block: Pass truncate exact=true where reasonable
[qemu.git] / hw / intc / spapr_xive.c
blobd8e1291905c3c3551c0477f23b3b6ca61ed999ee
1 /*
2 * QEMU PowerPC sPAPR XIVE interrupt controller model
4 * Copyright (c) 2017-2018, IBM Corporation.
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
8 */
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/module.h"
13 #include "qapi/error.h"
14 #include "qemu/error-report.h"
15 #include "target/ppc/cpu.h"
16 #include "sysemu/cpus.h"
17 #include "sysemu/reset.h"
18 #include "migration/vmstate.h"
19 #include "monitor/monitor.h"
20 #include "hw/ppc/fdt.h"
21 #include "hw/ppc/spapr.h"
22 #include "hw/ppc/spapr_cpu_core.h"
23 #include "hw/ppc/spapr_xive.h"
24 #include "hw/ppc/xive.h"
25 #include "hw/ppc/xive_regs.h"
26 #include "hw/qdev-properties.h"
29 * XIVE Virtualization Controller BAR and Thread Managment BAR that we
30 * use for the ESB pages and the TIMA pages
32 #define SPAPR_XIVE_VC_BASE 0x0006010000000000ull
33 #define SPAPR_XIVE_TM_BASE 0x0006030203180000ull
36 * The allocation of VP blocks is a complex operation in OPAL and the
37 * VP identifiers have a relation with the number of HW chips, the
38 * size of the VP blocks, VP grouping, etc. The QEMU sPAPR XIVE
39 * controller model does not have the same constraints and can use a
40 * simple mapping scheme of the CPU vcpu_id
42 * These identifiers are never returned to the OS.
45 #define SPAPR_XIVE_NVT_BASE 0x400
48 * sPAPR NVT and END indexing helpers
50 static uint32_t spapr_xive_nvt_to_target(uint8_t nvt_blk, uint32_t nvt_idx)
52 return nvt_idx - SPAPR_XIVE_NVT_BASE;
55 static void spapr_xive_cpu_to_nvt(PowerPCCPU *cpu,
56 uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
58 assert(cpu);
60 if (out_nvt_blk) {
61 *out_nvt_blk = SPAPR_XIVE_BLOCK_ID;
64 if (out_nvt_blk) {
65 *out_nvt_idx = SPAPR_XIVE_NVT_BASE + cpu->vcpu_id;
69 static int spapr_xive_target_to_nvt(uint32_t target,
70 uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
72 PowerPCCPU *cpu = spapr_find_cpu(target);
74 if (!cpu) {
75 return -1;
78 spapr_xive_cpu_to_nvt(cpu, out_nvt_blk, out_nvt_idx);
79 return 0;
83 * sPAPR END indexing uses a simple mapping of the CPU vcpu_id, 8
84 * priorities per CPU
86 int spapr_xive_end_to_target(uint8_t end_blk, uint32_t end_idx,
87 uint32_t *out_server, uint8_t *out_prio)
90 assert(end_blk == SPAPR_XIVE_BLOCK_ID);
92 if (out_server) {
93 *out_server = end_idx >> 3;
96 if (out_prio) {
97 *out_prio = end_idx & 0x7;
99 return 0;
102 static void spapr_xive_cpu_to_end(PowerPCCPU *cpu, uint8_t prio,
103 uint8_t *out_end_blk, uint32_t *out_end_idx)
105 assert(cpu);
107 if (out_end_blk) {
108 *out_end_blk = SPAPR_XIVE_BLOCK_ID;
111 if (out_end_idx) {
112 *out_end_idx = (cpu->vcpu_id << 3) + prio;
116 static int spapr_xive_target_to_end(uint32_t target, uint8_t prio,
117 uint8_t *out_end_blk, uint32_t *out_end_idx)
119 PowerPCCPU *cpu = spapr_find_cpu(target);
121 if (!cpu) {
122 return -1;
125 spapr_xive_cpu_to_end(cpu, prio, out_end_blk, out_end_idx);
126 return 0;
130 * On sPAPR machines, use a simplified output for the XIVE END
131 * structure dumping only the information related to the OS EQ.
133 static void spapr_xive_end_pic_print_info(SpaprXive *xive, XiveEND *end,
134 Monitor *mon)
136 uint64_t qaddr_base = xive_end_qaddr(end);
137 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
138 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
139 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
140 uint32_t qentries = 1 << (qsize + 10);
141 uint32_t nvt = xive_get_field32(END_W6_NVT_INDEX, end->w6);
142 uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
144 monitor_printf(mon, "%3d/%d % 6d/%5d @%"PRIx64" ^%d",
145 spapr_xive_nvt_to_target(0, nvt),
146 priority, qindex, qentries, qaddr_base, qgen);
148 xive_end_queue_pic_print_info(end, 6, mon);
151 void spapr_xive_pic_print_info(SpaprXive *xive, Monitor *mon)
153 XiveSource *xsrc = &xive->source;
154 int i;
156 if (kvm_irqchip_in_kernel()) {
157 Error *local_err = NULL;
159 kvmppc_xive_synchronize_state(xive, &local_err);
160 if (local_err) {
161 error_report_err(local_err);
162 return;
166 monitor_printf(mon, " LISN PQ EISN CPU/PRIO EQ\n");
168 for (i = 0; i < xive->nr_irqs; i++) {
169 uint8_t pq = xive_source_esb_get(xsrc, i);
170 XiveEAS *eas = &xive->eat[i];
172 if (!xive_eas_is_valid(eas)) {
173 continue;
176 monitor_printf(mon, " %08x %s %c%c%c %s %08x ", i,
177 xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
178 pq & XIVE_ESB_VAL_P ? 'P' : '-',
179 pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
180 xsrc->status[i] & XIVE_STATUS_ASSERTED ? 'A' : ' ',
181 xive_eas_is_masked(eas) ? "M" : " ",
182 (int) xive_get_field64(EAS_END_DATA, eas->w));
184 if (!xive_eas_is_masked(eas)) {
185 uint32_t end_idx = xive_get_field64(EAS_END_INDEX, eas->w);
186 XiveEND *end;
188 assert(end_idx < xive->nr_ends);
189 end = &xive->endt[end_idx];
191 if (xive_end_is_valid(end)) {
192 spapr_xive_end_pic_print_info(xive, end, mon);
195 monitor_printf(mon, "\n");
199 void spapr_xive_mmio_set_enabled(SpaprXive *xive, bool enable)
201 memory_region_set_enabled(&xive->source.esb_mmio, enable);
202 memory_region_set_enabled(&xive->tm_mmio, enable);
204 /* Disable the END ESBs until a guest OS makes use of them */
205 memory_region_set_enabled(&xive->end_source.esb_mmio, false);
208 static void spapr_xive_end_reset(XiveEND *end)
210 memset(end, 0, sizeof(*end));
212 /* switch off the escalation and notification ESBs */
213 end->w1 = cpu_to_be32(END_W1_ESe_Q | END_W1_ESn_Q);
216 static void spapr_xive_reset(void *dev)
218 SpaprXive *xive = SPAPR_XIVE(dev);
219 int i;
222 * The XiveSource has its own reset handler, which mask off all
223 * IRQs (!P|Q)
226 /* Mask all valid EASs in the IRQ number space. */
227 for (i = 0; i < xive->nr_irqs; i++) {
228 XiveEAS *eas = &xive->eat[i];
229 if (xive_eas_is_valid(eas)) {
230 eas->w = cpu_to_be64(EAS_VALID | EAS_MASKED);
231 } else {
232 eas->w = 0;
236 /* Clear all ENDs */
237 for (i = 0; i < xive->nr_ends; i++) {
238 spapr_xive_end_reset(&xive->endt[i]);
242 static void spapr_xive_instance_init(Object *obj)
244 SpaprXive *xive = SPAPR_XIVE(obj);
246 object_initialize_child(obj, "source", &xive->source, sizeof(xive->source),
247 TYPE_XIVE_SOURCE, &error_abort, NULL);
249 object_initialize_child(obj, "end_source", &xive->end_source,
250 sizeof(xive->end_source), TYPE_XIVE_END_SOURCE,
251 &error_abort, NULL);
253 /* Not connected to the KVM XIVE device */
254 xive->fd = -1;
257 static void spapr_xive_realize(DeviceState *dev, Error **errp)
259 SpaprXive *xive = SPAPR_XIVE(dev);
260 XiveSource *xsrc = &xive->source;
261 XiveENDSource *end_xsrc = &xive->end_source;
262 Error *local_err = NULL;
264 if (!xive->nr_irqs) {
265 error_setg(errp, "Number of interrupt needs to be greater 0");
266 return;
269 if (!xive->nr_ends) {
270 error_setg(errp, "Number of interrupt needs to be greater 0");
271 return;
275 * Initialize the internal sources, for IPIs and virtual devices.
