2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/numa.h"
34 #include "hw/fw-path-provider.h"
37 #include "sysemu/device_tree.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/hw_accel.h"
41 #include "migration/misc.h"
42 #include "migration/global_state.h"
43 #include "migration/register.h"
44 #include "mmu-hash64.h"
45 #include "mmu-book3s-v3.h"
46 #include "cpu-models.h"
49 #include "hw/boards.h"
50 #include "hw/ppc/ppc.h"
51 #include "hw/loader.h"
53 #include "hw/ppc/fdt.h"
54 #include "hw/ppc/spapr.h"
55 #include "hw/ppc/spapr_vio.h"
56 #include "hw/pci-host/spapr.h"
57 #include "hw/ppc/xics.h"
58 #include "hw/pci/msi.h"
60 #include "hw/pci/pci.h"
61 #include "hw/scsi/scsi.h"
62 #include "hw/virtio/virtio-scsi.h"
63 #include "hw/virtio/vhost-scsi-common.h"
65 #include "exec/address-spaces.h"
66 #include "exec/ram_addr.h"
68 #include "qemu/config-file.h"
69 #include "qemu/error-report.h"
72 #include "hw/intc/intc.h"
74 #include "hw/compat.h"
75 #include "qemu/cutils.h"
76 #include "hw/ppc/spapr_cpu_core.h"
77 #include "hw/mem/memory-device.h"
81 /* SLOF memory layout:
83 * SLOF raw image loaded at 0, copies its romfs right below the flat
84 * device-tree, then position SLOF itself 31M below that
86 * So we set FW_OVERHEAD to 40MB which should account for all of that
89 * We load our kernel at 4M, leaving space for SLOF initial image
91 #define FDT_MAX_SIZE 0x100000
92 #define RTAS_MAX_SIZE 0x10000
93 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
94 #define FW_MAX_SIZE 0x400000
95 #define FW_FILE_NAME "slof.bin"
96 #define FW_OVERHEAD 0x2800000
97 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
99 #define MIN_RMA_SLOF 128UL
101 #define PHANDLE_XICP 0x00001111
103 /* These two functions implement the VCPU id numbering: one to compute them
104 * all and one to identify thread 0 of a VCORE. Any change to the first one
105 * is likely to have an impact on the second one, so let's keep them close.
107 static int spapr_vcpu_id(sPAPRMachineState
*spapr
, int cpu_index
)
111 (cpu_index
/ smp_threads
) * spapr
->vsmt
+ cpu_index
% smp_threads
;
113 static bool spapr_is_thread0_in_vcore(sPAPRMachineState
*spapr
,
117 return spapr_get_vcpu_id(cpu
) % spapr
->vsmt
== 0;
120 static ICSState
*spapr_ics_create(sPAPRMachineState
*spapr
,
121 const char *type_ics
,
122 int nr_irqs
, Error
**errp
)
124 Error
*local_err
= NULL
;
127 obj
= object_new(type_ics
);
128 object_property_add_child(OBJECT(spapr
), "ics", obj
, &error_abort
);
129 object_property_add_const_link(obj
, ICS_PROP_XICS
, OBJECT(spapr
),
131 object_property_set_int(obj
, nr_irqs
, "nr-irqs", &local_err
);
135 object_property_set_bool(obj
, true, "realized", &local_err
);
140 return ICS_BASE(obj
);
143 error_propagate(errp
, local_err
);
147 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque
)
149 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
150 * and newer QEMUs don't even have them. In both cases, we don't want
151 * to send anything on the wire.
156 static const VMStateDescription pre_2_10_vmstate_dummy_icp
= {
157 .name
= "icp/server",
159 .minimum_version_id
= 1,
160 .needed
= pre_2_10_vmstate_dummy_icp_needed
,
161 .fields
= (VMStateField
[]) {
162 VMSTATE_UNUSED(4), /* uint32_t xirr */
163 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
164 VMSTATE_UNUSED(1), /* uint8_t mfrr */
165 VMSTATE_END_OF_LIST()
169 static void pre_2_10_vmstate_register_dummy_icp(int i
)
171 vmstate_register(NULL
, i
, &pre_2_10_vmstate_dummy_icp
,
172 (void *)(uintptr_t) i
);
175 static void pre_2_10_vmstate_unregister_dummy_icp(int i
)
177 vmstate_unregister(NULL
, &pre_2_10_vmstate_dummy_icp
,
178 (void *)(uintptr_t) i
);
181 static int xics_max_server_number(sPAPRMachineState
*spapr
)
184 return DIV_ROUND_UP(max_cpus
* spapr
->vsmt
, smp_threads
);
187 static void xics_system_init(MachineState
*machine
, int nr_irqs
, Error
**errp
)
189 sPAPRMachineState
*spapr
= SPAPR_MACHINE(machine
);
190 Error
*local_err
= NULL
;
193 if (machine_kernel_irqchip_allowed(machine
) &&
194 !xics_kvm_init(spapr
, &local_err
)) {
195 spapr
->icp_type
= TYPE_KVM_ICP
;
196 spapr
->ics
= spapr_ics_create(spapr
, TYPE_ICS_KVM
, nr_irqs
,
199 if (machine_kernel_irqchip_required(machine
) && !spapr
->ics
) {
200 error_prepend(&local_err
,
201 "kernel_irqchip requested but unavailable: ");
204 error_free(local_err
);
209 xics_spapr_init(spapr
);
210 spapr
->icp_type
= TYPE_ICP
;
211 spapr
->ics
= spapr_ics_create(spapr
, TYPE_ICS_SIMPLE
, nr_irqs
,
216 error_propagate(errp
, local_err
);
219 static int spapr_fixup_cpu_smt_dt(void *fdt
, int offset
, PowerPCCPU
*cpu
,
223 uint32_t servers_prop
[smt_threads
];
224 uint32_t gservers_prop
[smt_threads
* 2];
225 int index
= spapr_get_vcpu_id(cpu
);
227 if (cpu
->compat_pvr
) {
228 ret
= fdt_setprop_cell(fdt
, offset
, "cpu-version", cpu
->compat_pvr
);
234 /* Build interrupt servers and gservers properties */
235 for (i
= 0; i
< smt_threads
; i
++) {
236 servers_prop
[i
] = cpu_to_be32(index
+ i
);
237 /* Hack, direct the group queues back to cpu 0 */
238 gservers_prop
[i
*2] = cpu_to_be32(index
+ i
);
239 gservers_prop
[i
*2 + 1] = 0;
241 ret
= fdt_setprop(fdt
, offset
, "ibm,ppc-interrupt-server#s",
242 servers_prop
, sizeof(servers_prop
));
246 ret
= fdt_setprop(fdt
, offset
, "ibm,ppc-interrupt-gserver#s",
247 gservers_prop
, sizeof(gservers_prop
));
252 static int spapr_fixup_cpu_numa_dt(void *fdt
, int offset
, PowerPCCPU
*cpu
)
254 int index
= spapr_get_vcpu_id(cpu
);
255 uint32_t associativity
[] = {cpu_to_be32(0x5),
259 cpu_to_be32(cpu
->node_id
),
262 /* Advertise NUMA via ibm,associativity */
263 return fdt_setprop(fdt
, offset
, "ibm,associativity", associativity
,
264 sizeof(associativity
));
267 /* Populate the "ibm,pa-features" property */
268 static void spapr_populate_pa_features(sPAPRMachineState
*spapr
,
270 void *fdt
, int offset
,
273 uint8_t pa_features_206
[] = { 6, 0,
274 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
275 uint8_t pa_features_207
[] = { 24, 0,
276 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
277 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
278 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
279 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
280 uint8_t pa_features_300
[] = { 66, 0,
281 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
282 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
283 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
285 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
287 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
288 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
289 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
290 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
291 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
292 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
293 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
294 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
295 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
296 /* 42: PM, 44: PC RA, 46: SC vec'd */
297 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
298 /* 48: SIMD, 50: QP BFP, 52: String */
299 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
300 /* 54: DecFP, 56: DecI, 58: SHA */
301 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
302 /* 60: NM atomic, 62: RNG */
303 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
305 uint8_t *pa_features
= NULL
;
308 if (ppc_check_compat(cpu
, CPU_POWERPC_LOGICAL_2_06
, 0, cpu
->compat_pvr
)) {
309 pa_features
= pa_features_206
;
310 pa_size
= sizeof(pa_features_206
);
312 if (ppc_check_compat(cpu
, CPU_POWERPC_LOGICAL_2_07
, 0, cpu
->compat_pvr
)) {
313 pa_features
= pa_features_207
;
314 pa_size
= sizeof(pa_features_207
);
316 if (ppc_check_compat(cpu
, CPU_POWERPC_LOGICAL_3_00
, 0, cpu
->compat_pvr
)) {
317 pa_features
= pa_features_300
;
318 pa_size
= sizeof(pa_features_300
);
324 if (ppc_hash64_has(cpu
, PPC_HASH64_CI_LARGEPAGE
)) {
326 * Note: we keep CI large pages off by default because a 64K capable
327 * guest provisioned with large pages might otherwise try to map a qemu
328 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
329 * even if that qemu runs on a 4k host.
