SMART ATA Functionality
[qemu.git] / kvm-all.c
blobf669c3ac0ffff2197a4175ebee083acbc68376a8
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "sysemu.h"
25 #include "hw/hw.h"
26 #include "gdbstub.h"
27 #include "kvm.h"
29 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
30 #define PAGE_SIZE TARGET_PAGE_SIZE
32 //#define DEBUG_KVM
34 #ifdef DEBUG_KVM
35 #define dprintf(fmt, ...) \
36 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
37 #else
38 #define dprintf(fmt, ...) \
39 do { } while (0)
40 #endif
42 typedef struct KVMSlot
44 target_phys_addr_t start_addr;
45 ram_addr_t memory_size;
46 ram_addr_t phys_offset;
47 int slot;
48 int flags;
49 } KVMSlot;
51 typedef struct kvm_dirty_log KVMDirtyLog;
53 int kvm_allowed = 0;
55 struct KVMState
57 KVMSlot slots[32];
58 int fd;
59 int vmfd;
60 int coalesced_mmio;
61 int broken_set_mem_region;
62 int migration_log;
63 #ifdef KVM_CAP_SET_GUEST_DEBUG
64 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
65 #endif
66 int irqchip_in_kernel;
67 int pit_in_kernel;
70 static KVMState *kvm_state;
72 static KVMSlot *kvm_alloc_slot(KVMState *s)
74 int i;
76 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
77 /* KVM private memory slots */
78 if (i >= 8 && i < 12)
79 continue;
80 if (s->slots[i].memory_size == 0)
81 return &s->slots[i];
84 fprintf(stderr, "%s: no free slot available\n", __func__);
85 abort();
88 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
89 target_phys_addr_t start_addr,
90 target_phys_addr_t end_addr)
92 int i;
94 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
95 KVMSlot *mem = &s->slots[i];
97 if (start_addr == mem->start_addr &&
98 end_addr == mem->start_addr + mem->memory_size) {
99 return mem;
103 return NULL;
107 * Find overlapping slot with lowest start address
109 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
110 target_phys_addr_t start_addr,
111 target_phys_addr_t end_addr)
113 KVMSlot *found = NULL;
114 int i;
116 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
117 KVMSlot *mem = &s->slots[i];
119 if (mem->memory_size == 0 ||
120 (found && found->start_addr < mem->start_addr)) {
121 continue;
124 if (end_addr > mem->start_addr &&
125 start_addr < mem->start_addr + mem->memory_size) {
126 found = mem;
130 return found;
133 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
135 struct kvm_userspace_memory_region mem;
137 mem.slot = slot->slot;
138 mem.guest_phys_addr = slot->start_addr;
139 mem.memory_size = slot->memory_size;
140 mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
141 mem.flags = slot->flags;
142 if (s->migration_log) {
143 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
145 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
148 static void kvm_reset_vcpu(void *opaque)
150 CPUState *env = opaque;
152 if (kvm_arch_put_registers(env)) {
153 fprintf(stderr, "Fatal: kvm vcpu reset failed\n");
154 abort();
158 int kvm_irqchip_in_kernel(void)
160 return kvm_state->irqchip_in_kernel;
163 int kvm_pit_in_kernel(void)
165 return kvm_state->pit_in_kernel;
169 int kvm_init_vcpu(CPUState *env)
171 KVMState *s = kvm_state;
172 long mmap_size;
173 int ret;
175 dprintf("kvm_init_vcpu\n");
177 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
178 if (ret < 0) {
179 dprintf("kvm_create_vcpu failed\n");
180 goto err;
183 env->kvm_fd = ret;
184 env->kvm_state = s;
186 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
187 if (mmap_size < 0) {
188 dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
189 goto err;
192 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
193 env->kvm_fd, 0);
194 if (env->kvm_run == MAP_FAILED) {
195 ret = -errno;
196 dprintf("mmap'ing vcpu state failed\n");
197 goto err;
200 ret = kvm_arch_init_vcpu(env);
201 if (ret == 0) {
202 qemu_register_reset(kvm_reset_vcpu, env);
203 ret = kvm_arch_put_registers(env);
205 err:
206 return ret;
209 int kvm_put_mp_state(CPUState *env)