277 object_property_set_int(OBJECT(xsrc), xive->nr_irqs, "nr-irqs",
278 &error_fatal);
279 object_property_add_const_link(OBJECT(xsrc), "xive", OBJECT(xive),
280 &error_fatal);
281 object_property_set_bool(OBJECT(xsrc), true, "realized", &local_err);
282 if (local_err) {
283 error_propagate(errp, local_err);
284 return;
286 sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xsrc->esb_mmio);
289 * Initialize the END ESB source
291 object_property_set_int(OBJECT(end_xsrc), xive->nr_irqs, "nr-ends",
292 &error_fatal);
293 object_property_add_const_link(OBJECT(end_xsrc), "xive", OBJECT(xive),
294 &error_fatal);
295 object_property_set_bool(OBJECT(end_xsrc), true, "realized", &local_err);
296 if (local_err) {
297 error_propagate(errp, local_err);
298 return;
300 sysbus_init_mmio(SYS_BUS_DEVICE(xive), &end_xsrc->esb_mmio);
302 /* Set the mapping address of the END ESB pages after the source ESBs */
303 xive->end_base = xive->vc_base + (1ull << xsrc->esb_shift) * xsrc->nr_irqs;
306 * Allocate the routing tables
308 xive->eat = g_new0(XiveEAS, xive->nr_irqs);
309 xive->endt = g_new0(XiveEND, xive->nr_ends);
311 xive->nodename = g_strdup_printf("interrupt-controller@%" PRIx64,
312 xive->tm_base + XIVE_TM_USER_PAGE * (1 << TM_SHIFT));
314 qemu_register_reset(spapr_xive_reset, dev);
316 /* TIMA initialization */
317 memory_region_init_io(&xive->tm_mmio, OBJECT(xive), &xive_tm_ops, xive,
318 "xive.tima", 4ull << TM_SHIFT);
319 sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xive->tm_mmio);
322 * Map all regions. These will be enabled or disabled at reset and
323 * can also be overridden by KVM memory regions if active
325 sysbus_mmio_map(SYS_BUS_DEVICE(xive), 0, xive->vc_base);
326 sysbus_mmio_map(SYS_BUS_DEVICE(xive), 1, xive->end_base);
327 sysbus_mmio_map(SYS_BUS_DEVICE(xive), 2, xive->tm_base);
330 static int spapr_xive_get_eas(XiveRouter *xrtr, uint8_t eas_blk,
331 uint32_t eas_idx, XiveEAS *eas)
333 SpaprXive *xive = SPAPR_XIVE(xrtr);
335 if (eas_idx >= xive->nr_irqs) {
336 return -1;
339 *eas = xive->eat[eas_idx];
340 return 0;
343 static int spapr_xive_get_end(XiveRouter *xrtr,
344 uint8_t end_blk, uint32_t end_idx, XiveEND *end)
346 SpaprXive *xive = SPAPR_XIVE(xrtr);
348 if (end_idx >= xive->nr_ends) {
349 return -1;
352 memcpy(end, &xive->endt[end_idx], sizeof(XiveEND));
353 return 0;
356 static int spapr_xive_write_end(XiveRouter *xrtr, uint8_t end_blk,
357 uint32_t end_idx, XiveEND *end,
358 uint8_t word_number)
360 SpaprXive *xive = SPAPR_XIVE(xrtr);
362 if (end_idx >= xive->nr_ends) {
363 return -1;
366 memcpy(&xive->endt[end_idx], end, sizeof(XiveEND));
367 return 0;
370 static int spapr_xive_get_nvt(XiveRouter *xrtr,
371 uint8_t nvt_blk, uint32_t nvt_idx, XiveNVT *nvt)
373 uint32_t vcpu_id = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
374 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
376 if (!cpu) {
377 /* TODO: should we assert() if we can find a NVT ? */
378 return -1;
382 * sPAPR does not maintain a NVT table. Return that the NVT is
383 * valid if we have found a matching CPU
385 nvt->w0 = cpu_to_be32(NVT_W0_VALID);
386 return 0;
389 static int spapr_xive_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk,
390 uint32_t nvt_idx, XiveNVT *nvt,
391 uint8_t word_number)
394 * We don't need to write back to the NVTs because the sPAPR
395 * machine should never hit a non-scheduled NVT. It should never
396 * get called.
398 g_assert_not_reached();
401 static XiveTCTX *spapr_xive_get_tctx(XiveRouter *xrtr, CPUState *cs)
403 PowerPCCPU *cpu = POWERPC_CPU(cs);
405 return spapr_cpu_state(cpu)->tctx;
408 static const VMStateDescription vmstate_spapr_xive_end = {
409 .name = TYPE_SPAPR_XIVE "/end",
410 .version_id = 1,
411 .minimum_version_id = 1,
412 .fields = (VMStateField []) {
413 VMSTATE_UINT32(w0, XiveEND),
414 VMSTATE_UINT32(w1, XiveEND),
415 VMSTATE_UINT32(w2, XiveEND),
416 VMSTATE_UINT32(w3, XiveEND),
417 VMSTATE_UINT32(w4, XiveEND),
418 VMSTATE_UINT32(w5, XiveEND),
419 VMSTATE_UINT32(w6, XiveEND),
420 VMSTATE_UINT32(w7, XiveEND),
421 VMSTATE_END_OF_LIST()
425 static const VMStateDescription vmstate_spapr_xive_eas = {
426 .name = TYPE_SPAPR_XIVE "/eas",
427 .version_id = 1,
428 .minimum_version_id = 1,
429 .fields = (VMStateField []) {
430 VMSTATE_UINT64(w, XiveEAS),
431 VMSTATE_END_OF_LIST()
435 static int vmstate_spapr_xive_pre_save(void *opaque)
437 if (kvm_irqchip_in_kernel()) {
438 return kvmppc_xive_pre_save(SPAPR_XIVE(opaque));
441 return 0;
445 * Called by the sPAPR IRQ backend 'post_load' method at the machine
446 * level.