330 * We dd this bit back here if we are confident this is not an issue
332 pa_features
[3] |= 0x20;
334 if ((spapr_get_cap(spapr
, SPAPR_CAP_HTM
) != 0) && pa_size
> 24) {
335 pa_features
[24] |= 0x80; /* Transactional memory support */
337 if (legacy_guest
&& pa_size
> 40) {
338 /* Workaround for broken kernels that attempt (guest) radix
339 * mode when they can't handle it, if they see the radix bit set
340 * in pa-features. So hide it from them. */
341 pa_features
[40 + 2] &= ~0x80; /* Radix MMU */
344 _FDT((fdt_setprop(fdt
, offset
, "ibm,pa-features", pa_features
, pa_size
)));
347 static int spapr_fixup_cpu_dt(void *fdt
, sPAPRMachineState
*spapr
)
349 int ret
= 0, offset
, cpus_offset
;
352 uint32_t pft_size_prop
[] = {0, cpu_to_be32(spapr
->htab_shift
)};
355 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
356 DeviceClass
*dc
= DEVICE_GET_CLASS(cs
);
357 int index
= spapr_get_vcpu_id(cpu
);
358 int compat_smt
= MIN(smp_threads
, ppc_compat_max_vthreads(cpu
));
360 if (!spapr_is_thread0_in_vcore(spapr
, cpu
)) {
364 snprintf(cpu_model
, 32, "%s@%x", dc
->fw_name
, index
);
366 cpus_offset
= fdt_path_offset(fdt
, "/cpus");
367 if (cpus_offset
< 0) {
368 cpus_offset
= fdt_add_subnode(fdt
, 0, "cpus");
369 if (cpus_offset
< 0) {
373 offset
= fdt_subnode_offset(fdt
, cpus_offset
, cpu_model
);
375 offset
= fdt_add_subnode(fdt
, cpus_offset
, cpu_model
);
381 ret
= fdt_setprop(fdt
, offset
, "ibm,pft-size",
382 pft_size_prop
, sizeof(pft_size_prop
));
387 if (nb_numa_nodes
> 1) {
388 ret
= spapr_fixup_cpu_numa_dt(fdt
, offset
, cpu
);
394 ret
= spapr_fixup_cpu_smt_dt(fdt
, offset
, cpu
, compat_smt
);
399 spapr_populate_pa_features(spapr
, cpu
, fdt
, offset
,
400 spapr
->cas_legacy_guest_workaround
);
405 static hwaddr
spapr_node0_size(MachineState
*machine
)
409 for (i
= 0; i
< nb_numa_nodes
; ++i
) {
410 if (numa_info
[i
].node_mem
) {
411 return MIN(pow2floor(numa_info
[i
].node_mem
),
416 return machine
->ram_size
;
419 static void add_str(GString
*s
, const gchar
*s1
)
421 g_string_append_len(s
, s1
, strlen(s1
) + 1);
424 static int spapr_populate_memory_node(void *fdt
, int nodeid
, hwaddr start
,
427 uint32_t associativity
[] = {
428 cpu_to_be32(0x4), /* length */
429 cpu_to_be32(0x0), cpu_to_be32(0x0),
430 cpu_to_be32(0x0), cpu_to_be32(nodeid
)
433 uint64_t mem_reg_property
[2];
436 mem_reg_property
[0] = cpu_to_be64(start
);
437 mem_reg_property
[1] = cpu_to_be64(size
);
439 sprintf(mem_name
, "memory@" TARGET_FMT_lx
, start
);
440 off
= fdt_add_subnode(fdt
, 0, mem_name
);
442 _FDT((fdt_setprop_string(fdt
, off
, "device_type", "memory")));
443 _FDT((fdt_setprop(fdt
, off
, "reg", mem_reg_property
,
444 sizeof(mem_reg_property
))));
445 _FDT((fdt_setprop(fdt
, off
, "ibm,associativity", associativity
,
446 sizeof(associativity
))));
450 static int spapr_populate_memory(sPAPRMachineState
*spapr
, void *fdt
)
452 MachineState
*machine
= MACHINE(spapr
);
453 hwaddr mem_start
, node_size
;
454 int i
, nb_nodes
= nb_numa_nodes
;
455 NodeInfo
*nodes
= numa_info
;
458 /* No NUMA nodes, assume there is just one node with whole RAM */
459 if (!nb_numa_nodes
) {
461 ramnode
.node_mem
= machine
->ram_size
;
465 for (i
= 0, mem_start
= 0; i
< nb_nodes
; ++i
) {
466 if (!nodes
[i
].node_mem
) {
469 if (mem_start
>= machine
->ram_size
) {
472 node_size
= nodes
[i
].node_mem
;
473 if (node_size
> machine
->ram_size
- mem_start
) {
474 node_size
= machine
->ram_size
- mem_start
;
478 /* spapr_machine_init() checks for rma_size <= node0_size
480 spapr_populate_memory_node(fdt
, i
, 0, spapr
->rma_size
);
481 mem_start
+= spapr
->rma_size
;
482 node_size
-= spapr
->rma_size
;
484 for ( ; node_size
; ) {
485 hwaddr sizetmp
= pow2floor(node_size
);
487 /* mem_start != 0 here */
488 if (ctzl(mem_start
) < ctzl(sizetmp
)) {
489 sizetmp
= 1ULL << ctzl(mem_start
);
492 spapr_populate_memory_node(fdt
, i
, mem_start
, sizetmp
);
493 node_size
-= sizetmp
;
494 mem_start
+= sizetmp
;
501 static void spapr_populate_cpu_dt(CPUState
*cs
, void *fdt
, int offset
,
502 sPAPRMachineState
*spapr
)
504 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
505 CPUPPCState
*env
= &cpu
->env
;
506 PowerPCCPUClass
*pcc
= POWERPC_CPU_GET_CLASS(cs
);
507 int index
= spapr_get_vcpu_id(cpu
);
508 uint32_t segs
[] = {cpu_to_be32(28), cpu_to_be32(40),
509 0xffffffff, 0xffffffff};
510 uint32_t tbfreq
= kvm_enabled() ? kvmppc_get_tbfreq()
511 : SPAPR_TIMEBASE_FREQ
;
512 uint32_t cpufreq
= kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
513 uint32_t page_sizes_prop
[64];
514 size_t page_sizes_prop_size
;
515 uint32_t vcpus_per_socket
= smp_threads
* smp_cores
;
516 uint32_t pft_size_prop
[] = {0, cpu_to_be32(spapr
->htab_shift
)};
517 int compat_smt
= MIN(smp_threads
, ppc_compat_max_vthreads(cpu
));
518 sPAPRDRConnector
*drc
;
520 uint32_t radix_AP_encodings
[PPC_PAGE_SIZES_MAX_SZ
];
523 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_CPU
, index
);
525 drc_index
= spapr_drc_index(drc
);
526 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,my-drc-index", drc_index
)));
529 _FDT((fdt_setprop_cell(fdt
, offset
, "reg", index
)));
530 _FDT((fdt_setprop_string(fdt
, offset
, "device_type", "cpu")));
532 _FDT((fdt_setprop_cell(fdt
, offset
, "cpu-version", env
->spr
[SPR_PVR
])));
533 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-block-size",
534 env
->dcache_line_size
)));
535 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-line-size",
536 env
->dcache_line_size
)));
537 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-block-size",
538 env
->icache_line_size
)));
539 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-line-size",
540 env
->icache_line_size
)));
542 if (pcc
->l1_dcache_size
) {
543 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-size",
544 pcc
->l1_dcache_size
)));
546 warn_report("Unknown L1 dcache size for cpu");
548 if (pcc
->l1_icache_size
) {
549 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-size",
550 pcc
->l1_icache_size
)));
552 warn_report("Unknown L1 icache size for cpu");
555 _FDT((fdt_setprop_cell(fdt
, offset
, "timebase-frequency", tbfreq
)));
556 _FDT((fdt_setprop_cell(fdt
, offset
, "clock-frequency", cpufreq
)));
557 _FDT((fdt_setprop_cell(fdt
, offset
, "slb-size", cpu
->hash64_opts
->slb_size
)));
558 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,slb-size", cpu
->hash64_opts
->slb_size
)));
559 _FDT((fdt_setprop_string(fdt
, offset
, "status", "okay")));
560 _FDT((fdt_setprop(fdt
, offset
, "64-bit", NULL
, 0)));
562 if (env
->spr_cb
[SPR_PURR
].oea_read
) {
563 _FDT((fdt_setprop(fdt
, offset
, "ibm,purr", NULL
, 0)));
566 if (ppc_hash64_has(cpu
, PPC_HASH64_1TSEG
)) {
567 _FDT((fdt_setprop(fdt
, offset
, "ibm,processor-segment-sizes",
568 segs
, sizeof(segs
))));
571 /* Advertise VSX (vector extensions) if available
572 * 1 == VMX / Altivec available
575 * Only CPUs for which we create core types in spapr_cpu_core.c
576 * are possible, and all of those have VMX */
577 if (spapr_get_cap(spapr
, SPAPR_CAP_VSX
) != 0) {
578 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,vmx", 2)));
580 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,vmx", 1)));
583 /* Advertise DFP (Decimal Floating Point) if available
584 * 0 / no property == no DFP
585 * 1 == DFP available */
586 if (spapr_get_cap(spapr
, SPAPR_CAP_DFP
) != 0) {
587 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,dfp", 1)));
590 page_sizes_prop_size
= ppc_create_page_sizes_prop(cpu
, page_sizes_prop
,
591 sizeof(page_sizes_prop
));
592 if (page_sizes_prop_size
) {
593 _FDT((fdt_setprop(fdt
, offset
, "ibm,segment-page-sizes",
594 page_sizes_prop
, page_sizes_prop_size
)));
597 spapr_populate_pa_features(spapr
, cpu
, fdt
, offset
, false);
599 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,chip-id",
600 cs
->cpu_index
/ vcpus_per_socket
)));
602 _FDT((fdt_setprop(fdt
, offset
, "ibm,pft-size",
603 pft_size_prop
, sizeof(pft_size_prop
))));
605 if (nb_numa_nodes
> 1) {
606 _FDT(spapr_fixup_cpu_numa_dt(fdt
, offset
, cpu
));
609 _FDT(spapr_fixup_cpu_smt_dt(fdt
, offset
, cpu
, compat_smt
));
611 if (pcc
->radix_page_info
) {
612 for (i
= 0; i
< pcc
->radix_page_info
->count
; i
++) {
613 radix_AP_encodings
[i
] =
614 cpu_to_be32(pcc
->radix_page_info
->entries
[i
]);
616 _FDT((fdt_setprop(fdt
, offset
, "ibm,processor-radix-AP-encodings",
618 pcc
->radix_page_info
->count
*
619 sizeof(radix_AP_encodings
[0]))));
623 static void spapr_populate_cpus_dt_node(void *fdt
, sPAPRMachineState
*spapr
)
629 cpus_offset
= fdt_add_subnode(fdt
, 0, "cpus");
631 _FDT((fdt_setprop_cell(fdt
, cpus_offset
, "#address-cells", 0x1)));
632 _FDT((fdt_setprop_cell(fdt
, cpus_offset
, "#size-cells", 0x0)));
635 * We walk the CPUs in reverse order to ensure that CPU DT nodes
636 * created by fdt_add_subnode() end up in the right order in FDT
637 * for the guest kernel the enumerate the CPUs correctly.