211 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
213 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
216 int kvm_get_mp_state(CPUState *env)
218 struct kvm_mp_state mp_state;
219 int ret;
221 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
222 if (ret < 0) {
223 return ret;
225 env->mp_state = mp_state.mp_state;
226 return 0;
230 * dirty pages logging control
232 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
233 ram_addr_t size, int flags, int mask)
235 KVMState *s = kvm_state;
236 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
237 int old_flags;
239 if (mem == NULL) {
240 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
241 TARGET_FMT_plx "\n", __func__, phys_addr,
242 (target_phys_addr_t)(phys_addr + size - 1));
243 return -EINVAL;
246 old_flags = mem->flags;
248 flags = (mem->flags & ~mask) | flags;
249 mem->flags = flags;
251 /* If nothing changed effectively, no need to issue ioctl */
252 if (s->migration_log) {
253 flags |= KVM_MEM_LOG_DIRTY_PAGES;
255 if (flags == old_flags) {
256 return 0;
259 return kvm_set_user_memory_region(s, mem);
262 int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
264 return kvm_dirty_pages_log_change(phys_addr, size,
265 KVM_MEM_LOG_DIRTY_PAGES,
266 KVM_MEM_LOG_DIRTY_PAGES);
269 int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
271 return kvm_dirty_pages_log_change(phys_addr, size,
273 KVM_MEM_LOG_DIRTY_PAGES);
276 int kvm_set_migration_log(int enable)
278 KVMState *s = kvm_state;
279 KVMSlot *mem;
280 int i, err;
282 s->migration_log = enable;
284 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
285 mem = &s->slots[i];
287 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
288 continue;
290 err = kvm_set_user_memory_region(s, mem);
291 if (err) {
292 return err;
295 return 0;
298 static int test_le_bit(unsigned long nr, unsigned char *addr)
300 return (addr[nr >> 3] >> (nr & 7)) & 1;
304 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
305 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
306 * This means all bits are set to dirty.
308 * @start_add: start of logged region.
309 * @end_addr: end of logged region.
311 int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
312 target_phys_addr_t end_addr)
314 KVMState *s = kvm_state;
315 unsigned long size, allocated_size = 0;
316 target_phys_addr_t phys_addr;
317 ram_addr_t addr;
318 KVMDirtyLog d;
319 KVMSlot *mem;
320 int ret = 0;
322 d.dirty_bitmap = NULL;
323 while (start_addr < end_addr) {
324 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
325 if (mem == NULL) {
326 break;
329 size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8;
330 if (!d.dirty_bitmap) {
331 d.dirty_bitmap = qemu_malloc(size);
332 } else if (size > allocated_size) {
333 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
335 allocated_size = size;
336 memset(d.dirty_bitmap, 0, allocated_size);
338 d.slot = mem->slot;
340 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
341 dprintf("ioctl failed %d\n", errno);
342 ret = -1;
343 break;
346 for (phys_addr = mem->start_addr, addr = mem->phys_offset;
347 phys_addr < mem->start_addr + mem->memory_size;
348 phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
349 unsigned char *bitmap = (unsigned char *)d.dirty_bitmap;
350 unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS;
352 if (test_le_bit(nr, bitmap)) {
353 cpu_physical_memory_set_dirty(addr);
356 start_addr = phys_addr;
358 qemu_free(d.dirty_bitmap);
360 return ret;
363 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
365 int ret = -ENOSYS;
366 #ifdef KVM_CAP_COALESCED_MMIO
367 KVMState *s = kvm_state;
369 if (s->coalesced_mmio) {
370 struct kvm_coalesced_mmio_zone zone;
372 zone.addr = start;
373 zone.size = size;
375 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
377 #endif
379 return ret;
382 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