448 static int spapr_xive_post_load(SpaprInterruptController *intc, int version_id)
450 if (kvm_irqchip_in_kernel()) {
451 return kvmppc_xive_post_load(SPAPR_XIVE(intc), version_id);
454 return 0;
457 static const VMStateDescription vmstate_spapr_xive = {
458 .name = TYPE_SPAPR_XIVE,
459 .version_id = 1,
460 .minimum_version_id = 1,
461 .pre_save = vmstate_spapr_xive_pre_save,
462 .post_load = NULL, /* handled at the machine level */
463 .fields = (VMStateField[]) {
464 VMSTATE_UINT32_EQUAL(nr_irqs, SpaprXive, NULL),
465 VMSTATE_STRUCT_VARRAY_POINTER_UINT32(eat, SpaprXive, nr_irqs,
466 vmstate_spapr_xive_eas, XiveEAS),
467 VMSTATE_STRUCT_VARRAY_POINTER_UINT32(endt, SpaprXive, nr_ends,
468 vmstate_spapr_xive_end, XiveEND),
469 VMSTATE_END_OF_LIST()
473 static int spapr_xive_claim_irq(SpaprInterruptController *intc, int lisn,
474 bool lsi, Error **errp)
476 SpaprXive *xive = SPAPR_XIVE(intc);
477 XiveSource *xsrc = &xive->source;
479 assert(lisn < xive->nr_irqs);
481 if (xive_eas_is_valid(&xive->eat[lisn])) {
482 error_setg(errp, "IRQ %d is not free", lisn);
483 return -EBUSY;
487 * Set default values when allocating an IRQ number
489 xive->eat[lisn].w |= cpu_to_be64(EAS_VALID | EAS_MASKED);
490 if (lsi) {
491 xive_source_irq_set_lsi(xsrc, lisn);
494 if (kvm_irqchip_in_kernel()) {
495 return kvmppc_xive_source_reset_one(xsrc, lisn, errp);
498 return 0;
501 static void spapr_xive_free_irq(SpaprInterruptController *intc, int lisn)
503 SpaprXive *xive = SPAPR_XIVE(intc);
504 assert(lisn < xive->nr_irqs);
506 xive->eat[lisn].w &= cpu_to_be64(~EAS_VALID);
509 static Property spapr_xive_properties[] = {
510 DEFINE_PROP_UINT32("nr-irqs", SpaprXive, nr_irqs, 0),
511 DEFINE_PROP_UINT32("nr-ends", SpaprXive, nr_ends, 0),
512 DEFINE_PROP_UINT64("vc-base", SpaprXive, vc_base, SPAPR_XIVE_VC_BASE),
513 DEFINE_PROP_UINT64("tm-base", SpaprXive, tm_base, SPAPR_XIVE_TM_BASE),
514 DEFINE_PROP_END_OF_LIST(),
517 static int spapr_xive_cpu_intc_create(SpaprInterruptController *intc,
518 PowerPCCPU *cpu, Error **errp)
520 SpaprXive *xive = SPAPR_XIVE(intc);
521 Object *obj;
522 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
524 obj = xive_tctx_create(OBJECT(cpu), XIVE_ROUTER(xive), errp);
525 if (!obj) {
526 return -1;
529 spapr_cpu->tctx = XIVE_TCTX(obj);
530 return 0;
533 static void xive_tctx_set_os_cam(XiveTCTX *tctx, uint32_t os_cam)
535 uint32_t qw1w2 = cpu_to_be32(TM_QW1W2_VO | os_cam);
536 memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &qw1w2, 4);
539 static void spapr_xive_cpu_intc_reset(SpaprInterruptController *intc,
540 PowerPCCPU *cpu)
542 XiveTCTX *tctx = spapr_cpu_state(cpu)->tctx;
543 uint8_t nvt_blk;
544 uint32_t nvt_idx;
546 xive_tctx_reset(tctx);
549 * When a Virtual Processor is scheduled to run on a HW thread,
550 * the hypervisor pushes its identifier in the OS CAM line.
551 * Emulate the same behavior under QEMU.
553 spapr_xive_cpu_to_nvt(cpu, &nvt_blk, &nvt_idx);
555 xive_tctx_set_os_cam(tctx, xive_nvt_cam_line(nvt_blk, nvt_idx));
558 static void spapr_xive_set_irq(SpaprInterruptController *intc, int irq, int val)
560 SpaprXive *xive = SPAPR_XIVE(intc);
562 if (kvm_irqchip_in_kernel()) {
563 kvmppc_xive_source_set_irq(&xive->source, irq, val);
564 } else {
565 xive_source_set_irq(&xive->source, irq, val);
569 static void spapr_xive_print_info(SpaprInterruptController *intc, Monitor *mon)
571 SpaprXive *xive = SPAPR_XIVE(intc);
572 CPUState *cs;
574 CPU_FOREACH(cs) {
575 PowerPCCPU *cpu = POWERPC_CPU(cs);
577 xive_tctx_pic_print_info(spapr_cpu_state(cpu)->tctx, mon);
580 spapr_xive_pic_print_info(xive, mon);
583 static void spapr_xive_dt(SpaprInterruptController *intc, uint32_t nr_servers,
584 void *fdt, uint32_t phandle)
586 SpaprXive *xive = SPAPR_XIVE(intc);
587 int node;
588 uint64_t timas[2 * 2];
589 /* Interrupt number ranges for the IPIs */
590 uint32_t lisn_ranges[] = {
591 cpu_to_be32(0),
592 cpu_to_be32(nr_servers),
595 * EQ size - the sizes of pages supported by the system 4K, 64K,
596 * 2M, 16M. We only advertise 64K for the moment.
598 uint32_t eq_sizes[] = {
599 cpu_to_be32(16), /* 64K */
602 * The following array is in sync with the reserved priorities
603 * defined by the 'spapr_xive_priority_is_reserved' routine.
