hw.h"
22 #include "net.h"
23 #include "flash.h"
24 #include "sysemu.h"
25 #include "devices.h"
26 #include "boards.h"
27 #include "loader.h"
28 #include "blockdev.h"
29 #include "elf.h"
30 #include "lm32_hwsetup.h"
31 #include "lm32.h"
33 typedef struct {
34 CPUState *env;
35 target_phys_addr_t bootstrap_pc;
36 target_phys_addr_t flash_base;
37 target_phys_addr_t hwsetup_base;
38 target_phys_addr_t initrd_base;
39 size_t initrd_size;
40 target_phys_addr_t cmdline_base;
41 } ResetInfo;
43 static void cpu_irq_handler(void *opaque, int irq, int level)
45 CPUState *env = opaque;
47 if (level) {
48 cpu_interrupt(env, CPU_INTERRUPT_HARD);
49 } else {
50 cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
54 static void main_cpu_reset(void *opaque)
56 ResetInfo *reset_info = opaque;
57 CPUState *env = reset_info->env;
59 cpu_reset(env);
61 /* init defaults */
62 env->pc = (uint32_t)reset_info->bootstrap_pc;
63 env->regs[R_R1] = (uint32_t)reset_info->hwsetup_base;
64 env->regs[R_R2] = (uint32_t)reset_info->cmdline_base;
65 env->regs[R_R3] = (uint32_t)reset_info->initrd_base;
66 env->regs[R_R4] = (uint32_t)(reset_info->initrd_base +
67 reset_info->initrd_size);
68 env->eba = reset_info->flash_base;
69 env->deba = reset_info->flash_base;
72 static void lm32_evr_init(ram_addr_t ram_size_not_used,
73 const char *boot_device,
74 const char *kernel_filename,
75 const char *kernel_cmdline,
76 const char *initrd_filename, const char *cpu_model)
78 CPUState *env;
79 DriveInfo *dinfo;
80 ram_addr_t phys_ram;
81 ram_addr_t phys_flash;
82 qemu_irq *cpu_irq, irq[32];
83 ResetInfo *reset_info;
84 int i;
86 /* memory map */
87 target_phys_addr_t flash_base = 0x04000000;
88 size_t flash_sector_size = 256 * 1024;
89 size_t flash_size = 32 * 1024 * 1024;
90 target_phys_addr_t ram_base = 0x08000000;
91 size_t ram_size = 64 * 1024 * 1024;
92 target_phys_addr_t timer0_base = 0x80002000;
93 target_phys_addr_t uart0_base = 0x80006000;
94 target_phys_addr_t timer1_base = 0x8000a000;
95 int uart0_irq = 0;
96 int timer0_irq = 1;
97 int timer1_irq = 3;
99 reset_info = qemu_mallocz(sizeof(ResetInfo));
101 if (cpu_model == NULL) {
102 cpu_model = "lm32-full";
104 env = cpu_init(cpu_model);
105 reset_info->env = env;
107 reset_info->flash_base = flash_base;
109 phys_ram = qemu_ram_alloc(NULL, "lm32_evr.sdram", ram_size);
110 cpu_register_physical_memory(ram_base, ram_size, phys_ram | IO_MEM_RAM);
112 phys_flash = qemu_ram_alloc(NULL, "lm32_evr.flash", flash_size);
113 dinfo = drive_get(IF_PFLASH, 0, 0);
114 /* Spansion S29NS128P */
115 pflash_cfi02_register(flash_base, phys_flash,
116 dinfo ? dinfo->bdrv : NULL, flash_sector_size,
117 flash_size / flash_sector_size, 1, 2,
118 0x01, 0x7e, 0x43, 0x00, 0x555, 0x2aa, 1);
120 /* create irq lines */
121 cpu_irq = qemu_allocate_irqs(cpu_irq_handler, env, 1);
122 env->pic_state = lm32_pic_init(*cpu_irq);
123 for (i = 0; i < 32; i++) {
124 irq[i] = qdev_get_gpio_in(env->pic_state, i);
127 sysbus_create_simple("lm32-uart", uart0_base, irq[uart0_irq]);
128 sysbus_create_simple("lm32-timer", timer0_base, irq[timer0_irq]);
129 sysbus_create_simple("lm32-timer", timer1_base, irq[timer1_irq]);
131 /* make sure juart isn't the first chardev */
132 env->juart_state = lm32_juart_init();
134 reset_info->bootstrap_pc = flash_base;
136 if (kernel_filename) {
137 uint64_t entry;
138 int kernel_size;
140 kernel_size = load_elf(kernel_filename, NULL, NULL, &entry, NULL, NULL,
141 1, ELF_MACHINE, 0);
142 reset_info->bootstrap_pc = entry;
144 if (kernel_size < 0) {
145 kernel_size = load_image_targphys(kernel_filename, ram_base,
146 ram_size);
147 reset_info->bootstrap_pc = ram_base;
150 if (kernel_size < 0) {
151 fprintf(stderr, "qemu: could not load kernel '%s'\n",
152 kernel_filename);
153 exit(1);
157 qemu_register_reset(main_cpu_reset, reset_info);
160 static void lm32_uclinux_init(ram_addr_t ram_size_not_used,
161 const char *boot_device,
162 const char *kernel_filename,
163 const char *kernel_cmdline,
164 const char *initrd_filename, const char *cpu_model)
166 CPUState *env;
167 DriveInfo *dinfo;
168 ram_addr_t phys_ram;
169 ram_addr_t phys_flash;
170 qemu_irq *cpu_irq, irq[32];
171 HWSetup *hw;