639 CPU_FOREACH_REVERSE(cs
) {
640 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
641 int index
= spapr_get_vcpu_id(cpu
);
642 DeviceClass
*dc
= DEVICE_GET_CLASS(cs
);
645 if (!spapr_is_thread0_in_vcore(spapr
, cpu
)) {
649 nodename
= g_strdup_printf("%s@%x", dc
->fw_name
, index
);
650 offset
= fdt_add_subnode(fdt
, cpus_offset
, nodename
);
653 spapr_populate_cpu_dt(cs
, fdt
, offset
, spapr
);
658 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList
*list
, ram_addr_t addr
)
660 MemoryDeviceInfoList
*info
;
662 for (info
= list
; info
; info
= info
->next
) {
663 MemoryDeviceInfo
*value
= info
->value
;
665 if (value
&& value
->type
== MEMORY_DEVICE_INFO_KIND_DIMM
) {
666 PCDIMMDeviceInfo
*pcdimm_info
= value
->u
.dimm
.data
;
668 if (pcdimm_info
->addr
>= addr
&&
669 addr
< (pcdimm_info
->addr
+ pcdimm_info
->size
)) {
670 return pcdimm_info
->node
;
678 struct sPAPRDrconfCellV2
{
686 typedef struct DrconfCellQueue
{
687 struct sPAPRDrconfCellV2 cell
;
688 QSIMPLEQ_ENTRY(DrconfCellQueue
) entry
;
691 static DrconfCellQueue
*
692 spapr_get_drconf_cell(uint32_t seq_lmbs
, uint64_t base_addr
,
693 uint32_t drc_index
, uint32_t aa_index
,
696 DrconfCellQueue
*elem
;
698 elem
= g_malloc0(sizeof(*elem
));
699 elem
->cell
.seq_lmbs
= cpu_to_be32(seq_lmbs
);
700 elem
->cell
.base_addr
= cpu_to_be64(base_addr
);
701 elem
->cell
.drc_index
= cpu_to_be32(drc_index
);
702 elem
->cell
.aa_index
= cpu_to_be32(aa_index
);
703 elem
->cell
.flags
= cpu_to_be32(flags
);
708 /* ibm,dynamic-memory-v2 */
709 static int spapr_populate_drmem_v2(sPAPRMachineState
*spapr
, void *fdt
,
710 int offset
, MemoryDeviceInfoList
*dimms
)
712 MachineState
*machine
= MACHINE(spapr
);
713 uint8_t *int_buf
, *cur_index
, buf_len
;
715 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
716 uint64_t addr
, cur_addr
, size
;
717 uint32_t nr_boot_lmbs
= (machine
->device_memory
->base
/ lmb_size
);
718 uint64_t mem_end
= machine
->device_memory
->base
+
719 memory_region_size(&machine
->device_memory
->mr
);
720 uint32_t node
, nr_entries
= 0;
721 sPAPRDRConnector
*drc
;
722 DrconfCellQueue
*elem
, *next
;
723 MemoryDeviceInfoList
*info
;
724 QSIMPLEQ_HEAD(, DrconfCellQueue
) drconf_queue
725 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue
);
727 /* Entry to cover RAM and the gap area */
728 elem
= spapr_get_drconf_cell(nr_boot_lmbs
, 0, 0, -1,
729 SPAPR_LMB_FLAGS_RESERVED
|
730 SPAPR_LMB_FLAGS_DRC_INVALID
);
731 QSIMPLEQ_INSERT_TAIL(&drconf_queue
, elem
, entry
);
734 cur_addr
= machine
->device_memory
->base
;
735 for (info
= dimms
; info
; info
= info
->next
) {
736 PCDIMMDeviceInfo
*di
= info
->value
->u
.dimm
.data
;
742 /* Entry for hot-pluggable area */
743 if (cur_addr
< addr
) {
744 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, cur_addr
/ lmb_size
);
746 elem
= spapr_get_drconf_cell((addr
- cur_addr
) / lmb_size
,
747 cur_addr
, spapr_drc_index(drc
), -1, 0);
748 QSIMPLEQ_INSERT_TAIL(&drconf_queue
, elem
, entry
);
753 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, addr
/ lmb_size
);
755 elem
= spapr_get_drconf_cell(size
/ lmb_size
, addr
,
756 spapr_drc_index(drc
), node
,
757 SPAPR_LMB_FLAGS_ASSIGNED
);
758 QSIMPLEQ_INSERT_TAIL(&drconf_queue
, elem
, entry
);
760 cur_addr
= addr
+ size
;
763 /* Entry for remaining hotpluggable area */
764 if (cur_addr
< mem_end
) {
765 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, cur_addr
/ lmb_size
);
767 elem
= spapr_get_drconf_cell((mem_end
- cur_addr
) / lmb_size
,
768 cur_addr
, spapr_drc_index(drc
), -1, 0);
769 QSIMPLEQ_INSERT_TAIL(&drconf_queue
, elem
, entry
);
773 buf_len
= nr_entries
* sizeof(struct sPAPRDrconfCellV2
) + sizeof(uint32_t);
774 int_buf
= cur_index
= g_malloc0(buf_len
);
775 *(uint32_t *)int_buf
= cpu_to_be32(nr_entries
);
776 cur_index
+= sizeof(nr_entries
);
778 QSIMPLEQ_FOREACH_SAFE(elem
, &drconf_queue
, entry
, next
) {
779 memcpy(cur_index
, &elem
->cell
, sizeof(elem
->cell
));
780 cur_index
+= sizeof(elem
->cell
);
781 QSIMPLEQ_REMOVE(&drconf_queue
, elem
, DrconfCellQueue
, entry
);
785 ret
= fdt_setprop(fdt
, offset
, "ibm,dynamic-memory-v2", int_buf
, buf_len
);
793 /* ibm,dynamic-memory */
794 static int spapr_populate_drmem_v1(sPAPRMachineState
*spapr
, void *fdt
,
795 int offset
, MemoryDeviceInfoList
*dimms
)
797 MachineState
*machine
= MACHINE(spapr
);
799 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
800 uint32_t device_lmb_start
= machine
->device_memory
->base
/ lmb_size
;
801 uint32_t nr_lmbs
= (machine
->device_memory
->base
+
802 memory_region_size(&machine
->device_memory
->mr
)) /
804 uint32_t *int_buf
, *cur_index
, buf_len
;
807 * Allocate enough buffer size to fit in ibm,dynamic-memory
809 buf_len
= (nr_lmbs
* SPAPR_DR_LMB_LIST_ENTRY_SIZE
+ 1) * sizeof(uint32_t);
810 cur_index
= int_buf
= g_malloc0(buf_len
);
811 int_buf
[0] = cpu_to_be32(nr_lmbs
);
813 for (i
= 0; i
< nr_lmbs
; i
++) {
814 uint64_t addr
= i
* lmb_size
;
815 uint32_t *dynamic_memory
= cur_index
;
817 if (i
>= device_lmb_start
) {
818 sPAPRDRConnector
*drc
;
820 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, i
);
823 dynamic_memory
[0] = cpu_to_be32(addr
>> 32);
824 dynamic_memory
[1] = cpu_to_be32(addr
& 0xffffffff);
825 dynamic_memory
[2] = cpu_to_be32(spapr_drc_index(drc
));
826 dynamic_memory
[3] = cpu_to_be32(0); /* reserved */
827 dynamic_memory
[4] = cpu_to_be32(spapr_pc_dimm_node(dimms
, addr
));
828 if (memory_region_present(get_system_memory(), addr
)) {
829 dynamic_memory
[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED
);
831 dynamic_memory
[5] = cpu_to_be32(0);
835 * LMB information for RMA, boot time RAM and gap b/n RAM and
836 * device memory region -- all these are marked as reserved
837 * and as having no valid DRC.
839 dynamic_memory
[0] = cpu_to_be32(addr
>> 32);
840 dynamic_memory
[1] = cpu_to_be32(addr
& 0xffffffff);
841 dynamic_memory
[2] = cpu_to_be32(0);
842 dynamic_memory
[3] = cpu_to_be32(0); /* reserved */
843 dynamic_memory
[4] = cpu_to_be32(-1);
844 dynamic_memory
[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED
|
845 SPAPR_LMB_FLAGS_DRC_INVALID
);
848 cur_index
+= SPAPR_DR_LMB_LIST_ENTRY_SIZE
;
850 ret
= fdt_setprop(fdt
, offset
, "ibm,dynamic-memory", int_buf
, buf_len
);
859 * Adds ibm,dynamic-reconfiguration-memory node.
860 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
861 * of this device tree node.
863 static int spapr_populate_drconf_memory(sPAPRMachineState
*spapr
, void *fdt
)
865 MachineState
*machine
= MACHINE(spapr
);
867 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
868 uint32_t prop_lmb_size
[] = {0, cpu_to_be32(lmb_size
)};
869 uint32_t *int_buf
, *cur_index
, buf_len
;
870 int nr_nodes
= nb_numa_nodes
? nb_numa_nodes
: 1;
871 MemoryDeviceInfoList
*dimms
= NULL
;
874 * Don't create the node if there is no device memory
876 if (machine
->ram_size
== machine
->maxram_size
) {
880 offset
= fdt_add_subnode(fdt
, 0, "ibm,dynamic-reconfiguration-memory");
882 ret
= fdt_setprop(fdt
, offset
, "ibm,lmb-size", prop_lmb_size
,
883 sizeof(prop_lmb_size
));
888 ret
= fdt_setprop_cell(fdt
, offset
, "ibm,memory-flags-mask", 0xff);
893 ret
= fdt_setprop_cell(fdt
, offset
, "ibm,memory-preservation-time", 0x0);
898 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
899 dimms
= qmp_memory_device_list();
900 if (spapr_ovec_test(spapr
->ov5_cas
, OV5_DRMEM_V2
)) {
901 ret
= spapr_populate_drmem_v2(spapr
, fdt
, offset
, dimms
);
903 ret
= spapr_populate_drmem_v1(spapr
, fdt
, offset
, dimms
);
905 qapi_free_MemoryDeviceInfoList(dimms
);
911 /* ibm,associativity-lookup-arrays */
912 buf_len
= (nr_nodes
* 4 + 2) * sizeof(uint32_t);
913 cur_index
= int_buf
= g_malloc0(buf_len
);
916 int_buf
[0] = cpu_to_be32(nr_nodes
);
917 int_buf
[1] = cpu_to_be32(4); /* Number of entries per associativity list */
919 for (i
= 0; i
< nr_nodes
; i
++) {
920 uint32_t associativity
[] = {
926 memcpy(cur_index
, associativity
, sizeof(associativity
));
929 ret
= fdt_setprop(fdt
, offset
, "ibm,associativity-lookup-arrays", int_buf
,
930 (cur_index
- int_buf
) * sizeof(uint32_t));
936 static int spapr_dt_cas_updates(sPAPRMachineState
*spapr
, void *fdt
,
937 sPAPROptionVector
*ov5_updates
)
939 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
942 /* Generate ibm,dynamic-reconfiguration-memory node if required */
943 if (spapr_ovec_test(ov5_updates
, OV5_DRCONF_MEMORY
)) {
944 g_assert(smc
->dr_lmb_enabled
);
945 ret
= spapr_populate_drconf_memory(spapr
, fdt
);
951 offset
= fdt_path_offset(fdt
, "/chosen");
953 offset
= fdt_add_subnode(fdt
, 0, "chosen");
958 ret
= spapr_ovec_populate_dt(fdt
, offset
, spapr
->ov5_cas
,
959 "ibm,architecture-vec-5");
965 static bool spapr_hotplugged_dev_before_cas(void)
967 Object
*drc_container
, *obj
;
968 ObjectProperty
*prop
;
969 ObjectPropertyIterator iter
;
971 drc_container
= container_get(object_get_root(), "/dr-connector");
972 object_property_iter_init(&iter
, drc_container
);
973 while ((prop
= object_property_iter_next(&iter
))) {
974 if (!strstart(prop
->type
, "link<", NULL
)) {
977 obj
= object_property_get_link(drc_container
, prop
->name
, NULL
);
978 if (spapr_drc_needed(obj
)) {
985 int spapr_h_cas_compose_response(sPAPRMachineState
*spapr
,
986 target_ulong addr
, target_ulong size
,
987 sPAPROptionVector
*ov5_updates
)
989 void *fdt
, *fdt_skel
;
990 sPAPRDeviceTreeUpdateHeader hdr
= { .version_id
= 1 };
992 if (spapr_hotplugged_dev_before_cas()) {
996 if (size
< sizeof(hdr
) || size
> FW_MAX_SIZE
) {
997 error_report("SLOF provided an unexpected CAS buffer size "
998 TARGET_FMT_lu
" (min: %zu, max: %u)",
999 size
, sizeof(hdr
), FW_MAX_SIZE
);
1003 size
-= sizeof(hdr
);
1005 /* Create skeleton */
1006 fdt_skel
= g_malloc0(size
);
1007 _FDT((fdt_create(fdt_skel
, size
)));
1008 _FDT((fdt_finish_reservemap(fdt_skel
)));
1009 _FDT((fdt_begin_node(fdt_skel
, "")));
1010 _FDT((fdt_end_node(fdt_skel
)));
1011 _FDT((fdt_finish(fdt_skel
)));
1012 fdt
= g_malloc0(size
);
1013 _FDT((fdt_open_into(fdt_skel
, fdt
, size
)));
1016 /* Fixup cpu nodes */
1017 _FDT((spapr_fixup_cpu_dt(fdt
, spapr
)));
1019 if (spapr_dt_cas_updates(spapr
, fdt
, ov5_updates
)) {
1023 /* Pack resulting tree */
1024 _FDT((fdt_pack(fdt
)));
1026 if (fdt_totalsize(fdt
) + sizeof(hdr
) > size
) {
1027 trace_spapr_cas_failed(size
);
1031 cpu_physical_memory_write(addr
, &hdr
, sizeof(hdr
));
1032 cpu_physical_memory_write(addr
+ sizeof(hdr
), fdt
, fdt_totalsize(fdt
));
1033 trace_spapr_cas_continue(fdt_totalsize(fdt
) + sizeof(hdr
));
1039 static void spapr_dt_rtas(sPAPRMachineState
*spapr
, void *fdt
)
1042 GString
*hypertas
= g_string_sized_new(256);
1043 GString
*qemu_hypertas
= g_string_sized_new(256);
1044 uint32_t refpoints
[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
1045 uint64_t max_device_addr
= MACHINE(spapr
)->device_memory
->base
+
1046 memory_region_size(&MACHINE(spapr
)->device_memory
->mr
);
1047 uint32_t lrdr_capacity
[] = {
1048 cpu_to_be32(max_device_addr
>> 32),
1049 cpu_to_be32(max_device_addr
& 0xffffffff),
1050 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE
),
1051 cpu_to_be32(max_cpus
/ smp_threads
),
1053 uint32_t maxdomains
[] = {
1058 cpu_to_be32(nb_numa_nodes
? nb_numa_nodes
- 1 : 0),
1061 _FDT(rtas
= fdt_add_subnode(fdt
, 0, "rtas"));
1064 add_str(hypertas
, "hcall-pft");
1065 add_str(hypertas
, "hcall-term");
1066 add_str(hypertas
, "hcall-dabr");
1067 add_str(hypertas
, "hcall-interrupt");
1068 add_str(hypertas
, "hcall-tce");
1069 add_str(hypertas
, "hcall-vio");
1070 add_str(hypertas
, "hcall-splpar");
1071 add_str(hypertas
, "hcall-bulk");
1072 add_str(hypertas
, "hcall-set-mode");
1073 add_str(hypertas
, "hcall-sprg0");
1074 add_str(hypertas
, "hcall-copy");
1075 add_str(hypertas
, "hcall-debug");
1076 add_str(qemu_hypertas
, "hcall-memop1");
1078 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1079 add_str(hypertas
, "hcall-multi-tce");
1082 if (spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DISABLED
) {
1083 add_str(hypertas
, "hcall-hpt-resize");
1086 _FDT(fdt_setprop(fdt
, rtas
, "ibm,hypertas-functions",
1087 hypertas
->str
, hypertas
->len
));
1088 g_string_free(hypertas
, TRUE
);
1089 _FDT(fdt_setprop(fdt
, rtas
, "qemu,hypertas-functions",
1090 qemu_hypertas
->str
, qemu_hypertas
->len
));
1091 g_string_free(qemu_hypertas
, TRUE
);
1093 _FDT(fdt_setprop(fdt
, rtas
, "ibm,associativity-reference-points",
1094 refpoints
, sizeof(refpoints
)));
1096 _FDT(fdt_setprop(fdt
, rtas
, "ibm,max-associativity-domains",
1097 maxdomains
, sizeof(maxdomains
)));
1099 _FDT(fdt_setprop_cell(fdt
, rtas
, "rtas-error-log-max",
1100 RTAS_ERROR_LOG_MAX
));
1101 _FDT(fdt_setprop_cell(fdt
, rtas
, "rtas-event-scan-rate",
1102 RTAS_EVENT_SCAN_RATE
));
1104 g_assert(msi_nonbroken
);
1105 _FDT(fdt_setprop(fdt
, rtas
, "ibm,change-msix-capable", NULL
, 0));
1108 * According to PAPR, rtas ibm,os-term does not guarantee a return
1109 * back to the guest cpu.