605 uint32_t plat_res_int_priorities[] = {
606 cpu_to_be32(7), /* start */
607 cpu_to_be32(0xf8), /* count */
610 /* Thread Interrupt Management Area : User (ring 3) and OS (ring 2) */
611 timas[0] = cpu_to_be64(xive->tm_base +
612 XIVE_TM_USER_PAGE * (1ull << TM_SHIFT));
613 timas[1] = cpu_to_be64(1ull << TM_SHIFT);
614 timas[2] = cpu_to_be64(xive->tm_base +
615 XIVE_TM_OS_PAGE * (1ull << TM_SHIFT));
616 timas[3] = cpu_to_be64(1ull << TM_SHIFT);
618 _FDT(node = fdt_add_subnode(fdt, 0, xive->nodename));
620 _FDT(fdt_setprop_string(fdt, node, "device_type", "power-ivpe"));
621 _FDT(fdt_setprop(fdt, node, "reg", timas, sizeof(timas)));
623 _FDT(fdt_setprop_string(fdt, node, "compatible", "ibm,power-ivpe"));
624 _FDT(fdt_setprop(fdt, node, "ibm,xive-eq-sizes", eq_sizes,
625 sizeof(eq_sizes)));
626 _FDT(fdt_setprop(fdt, node, "ibm,xive-lisn-ranges", lisn_ranges,
627 sizeof(lisn_ranges)));
629 /* For Linux to link the LSIs to the interrupt controller. */
630 _FDT(fdt_setprop(fdt, node, "interrupt-controller", NULL, 0));
631 _FDT(fdt_setprop_cell(fdt, node, "#interrupt-cells", 2));
633 /* For SLOF */
634 _FDT(fdt_setprop_cell(fdt, node, "linux,phandle", phandle));
635 _FDT(fdt_setprop_cell(fdt, node, "phandle", phandle));
638 * The "ibm,plat-res-int-priorities" property defines the priority
639 * ranges reserved by the hypervisor
641 _FDT(fdt_setprop(fdt, 0, "ibm,plat-res-int-priorities",
642 plat_res_int_priorities, sizeof(plat_res_int_priorities)));
645 static int spapr_xive_activate(SpaprInterruptController *intc, Error **errp)
647 SpaprXive *xive = SPAPR_XIVE(intc);
649 if (kvm_enabled()) {
650 int rc = spapr_irq_init_kvm(kvmppc_xive_connect, intc, errp);
651 if (rc < 0) {
652 return rc;
656 /* Activate the XIVE MMIOs */
657 spapr_xive_mmio_set_enabled(xive, true);
659 return 0;
662 static void spapr_xive_deactivate(SpaprInterruptController *intc)
664 SpaprXive *xive = SPAPR_XIVE(intc);
666 spapr_xive_mmio_set_enabled(xive, false);
668 if (kvm_irqchip_in_kernel()) {
669 kvmppc_xive_disconnect(intc);
673 static void spapr_xive_class_init(ObjectClass *klass, void *data)
675 DeviceClass *dc = DEVICE_CLASS(klass);
676 XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass);
677 SpaprInterruptControllerClass *sicc = SPAPR_INTC_CLASS(klass);
679 dc->desc = "sPAPR XIVE Interrupt Controller";
680 dc->props = spapr_xive_properties;
681 dc->realize = spapr_xive_realize;
682 dc->vmsd = &vmstate_spapr_xive;
684 xrc->get_eas = spapr_xive_get_eas;
685 xrc->get_end = spapr_xive_get_end;
686 xrc->write_end = spapr_xive_write_end;
687 xrc->get_nvt = spapr_xive_get_nvt;
688 xrc->write_nvt = spapr_xive_write_nvt;
689 xrc->get_tctx = spapr_xive_get_tctx;
691 sicc->activate = spapr_xive_activate;
692 sicc->deactivate = spapr_xive_deactivate;
693 sicc->cpu_intc_create = spapr_xive_cpu_intc_create;
694 sicc->cpu_intc_reset = spapr_xive_cpu_intc_reset;
695 sicc->claim_irq = spapr_xive_claim_irq;
696 sicc->free_irq = spapr_xive_free_irq;
697 sicc->set_irq = spapr_xive_set_irq;
698 sicc->print_info = spapr_xive_print_info;
699 sicc->dt = spapr_xive_dt;
700 sicc->post_load = spapr_xive_post_load;
703 static const TypeInfo spapr_xive_info = {
704 .name = TYPE_SPAPR_XIVE,
705 .parent = TYPE_XIVE_ROUTER,
706 .instance_init = spapr_xive_instance_init,
707 .instance_size = sizeof(SpaprXive),
708 .class_init = spapr_xive_class_init,
709 .interfaces = (InterfaceInfo[]) {
710 { TYPE_SPAPR_INTC },
715 static void spapr_xive_register_types(void)
717 type_register_static(&spapr_xive_info);
720 type_init(spapr_xive_register_types)
723 * XIVE hcalls
725 * The terminology used by the XIVE hcalls is the following :
727 * TARGET vCPU number
728 * EQ Event Queue assigned by OS to receive event data
729 * ESB page for source interrupt management
730 * LISN Logical Interrupt Source Number identifying a source in the
731 * machine
732 * EISN Effective Interrupt Source Number used by guest OS to
733 * identify source in the guest
735 * The EAS, END, NVT structures are not exposed.
739 * Linux hosts under OPAL reserve priority 7 for their own escalation
740 * interrupts (DD2.X POWER9). So we only allow the guest to use
741 * priorities [0..6].
743 static bool spapr_xive_priority_is_reserved(uint8_t priority)
745 switch (priority) {
746 case 0 ... 6:
747 return false;
748 case 7: /* OPAL escalation queue */
749 default:
750 return true;
755 * The H_INT_GET_SOURCE_INFO hcall() is used to obtain the logical
756 * real address of the MMIO page through which the Event State Buffer
757 * entry associated with the value of the "lisn" parameter is managed.
759 * Parameters:
760 * Input
761 * - R4: "flags"
762 * Bits 0-63 reserved
763 * - R5: "lisn" is per "interrupts", "interrupt-map", or
764 * "ibm,xive-lisn-ranges" properties, or as returned by the
765 * ibm,query-interrupt-source-number RTAS call, or as returned
766 * by the H_ALLOCATE_VAS_WINDOW hcall
768 * Output
769 * - R4: "flags"
770 * Bits 0-59: Reserved
771 * Bit 60: H_INT_ESB must be used for Event State Buffer
772 * management
773 * Bit 61: 1 == LSI 0 == MSI
774 * Bit 62: the full function page supports trigger
775 * Bit 63: Store EOI Supported
776 * - R5: Logical Real address of full function Event State Buffer
777 * management page, -1 if H_INT_ESB hcall flag is set to 1.
778 * - R6: Logical Real Address of trigger only Event State Buffer
779 * management page or -1.
780 * - R7: Power of 2 page size for the ESB management pages returned in
781 * R5 and R6.
784 #define SPAPR_XIVE_SRC_H_INT_ESB PPC_BIT(60) /* ESB manage with H_INT_ESB */
785 #define SPAPR_XIVE_SRC_LSI PPC_BIT(61) /* Virtual LSI type */
786 #define SPAPR_XIVE_SRC_TRIGGER PPC_BIT(62) /* Trigger and management
787 on same page */
788 #define SPAPR_XIVE_SRC_STORE_EOI PPC_BIT(63) /* Store EOI support */
790 static target_ulong h_int_get_source_info(PowerPCCPU *cpu,
791 SpaprMachineState *spapr,
792 target_ulong opcode,
793 target_ulong *args)
795 SpaprXive *xive = spapr->xive;
796 XiveSource *xsrc = &xive->source;
797 target_ulong flags = args[0];
798 target_ulong lisn = args[1];
800 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
801 return H_FUNCTION;
804 if (flags) {
805 return H_PARAMETER;
808 if (lisn >= xive->nr_irqs) {
809 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
810 lisn);
811 return H_P2;
814 if (!xive_eas_is_valid(&xive->eat[lisn])) {
815 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
816 lisn);
817 return H_P2;
821 * All sources are emulated under the main XIVE object and share
822 * the same characteristics.
