2 * CFI parallel flash with AMD command set emulation
4 * Copyright (c) 2005 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
21 * For now, this code can emulate flashes of 1, 2 or 4 bytes width.
22 * Supported commands/modes are:
28 * - unlock bypass command
31 * It does not support flash interleaving.
32 * It does not implement boot blocs with reduced size
33 * It does not implement software data protection as found in many real chips
34 * It does not implement erase suspend/resume commands
35 * It does not implement multiple sectors erase
40 #include "qemu-timer.h"
43 //#define PFLASH_DEBUG
45 #define DPRINTF(fmt, ...) \
47 printf("PFLASH: " fmt , ## __VA_ARGS__); \
50 #define DPRINTF(fmt, ...) do { } while (0)
53 #define PFLASH_LAZY_ROMD_THRESHOLD 42
57 target_phys_addr_t base
;
62 int wcycle
; /* if 0, the flash is read normally */
68 uint16_t unlock_addr
[2];
70 uint8_t cfi_table
[0x52];
75 int read_counter
; /* used for lazy switch-back to rom mode */
79 static void pflash_register_memory(pflash_t
*pfl
, int rom_mode
)
81 unsigned long phys_offset
= pfl
->fl_mem
;
85 phys_offset
|= pfl
->off
| IO_MEM_ROMD
;
86 pfl
->rom_mode
= rom_mode
;
88 for (i
= 0; i
< pfl
->mappings
; i
++)
89 cpu_register_physical_memory(pfl
->base
+ i
* pfl
->chip_len
,
90 pfl
->chip_len
, phys_offset
);
93 static void pflash_timer (void *opaque
)
95 pflash_t
*pfl
= opaque
;
97 DPRINTF("%s: command %02x done\n", __func__
, pfl
->cmd
);
103 pflash_register_memory(pfl
, 1);
109 static uint32_t pflash_read (pflash_t
*pfl
, target_phys_addr_t offset
,
112 target_phys_addr_t boff
;
116 DPRINTF("%s: offset " TARGET_FMT_plx
"\n", __func__
, offset
);
118 /* Lazy reset to ROMD mode after a certain amount of read accesses */
119 if (!pfl
->rom_mode
&& pfl
->wcycle
== 0 &&
120 ++pfl
->read_counter
> PFLASH_LAZY_ROMD_THRESHOLD
) {
121 pflash_register_memory(pfl
, 1);
123 offset
&= pfl
->chip_len
- 1;
124 boff
= offset
& 0xFF;
127 else if (pfl
->width
== 4)
131 /* This should never happen : reset state & treat it as a read*/
132 DPRINTF("%s: unknown command state: %x\n", __func__
, pfl
->cmd
);
136 /* We accept reads during second unlock sequence... */
139 /* Flash area read */
144 // DPRINTF("%s: data offset %08x %02x\n", __func__, offset, ret);
148 ret
= p
[offset
] << 8;
149 ret
|= p
[offset
+ 1];
152 ret
|= p
[offset
+ 1] << 8;
154 // DPRINTF("%s: data offset %08x %04x\n", __func__, offset, ret);
158 ret
= p
[offset
] << 24;
159 ret
|= p
[offset
+ 1] << 16;
160 ret
|= p
[offset
+ 2] << 8;
161 ret
|= p
[offset
+ 3];
164 ret
|= p
[offset
+ 1] << 8;
165 ret
|= p
[offset
+ 2] << 16;
166 ret
|= p
[offset
+ 3] << 24;
168 // DPRINTF("%s: data offset %08x %08x\n", __func__, offset, ret);
177 ret
= pfl
->ident
[boff
& 0x01];
180 ret
= 0x00; /* Pretend all sectors are unprotected */
184 if (pfl
->ident
[2 + (boff
& 0x01)] == (uint8_t)-1)
186 ret
= pfl
->ident
[2 + (boff
& 0x01)];
191 DPRINTF("%s: ID " TARGET_FMT_plx
" %x\n", __func__
, boff
, ret
);
196 /* Status register read */
198 DPRINTF("%s: status %x\n", __func__
, ret
);
204 if (boff
> pfl
->cfi_len
)
207 ret
= pfl
->cfi_table
[boff
];
214 /* update flash content on disk */
215 static void pflash_update(pflash_t
*pfl
, int offset
,
220 offset_end
= offset
+ size
;
221 /* round to sectors */
222 offset
= offset
>> 9;
223 offset_end
= (offset_end
+ 511) >> 9;
224 bdrv_write(pfl
->bs
, offset
, pfl
->storage
+ (offset
<< 9),
225 offset_end
- offset
);
229 static void pflash_write (pflash_t
*pfl
, target_phys_addr_t offset
,
230 uint32_t value
, int width
, int be
)