1111 * While an additional ibm,extended-os-term property indicates
1112 * that rtas call return will always occur. Set this property.
1114 _FDT(fdt_setprop(fdt
, rtas
, "ibm,extended-os-term", NULL
, 0));
1116 _FDT(fdt_setprop(fdt
, rtas
, "ibm,lrdr-capacity",
1117 lrdr_capacity
, sizeof(lrdr_capacity
)));
1119 spapr_dt_rtas_tokens(fdt
, rtas
);
1122 /* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
1123 * that the guest may request and thus the valid values for bytes 24..26 of
1124 * option vector 5: */
1125 static void spapr_dt_ov5_platform_support(void *fdt
, int chosen
)
1127 PowerPCCPU
*first_ppc_cpu
= POWERPC_CPU(first_cpu
);
1130 23, 0x00, /* Xive mode, filled in below. */
1131 24, 0x00, /* Hash/Radix, filled in below. */
1132 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1133 26, 0x40, /* Radix options: GTSE == yes. */
1136 if (!ppc_check_compat(first_ppc_cpu
, CPU_POWERPC_LOGICAL_3_00
, 0,
1137 first_ppc_cpu
->compat_pvr
)) {
1138 /* If we're in a pre POWER9 compat mode then the guest should do hash */
1139 val
[3] = 0x00; /* Hash */
1140 } else if (kvm_enabled()) {
1141 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1142 val
[3] = 0x80; /* OV5_MMU_BOTH */
1143 } else if (kvmppc_has_cap_mmu_radix()) {
1144 val
[3] = 0x40; /* OV5_MMU_RADIX_300 */
1146 val
[3] = 0x00; /* Hash */
1149 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1152 _FDT(fdt_setprop(fdt
, chosen
, "ibm,arch-vec-5-platform-support",
1156 static void spapr_dt_chosen(sPAPRMachineState
*spapr
, void *fdt
)
1158 MachineState
*machine
= MACHINE(spapr
);
1160 const char *boot_device
= machine
->boot_order
;
1161 char *stdout_path
= spapr_vio_stdout_path(spapr
->vio_bus
);
1163 char *bootlist
= get_boot_devices_list(&cb
, true);
1165 _FDT(chosen
= fdt_add_subnode(fdt
, 0, "chosen"));
1167 _FDT(fdt_setprop_string(fdt
, chosen
, "bootargs", machine
->kernel_cmdline
));
1168 _FDT(fdt_setprop_cell(fdt
, chosen
, "linux,initrd-start",
1169 spapr
->initrd_base
));
1170 _FDT(fdt_setprop_cell(fdt
, chosen
, "linux,initrd-end",
1171 spapr
->initrd_base
+ spapr
->initrd_size
));
1173 if (spapr
->kernel_size
) {
1174 uint64_t kprop
[2] = { cpu_to_be64(KERNEL_LOAD_ADDR
),
1175 cpu_to_be64(spapr
->kernel_size
) };
1177 _FDT(fdt_setprop(fdt
, chosen
, "qemu,boot-kernel",
1178 &kprop
, sizeof(kprop
)));
1179 if (spapr
->kernel_le
) {
1180 _FDT(fdt_setprop(fdt
, chosen
, "qemu,boot-kernel-le", NULL
, 0));
1184 _FDT((fdt_setprop_cell(fdt
, chosen
, "qemu,boot-menu", boot_menu
)));
1186 _FDT(fdt_setprop_cell(fdt
, chosen
, "qemu,graphic-width", graphic_width
));
1187 _FDT(fdt_setprop_cell(fdt
, chosen
, "qemu,graphic-height", graphic_height
));
1188 _FDT(fdt_setprop_cell(fdt
, chosen
, "qemu,graphic-depth", graphic_depth
));
1190 if (cb
&& bootlist
) {
1193 for (i
= 0; i
< cb
; i
++) {
1194 if (bootlist
[i
] == '\n') {
1198 _FDT(fdt_setprop_string(fdt
, chosen
, "qemu,boot-list", bootlist
));
1201 if (boot_device
&& strlen(boot_device
)) {
1202 _FDT(fdt_setprop_string(fdt
, chosen
, "qemu,boot-device", boot_device
));
1205 if (!spapr
->has_graphics
&& stdout_path
) {
1207 * "linux,stdout-path" and "stdout" properties are deprecated by linux
1208 * kernel. New platforms should only use the "stdout-path" property. Set
1209 * the new property and continue using older property to remain
1210 * compatible with the existing firmware.
1212 _FDT(fdt_setprop_string(fdt
, chosen
, "linux,stdout-path", stdout_path
));
1213 _FDT(fdt_setprop_string(fdt
, chosen
, "stdout-path", stdout_path
));
1216 spapr_dt_ov5_platform_support(fdt
, chosen
);
1218 g_free(stdout_path
);
1222 static void spapr_dt_hypervisor(sPAPRMachineState
*spapr
, void *fdt
)
1224 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1225 * KVM to work under pHyp with some guest co-operation */
1227 uint8_t hypercall
[16];
1229 _FDT(hypervisor
= fdt_add_subnode(fdt
, 0, "hypervisor"));
1230 /* indicate KVM hypercall interface */
1231 _FDT(fdt_setprop_string(fdt
, hypervisor
, "compatible", "linux,kvm"));
1232 if (kvmppc_has_cap_fixup_hcalls()) {
1234 * Older KVM versions with older guest kernels were broken
1235 * with the magic page, don't allow the guest to map it.
1237 if (!kvmppc_get_hypercall(first_cpu
->env_ptr
, hypercall
,
1238 sizeof(hypercall
))) {
1239 _FDT(fdt_setprop(fdt
, hypervisor
, "hcall-instructions",
1240 hypercall
, sizeof(hypercall
)));
1245 static void *spapr_build_fdt(sPAPRMachineState
*spapr
,
1249 MachineState
*machine
= MACHINE(spapr
);
1250 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
1251 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
1257 fdt
= g_malloc0(FDT_MAX_SIZE
);
1258 _FDT((fdt_create_empty_tree(fdt
, FDT_MAX_SIZE
)));
1261 _FDT(fdt_setprop_string(fdt
, 0, "device_type", "chrp"));
1262 _FDT(fdt_setprop_string(fdt
, 0, "model", "IBM pSeries (emulated by qemu)"));
1263 _FDT(fdt_setprop_string(fdt
, 0, "compatible", "qemu,pseries"));
1266 * Add info to guest to indentify which host is it being run on
1267 * and what is the uuid of the guest
1269 if (kvmppc_get_host_model(&buf
)) {
1270 _FDT(fdt_setprop_string(fdt
, 0, "host-model", buf
));
1273 if (kvmppc_get_host_serial(&buf
)) {
1274 _FDT(fdt_setprop_string(fdt
, 0, "host-serial", buf
));
1278 buf
= qemu_uuid_unparse_strdup(&qemu_uuid
);
1280 _FDT(fdt_setprop_string(fdt
, 0, "vm,uuid", buf
));
1281 if (qemu_uuid_set
) {
1282 _FDT(fdt_setprop_string(fdt
, 0, "system-id", buf
));
1286 if (qemu_get_vm_name()) {
1287 _FDT(fdt_setprop_string(fdt
, 0, "ibm,partition-name",
1288 qemu_get_vm_name()));
1291 _FDT(fdt_setprop_cell(fdt
, 0, "#address-cells", 2));
1292 _FDT(fdt_setprop_cell(fdt
, 0, "#size-cells", 2));
1294 /* /interrupt controller */
1295 spapr_dt_xics(xics_max_server_number(spapr
), fdt
, PHANDLE_XICP
);
1297 ret
= spapr_populate_memory(spapr
, fdt
);
1299 error_report("couldn't setup memory nodes in fdt");
1304 spapr_dt_vdevice(spapr
->vio_bus
, fdt
);
1306 if (object_resolve_path_type("", TYPE_SPAPR_RNG
, NULL
)) {
1307 ret
= spapr_rng_populate_dt(fdt
);
1309 error_report("could not set up rng device in the fdt");
1314 QLIST_FOREACH(phb
, &spapr
->phbs
, list
) {
1315 ret
= spapr_populate_pci_dt(phb
, PHANDLE_XICP
, fdt
);
1317 error_report("couldn't setup PCI devices in fdt");
1323 spapr_populate_cpus_dt_node(fdt
, spapr
);
1325 if (smc
->dr_lmb_enabled
) {
1326 _FDT(spapr_drc_populate_dt(fdt
, 0, NULL
, SPAPR_DR_CONNECTOR_TYPE_LMB
));
1329 if (mc
->has_hotpluggable_cpus
) {
1330 int offset
= fdt_path_offset(fdt
, "/cpus");
1331 ret
= spapr_drc_populate_dt(fdt
, offset
, NULL
,
1332 SPAPR_DR_CONNECTOR_TYPE_CPU
);
1334 error_report("Couldn't set up CPU DR device tree properties");
1339 /* /event-sources */
1340 spapr_dt_events(spapr
, fdt
);
1343 spapr_dt_rtas(spapr
, fdt
);
1346 spapr_dt_chosen(spapr
, fdt
);
1349 if (kvm_enabled()) {
1350 spapr_dt_hypervisor(spapr
, fdt
);
1353 /* Build memory reserve map */
1354 if (spapr
->kernel_size
) {
1355 _FDT((fdt_add_mem_rsv(fdt
, KERNEL_LOAD_ADDR
, spapr
->kernel_size
)));
1357 if (spapr
->initrd_size
) {
1358 _FDT((fdt_add_mem_rsv(fdt
, spapr
->initrd_base
, spapr
->initrd_size
)));
1361 /* ibm,client-architecture-support updates */
1362 ret
= spapr_dt_cas_updates(spapr
, fdt
, spapr
->ov5_cas
);
1364 error_report("couldn't setup CAS properties fdt");
1371 static uint64_t translate_kernel_address(void *opaque
, uint64_t addr
)
1373 return (addr
& 0x0fffffff) + KERNEL_LOAD_ADDR
;
1376 static void emulate_spapr_hypercall(PPCVirtualHypervisor
*vhyp
,
1379 CPUPPCState
*env
= &cpu
->env
;
1381 /* The TCG path should also be holding the BQL at this point */
1382 g_assert(qemu_mutex_iothread_locked());
1385 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1386 env
->gpr
[3] = H_PRIVILEGE
;
1388 env
->gpr
[3] = spapr_hypercall(cpu
, env
->gpr
[3], &env
->gpr
[4]);
1392 static uint64_t spapr_get_patbe(PPCVirtualHypervisor
*vhyp
)
1394 sPAPRMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1396 return spapr
->patb_entry
;
1399 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1400 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1401 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1402 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1403 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1406 * Get the fd to access the kernel htab, re-opening it if necessary
1408 static int get_htab_fd(sPAPRMachineState
*spapr
)
1410 Error
*local_err
= NULL
;
1412 if (spapr
->htab_fd
>= 0) {
1413 return spapr
->htab_fd
;
1416 spapr
->htab_fd
= kvmppc_get_htab_fd(false, 0, &local_err
);
1417 if (spapr
->htab_fd
< 0) {
1418 error_report_err(local_err
);
1421 return spapr
->htab_fd
;
1424 void close_htab_fd(sPAPRMachineState
*spapr
)
1426 if (spapr
->htab_fd
>= 0) {
1427 close(spapr
->htab_fd
);
1429 spapr
->htab_fd
= -1;
1432 static hwaddr
spapr_hpt_mask(PPCVirtualHypervisor
*vhyp
)
1434 sPAPRMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1436 return HTAB_SIZE(spapr
) / HASH_PTEG_SIZE_64
- 1;
1439 static target_ulong
spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor
*vhyp
)
1441 sPAPRMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1443 assert(kvm_enabled());
1449 return (target_ulong
)(uintptr_t)spapr
->htab
| (spapr
->htab_shift
- 18);
1452 static const ppc_hash_pte64_t
*spapr_map_hptes(PPCVirtualHypervisor
*vhyp
,
1455 sPAPRMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1456 hwaddr pte_offset
= ptex
* HASH_PTE_SIZE_64
;
1460 * HTAB is controlled by KVM. Fetch into temporary buffer
1462 ppc_hash_pte64_t
*hptes
= g_malloc(n
* HASH_PTE_SIZE_64
);
1463 kvmppc_read_hptes(hptes
, ptex
, n
);
1468 * HTAB is controlled by QEMU. Just point to the internally