824 args[0] = 0;
825 if (!xive_source_esb_has_2page(xsrc)) {
826 args[0] |= SPAPR_XIVE_SRC_TRIGGER;
828 if (xsrc->esb_flags & XIVE_SRC_STORE_EOI) {
829 args[0] |= SPAPR_XIVE_SRC_STORE_EOI;
833 * Force the use of the H_INT_ESB hcall in case of an LSI
834 * interrupt. This is necessary under KVM to re-trigger the
835 * interrupt if the level is still asserted
837 if (xive_source_irq_is_lsi(xsrc, lisn)) {
838 args[0] |= SPAPR_XIVE_SRC_H_INT_ESB | SPAPR_XIVE_SRC_LSI;
841 if (!(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
842 args[1] = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn);
843 } else {
844 args[1] = -1;
847 if (xive_source_esb_has_2page(xsrc) &&
848 !(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
849 args[2] = xive->vc_base + xive_source_esb_page(xsrc, lisn);
850 } else {
851 args[2] = -1;
854 if (xive_source_esb_has_2page(xsrc)) {
855 args[3] = xsrc->esb_shift - 1;
856 } else {
857 args[3] = xsrc->esb_shift;
860 return H_SUCCESS;
864 * The H_INT_SET_SOURCE_CONFIG hcall() is used to assign a Logical
865 * Interrupt Source to a target. The Logical Interrupt Source is
866 * designated with the "lisn" parameter and the target is designated
867 * with the "target" and "priority" parameters. Upon return from the
868 * hcall(), no additional interrupts will be directed to the old EQ.
870 * Parameters:
871 * Input:
872 * - R4: "flags"
873 * Bits 0-61: Reserved
874 * Bit 62: set the "eisn" in the EAS
875 * Bit 63: masks the interrupt source in the hardware interrupt
876 * control structure. An interrupt masked by this mechanism will
877 * be dropped, but it's source state bits will still be
878 * set. There is no race-free way of unmasking and restoring the
879 * source. Thus this should only be used in interrupts that are
880 * also masked at the source, and only in cases where the
881 * interrupt is not meant to be used for a large amount of time
882 * because no valid target exists for it for example
883 * - R5: "lisn" is per "interrupts", "interrupt-map", or
884 * "ibm,xive-lisn-ranges" properties, or as returned by the
885 * ibm,query-interrupt-source-number RTAS call, or as returned by
886 * the H_ALLOCATE_VAS_WINDOW hcall
887 * - R6: "target" is per "ibm,ppc-interrupt-server#s" or
888 * "ibm,ppc-interrupt-gserver#s"
889 * - R7: "priority" is a valid priority not in
890 * "ibm,plat-res-int-priorities"
891 * - R8: "eisn" is the guest EISN associated with the "lisn"
893 * Output:
894 * - None
897 #define SPAPR_XIVE_SRC_SET_EISN PPC_BIT(62)
898 #define SPAPR_XIVE_SRC_MASK PPC_BIT(63)
900 static target_ulong h_int_set_source_config(PowerPCCPU *cpu,
901 SpaprMachineState *spapr,
902 target_ulong opcode,
903 target_ulong *args)
905 SpaprXive *xive = spapr->xive;
906 XiveEAS eas, new_eas;
907 target_ulong flags = args[0];
908 target_ulong lisn = args[1];
909 target_ulong target = args[2];
910 target_ulong priority = args[3];
911 target_ulong eisn = args[4];
912 uint8_t end_blk;
913 uint32_t end_idx;
915 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
916 return H_FUNCTION;
919 if (flags & ~(SPAPR_XIVE_SRC_SET_EISN | SPAPR_XIVE_SRC_MASK)) {
920 return H_PARAMETER;
923 if (lisn >= xive->nr_irqs) {
924 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
925 lisn);
926 return H_P2;
929 eas = xive->eat[lisn];
930 if (!xive_eas_is_valid(&eas)) {
931 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
932 lisn);
933 return H_P2;
936 /* priority 0xff is used to reset the EAS */
937 if (priority == 0xff) {
938 new_eas.w = cpu_to_be64(EAS_VALID | EAS_MASKED);
939 goto out;
942 if (flags & SPAPR_XIVE_SRC_MASK) {
943 new_eas.w = eas.w | cpu_to_be64(EAS_MASKED);
944 } else {
945 new_eas.w = eas.w & cpu_to_be64(~EAS_MASKED);
948 if (spapr_xive_priority_is_reserved(priority)) {
949 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
950 " is reserved\n", priority);
951 return H_P4;
955 * Validate that "target" is part of the list of threads allocated
956 * to the partition. For that, find the END corresponding to the
957 * target.
959 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
960 return H_P3;
963 new_eas.w = xive_set_field64(EAS_END_BLOCK, new_eas.w, end_blk);
964 new_eas.w = xive_set_field64(EAS_END_INDEX, new_eas.w, end_idx);
966 if (flags & SPAPR_XIVE_SRC_SET_EISN) {
967 new_eas.w = xive_set_field64(EAS_END_DATA, new_eas.w, eisn);
970 if (kvm_irqchip_in_kernel()) {
971 Error *local_err = NULL;
973 kvmppc_xive_set_source_config(xive, lisn, &new_eas, &local_err);
974 if (local_err) {
975 error_report_err(local_err);
976 return H_HARDWARE;
980 out:
981 xive->eat[lisn] = new_eas;
982 return H_SUCCESS;
986 * The H_INT_GET_SOURCE_CONFIG hcall() is used to determine to which
987 * target/priority pair is assigned to the specified Logical Interrupt
988 * Source.
990 * Parameters:
991 * Input:
992 * - R4: "flags"
993 * Bits 0-63 Reserved
994 * - R5: "lisn" is per "interrupts", "interrupt-map", or
995 * "ibm,xive-lisn-ranges" properties, or as returned by the
996 * ibm,query-interrupt-source-number RTAS call, or as
997 * returned by the H_ALLOCATE_VAS_WINDOW hcall
999 * Output:
1000 * - R4: Target to which the specified Logical Interrupt Source is
1001 * assigned
1002 * - R5: Priority to which the specified Logical Interrupt Source is
1003 * assigned
1004 * - R6: EISN for the specified Logical Interrupt Source (this will be
1005 * equivalent to the LISN if not changed by H_INT_SET_SOURCE_CONFIG)
1007 static target_ulong h_int_get_source_config(PowerPCCPU *cpu,
1008 SpaprMachineState *spapr,
1009 target_ulong opcode,
1010 target_ulong *args)
1012 SpaprXive *xive = spapr->xive;
1013 target_ulong flags = args[0];
1014 target_ulong lisn = args[1];
1015 XiveEAS eas;
1016 XiveEND *end;
1017 uint8_t nvt_blk;
1018 uint32_t end_idx, nvt_idx;
1020 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1021 return H_FUNCTION;
1024 if (flags) {
1025 return H_PARAMETER;
1028 if (lisn >= xive->nr_irqs) {
1029 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1030 lisn);
1031 return H_P2;
1034 eas = xive->eat[lisn];
1035 if (!xive_eas_is_valid(&eas)) {
1036 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1037 lisn);
1038 return H_P2;
1041 /* EAS_END_BLOCK is unused on sPAPR */
1042 end_idx = xive_get_field64(EAS_END_INDEX, eas.w);
1044 assert(end_idx < xive->nr_ends);
1045 end = &xive->endt[end_idx];
1047 nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6);
1048 nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6);
1049 args[0] = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
1051 if (xive_eas_is_masked(&eas)) {
1052 args[1] = 0xff;
1053 } else {
1054 args[1] = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
1057 args[2] = xive_get_field64(EAS_END_DATA, eas.w);
1059 return H_SUCCESS;
1063 * The H_INT_GET_QUEUE_INFO hcall() is used to get the logical real
1064 * address of the notification management page associated with the
1065 * specified target and priority.