232 target_phys_addr_t boff
;
237 if (pfl
->cmd
!= 0xA0 && cmd
== 0xF0) {
239 DPRINTF("%s: flash reset asked (%02x %02x)\n",
240 __func__
, pfl
->cmd
, cmd
);
244 DPRINTF("%s: offset " TARGET_FMT_plx
" %08x %d %d\n", __func__
,
245 offset
, value
, width
, pfl
->wcycle
);
246 offset
&= pfl
->chip_len
- 1;
248 DPRINTF("%s: offset " TARGET_FMT_plx
" %08x %d\n", __func__
,
249 offset
, value
, width
);
250 boff
= offset
& (pfl
->sector_len
- 1);
253 else if (pfl
->width
== 4)
255 switch (pfl
->wcycle
) {
257 /* Set the device in I/O access mode if required */
259 pflash_register_memory(pfl
, 0);
260 pfl
->read_counter
= 0;
261 /* We're in read mode */
263 if (boff
== 0x55 && cmd
== 0x98) {
265 /* Enter CFI query mode */
270 if (boff
!= pfl
->unlock_addr
[0] || cmd
!= 0xAA) {
271 DPRINTF("%s: unlock0 failed " TARGET_FMT_plx
" %02x %04x\n",
272 __func__
, boff
, cmd
, pfl
->unlock_addr
[0]);
275 DPRINTF("%s: unlock sequence started\n", __func__
);
278 /* We started an unlock sequence */
280 if (boff
!= pfl
->unlock_addr
[1] || cmd
!= 0x55) {
281 DPRINTF("%s: unlock1 failed " TARGET_FMT_plx
" %02x\n", __func__
,
285 DPRINTF("%s: unlock sequence done\n", __func__
);
288 /* We finished an unlock sequence */
289 if (!pfl
->bypass
&& boff
!= pfl
->unlock_addr
[0]) {
290 DPRINTF("%s: command failed " TARGET_FMT_plx
" %02x\n", __func__
,
302 DPRINTF("%s: starting command %02x\n", __func__
, cmd
);
305 DPRINTF("%s: unknown command %02x\n", __func__
, cmd
);
312 /* We need another unlock sequence */
315 DPRINTF("%s: write data offset " TARGET_FMT_plx
" %08x %d\n",
316 __func__
, offset
, value
, width
);
321 pflash_update(pfl
, offset
, 1);
325 p
[offset
] &= value
>> 8;
326 p
[offset
+ 1] &= value
;
329 p
[offset
+ 1] &= value
>> 8;
331 pflash_update(pfl
, offset
, 2);
335 p
[offset
] &= value
>> 24;
336 p
[offset
+ 1] &= value
>> 16;
337 p
[offset
+ 2] &= value
>> 8;
338 p
[offset
+ 3] &= value
;
341 p
[offset
+ 1] &= value
>> 8;
342 p
[offset
+ 2] &= value
>> 16;
343 p
[offset
+ 3] &= value
>> 24;
345 pflash_update(pfl
, offset
, 4);
348 pfl
->status
= 0x00 | ~(value
& 0x80);
349 /* Let's pretend write is immediate */
354 if (pfl
->bypass
&& cmd
== 0x00) {
355 /* Unlock bypass reset */
358 /* We can enter CFI query mode from autoselect mode */
359 if (boff
== 0x55 && cmd
== 0x98)
363 DPRINTF("%s: invalid write for command %02x\n",
370 /* Ignore writes while flash data write is occurring */
371 /* As we suppose write is immediate, this should never happen */
376 /* Should never happen */
377 DPRINTF("%s: invalid command state %02x (wc 4)\n",
385 if (boff
!= pfl
->unlock_addr
[0]) {
386 DPRINTF("%s: chip erase: invalid address " TARGET_FMT_plx
"\n",
391 DPRINTF("%s: start chip erase\n", __func__
);
392 memset(pfl
->storage
, 0xFF, pfl
->chip_len
);
394 pflash_update(pfl
, 0, pfl
->chip_len
);
395 /* Let's wait 5 seconds before chip erase is done */
396 qemu_mod_timer(pfl
->timer
,
397 qemu_get_clock_ns(vm_clock
) + (get_ticks_per_sec() * 5));
402 offset
&= ~(pfl
->sector_len
- 1);
403 DPRINTF("%s: start sector erase at " TARGET_FMT_plx
"\n", __func__
,
405 memset(p
+ offset
, 0xFF, pfl
->sector_len
);
406 pflash_update(pfl
, offset
, pfl
->sector_len
);
408 /* Let's wait 1/2 second before sector erase is done */
409 qemu_mod_timer(pfl
->timer
,
410 qemu_get_clock_ns(vm_clock
) + (get_ticks_per_sec() / 2));
413 DPRINTF("%s: invalid command %02x (wc 5)\n", __func__
, cmd
);
421 /* Ignore writes during chip erase */
424 /* Ignore writes during sector erase */
427 /* Should never happen */
428 DPRINTF("%s: invalid command state %02x (wc 6)\n",