1471 return (const ppc_hash_pte64_t
*)(spapr
->htab
+ pte_offset
);
1474 static void spapr_unmap_hptes(PPCVirtualHypervisor
*vhyp
,
1475 const ppc_hash_pte64_t
*hptes
,
1478 sPAPRMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1481 g_free((void *)hptes
);
1484 /* Nothing to do for qemu managed HPT */
1487 static void spapr_store_hpte(PPCVirtualHypervisor
*vhyp
, hwaddr ptex
,
1488 uint64_t pte0
, uint64_t pte1
)
1490 sPAPRMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1491 hwaddr offset
= ptex
* HASH_PTE_SIZE_64
;
1494 kvmppc_write_hpte(ptex
, pte0
, pte1
);
1496 stq_p(spapr
->htab
+ offset
, pte0
);
1497 stq_p(spapr
->htab
+ offset
+ HASH_PTE_SIZE_64
/ 2, pte1
);
1501 int spapr_hpt_shift_for_ramsize(uint64_t ramsize
)
1505 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1506 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1507 * that's much more than is needed for Linux guests */
1508 shift
= ctz64(pow2ceil(ramsize
)) - 7;
1509 shift
= MAX(shift
, 18); /* Minimum architected size */
1510 shift
= MIN(shift
, 46); /* Maximum architected size */
1514 void spapr_free_hpt(sPAPRMachineState
*spapr
)
1516 g_free(spapr
->htab
);
1518 spapr
->htab_shift
= 0;
1519 close_htab_fd(spapr
);
1522 void spapr_reallocate_hpt(sPAPRMachineState
*spapr
, int shift
,
1527 /* Clean up any HPT info from a previous boot */
1528 spapr_free_hpt(spapr
);
1530 rc
= kvmppc_reset_htab(shift
);
1532 /* kernel-side HPT needed, but couldn't allocate one */
1533 error_setg_errno(errp
, errno
,
1534 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1536 /* This is almost certainly fatal, but if the caller really
1537 * wants to carry on with shift == 0, it's welcome to try */
1538 } else if (rc
> 0) {
1539 /* kernel-side HPT allocated */
1542 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1546 spapr
->htab_shift
= shift
;
1549 /* kernel-side HPT not needed, allocate in userspace instead */
1550 size_t size
= 1ULL << shift
;
1553 spapr
->htab
= qemu_memalign(size
, size
);
1555 error_setg_errno(errp
, errno
,
1556 "Could not allocate HPT of order %d", shift
);
1560 memset(spapr
->htab
, 0, size
);
1561 spapr
->htab_shift
= shift
;
1563 for (i
= 0; i
< size
/ HASH_PTE_SIZE_64
; i
++) {
1564 DIRTY_HPTE(HPTE(spapr
->htab
, i
));
1567 /* We're setting up a hash table, so that means we're not radix */
1568 spapr
->patb_entry
= 0;
1571 void spapr_setup_hpt_and_vrma(sPAPRMachineState
*spapr
)
1575 if ((spapr
->resize_hpt
== SPAPR_RESIZE_HPT_DISABLED
)
1576 || (spapr
->cas_reboot
1577 && !spapr_ovec_test(spapr
->ov5_cas
, OV5_HPT_RESIZE
))) {
1578 hpt_shift
= spapr_hpt_shift_for_ramsize(MACHINE(spapr
)->maxram_size
);
1580 uint64_t current_ram_size
;
1582 current_ram_size
= MACHINE(spapr
)->ram_size
+ get_plugged_memory_size();
1583 hpt_shift
= spapr_hpt_shift_for_ramsize(current_ram_size
);
1585 spapr_reallocate_hpt(spapr
, hpt_shift
, &error_fatal
);
1587 if (spapr
->vrma_adjust
) {
1588 spapr
->rma_size
= kvmppc_rma_size(spapr_node0_size(MACHINE(spapr
)),
1593 static int spapr_reset_drcs(Object
*child
, void *opaque
)
1595 sPAPRDRConnector
*drc
=
1596 (sPAPRDRConnector
*) object_dynamic_cast(child
,
1597 TYPE_SPAPR_DR_CONNECTOR
);
1600 spapr_drc_reset(drc
);
1606 static void spapr_machine_reset(void)
1608 MachineState
*machine
= MACHINE(qdev_get_machine());
1609 sPAPRMachineState
*spapr
= SPAPR_MACHINE(machine
);
1610 PowerPCCPU
*first_ppc_cpu
;
1611 uint32_t rtas_limit
;
1612 hwaddr rtas_addr
, fdt_addr
;
1616 spapr_caps_apply(spapr
);
1618 first_ppc_cpu
= POWERPC_CPU(first_cpu
);
1619 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1620 ppc_type_check_compat(machine
->cpu_type
, CPU_POWERPC_LOGICAL_3_00
, 0,
1621 spapr
->max_compat_pvr
)) {
1622 /* If using KVM with radix mode available, VCPUs can be started
1623 * without a HPT because KVM will start them in radix mode.
1624 * Set the GR bit in PATB so that we know there is no HPT. */
1625 spapr
->patb_entry
= PATBE1_GR
;
1627 spapr_setup_hpt_and_vrma(spapr
);
1630 /* if this reset wasn't generated by CAS, we should reset our
1631 * negotiated options and start from scratch */
1632 if (!spapr
->cas_reboot
) {
1633 spapr_ovec_cleanup(spapr
->ov5_cas
);
1634 spapr
->ov5_cas
= spapr_ovec_new();
1636 ppc_set_compat(first_ppc_cpu
, spapr
->max_compat_pvr
, &error_fatal
);
1639 qemu_devices_reset();
1641 /* DRC reset may cause a device to be unplugged. This will cause troubles
1642 * if this device is used by another device (eg, a running vhost backend
1643 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1644 * situations, we reset DRCs after all devices have been reset.
1646 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs
, NULL
);
1648 spapr_clear_pending_events(spapr
);
1651 * We place the device tree and RTAS just below either the top of the RMA,
1652 * or just below 2GB, whichever is lowere, so that it can be
1653 * processed with 32-bit real mode code if necessary
1655 rtas_limit
= MIN(spapr
->rma_size
, RTAS_MAX_ADDR
);
1656 rtas_addr
= rtas_limit
- RTAS_MAX_SIZE
;
1657 fdt_addr
= rtas_addr
- FDT_MAX_SIZE
;
1659 fdt
= spapr_build_fdt(spapr
, rtas_addr
, spapr
->rtas_size
);
1661 spapr_load_rtas(spapr
, fdt
, rtas_addr
);
1665 /* Should only fail if we've built a corrupted tree */
1668 if (fdt_totalsize(fdt
) > FDT_MAX_SIZE
) {
1669 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1670 fdt_totalsize(fdt
), FDT_MAX_SIZE
);
1675 qemu_fdt_dumpdtb(fdt
, fdt_totalsize(fdt
));
1676 cpu_physical_memory_write(fdt_addr
, fdt
, fdt_totalsize(fdt
));
1679 /* Set up the entry state */
1680 spapr_cpu_set_entry_state(first_ppc_cpu
, SPAPR_ENTRY_POINT
, fdt_addr
);
1681 first_ppc_cpu
->env
.gpr
[5] = 0;
1683 spapr
->cas_reboot
= false;
1686 static void spapr_create_nvram(sPAPRMachineState
*spapr
)
1688 DeviceState
*dev
= qdev_create(&spapr
->vio_bus
->bus
, "spapr-nvram");
1689 DriveInfo
*dinfo
= drive_get(IF_PFLASH
, 0, 0);
1692 qdev_prop_set_drive(dev
, "drive", blk_by_legacy_dinfo(dinfo
),
1696 qdev_init_nofail(dev
);
1698 spapr
->nvram
= (struct sPAPRNVRAM
*)dev
;
1701 static void spapr_rtc_create(sPAPRMachineState
*spapr
)
1703 object_initialize(&spapr
->rtc
, sizeof(spapr
->rtc
), TYPE_SPAPR_RTC
);
1704 object_property_add_child(OBJECT(spapr
), "rtc", OBJECT(&spapr
->rtc
),
1706 object_property_set_bool(OBJECT(&spapr
->rtc
), true, "realized",
1708 object_property_add_alias(OBJECT(spapr
), "rtc-time", OBJECT(&spapr
->rtc
),
1709 "date", &error_fatal
);
1712 /* Returns whether we want to use VGA or not */
1713 static bool spapr_vga_init(PCIBus
*pci_bus
, Error
**errp
)
1715 switch (vga_interface_type
) {
1722 return pci_vga_init(pci_bus
) != NULL
;
1725 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1730 static int spapr_pre_load(void *opaque
)
1734 rc
= spapr_caps_pre_load(opaque
);
1742 static int spapr_post_load(void *opaque
, int version_id
)
1744 sPAPRMachineState
*spapr
= (sPAPRMachineState
*)opaque
;
1747 err
= spapr_caps_post_migration(spapr
);
1752 if (!object_dynamic_cast(OBJECT(spapr
->ics
), TYPE_ICS_KVM
)) {
1755 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
1756 icp_resend(ICP(cpu
->intc
));
1760 /* In earlier versions, there was no separate qdev for the PAPR
1761 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1762 * So when migrating from those versions, poke the incoming offset
1763 * value into the RTC device */
1764 if (version_id
< 3) {
1765 err
= spapr_rtc_import_offset(&spapr
->rtc
, spapr
->rtc_offset
);
1768 if (kvm_enabled() && spapr
->patb_entry
) {
1769 PowerPCCPU
*cpu
= POWERPC_CPU(first_cpu
);
1770 bool radix
= !!(spapr
->patb_entry
& PATBE1_GR
);
1771 bool gtse
= !!(cpu
->env
.spr
[SPR_LPCR
] & LPCR_GTSE
);
1773 err
= kvmppc_configure_v3_mmu(cpu
, radix
, gtse
, spapr
->patb_entry
);
1775 error_report("Process table config unsupported by the host");
1783 static int spapr_pre_save(void *opaque
)
1787 rc
= spapr_caps_pre_save(opaque
);
1795 static bool version_before_3(void *opaque
, int version_id
)
1797 return version_id
< 3;
1800 static bool spapr_pending_events_needed(void *opaque
)
1802 sPAPRMachineState
*spapr
= (sPAPRMachineState
*)opaque
;
1803 return !QTAILQ_EMPTY(&spapr
->pending_events
);
1806 static const VMStateDescription vmstate_spapr_event_entry
= {
1807 .name
= "spapr_event_log_entry",
1809 .minimum_version_id
= 1,
1810 .fields
= (VMStateField
[]) {
1811 VMSTATE_UINT32(summary
, sPAPREventLogEntry
),
1812 VMSTATE_UINT32(extended_length
, sPAPREventLogEntry
),
1813 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log
, sPAPREventLogEntry
, 0,
1814 NULL
, extended_length
),
1815 VMSTATE_END_OF_LIST()
1819 static const VMStateDescription vmstate_spapr_pending_events
= {
1820 .name
= "spapr_pending_events",
1822 .minimum_version_id
= 1,
1823 .needed
= spapr_pending_events_needed
,
1824 .fields
= (VMStateField
[]) {
1825 VMSTATE_QTAILQ_V(pending_events
, sPAPRMachineState
, 1,
1826 vmstate_spapr_event_entry
, sPAPREventLogEntry
, next
),
1827 VMSTATE_END_OF_LIST()
1831 static bool spapr_ov5_cas_needed(void *opaque
)
1833 sPAPRMachineState
*spapr
= opaque
;
1834 sPAPROptionVector
*ov5_mask
= spapr_ovec_new();
1835 sPAPROptionVector
*ov5_legacy
= spapr_ovec_new();
1836 sPAPROptionVector
*ov5_removed
= spapr_ovec_new();
1839 /* Prior to the introduction of sPAPROptionVector, we had two option
1840 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1841 * Both of these options encode machine topology into the device-tree
1842 * in such a way that the now-booted OS should still be able to interact
1843 * appropriately with QEMU regardless of what options were actually
1844 * negotiatied on the source side.