172 ResetInfo *reset_info;
173 int i;
175 /* memory map */
176 target_phys_addr_t flash_base = 0x04000000;
177 size_t flash_sector_size = 256 * 1024;
178 size_t flash_size = 32 * 1024 * 1024;
179 target_phys_addr_t ram_base = 0x08000000;
180 size_t ram_size = 64 * 1024 * 1024;
181 target_phys_addr_t uart0_base = 0x80000000;
182 target_phys_addr_t timer0_base = 0x80002000;
183 target_phys_addr_t timer1_base = 0x80010000;
184 target_phys_addr_t timer2_base = 0x80012000;
185 int uart0_irq = 0;
186 int timer0_irq = 1;
187 int timer1_irq = 20;
188 int timer2_irq = 21;
189 target_phys_addr_t hwsetup_base = 0x0bffe000;
190 target_phys_addr_t cmdline_base = 0x0bfff000;
191 target_phys_addr_t initrd_base = 0x08400000;
192 size_t initrd_max = 0x01000000;
194 reset_info = qemu_mallocz(sizeof(ResetInfo));
196 if (cpu_model == NULL) {
197 cpu_model = "lm32-full";
199 env = cpu_init(cpu_model);
200 reset_info->env = env;
202 reset_info->flash_base = flash_base;
204 phys_ram = qemu_ram_alloc(NULL, "lm32_uclinux.sdram", ram_size);
205 cpu_register_physical_memory(ram_base, ram_size, phys_ram | IO_MEM_RAM);
207 phys_flash = qemu_ram_alloc(NULL, "lm32_uclinux.flash", flash_size);
208 dinfo = drive_get(IF_PFLASH, 0, 0);
209 /* Spansion S29NS128P */
210 pflash_cfi02_register(flash_base, phys_flash,
211 dinfo ? dinfo->bdrv : NULL, flash_sector_size,
212 flash_size / flash_sector_size, 1, 2,
213 0x01, 0x7e, 0x43, 0x00, 0x555, 0x2aa, 1);
215 /* create irq lines */
216 cpu_irq = qemu_allocate_irqs(cpu_irq_handler, env, 1);
217 env->pic_state = lm32_pic_init(*cpu_irq);
218 for (i = 0; i < 32; i++) {
219 irq[i] = qdev_get_gpio_in(env->pic_state, i);
222 sysbus_create_simple("lm32-uart", uart0_base, irq[uart0_irq]);
223 sysbus_create_simple("lm32-timer", timer0_base, irq[timer0_irq]);
224 sysbus_create_simple("lm32-timer", timer1_base, irq[timer1_irq]);
225 sysbus_create_simple("lm32-timer", timer2_base, irq[timer2_irq]);
227 /* make sure juart isn't the first chardev */
228 env->juart_state = lm32_juart_init();
230 reset_info->bootstrap_pc = flash_base;
232 if (kernel_filename) {
233 uint64_t entry;
234 int kernel_size;
236 kernel_size = load_elf(kernel_filename, NULL, NULL, &entry, NULL, NULL,
237 1, ELF_MACHINE, 0);
238 reset_info->bootstrap_pc = entry;
240 if (kernel_size < 0) {
241 kernel_size = load_image_targphys(kernel_filename, ram_base,
242 ram_size);
243 reset_info->bootstrap_pc = ram_base;
246 if (kernel_size < 0) {
247 fprintf(stderr, "qemu: could not load kernel '%s'\n",
248 kernel_filename);
249 exit(1);
253 /* generate a rom with the hardware description */
254 hw = hwsetup_init();
255 hwsetup_add_cpu(hw, "LM32", 75000000);
256 hwsetup_add_flash(hw, "flash", flash_base, flash_size);
257 hwsetup_add_ddr_sdram(hw, "ddr_sdram", ram_base, ram_size);
258 hwsetup_add_timer(hw, "timer0", timer0_base, timer0_irq);
259 hwsetup_add_timer(hw, "timer1_dev_only", timer1_base, timer1_irq);
260 hwsetup_add_timer(hw, "timer2_dev_only", timer2_base, timer2_irq);
261 hwsetup_add_uart(hw, "uart", uart0_base, uart0_irq);
262 hwsetup_add_trailer(hw);
263 hwsetup_create_rom(hw, hwsetup_base);
264 hwsetup_free(hw);
266 reset_info->hwsetup_base = hwsetup_base;
268 if (kernel_cmdline && strlen(kernel_cmdline)) {
269 pstrcpy_targphys("cmdline", cmdline_base, TARGET_PAGE_SIZE,
270 kernel_cmdline);
271 reset_info->cmdline_base = cmdline_base;
274 if (initrd_filename) {
275 size_t initrd_size;
276 initrd_size = load_image_targphys(initrd_filename, initrd_base,
277 initrd_max);
278 reset_info->initrd_base = initrd_base;
279 reset_info->initrd_size = initrd_size;
282 qemu_register_reset(main_cpu_reset, reset_info);
285 static QEMUMachine lm32_evr_machine = {
286 .name = "lm32-evr",
287 .desc = "LatticeMico32 EVR32 eval system",
288 .init = lm32_evr_init,
289 .is_default = 1
292 static QEMUMachine lm32_uclinux_machine = {
293 .name = "lm32-uclinux",
294 .desc = "lm32 platform for uClinux and u-boot by Theobroma Systems",
295 .init = lm32_uclinux_init,
296 .is_default = 0
299 static void lm32_machine_init(void)
301 qemu_register_machine(&lm32_uclinux_machine);
302 qemu_register_machine(&lm32_evr_machine);
305 machine_init(lm32_machine_init);