433 case 7: /* Special value for CFI queries */
434 DPRINTF("%s: invalid write in CFI query mode\n", __func__
);
437 /* Should never happen */
438 DPRINTF("%s: invalid write state (wc 7)\n", __func__
);
459 static uint32_t pflash_readb_be(void *opaque
, target_phys_addr_t addr
)
461 return pflash_read(opaque
, addr
, 1, 1);
464 static uint32_t pflash_readb_le(void *opaque
, target_phys_addr_t addr
)
466 return pflash_read(opaque
, addr
, 1, 0);
469 static uint32_t pflash_readw_be(void *opaque
, target_phys_addr_t addr
)
471 pflash_t
*pfl
= opaque
;
473 return pflash_read(pfl
, addr
, 2, 1);
476 static uint32_t pflash_readw_le(void *opaque
, target_phys_addr_t addr
)
478 pflash_t
*pfl
= opaque
;
480 return pflash_read(pfl
, addr
, 2, 0);
483 static uint32_t pflash_readl_be(void *opaque
, target_phys_addr_t addr
)
485 pflash_t
*pfl
= opaque
;
487 return pflash_read(pfl
, addr
, 4, 1);
490 static uint32_t pflash_readl_le(void *opaque
, target_phys_addr_t addr
)
492 pflash_t
*pfl
= opaque
;
494 return pflash_read(pfl
, addr
, 4, 0);
497 static void pflash_writeb_be(void *opaque
, target_phys_addr_t addr
,
500 pflash_write(opaque
, addr
, value
, 1, 1);
503 static void pflash_writeb_le(void *opaque
, target_phys_addr_t addr
,
506 pflash_write(opaque
, addr
, value
, 1, 0);
509 static void pflash_writew_be(void *opaque
, target_phys_addr_t addr
,
512 pflash_t
*pfl
= opaque
;
514 pflash_write(pfl
, addr
, value
, 2, 1);
517 static void pflash_writew_le(void *opaque
, target_phys_addr_t addr
,
520 pflash_t
*pfl
= opaque
;
522 pflash_write(pfl
, addr
, value
, 2, 0);
525 static void pflash_writel_be(void *opaque
, target_phys_addr_t addr
,
528 pflash_t
*pfl
= opaque
;
530 pflash_write(pfl
, addr
, value
, 4, 1);
533 static void pflash_writel_le(void *opaque
, target_phys_addr_t addr
,
536 pflash_t
*pfl
= opaque
;
538 pflash_write(pfl
, addr
, value
, 4, 0);
541 static CPUWriteMemoryFunc
* const pflash_write_ops_be
[] = {
547 static CPUReadMemoryFunc
* const pflash_read_ops_be
[] = {
553 static CPUWriteMemoryFunc
* const pflash_write_ops_le
[] = {
559 static CPUReadMemoryFunc
* const pflash_read_ops_le
[] = {
565 /* Count trailing zeroes of a 32 bits quantity */
566 static int ctz32 (uint32_t n
)
589 #if 0 /* This is not necessary as n is never 0 */
593 #if 0 /* This is not necessary as n is never 0 */
601 pflash_t
*pflash_cfi02_register(target_phys_addr_t base
, ram_addr_t off
,
602 BlockDriverState
*bs
, uint32_t sector_len
,
603 int nb_blocs
, int nb_mappings
, int width
,
604 uint16_t id0
, uint16_t id1
,
605 uint16_t id2
, uint16_t id3
,
606 uint16_t unlock_addr0
, uint16_t unlock_addr1
,
613 chip_len
= sector_len
* nb_blocs
;
614 /* XXX: to be fixed */
616 if (total_len
!= (8 * 1024 * 1024) && total_len
!= (16 * 1024 * 1024) &&
617 total_len
!= (32 * 1024 * 1024) && total_len
!= (64 * 1024 * 1024))
620 pfl
= qemu_mallocz(sizeof(pflash_t
));
621 /* FIXME: Allocate ram ourselves. */
622 pfl
->storage
= qemu_get_ram_ptr(off
);
624 pfl
->fl_mem
= cpu_register_io_memory(pflash_read_ops_be
,
626 pfl
, DEVICE_NATIVE_ENDIAN
);
628 pfl
->fl_mem
= cpu_register_io_memory(pflash_read_ops_le
,
630 pfl
, DEVICE_NATIVE_ENDIAN
);
634 pfl
->chip_len
= chip_len
;
635 pfl
->mappings
= nb_mappings
;
636 pflash_register_memory(pfl
, 1);
639 /* read the initial flash content */
640 ret
= bdrv_read(pfl
->bs
, 0, pfl
->storage
, chip_len
>> 9);
642 cpu_unregister_io_memory(pfl
->fl_mem
);
647 #if 0 /* XXX: there should be a bit to set up read-only,
648 * the same way the hardware does (with WP pin).