1846 * As such, we can avoid migrating the CAS-negotiated options if these
1847 * are the only options available on the current machine/platform.
1848 * Since these are the only options available for pseries-2.7 and
1849 * earlier, this allows us to maintain old->new/new->old migration
1852 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1853 * via default pseries-2.8 machines and explicit command-line parameters.
1854 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1855 * of the actual CAS-negotiated values to continue working properly. For
1856 * example, availability of memory unplug depends on knowing whether
1857 * OV5_HP_EVT was negotiated via CAS.
1859 * Thus, for any cases where the set of available CAS-negotiatable
1860 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1861 * include the CAS-negotiated options in the migration stream, unless
1862 * if they affect boot time behaviour only.
1864 spapr_ovec_set(ov5_mask
, OV5_FORM1_AFFINITY
);
1865 spapr_ovec_set(ov5_mask
, OV5_DRCONF_MEMORY
);
1866 spapr_ovec_set(ov5_mask
, OV5_DRMEM_V2
);
1868 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1869 * the mask itself since in the future it's possible "legacy" bits may be
1870 * removed via machine options, which could generate a false positive
1871 * that breaks migration.
1873 spapr_ovec_intersect(ov5_legacy
, spapr
->ov5
, ov5_mask
);
1874 cas_needed
= spapr_ovec_diff(ov5_removed
, spapr
->ov5
, ov5_legacy
);
1876 spapr_ovec_cleanup(ov5_mask
);
1877 spapr_ovec_cleanup(ov5_legacy
);
1878 spapr_ovec_cleanup(ov5_removed
);
1883 static const VMStateDescription vmstate_spapr_ov5_cas
= {
1884 .name
= "spapr_option_vector_ov5_cas",
1886 .minimum_version_id
= 1,
1887 .needed
= spapr_ov5_cas_needed
,
1888 .fields
= (VMStateField
[]) {
1889 VMSTATE_STRUCT_POINTER_V(ov5_cas
, sPAPRMachineState
, 1,
1890 vmstate_spapr_ovec
, sPAPROptionVector
),
1891 VMSTATE_END_OF_LIST()
1895 static bool spapr_patb_entry_needed(void *opaque
)
1897 sPAPRMachineState
*spapr
= opaque
;
1899 return !!spapr
->patb_entry
;
1902 static const VMStateDescription vmstate_spapr_patb_entry
= {
1903 .name
= "spapr_patb_entry",
1905 .minimum_version_id
= 1,
1906 .needed
= spapr_patb_entry_needed
,
1907 .fields
= (VMStateField
[]) {
1908 VMSTATE_UINT64(patb_entry
, sPAPRMachineState
),
1909 VMSTATE_END_OF_LIST()
1913 static const VMStateDescription vmstate_spapr
= {
1916 .minimum_version_id
= 1,
1917 .pre_load
= spapr_pre_load
,
1918 .post_load
= spapr_post_load
,
1919 .pre_save
= spapr_pre_save
,
1920 .fields
= (VMStateField
[]) {
1921 /* used to be @next_irq */
1922 VMSTATE_UNUSED_BUFFER(version_before_3
, 0, 4),
1925 VMSTATE_UINT64_TEST(rtc_offset
, sPAPRMachineState
, version_before_3
),
1927 VMSTATE_PPC_TIMEBASE_V(tb
, sPAPRMachineState
, 2),
1928 VMSTATE_END_OF_LIST()
1930 .subsections
= (const VMStateDescription
*[]) {
1931 &vmstate_spapr_ov5_cas
,
1932 &vmstate_spapr_patb_entry
,
1933 &vmstate_spapr_pending_events
,
1934 &vmstate_spapr_cap_htm
,
1935 &vmstate_spapr_cap_vsx
,
1936 &vmstate_spapr_cap_dfp
,
1937 &vmstate_spapr_cap_cfpc
,
1938 &vmstate_spapr_cap_sbbc
,
1939 &vmstate_spapr_cap_ibs
,
1944 static int htab_save_setup(QEMUFile
*f
, void *opaque
)
1946 sPAPRMachineState
*spapr
= opaque
;
1948 /* "Iteration" header */
1949 if (!spapr
->htab_shift
) {
1950 qemu_put_be32(f
, -1);
1952 qemu_put_be32(f
, spapr
->htab_shift
);
1956 spapr
->htab_save_index
= 0;
1957 spapr
->htab_first_pass
= true;
1959 if (spapr
->htab_shift
) {
1960 assert(kvm_enabled());
1968 static void htab_save_chunk(QEMUFile
*f
, sPAPRMachineState
*spapr
,
1969 int chunkstart
, int n_valid
, int n_invalid
)
1971 qemu_put_be32(f
, chunkstart
);
1972 qemu_put_be16(f
, n_valid
);
1973 qemu_put_be16(f
, n_invalid
);
1974 qemu_put_buffer(f
, HPTE(spapr
->htab
, chunkstart
),
1975 HASH_PTE_SIZE_64
* n_valid
);
1978 static void htab_save_end_marker(QEMUFile
*f
)
1980 qemu_put_be32(f
, 0);
1981 qemu_put_be16(f
, 0);
1982 qemu_put_be16(f
, 0);
1985 static void htab_save_first_pass(QEMUFile
*f
, sPAPRMachineState
*spapr
,
1988 bool has_timeout
= max_ns
!= -1;
1989 int htabslots
= HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
;
1990 int index
= spapr
->htab_save_index
;
1991 int64_t starttime
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
1993 assert(spapr
->htab_first_pass
);
1998 /* Consume invalid HPTEs */
1999 while ((index
< htabslots
)
2000 && !HPTE_VALID(HPTE(spapr
->htab
, index
))) {
2001 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
2005 /* Consume valid HPTEs */
2007 while ((index
< htabslots
) && (index
- chunkstart
< USHRT_MAX
)
2008 && HPTE_VALID(HPTE(spapr
->htab
, index
))) {
2009 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
2013 if (index
> chunkstart
) {
2014 int n_valid
= index
- chunkstart
;
2016 htab_save_chunk(f
, spapr
, chunkstart
, n_valid
, 0);
2019 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) - starttime
) > max_ns
) {
2023 } while ((index
< htabslots
) && !qemu_file_rate_limit(f
));
2025 if (index
>= htabslots
) {
2026 assert(index
== htabslots
);
2028 spapr
->htab_first_pass
= false;
2030 spapr
->htab_save_index
= index
;
2033 static int htab_save_later_pass(QEMUFile
*f
, sPAPRMachineState
*spapr
,
2036 bool final
= max_ns
< 0;
2037 int htabslots
= HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
;
2038 int examined
= 0, sent
= 0;
2039 int index
= spapr
->htab_save_index
;
2040 int64_t starttime
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
2042 assert(!spapr
->htab_first_pass
);
2045 int chunkstart
, invalidstart
;
2047 /* Consume non-dirty HPTEs */
2048 while ((index
< htabslots
)
2049 && !HPTE_DIRTY(HPTE(spapr
->htab
, index
))) {
2055 /* Consume valid dirty HPTEs */
2056 while ((index
< htabslots
) && (index
- chunkstart
< USHRT_MAX
)
2057 && HPTE_DIRTY(HPTE(spapr
->htab
, index
))
2058 && HPTE_VALID(HPTE(spapr
->htab
, index
))) {
2059 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
2064 invalidstart
= index
;
2065 /* Consume invalid dirty HPTEs */
2066 while ((index
< htabslots
) && (index
- invalidstart
< USHRT_MAX
)
2067 && HPTE_DIRTY(HPTE(spapr
->htab
, index
))
2068 && !HPTE_VALID(HPTE(spapr
->htab
, index
))) {
2069 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
2074 if (index
> chunkstart
) {
2075 int n_valid
= invalidstart
- chunkstart
;
2076 int n_invalid
= index
- invalidstart
;
2078 htab_save_chunk(f
, spapr
, chunkstart
, n_valid
, n_invalid
);
2079 sent
+= index
- chunkstart
;
2081 if (!final
&& (qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) - starttime
) > max_ns
) {
2086 if (examined
>= htabslots
) {
2090 if (index
>= htabslots
) {
2091 assert(index
== htabslots
);
2094 } while ((examined
< htabslots
) && (!qemu_file_rate_limit(f
) || final
));
2096 if (index
>= htabslots
) {
2097 assert(index
== htabslots
);
2101 spapr
->htab_save_index
= index
;
2103 return (examined
>= htabslots
) && (sent
== 0) ? 1 : 0;
2106 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2107 #define MAX_KVM_BUF_SIZE 2048
2109 static int htab_save_iterate(QEMUFile
*f
, void *opaque
)
2111 sPAPRMachineState
*spapr
= opaque
;
2115 /* Iteration header */
2116 if (!spapr
->htab_shift
) {
2117 qemu_put_be32(f
, -1);
2120 qemu_put_be32(f
, 0);
2124 assert(kvm_enabled());
2126 fd
= get_htab_fd(spapr
);
2131 rc
= kvmppc_save_htab(f
, fd
, MAX_KVM_BUF_SIZE
, MAX_ITERATION_NS
);
2135 } else if (spapr
->htab_first_pass
) {
2136 htab_save_first_pass(f
, spapr
, MAX_ITERATION_NS
);
2138 rc
= htab_save_later_pass(f
, spapr
, MAX_ITERATION_NS
);
2141 htab_save_end_marker(f
);
2146 static int htab_save_complete(QEMUFile
*f
, void *opaque
)
2148 sPAPRMachineState
*spapr
= opaque
;
2151 /* Iteration header */
2152 if (!spapr
->htab_shift
) {
2153 qemu_put_be32(f
, -1);
2156 qemu_put_be32(f
, 0);
2162 assert(kvm_enabled());
2164 fd
= get_htab_fd(spapr
);
2169 rc
= kvmppc_save_htab(f
, fd
, MAX_KVM_BUF_SIZE
, -1);
2174 if (spapr
->htab_first_pass
) {
2175 htab_save_first_pass(f
, spapr
, -1);
2177 htab_save_later_pass(f
, spapr
, -1);
2181 htab_save_end_marker(f
);
2186 static int htab_load(QEMUFile
*f
, void *opaque
, int version_id
)
2188 sPAPRMachineState
*spapr
= opaque
;
2189 uint32_t section_hdr
;
2191 Error
*local_err
= NULL
;
2193 if (version_id
< 1 || version_id
> 1) {
2194 error_report("htab_load() bad version");
2198 section_hdr
= qemu_get_be32(f
);
2200 if (section_hdr
== -1) {
2201 spapr_free_hpt(spapr
);
2206 /* First section gives the htab size */
2207 spapr_reallocate_hpt(spapr
, section_hdr
, &local_err
);
2209 error_report_err(local_err
);
2216 assert(kvm_enabled());
2218 fd
= kvmppc_get_htab_fd(true, 0, &local_err
);
2220 error_report_err(local_err
);
2227 uint16_t n_valid
, n_invalid
;
2229 index
= qemu_get_be32(f
);
2230 n_valid
= qemu_get_be16(f
);
2231 n_invalid
= qemu_get_be16(f
);
2233 if ((index
== 0) && (n_valid
== 0) && (n_invalid
== 0)) {