384 int ret = -ENOSYS;
385 #ifdef KVM_CAP_COALESCED_MMIO
386 KVMState *s = kvm_state;
388 if (s->coalesced_mmio) {
389 struct kvm_coalesced_mmio_zone zone;
391 zone.addr = start;
392 zone.size = size;
394 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
396 #endif
398 return ret;
401 int kvm_check_extension(KVMState *s, unsigned int extension)
403 int ret;
405 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
406 if (ret < 0) {
407 ret = 0;
410 return ret;
413 int kvm_init(int smp_cpus)
415 static const char upgrade_note[] =
416 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
417 "(see http://sourceforge.net/projects/kvm).\n";
418 KVMState *s;
419 int ret;
420 int i;
422 if (smp_cpus > 1) {
423 fprintf(stderr, "No SMP KVM support, use '-smp 1'\n");
424 return -EINVAL;
427 s = qemu_mallocz(sizeof(KVMState));
429 #ifdef KVM_CAP_SET_GUEST_DEBUG
430 TAILQ_INIT(&s->kvm_sw_breakpoints);
431 #endif
432 for (i = 0; i < ARRAY_SIZE(s->slots); i++)
433 s->slots[i].slot = i;
435 s->vmfd = -1;
436 s->fd = open("/dev/kvm", O_RDWR);
437 if (s->fd == -1) {
438 fprintf(stderr, "Could not access KVM kernel module: %m\n");
439 ret = -errno;
440 goto err;
443 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
444 if (ret < KVM_API_VERSION) {
445 if (ret > 0)
446 ret = -EINVAL;
447 fprintf(stderr, "kvm version too old\n");
448 goto err;
451 if (ret > KVM_API_VERSION) {
452 ret = -EINVAL;
453 fprintf(stderr, "kvm version not supported\n");
454 goto err;
457 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
458 if (s->vmfd < 0)
459 goto err;
461 /* initially, KVM allocated its own memory and we had to jump through
462 * hooks to make phys_ram_base point to this. Modern versions of KVM
463 * just use a user allocated buffer so we can use regular pages
464 * unmodified. Make sure we have a sufficiently modern version of KVM.
466 if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
467 ret = -EINVAL;
468 fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
469 upgrade_note);
470 goto err;
473 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
474 * destroyed properly. Since we rely on this capability, refuse to work
475 * with any kernel without this capability. */
476 if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
477 ret = -EINVAL;
479 fprintf(stderr,
480 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
481 upgrade_note);
482 goto err;
485 #ifdef KVM_CAP_COALESCED_MMIO
486 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
487 #else
488 s->coalesced_mmio = 0;
489 #endif
491 s->broken_set_mem_region = 1;
492 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
493 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
494 if (ret > 0) {
495 s->broken_set_mem_region = 0;
497 #endif
499 ret = kvm_arch_init(s, smp_cpus);
500 if (ret < 0)
501 goto err;
503 kvm_state = s;
505 return 0;
507 err:
508 if (s) {
509 if (s->vmfd != -1)
510 close(s->vmfd);
511 if (s->fd != -1)
512 close(s->fd);
514 qemu_free(s);
516 return ret;
519 static int kvm_handle_io(CPUState *env, uint16_t port, void *data,
520 int direction, int size, uint32_t count)
522 int i;
523 uint8_t *ptr = data;
525 for (i = 0; i < count; i++) {
526 if (direction == KVM_EXIT_IO_IN) {
527 switch (size) {
528 case 1:
529 stb_p(ptr, cpu_inb(env, port));
530 break;
531 case 2:
532 stw_p(ptr, cpu_inw(env, port));
533 break;
534 case 4:
535 stl_p(ptr, cpu_inl(env, port));
536 break;
538 } else {
539 switch (size) {
540 case 1:
541 cpu_outb(env, port, ldub_p(ptr));
542 break;
543 case 2:
544 cpu_outw(env, port, lduw_p(ptr));
545 break;
546 case 4:
547 cpu_outl(env, port, ldl_p(ptr));
548 break;
552 ptr += size;
555 return 1;
558 static void kvm_run_coalesced_mmio(CPUState *env, struct kvm_run *run)
560 #ifdef KVM_CAP_COALESCED_MMIO
561 KVMState *s = kvm_state;
562 if (s->coalesced_mmio) {
563 struct kvm_coalesced_mmio_ring *ring;