1067 * Parameters:
1068 * Input:
1069 * - R4: "flags"
1070 * Bits 0-63 Reserved
1071 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1072 * "ibm,ppc-interrupt-gserver#s"
1073 * - R6: "priority" is a valid priority not in
1074 * "ibm,plat-res-int-priorities"
1076 * Output:
1077 * - R4: Logical real address of notification page
1078 * - R5: Power of 2 page size of the notification page
1080 static target_ulong h_int_get_queue_info(PowerPCCPU *cpu,
1081 SpaprMachineState *spapr,
1082 target_ulong opcode,
1083 target_ulong *args)
1085 SpaprXive *xive = spapr->xive;
1086 XiveENDSource *end_xsrc = &xive->end_source;
1087 target_ulong flags = args[0];
1088 target_ulong target = args[1];
1089 target_ulong priority = args[2];
1090 XiveEND *end;
1091 uint8_t end_blk;
1092 uint32_t end_idx;
1094 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1095 return H_FUNCTION;
1098 if (flags) {
1099 return H_PARAMETER;
1103 * H_STATE should be returned if a H_INT_RESET is in progress.
1104 * This is not needed when running the emulation under QEMU
1107 if (spapr_xive_priority_is_reserved(priority)) {
1108 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1109 " is reserved\n", priority);
1110 return H_P3;
1114 * Validate that "target" is part of the list of threads allocated
1115 * to the partition. For that, find the END corresponding to the
1116 * target.
1118 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1119 return H_P2;
1122 assert(end_idx < xive->nr_ends);
1123 end = &xive->endt[end_idx];
1125 args[0] = xive->end_base + (1ull << (end_xsrc->esb_shift + 1)) * end_idx;
1126 if (xive_end_is_enqueue(end)) {
1127 args[1] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
1128 } else {
1129 args[1] = 0;
1132 return H_SUCCESS;
1136 * The H_INT_SET_QUEUE_CONFIG hcall() is used to set or reset a EQ for
1137 * a given "target" and "priority". It is also used to set the
1138 * notification config associated with the EQ. An EQ size of 0 is
1139 * used to reset the EQ config for a given target and priority. If
1140 * resetting the EQ config, the END associated with the given "target"
1141 * and "priority" will be changed to disable queueing.
1143 * Upon return from the hcall(), no additional interrupts will be
1144 * directed to the old EQ (if one was set). The old EQ (if one was
1145 * set) should be investigated for interrupts that occurred prior to
1146 * or during the hcall().
1148 * Parameters:
1149 * Input:
1150 * - R4: "flags"
1151 * Bits 0-62: Reserved
1152 * Bit 63: Unconditional Notify (n) per the XIVE spec
1153 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1154 * "ibm,ppc-interrupt-gserver#s"
1155 * - R6: "priority" is a valid priority not in
1156 * "ibm,plat-res-int-priorities"
1157 * - R7: "eventQueue": The logical real address of the start of the EQ
1158 * - R8: "eventQueueSize": The power of 2 EQ size per "ibm,xive-eq-sizes"
1160 * Output:
1161 * - None
1164 #define SPAPR_XIVE_END_ALWAYS_NOTIFY PPC_BIT(63)
1166 static target_ulong h_int_set_queue_config(PowerPCCPU *cpu,
1167 SpaprMachineState *spapr,
1168 target_ulong opcode,
1169 target_ulong *args)
1171 SpaprXive *xive = spapr->xive;
1172 target_ulong flags = args[0];
1173 target_ulong target = args[1];
1174 target_ulong priority = args[2];
1175 target_ulong qpage = args[3];
1176 target_ulong qsize = args[4];
1177 XiveEND end;
1178 uint8_t end_blk, nvt_blk;
1179 uint32_t end_idx, nvt_idx;
1181 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1182 return H_FUNCTION;
1185 if (flags & ~SPAPR_XIVE_END_ALWAYS_NOTIFY) {
1186 return H_PARAMETER;
1190 * H_STATE should be returned if a H_INT_RESET is in progress.
1191 * This is not needed when running the emulation under QEMU
1194 if (spapr_xive_priority_is_reserved(priority)) {
1195 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1196 " is reserved\n", priority);
1197 return H_P3;
1201 * Validate that "target" is part of the list of threads allocated
1202 * to the partition. For that, find the END corresponding to the
1203 * target.
1206 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1207 return H_P2;
1210 assert(end_idx < xive->nr_ends);
1211 memcpy(&end, &xive->endt[end_idx], sizeof(XiveEND));
1213 switch (qsize) {
1214 case 12:
1215 case 16:
1216 case 21:
1217 case 24:
1218 if (!QEMU_IS_ALIGNED(qpage, 1ul << qsize)) {
1219 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: EQ @0x%" HWADDR_PRIx
1220 " is not naturally aligned with %" HWADDR_PRIx "\n",
1221 qpage, (hwaddr)1 << qsize);
1222 return H_P4;
1224 end.w2 = cpu_to_be32((qpage >> 32) & 0x0fffffff);
1225 end.w3 = cpu_to_be32(qpage & 0xffffffff);
1226 end.w0 |= cpu_to_be32(END_W0_ENQUEUE);
1227 end.w0 = xive_set_field32(END_W0_QSIZE, end.w0, qsize - 12);
1228 break;
1229 case 0:
1230 /* reset queue and disable queueing */
1231 spapr_xive_end_reset(&end);
1232 goto out;
1234 default:
1235 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid EQ size %"PRIx64"\n",
1236 qsize);
1237 return H_P5;
1240 if (qsize) {
1241 hwaddr plen = 1 << qsize;
1242 void *eq;
1245 * Validate the guest EQ. We should also check that the queue
1246 * has been zeroed by the OS.