2238 if ((index
+ n_valid
+ n_invalid
) >
2239 (HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
)) {
2240 /* Bad index in stream */
2242 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2243 index
, n_valid
, n_invalid
, spapr
->htab_shift
);
2249 qemu_get_buffer(f
, HPTE(spapr
->htab
, index
),
2250 HASH_PTE_SIZE_64
* n_valid
);
2253 memset(HPTE(spapr
->htab
, index
+ n_valid
), 0,
2254 HASH_PTE_SIZE_64
* n_invalid
);
2261 rc
= kvmppc_load_htab_chunk(f
, fd
, index
, n_valid
, n_invalid
);
2276 static void htab_save_cleanup(void *opaque
)
2278 sPAPRMachineState
*spapr
= opaque
;
2280 close_htab_fd(spapr
);
2283 static SaveVMHandlers savevm_htab_handlers
= {
2284 .save_setup
= htab_save_setup
,
2285 .save_live_iterate
= htab_save_iterate
,
2286 .save_live_complete_precopy
= htab_save_complete
,
2287 .save_cleanup
= htab_save_cleanup
,
2288 .load_state
= htab_load
,
2291 static void spapr_boot_set(void *opaque
, const char *boot_device
,
2294 MachineState
*machine
= MACHINE(opaque
);
2295 machine
->boot_order
= g_strdup(boot_device
);
2298 static void spapr_create_lmb_dr_connectors(sPAPRMachineState
*spapr
)
2300 MachineState
*machine
= MACHINE(spapr
);
2301 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
2302 uint32_t nr_lmbs
= (machine
->maxram_size
- machine
->ram_size
)/lmb_size
;
2305 for (i
= 0; i
< nr_lmbs
; i
++) {
2308 addr
= i
* lmb_size
+ machine
->device_memory
->base
;
2309 spapr_dr_connector_new(OBJECT(spapr
), TYPE_SPAPR_DRC_LMB
,
2315 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2316 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2317 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2319 static void spapr_validate_node_memory(MachineState
*machine
, Error
**errp
)
2323 if (machine
->ram_size
% SPAPR_MEMORY_BLOCK_SIZE
) {
2324 error_setg(errp
, "Memory size 0x" RAM_ADDR_FMT
2325 " is not aligned to %llu MiB",
2327 SPAPR_MEMORY_BLOCK_SIZE
/ M_BYTE
);
2331 if (machine
->maxram_size
% SPAPR_MEMORY_BLOCK_SIZE
) {
2332 error_setg(errp
, "Maximum memory size 0x" RAM_ADDR_FMT
2333 " is not aligned to %llu MiB",
2335 SPAPR_MEMORY_BLOCK_SIZE
/ M_BYTE
);
2339 for (i
= 0; i
< nb_numa_nodes
; i
++) {
2340 if (numa_info
[i
].node_mem
% SPAPR_MEMORY_BLOCK_SIZE
) {
2342 "Node %d memory size 0x%" PRIx64
2343 " is not aligned to %llu MiB",
2344 i
, numa_info
[i
].node_mem
,
2345 SPAPR_MEMORY_BLOCK_SIZE
/ M_BYTE
);
2351 /* find cpu slot in machine->possible_cpus by core_id */
2352 static CPUArchId
*spapr_find_cpu_slot(MachineState
*ms
, uint32_t id
, int *idx
)
2354 int index
= id
/ smp_threads
;
2356 if (index
>= ms
->possible_cpus
->len
) {
2362 return &ms
->possible_cpus
->cpus
[index
];
2365 static void spapr_set_vsmt_mode(sPAPRMachineState
*spapr
, Error
**errp
)
2367 Error
*local_err
= NULL
;
2368 bool vsmt_user
= !!spapr
->vsmt
;
2369 int kvm_smt
= kvmppc_smt_threads();
2372 if (!kvm_enabled() && (smp_threads
> 1)) {
2373 error_setg(&local_err
, "TCG cannot support more than 1 thread/core "
2374 "on a pseries machine");
2377 if (!is_power_of_2(smp_threads
)) {
2378 error_setg(&local_err
, "Cannot support %d threads/core on a pseries "
2379 "machine because it must be a power of 2", smp_threads
);
2383 /* Detemine the VSMT mode to use: */
2385 if (spapr
->vsmt
< smp_threads
) {
2386 error_setg(&local_err
, "Cannot support VSMT mode %d"
2387 " because it must be >= threads/core (%d)",
2388 spapr
->vsmt
, smp_threads
);
2391 /* In this case, spapr->vsmt has been set by the command line */
2394 * Default VSMT value is tricky, because we need it to be as
2395 * consistent as possible (for migration), but this requires
2396 * changing it for at least some existing cases. We pick 8 as
2397 * the value that we'd get with KVM on POWER8, the
2398 * overwhelmingly common case in production systems.
2400 spapr
->vsmt
= MAX(8, smp_threads
);
2403 /* KVM: If necessary, set the SMT mode: */
2404 if (kvm_enabled() && (spapr
->vsmt
!= kvm_smt
)) {
2405 ret
= kvmppc_set_smt_threads(spapr
->vsmt
);
2407 /* Looks like KVM isn't able to change VSMT mode */
2408 error_setg(&local_err
,
2409 "Failed to set KVM's VSMT mode to %d (errno %d)",
2411 /* We can live with that if the default one is big enough
2412 * for the number of threads, and a submultiple of the one
2413 * we want. In this case we'll waste some vcpu ids, but
2414 * behaviour will be correct */
2415 if ((kvm_smt
>= smp_threads
) && ((spapr
->vsmt
% kvm_smt
) == 0)) {
2416 warn_report_err(local_err
);
2421 error_append_hint(&local_err
,
2422 "On PPC, a VM with %d threads/core"
2423 " on a host with %d threads/core"
2424 " requires the use of VSMT mode %d.\n",
2425 smp_threads
, kvm_smt
, spapr
->vsmt
);
2427 kvmppc_hint_smt_possible(&local_err
);
2432 /* else TCG: nothing to do currently */
2434 error_propagate(errp
, local_err
);
2437 static void spapr_init_cpus(sPAPRMachineState
*spapr
)
2439 MachineState
*machine
= MACHINE(spapr
);
2440 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
2441 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
2442 const char *type
= spapr_get_cpu_core_type(machine
->cpu_type
);
2443 const CPUArchIdList
*possible_cpus
;
2444 int boot_cores_nr
= smp_cpus
/ smp_threads
;
2447 possible_cpus
= mc
->possible_cpu_arch_ids(machine
);
2448 if (mc
->has_hotpluggable_cpus
) {
2449 if (smp_cpus
% smp_threads
) {
2450 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2451 smp_cpus
, smp_threads
);
2454 if (max_cpus
% smp_threads
) {
2455 error_report("max_cpus (%u) must be multiple of threads (%u)",
2456 max_cpus
, smp_threads
);
2460 if (max_cpus
!= smp_cpus
) {
2461 error_report("This machine version does not support CPU hotplug");
2464 boot_cores_nr
= possible_cpus
->len
;
2467 /* VSMT must be set in order to be able to compute VCPU ids, ie to
2468 * call xics_max_server_number() or spapr_vcpu_id().
2470 spapr_set_vsmt_mode(spapr
, &error_fatal
);
2472 if (smc
->pre_2_10_has_unused_icps
) {
2475 for (i
= 0; i
< xics_max_server_number(spapr
); i
++) {
2476 /* Dummy entries get deregistered when real ICPState objects
2477 * are registered during CPU core hotplug.
2479 pre_2_10_vmstate_register_dummy_icp(i
);
2483 for (i
= 0; i
< possible_cpus
->len
; i
++) {
2484 int core_id
= i
* smp_threads
;
2486 if (mc
->has_hotpluggable_cpus
) {
2487 spapr_dr_connector_new(OBJECT(spapr
), TYPE_SPAPR_DRC_CPU
,
2488 spapr_vcpu_id(spapr
, core_id
));
2491 if (i
< boot_cores_nr
) {
2492 Object
*core
= object_new(type
);
2493 int nr_threads
= smp_threads
;
2495 /* Handle the partially filled core for older machine types */
2496 if ((i
+ 1) * smp_threads
>= smp_cpus
) {
2497 nr_threads
= smp_cpus
- i
* smp_threads
;
2500 object_property_set_int(core
, nr_threads
, "nr-threads",
2502 object_property_set_int(core
, core_id
, CPU_CORE_PROP_CORE_ID
,
2504 object_property_set_bool(core
, true, "realized", &error_fatal
);
2509 /* pSeries LPAR / sPAPR hardware init */
2510 static void spapr_machine_init(MachineState
*machine
)
2512 sPAPRMachineState
*spapr
= SPAPR_MACHINE(machine
);
2513 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
2514 const char *kernel_filename
= machine
->kernel_filename
;
2515 const char *initrd_filename
= machine
->initrd_filename
;
2518 MemoryRegion
*sysmem
= get_system_memory();
2519 MemoryRegion
*ram
= g_new(MemoryRegion
, 1);
2520 hwaddr node0_size
= spapr_node0_size(machine
);
2521 long load_limit
, fw_size
;
2523 Error
*resize_hpt_err
= NULL
;
2525 msi_nonbroken
= true;
2527 QLIST_INIT(&spapr
->phbs
);
2528 QTAILQ_INIT(&spapr
->pending_dimm_unplugs
);
2530 /* Determine capabilities to run with */
2531 spapr_caps_init(spapr
);
2533 kvmppc_check_papr_resize_hpt(&resize_hpt_err
);
2534 if (spapr
->resize_hpt
== SPAPR_RESIZE_HPT_DEFAULT
) {
2536 * If the user explicitly requested a mode we should either
2537 * supply it, or fail completely (which we do below). But if
2538 * it's not set explicitly, we reset our mode to something
2541 if (resize_hpt_err
) {
2542 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_DISABLED
;
2543 error_free(resize_hpt_err
);
2544 resize_hpt_err
= NULL
;
2546 spapr
->resize_hpt
= smc
->resize_hpt_default
;
2550 assert(spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DEFAULT
);
2552 if ((spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DISABLED
) && resize_hpt_err
) {
2554 * User requested HPT resize, but this host can't supply it. Bail out
2556 error_report_err(resize_hpt_err
);
2560 spapr
->rma_size
= node0_size
;
2562 /* With KVM, we don't actually know whether KVM supports an
2563 * unbounded RMA (PR KVM) or is limited by the hash table size
2564 * (HV KVM using VRMA), so we always assume the latter
2566 * In that case, we also limit the initial allocations for RTAS
2567 * etc... to 256M since we have no way to know what the VRMA size
2568 * is going to be as it depends on the size of the hash table
2569 * which isn't determined yet.