565 ring = (void *)run + (s->coalesced_mmio * TARGET_PAGE_SIZE);
566 while (ring->first != ring->last) {
567 struct kvm_coalesced_mmio *ent;
569 ent = &ring->coalesced_mmio[ring->first];
571 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
572 /* FIXME smp_wmb() */
573 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
576 #endif
579 int kvm_cpu_exec(CPUState *env)
581 struct kvm_run *run = env->kvm_run;
582 int ret;
584 dprintf("kvm_cpu_exec()\n");
586 do {
587 if (env->exit_request) {
588 dprintf("interrupt exit requested\n");
589 ret = 0;
590 break;
593 kvm_arch_pre_run(env, run);
594 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
595 kvm_arch_post_run(env, run);
597 if (ret == -EINTR || ret == -EAGAIN) {
598 dprintf("io window exit\n");
599 ret = 0;
600 break;
603 if (ret < 0) {
604 dprintf("kvm run failed %s\n", strerror(-ret));
605 abort();
608 kvm_run_coalesced_mmio(env, run);
610 ret = 0; /* exit loop */
611 switch (run->exit_reason) {
612 case KVM_EXIT_IO:
613 dprintf("handle_io\n");
614 ret = kvm_handle_io(env, run->io.port,
615 (uint8_t *)run + run->io.data_offset,
616 run->io.direction,
617 run->io.size,
618 run->io.count);
619 break;
620 case KVM_EXIT_MMIO:
621 dprintf("handle_mmio\n");
622 cpu_physical_memory_rw(run->mmio.phys_addr,
623 run->mmio.data,
624 run->mmio.len,
625 run->mmio.is_write);
626 ret = 1;
627 break;
628 case KVM_EXIT_IRQ_WINDOW_OPEN:
629 dprintf("irq_window_open\n");
630 break;
631 case KVM_EXIT_SHUTDOWN:
632 dprintf("shutdown\n");
633 qemu_system_reset_request();
634 ret = 1;
635 break;
636 case KVM_EXIT_UNKNOWN:
637 dprintf("kvm_exit_unknown\n");
638 break;
639 case KVM_EXIT_FAIL_ENTRY:
640 dprintf("kvm_exit_fail_entry\n");
641 break;
642 case KVM_EXIT_EXCEPTION:
643 dprintf("kvm_exit_exception\n");
644 break;
645 case KVM_EXIT_DEBUG:
646 dprintf("kvm_exit_debug\n");
647 #ifdef KVM_CAP_SET_GUEST_DEBUG
648 if (kvm_arch_debug(&run->debug.arch)) {
649 gdb_set_stop_cpu(env);
650 vm_stop(EXCP_DEBUG);
651 env->exception_index = EXCP_DEBUG;
652 return 0;
654 /* re-enter, this exception was guest-internal */
655 ret = 1;
656 #endif /* KVM_CAP_SET_GUEST_DEBUG */
657 break;
658 default:
659 dprintf("kvm_arch_handle_exit\n");
660 ret = kvm_arch_handle_exit(env, run);
661 break;
663 } while (ret > 0);
665 if (env->exit_request) {
666 env->exit_request = 0;
667 env->exception_index = EXCP_INTERRUPT;
670 return ret;
673 void kvm_set_phys_mem(target_phys_addr_t start_addr,
674 ram_addr_t size,
675 ram_addr_t phys_offset)
677 KVMState *s = kvm_state;
678 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
679 KVMSlot *mem, old;
680 int err;
682 if (start_addr & ~TARGET_PAGE_MASK) {
683 if (flags >= IO_MEM_UNASSIGNED) {
684 if (!kvm_lookup_overlapping_slot(s, start_addr,
685 start_addr + size)) {
686 return;
688 fprintf(stderr, "Unaligned split of a KVM memory slot\n");
689 } else {
690 fprintf(stderr, "Only page-aligned memory slots supported\n");
692 abort();
695 /* KVM does not support read-only slots */
696 phys_offset &= ~IO_MEM_ROM;
698 while (1) {
699 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
700 if (!mem) {
701 break;
704 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
705 (start_addr + size <= mem->start_addr + mem->memory_size) &&
706 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
707 /* The new slot fits into the existing one and comes with
708 * identical parameters - nothing to be done. */
709 return;
712 old = *mem;
714 /* unregister the overlapping slot */
715 mem->memory_size = 0;
716 err = kvm_set_user_memory_region(s, mem);
717 if (err) {
718 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
719 __func__, strerror(-err));
720 abort();
723 /* Workaround for older KVM versions: we can't join slots, even not by
724 * unregistering the previous ones and then registering the larger
725 * slot. We have to maintain the existing fragmentation. Sigh.