654 pfl
->timer
= qemu_new_timer_ns(vm_clock
, pflash_timer
, pfl
);
655 pfl
->sector_len
= sector_len
;
664 pfl
->unlock_addr
[0] = unlock_addr0
;
665 pfl
->unlock_addr
[1] = unlock_addr1
;
666 /* Hardcoded CFI table (mostly from SG29 Spansion flash) */
668 /* Standard "QRY" string */
669 pfl
->cfi_table
[0x10] = 'Q';
670 pfl
->cfi_table
[0x11] = 'R';
671 pfl
->cfi_table
[0x12] = 'Y';
672 /* Command set (AMD/Fujitsu) */
673 pfl
->cfi_table
[0x13] = 0x02;
674 pfl
->cfi_table
[0x14] = 0x00;
675 /* Primary extended table address */
676 pfl
->cfi_table
[0x15] = 0x31;
677 pfl
->cfi_table
[0x16] = 0x00;
678 /* Alternate command set (none) */
679 pfl
->cfi_table
[0x17] = 0x00;
680 pfl
->cfi_table
[0x18] = 0x00;
681 /* Alternate extended table (none) */
682 pfl
->cfi_table
[0x19] = 0x00;
683 pfl
->cfi_table
[0x1A] = 0x00;
685 pfl
->cfi_table
[0x1B] = 0x27;
687 pfl
->cfi_table
[0x1C] = 0x36;
688 /* Vpp min (no Vpp pin) */
689 pfl
->cfi_table
[0x1D] = 0x00;
690 /* Vpp max (no Vpp pin) */
691 pfl
->cfi_table
[0x1E] = 0x00;
693 pfl
->cfi_table
[0x1F] = 0x07;
694 /* Timeout for min size buffer write (NA) */
695 pfl
->cfi_table
[0x20] = 0x00;
696 /* Typical timeout for block erase (512 ms) */
697 pfl
->cfi_table
[0x21] = 0x09;
698 /* Typical timeout for full chip erase (4096 ms) */
699 pfl
->cfi_table
[0x22] = 0x0C;
701 pfl
->cfi_table
[0x23] = 0x01;
702 /* Max timeout for buffer write (NA) */
703 pfl
->cfi_table
[0x24] = 0x00;
704 /* Max timeout for block erase */
705 pfl
->cfi_table
[0x25] = 0x0A;
706 /* Max timeout for chip erase */
707 pfl
->cfi_table
[0x26] = 0x0D;
709 pfl
->cfi_table
[0x27] = ctz32(chip_len
);
710 /* Flash device interface (8 & 16 bits) */
711 pfl
->cfi_table
[0x28] = 0x02;
712 pfl
->cfi_table
[0x29] = 0x00;
713 /* Max number of bytes in multi-bytes write */
714 /* XXX: disable buffered write as it's not supported */
715 // pfl->cfi_table[0x2A] = 0x05;
716 pfl
->cfi_table
[0x2A] = 0x00;
717 pfl
->cfi_table
[0x2B] = 0x00;
718 /* Number of erase block regions (uniform) */
719 pfl
->cfi_table
[0x2C] = 0x01;
720 /* Erase block region 1 */
721 pfl
->cfi_table
[0x2D] = nb_blocs
- 1;
722 pfl
->cfi_table
[0x2E] = (nb_blocs
- 1) >> 8;
723 pfl
->cfi_table
[0x2F] = sector_len
>> 8;
724 pfl
->cfi_table
[0x30] = sector_len
>> 16;
727 pfl
->cfi_table
[0x31] = 'P';
728 pfl
->cfi_table
[0x32] = 'R';
729 pfl
->cfi_table
[0x33] = 'I';
731 pfl
->cfi_table
[0x34] = '1';
732 pfl
->cfi_table
[0x35] = '0';
734 pfl
->cfi_table
[0x36] = 0x00;
735 pfl
->cfi_table
[0x37] = 0x00;
736 pfl
->cfi_table
[0x38] = 0x00;
737 pfl
->cfi_table
[0x39] = 0x00;
739 pfl
->cfi_table
[0x3a] = 0x00;
741 pfl
->cfi_table
[0x3b] = 0x00;
742 pfl
->cfi_table
[0x3c] = 0x00;