1248 eq = address_space_map(CPU(cpu)->as, qpage, &plen, true,
1249 MEMTXATTRS_UNSPECIFIED);
1250 if (plen != 1 << qsize) {
1251 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to map EQ @0x%"
1252 HWADDR_PRIx "\n", qpage);
1253 return H_P4;
1255 address_space_unmap(CPU(cpu)->as, eq, plen, true, plen);
1258 /* "target" should have been validated above */
1259 if (spapr_xive_target_to_nvt(target, &nvt_blk, &nvt_idx)) {
1260 g_assert_not_reached();
1264 * Ensure the priority and target are correctly set (they will not
1265 * be right after allocation)
1267 end.w6 = xive_set_field32(END_W6_NVT_BLOCK, 0ul, nvt_blk) |
1268 xive_set_field32(END_W6_NVT_INDEX, 0ul, nvt_idx);
1269 end.w7 = xive_set_field32(END_W7_F0_PRIORITY, 0ul, priority);
1271 if (flags & SPAPR_XIVE_END_ALWAYS_NOTIFY) {
1272 end.w0 |= cpu_to_be32(END_W0_UCOND_NOTIFY);
1273 } else {
1274 end.w0 &= cpu_to_be32((uint32_t)~END_W0_UCOND_NOTIFY);
1278 * The generation bit for the END starts at 1 and The END page
1279 * offset counter starts at 0.
1281 end.w1 = cpu_to_be32(END_W1_GENERATION) |
1282 xive_set_field32(END_W1_PAGE_OFF, 0ul, 0ul);
1283 end.w0 |= cpu_to_be32(END_W0_VALID);
1286 * TODO: issue syncs required to ensure all in-flight interrupts
1287 * are complete on the old END
1290 out:
1291 if (kvm_irqchip_in_kernel()) {
1292 Error *local_err = NULL;
1294 kvmppc_xive_set_queue_config(xive, end_blk, end_idx, &end, &local_err);
1295 if (local_err) {
1296 error_report_err(local_err);
1297 return H_HARDWARE;
1301 /* Update END */
1302 memcpy(&xive->endt[end_idx], &end, sizeof(XiveEND));
1303 return H_SUCCESS;
1307 * The H_INT_GET_QUEUE_CONFIG hcall() is used to get a EQ for a given
1308 * target and priority.
1310 * Parameters:
1311 * Input:
1312 * - R4: "flags"
1313 * Bits 0-62: Reserved
1314 * Bit 63: Debug: Return debug data
1315 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1316 * "ibm,ppc-interrupt-gserver#s"
1317 * - R6: "priority" is a valid priority not in
1318 * "ibm,plat-res-int-priorities"
1320 * Output:
1321 * - R4: "flags":
1322 * Bits 0-61: Reserved
1323 * Bit 62: The value of Event Queue Generation Number (g) per
1324 * the XIVE spec if "Debug" = 1
1325 * Bit 63: The value of Unconditional Notify (n) per the XIVE spec
1326 * - R5: The logical real address of the start of the EQ
1327 * - R6: The power of 2 EQ size per "ibm,xive-eq-sizes"
1328 * - R7: The value of Event Queue Offset Counter per XIVE spec
1329 * if "Debug" = 1, else 0
1333 #define SPAPR_XIVE_END_DEBUG PPC_BIT(63)
1335 static target_ulong h_int_get_queue_config(PowerPCCPU *cpu,
1336 SpaprMachineState *spapr,
1337 target_ulong opcode,
1338 target_ulong *args)
1340 SpaprXive *xive = spapr->xive;
1341 target_ulong flags = args[0];
1342 target_ulong target = args[1];
1343 target_ulong priority = args[2];
1344 XiveEND *end;
1345 uint8_t end_blk;
1346 uint32_t end_idx;
1348 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1349 return H_FUNCTION;
1352 if (flags & ~SPAPR_XIVE_END_DEBUG) {
1353 return H_PARAMETER;
1357 * H_STATE should be returned if a H_INT_RESET is in progress.
1358 * This is not needed when running the emulation under QEMU
1361 if (spapr_xive_priority_is_reserved(priority)) {
1362 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1363 " is reserved\n", priority);
1364 return H_P3;
1368 * Validate that "target" is part of the list of threads allocated
1369 * to the partition. For that, find the END corresponding to the
1370 * target.
1372 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1373 return H_P2;
1376 assert(end_idx < xive->nr_ends);
1377 end = &xive->endt[end_idx];
1379 args[0] = 0;
1380 if (xive_end_is_notify(end)) {
1381 args[0] |= SPAPR_XIVE_END_ALWAYS_NOTIFY;
1384 if (xive_end_is_enqueue(end)) {
1385 args[1] = xive_end_qaddr(end);
1386 args[2] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
1387 } else {
1388 args[1] = 0;
1389 args[2] = 0;
1392 if (kvm_irqchip_in_kernel()) {
1393 Error *local_err = NULL;
1395 kvmppc_xive_get_queue_config(xive, end_blk, end_idx, end, &local_err);
1396 if (local_err) {
1397 error_report_err(local_err);
1398 return H_HARDWARE;
1402 /* TODO: do we need any locking on the END ? */
1403 if (flags & SPAPR_XIVE_END_DEBUG) {
1404 /* Load the event queue generation number into the return flags */
1405 args[0] |= (uint64_t)xive_get_field32(END_W1_GENERATION, end->w1) << 62;
1407 /* Load R7 with the event queue offset counter */
1408 args[3] = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1409 } else {
1410 args[3] = 0;
1413 return H_SUCCESS;
1417 * The H_INT_SET_OS_REPORTING_LINE hcall() is used to set the
1418 * reporting cache line pair for the calling thread. The reporting
1419 * cache lines will contain the OS interrupt context when the OS
1420 * issues a CI store byte to @TIMA+0xC10 to acknowledge the OS
1421 * interrupt. The reporting cache lines can be reset by inputting -1
1422 * in "reportingLine". Issuing the CI store byte without reporting
1423 * cache lines registered will result in the data not being accessible
1424 * to the OS.
1426 * Parameters:
1427 * Input:
1428 * - R4: "flags"
1429 * Bits 0-63: Reserved
1430 * - R5: "reportingLine": The logical real address of the reporting cache
1431 * line pair
1433 * Output:
1434 * - None
1436 static target_ulong h_int_set_os_reporting_line(PowerPCCPU *cpu,
1437 SpaprMachineState *spapr,
1438 target_ulong opcode,
1439 target_ulong *args)
1441 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1442 return H_FUNCTION;
1446 * H_STATE should be returned if a H_INT_RESET is in progress.
1447 * This is not needed when running the emulation under QEMU
1450 /* TODO: H_INT_SET_OS_REPORTING_LINE */
1451 return H_FUNCTION;
1455 * The H_INT_GET_OS_REPORTING_LINE hcall() is used to get the logical
1456 * real address of the reporting cache line pair set for the input
1457 * "target". If no reporting cache line pair has been set, -1 is
1458 * returned.
1460 * Parameters:
1461 * Input:
1462 * - R4: "flags"
1463 * Bits 0-63: Reserved
1464 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1465 * "ibm,ppc-interrupt-gserver#s"
1466 * - R6: "reportingLine": The logical real address of the reporting
1467 * cache line pair
1469 * Output:
1470 * - R4: The logical real address of the reporting line if set, else -1
1472 static target_ulong h_int_get_os_reporting_line(PowerPCCPU *cpu,
1473 SpaprMachineState *spapr,
1474 target_ulong opcode,
1475 target_ulong *args)
1477 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1478 return H_FUNCTION;
1482 * H_STATE should be returned if a H_INT_RESET is in progress.