727 * This workaround assumes that the new slot starts at the same
728 * address as the first existing one. If not or if some overlapping
729 * slot comes around later, we will fail (not seen in practice so far)
730 * - and actually require a recent KVM version. */
731 if (s->broken_set_mem_region &&
732 old.start_addr == start_addr && old.memory_size < size &&
733 flags < IO_MEM_UNASSIGNED) {
734 mem = kvm_alloc_slot(s);
735 mem->memory_size = old.memory_size;
736 mem->start_addr = old.start_addr;
737 mem->phys_offset = old.phys_offset;
738 mem->flags = 0;
740 err = kvm_set_user_memory_region(s, mem);
741 if (err) {
742 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
743 strerror(-err));
744 abort();
747 start_addr += old.memory_size;
748 phys_offset += old.memory_size;
749 size -= old.memory_size;
750 continue;
753 /* register prefix slot */
754 if (old.start_addr < start_addr) {
755 mem = kvm_alloc_slot(s);
756 mem->memory_size = start_addr - old.start_addr;
757 mem->start_addr = old.start_addr;
758 mem->phys_offset = old.phys_offset;
759 mem->flags = 0;
761 err = kvm_set_user_memory_region(s, mem);
762 if (err) {
763 fprintf(stderr, "%s: error registering prefix slot: %s\n",
764 __func__, strerror(-err));
765 abort();
769 /* register suffix slot */
770 if (old.start_addr + old.memory_size > start_addr + size) {
771 ram_addr_t size_delta;
773 mem = kvm_alloc_slot(s);
774 mem->start_addr = start_addr + size;
775 size_delta = mem->start_addr - old.start_addr;
776 mem->memory_size = old.memory_size - size_delta;
777 mem->phys_offset = old.phys_offset + size_delta;
778 mem->flags = 0;
780 err = kvm_set_user_memory_region(s, mem);
781 if (err) {
782 fprintf(stderr, "%s: error registering suffix slot: %s\n",
783 __func__, strerror(-err));
784 abort();
789 /* in case the KVM bug workaround already "consumed" the new slot */
790 if (!size)
791 return;
793 /* KVM does not need to know about this memory */
794 if (flags >= IO_MEM_UNASSIGNED)
795 return;
797 mem = kvm_alloc_slot(s);
798 mem->memory_size = size;
799 mem->start_addr = start_addr;
800 mem->phys_offset = phys_offset;
801 mem->flags = 0;
803 err = kvm_set_user_memory_region(s, mem);
804 if (err) {
805 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
806 strerror(-err));
807 abort();
811 int kvm_ioctl(KVMState *s, int type, ...)
813 int ret;
814 void *arg;
815 va_list ap;
817 va_start(ap, type);
818 arg = va_arg(ap, void *);
819 va_end(ap);
821 ret = ioctl(s->fd, type, arg);
822 if (ret == -1)
823 ret = -errno;
825 return ret;
828 int kvm_vm_ioctl(KVMState *s, int type, ...)
830 int ret;
831 void *arg;
832 va_list ap;
834 va_start(ap, type);
835 arg = va_arg(ap, void *);
836 va_end(ap);
838 ret = ioctl(s->vmfd, type, arg);
839 if (ret == -1)
840 ret = -errno;
842 return ret;
845 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
847 int ret;
848 void *arg;
849 va_list ap;
851 va_start(ap, type);
852 arg = va_arg(ap, void *);
853 va_end(ap);
855 ret = ioctl(env->kvm_fd, type, arg);
856 if (ret == -1)
857 ret = -errno;
859 return ret;
862 int kvm_has_sync_mmu(void)
864 #ifdef KVM_CAP_SYNC_MMU
865 KVMState *s = kvm_state;
867 return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
868 #else
869 return 0;
870 #endif
873 void kvm_setup_guest_memory(void *start, size_t size)
875 if (!kvm_has_sync_mmu()) {
876 #ifdef MADV_DONTFORK
877 int ret = madvise(start, size, MADV_DONTFORK);
879 if (ret) {
880 perror("madvice");
881 exit(1);
883 #else
884 fprintf(stderr,
885 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
886 exit(1);
887 #endif
891 #ifdef KVM_CAP_SET_GUEST_DEBUG
892 static void on_vcpu(CPUState *env, void (*func)(void *data), void *data)
894 if (env == cpu_single_env) {
895 func(data);
896 return;
898 abort();
901 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
902 target_ulong pc)
904 struct kvm_sw_breakpoint *bp;
906 TAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
907 if (bp->pc == pc)
908 return bp;
910 return NULL;
913 int kvm_sw_breakpoints_active(CPUState *env)
915 return !TAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
918 struct kvm_set_guest_debug_data {
919 struct kvm_guest_debug dbg;
920 CPUState *env;
921 int err;
924 static void kvm_invoke_set_guest_debug(void *data)
926 struct kvm_set_guest_debug_data *dbg_data = data;
927 dbg_data->err = kvm_vcpu_ioctl(dbg_data->env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
930 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
932 struct kvm_set_guest_debug_data data;
934 data.dbg.control = 0;
935 if (env->singlestep_enabled)
936 data.dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
938 kvm_arch_update_guest_debug(env, &data.dbg);
939 data.dbg.control |= reinject_trap;
940 data.env = env;
942 on_vcpu(env, kvm_invoke_set_guest_debug, &data);
943 return data.err;
946 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
947 target_ulong len, int type)
949 struct kvm_sw_breakpoint *bp;
950 CPUState *env;
951 int err;
953 if (type == GDB_BREAKPOINT_SW) {
954 bp = kvm_find_sw_breakpoint(current_env, addr);
955 if (bp) {
956 bp->use_count++;
957 return 0;
960 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
961 if (!bp)
962 return -ENOMEM;
964 bp->pc = addr;
965 bp->use_count = 1;
966 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
967 if (err) {
968 free(bp);
969 return err;
972 TAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
973 bp, entry);
974 } else {
975 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
976 if (err)
977 return err;
980 for (env = first_cpu; env != NULL; env = env->next_cpu) {
981 err = kvm_update_guest_debug(env, 0);
982 if (err)
983 return err;
985 return 0;
988 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
989 target_ulong len, int type)
991 struct kvm_sw_breakpoint *bp;
992 CPUState *env;
993 int err;
995 if (type == GDB_BREAKPOINT_SW) {
996 bp = kvm_find_sw_breakpoint(current_env, addr);
997 if (!bp)
998 return -ENOENT;
1000 if (bp->use_count > 1) {
1001 bp->use_count--;
1002 return 0;
1005 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1006 if (err)
1007 return err;
1009 TAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1010 qemu_free(bp);
1011 } else {
1012 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1013 if (err)
1014 return err;
1017 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1018 err = kvm_update_guest_debug(env, 0);
1019 if (err)
1020 return err;
1022 return 0;
1025 void kvm_remove_all_breakpoints(CPUState *current_env)
1027 struct kvm_sw_breakpoint *bp, *next;
1028 KVMState *s = current_env->kvm_state;
1029 CPUState *env;
1031 TAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1032 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1033 /* Try harder to find a CPU that currently sees the breakpoint. */
1034 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1035 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
1036 break;
1040 kvm_arch_remove_all_hw_breakpoints();
1042 for (env = first_cpu; env != NULL; env = env->next_cpu)
1043 kvm_update_guest_debug(env, 0);
1046 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1048 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1050 return -EINVAL;
1053 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1054 target_ulong len, int type)
1056 return -EINVAL;
1059 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1060 target_ulong len, int type)
1062 return -EINVAL;
1065 void kvm_remove_all_breakpoints(CPUState *current_env)
1068 #endif /* !KVM_CAP_SET_GUEST_DEBUG */