1483 * This is not needed when running the emulation under QEMU
1486 /* TODO: H_INT_GET_OS_REPORTING_LINE */
1487 return H_FUNCTION;
1491 * The H_INT_ESB hcall() is used to issue a load or store to the ESB
1492 * page for the input "lisn". This hcall is only supported for LISNs
1493 * that have the ESB hcall flag set to 1 when returned from hcall()
1494 * H_INT_GET_SOURCE_INFO.
1496 * Parameters:
1497 * Input:
1498 * - R4: "flags"
1499 * Bits 0-62: Reserved
1500 * bit 63: Store: Store=1, store operation, else load operation
1501 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1502 * "ibm,xive-lisn-ranges" properties, or as returned by the
1503 * ibm,query-interrupt-source-number RTAS call, or as
1504 * returned by the H_ALLOCATE_VAS_WINDOW hcall
1505 * - R6: "esbOffset" is the offset into the ESB page for the load or
1506 * store operation
1507 * - R7: "storeData" is the data to write for a store operation
1509 * Output:
1510 * - R4: The value of the load if load operation, else -1
1513 #define SPAPR_XIVE_ESB_STORE PPC_BIT(63)
1515 static target_ulong h_int_esb(PowerPCCPU *cpu,
1516 SpaprMachineState *spapr,
1517 target_ulong opcode,
1518 target_ulong *args)
1520 SpaprXive *xive = spapr->xive;
1521 XiveEAS eas;
1522 target_ulong flags = args[0];
1523 target_ulong lisn = args[1];
1524 target_ulong offset = args[2];
1525 target_ulong data = args[3];
1526 hwaddr mmio_addr;
1527 XiveSource *xsrc = &xive->source;
1529 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1530 return H_FUNCTION;
1533 if (flags & ~SPAPR_XIVE_ESB_STORE) {
1534 return H_PARAMETER;
1537 if (lisn >= xive->nr_irqs) {
1538 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1539 lisn);
1540 return H_P2;
1543 eas = xive->eat[lisn];
1544 if (!xive_eas_is_valid(&eas)) {
1545 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1546 lisn);
1547 return H_P2;
1550 if (offset > (1ull << xsrc->esb_shift)) {
1551 return H_P3;
1554 if (kvm_irqchip_in_kernel()) {
1555 args[0] = kvmppc_xive_esb_rw(xsrc, lisn, offset, data,
1556 flags & SPAPR_XIVE_ESB_STORE);
1557 } else {
1558 mmio_addr = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn) + offset;
1560 if (dma_memory_rw(&address_space_memory, mmio_addr, &data, 8,
1561 (flags & SPAPR_XIVE_ESB_STORE))) {
1562 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to access ESB @0x%"
1563 HWADDR_PRIx "\n", mmio_addr);
1564 return H_HARDWARE;
1566 args[0] = (flags & SPAPR_XIVE_ESB_STORE) ? -1 : data;
1568 return H_SUCCESS;
1572 * The H_INT_SYNC hcall() is used to issue hardware syncs that will
1573 * ensure any in flight events for the input lisn are in the event
1574 * queue.
1576 * Parameters:
1577 * Input:
1578 * - R4: "flags"
1579 * Bits 0-63: Reserved
1580 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1581 * "ibm,xive-lisn-ranges" properties, or as returned by the
1582 * ibm,query-interrupt-source-number RTAS call, or as
1583 * returned by the H_ALLOCATE_VAS_WINDOW hcall
1585 * Output:
1586 * - None
1588 static target_ulong h_int_sync(PowerPCCPU *cpu,
1589 SpaprMachineState *spapr,
1590 target_ulong opcode,
1591 target_ulong *args)
1593 SpaprXive *xive = spapr->xive;
1594 XiveEAS eas;
1595 target_ulong flags = args[0];
1596 target_ulong lisn = args[1];
1598 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1599 return H_FUNCTION;
1602 if (flags) {
1603 return H_PARAMETER;
1606 if (lisn >= xive->nr_irqs) {
1607 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1608 lisn);
1609 return H_P2;
1612 eas = xive->eat[lisn];
1613 if (!xive_eas_is_valid(&eas)) {
1614 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1615 lisn);
1616 return H_P2;
1620 * H_STATE should be returned if a H_INT_RESET is in progress.
1621 * This is not needed when running the emulation under QEMU
1625 * This is not real hardware. Nothing to be done unless when
1626 * under KVM
1629 if (kvm_irqchip_in_kernel()) {
1630 Error *local_err = NULL;
1632 kvmppc_xive_sync_source(xive, lisn, &local_err);
1633 if (local_err) {
1634 error_report_err(local_err);
1635 return H_HARDWARE;
1638 return H_SUCCESS;
1642 * The H_INT_RESET hcall() is used to reset all of the partition's
1643 * interrupt exploitation structures to their initial state. This
1644 * means losing all previously set interrupt state set via
1645 * H_INT_SET_SOURCE_CONFIG and H_INT_SET_QUEUE_CONFIG.
1647 * Parameters:
1648 * Input:
1649 * - R4: "flags"
1650 * Bits 0-63: Reserved
1652 * Output:
1653 * - None
1655 static target_ulong h_int_reset(PowerPCCPU *cpu,
1656 SpaprMachineState *spapr,
1657 target_ulong opcode,
1658 target_ulong *args)
1660 SpaprXive *xive = spapr->xive;
1661 target_ulong flags = args[0];
1663 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1664 return H_FUNCTION;
1667 if (flags) {
1668 return H_PARAMETER;
1671 device_reset(DEVICE(xive));
1673 if (kvm_irqchip_in_kernel()) {
1674 Error *local_err = NULL;
1676 kvmppc_xive_reset(xive, &local_err);
1677 if (local_err) {
1678 error_report_err(local_err);
1679 return H_HARDWARE;
1682 return H_SUCCESS;
1685 void spapr_xive_hcall_init(SpaprMachineState *spapr)
1687 spapr_register_hypercall(H_INT_GET_SOURCE_INFO, h_int_get_source_info);
1688 spapr_register_hypercall(H_INT_SET_SOURCE_CONFIG, h_int_set_source_config);
1689 spapr_register_hypercall(H_INT_GET_SOURCE_CONFIG, h_int_get_source_config);
1690 spapr_register_hypercall(H_INT_GET_QUEUE_INFO, h_int_get_queue_info);
1691 spapr_register_hypercall(H_INT_SET_QUEUE_CONFIG, h_int_set_queue_config);
1692 spapr_register_hypercall(H_INT_GET_QUEUE_CONFIG, h_int_get_queue_config);
1693 spapr_register_hypercall(H_INT_SET_OS_REPORTING_LINE,
1694 h_int_set_os_reporting_line);
1695 spapr_register_hypercall(H_INT_GET_OS_REPORTING_LINE,
1696 h_int_get_os_reporting_line);
1697 spapr_register_hypercall(H_INT_ESB, h_int_esb);
1698 spapr_register_hypercall(H_INT_SYNC, h_int_sync);
1699 spapr_register_hypercall(H_INT_RESET, h_int_reset);