2571 if (kvm_enabled()) {
2572 spapr
->vrma_adjust
= 1;
2573 spapr
->rma_size
= MIN(spapr
->rma_size
, 0x10000000);
2576 /* Actually we don't support unbounded RMA anymore since we added
2577 * proper emulation of HV mode. The max we can get is 16G which
2578 * also happens to be what we configure for PAPR mode so make sure
2579 * we don't do anything bigger than that
2581 spapr
->rma_size
= MIN(spapr
->rma_size
, 0x400000000ull
);
2583 if (spapr
->rma_size
> node0_size
) {
2584 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx
")",
2589 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2590 load_limit
= MIN(spapr
->rma_size
, RTAS_MAX_ADDR
) - FW_OVERHEAD
;
2592 /* Set up Interrupt Controller before we create the VCPUs */
2593 xics_system_init(machine
, XICS_IRQS_SPAPR
, &error_fatal
);
2595 /* Set up containers for ibm,client-architecture-support negotiated options
2597 spapr
->ov5
= spapr_ovec_new();
2598 spapr
->ov5_cas
= spapr_ovec_new();
2600 if (smc
->dr_lmb_enabled
) {
2601 spapr_ovec_set(spapr
->ov5
, OV5_DRCONF_MEMORY
);
2602 spapr_validate_node_memory(machine
, &error_fatal
);
2605 spapr_ovec_set(spapr
->ov5
, OV5_FORM1_AFFINITY
);
2607 /* advertise support for dedicated HP event source to guests */
2608 if (spapr
->use_hotplug_event_source
) {
2609 spapr_ovec_set(spapr
->ov5
, OV5_HP_EVT
);
2612 /* advertise support for HPT resizing */
2613 if (spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DISABLED
) {
2614 spapr_ovec_set(spapr
->ov5
, OV5_HPT_RESIZE
);
2617 /* advertise support for ibm,dyamic-memory-v2 */
2618 spapr_ovec_set(spapr
->ov5
, OV5_DRMEM_V2
);
2621 spapr_init_cpus(spapr
);
2623 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2624 ppc_type_check_compat(machine
->cpu_type
, CPU_POWERPC_LOGICAL_3_00
, 0,
2625 spapr
->max_compat_pvr
)) {
2626 /* KVM and TCG always allow GTSE with radix... */
2627 spapr_ovec_set(spapr
->ov5
, OV5_MMU_RADIX_GTSE
);
2629 /* ... but not with hash (currently). */
2631 if (kvm_enabled()) {
2632 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2633 kvmppc_enable_logical_ci_hcalls();
2634 kvmppc_enable_set_mode_hcall();
2636 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2637 kvmppc_enable_clear_ref_mod_hcalls();
2641 memory_region_allocate_system_memory(ram
, NULL
, "ppc_spapr.ram",
2643 memory_region_add_subregion(sysmem
, 0, ram
);
2645 /* always allocate the device memory information */
2646 machine
->device_memory
= g_malloc0(sizeof(*machine
->device_memory
));
2648 /* initialize hotplug memory address space */
2649 if (machine
->ram_size
< machine
->maxram_size
) {
2650 ram_addr_t device_mem_size
= machine
->maxram_size
- machine
->ram_size
;
2652 * Limit the number of hotpluggable memory slots to half the number
2653 * slots that KVM supports, leaving the other half for PCI and other
2654 * devices. However ensure that number of slots doesn't drop below 32.
2656 int max_memslots
= kvm_enabled() ? kvm_get_max_memslots() / 2 :
2657 SPAPR_MAX_RAM_SLOTS
;
2659 if (max_memslots
< SPAPR_MAX_RAM_SLOTS
) {
2660 max_memslots
= SPAPR_MAX_RAM_SLOTS
;
2662 if (machine
->ram_slots
> max_memslots
) {
2663 error_report("Specified number of memory slots %"
2664 PRIu64
" exceeds max supported %d",
2665 machine
->ram_slots
, max_memslots
);
2669 machine
->device_memory
->base
= ROUND_UP(machine
->ram_size
,
2670 SPAPR_DEVICE_MEM_ALIGN
);
2671 memory_region_init(&machine
->device_memory
->mr
, OBJECT(spapr
),
2672 "device-memory", device_mem_size
);
2673 memory_region_add_subregion(sysmem
, machine
->device_memory
->base
,
2674 &machine
->device_memory
->mr
);
2677 if (smc
->dr_lmb_enabled
) {
2678 spapr_create_lmb_dr_connectors(spapr
);
2681 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, "spapr-rtas.bin");
2683 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2686 spapr
->rtas_size
= get_image_size(filename
);
2687 if (spapr
->rtas_size
< 0) {
2688 error_report("Could not get size of LPAR rtas '%s'", filename
);
2691 spapr
->rtas_blob
= g_malloc(spapr
->rtas_size
);
2692 if (load_image_size(filename
, spapr
->rtas_blob
, spapr
->rtas_size
) < 0) {
2693 error_report("Could not load LPAR rtas '%s'", filename
);
2696 if (spapr
->rtas_size
> RTAS_MAX_SIZE
) {
2697 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2698 (size_t)spapr
->rtas_size
, RTAS_MAX_SIZE
);
2703 /* Set up RTAS event infrastructure */
2704 spapr_events_init(spapr
);
2706 /* Set up the RTC RTAS interfaces */
2707 spapr_rtc_create(spapr
);
2709 /* Set up VIO bus */
2710 spapr
->vio_bus
= spapr_vio_bus_init();
2712 for (i
= 0; i
< serial_max_hds(); i
++) {
2714 spapr_vty_create(spapr
->vio_bus
, serial_hd(i
));
2718 /* We always have at least the nvram device on VIO */
2719 spapr_create_nvram(spapr
);
2722 spapr_pci_rtas_init();
2724 phb
= spapr_create_phb(spapr
, 0);
2726 for (i
= 0; i
< nb_nics
; i
++) {
2727 NICInfo
*nd
= &nd_table
[i
];
2730 nd
->model
= g_strdup("spapr-vlan");
2733 if (g_str_equal(nd
->model
, "spapr-vlan") ||
2734 g_str_equal(nd
->model
, "ibmveth")) {
2735 spapr_vlan_create(spapr
->vio_bus
, nd
);
2737 pci_nic_init_nofail(&nd_table
[i
], phb
->bus
, nd
->model
, NULL
);
2741 for (i
= 0; i
<= drive_get_max_bus(IF_SCSI
); i
++) {
2742 spapr_vscsi_create(spapr
->vio_bus
);
2746 if (spapr_vga_init(phb
->bus
, &error_fatal
)) {
2747 spapr
->has_graphics
= true;
2748 machine
->usb
|= defaults_enabled() && !machine
->usb_disabled
;
2752 if (smc
->use_ohci_by_default
) {
2753 pci_create_simple(phb
->bus
, -1, "pci-ohci");
2755 pci_create_simple(phb
->bus
, -1, "nec-usb-xhci");
2758 if (spapr
->has_graphics
) {
2759 USBBus
*usb_bus
= usb_bus_find(-1);
2761 usb_create_simple(usb_bus
, "usb-kbd");
2762 usb_create_simple(usb_bus
, "usb-mouse");
2766 if (spapr
->rma_size
< (MIN_RMA_SLOF
<< 20)) {
2768 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2773 if (kernel_filename
) {
2774 uint64_t lowaddr
= 0;
2776 spapr
->kernel_size
= load_elf(kernel_filename
, translate_kernel_address
,
2777 NULL
, NULL
, &lowaddr
, NULL
, 1,
2778 PPC_ELF_MACHINE
, 0, 0);
2779 if (spapr
->kernel_size
== ELF_LOAD_WRONG_ENDIAN
) {
2780 spapr
->kernel_size
= load_elf(kernel_filename
,
2781 translate_kernel_address
, NULL
, NULL
,
2782 &lowaddr
, NULL
, 0, PPC_ELF_MACHINE
,
2784 spapr
->kernel_le
= spapr
->kernel_size
> 0;
2786 if (spapr
->kernel_size
< 0) {
2787 error_report("error loading %s: %s", kernel_filename
,
2788 load_elf_strerror(spapr
->kernel_size
));
2793 if (initrd_filename
) {
2794 /* Try to locate the initrd in the gap between the kernel
2795 * and the firmware. Add a bit of space just in case
2797 spapr
->initrd_base
= (KERNEL_LOAD_ADDR
+ spapr
->kernel_size
2798 + 0x1ffff) & ~0xffff;
2799 spapr
->initrd_size
= load_image_targphys(initrd_filename
,
2802 - spapr
->initrd_base
);
2803 if (spapr
->initrd_size
< 0) {
2804 error_report("could not load initial ram disk '%s'",
2811 if (bios_name
== NULL
) {
2812 bios_name
= FW_FILE_NAME
;
2814 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, bios_name
);
2816 error_report("Could not find LPAR firmware '%s'", bios_name
);
2819 fw_size
= load_image_targphys(filename
, 0, FW_MAX_SIZE
);
2821 error_report("Could not load LPAR firmware '%s'", filename
);
2826 /* FIXME: Should register things through the MachineState's qdev
2827 * interface, this is a legacy from the sPAPREnvironment structure
2828 * which predated MachineState but had a similar function */
2829 vmstate_register(NULL
, 0, &vmstate_spapr
, spapr
);
2830 register_savevm_live(NULL
, "spapr/htab", -1, 1,
2831 &savevm_htab_handlers
, spapr
);
2833 qemu_register_boot_set(spapr_boot_set
, spapr
);
2835 if (kvm_enabled()) {
2836 /* to stop and start vmclock */
2837 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change
,
2840 kvmppc_spapr_enable_inkernel_multitce();
2844 static int spapr_kvm_type(const char *vm_type
)
2850 if (!strcmp(vm_type
, "HV")) {
2854 if (!strcmp(vm_type
, "PR")) {
2858 error_report("Unknown kvm-type specified '%s'", vm_type
);
2863 * Implementation of an interface to adjust firmware path
2864 * for the bootindex property handling.
2866 static char *spapr_get_fw_dev_path(FWPathProvider
*p
, BusState
*bus
,
2869 #define CAST(type, obj, name) \
2870 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2871 SCSIDevice
*d
= CAST(SCSIDevice
, dev
, TYPE_SCSI_DEVICE
);
2872 sPAPRPHBState
*phb
= CAST(sPAPRPHBState
, dev
, TYPE_SPAPR_PCI_HOST_BRIDGE
);
2873 VHostSCSICommon
*vsc
= CAST(VHostSCSICommon
, dev
, TYPE_VHOST_SCSI_COMMON
);
2876 void *spapr
= CAST(void, bus
->parent
, "spapr-vscsi");
2877 VirtIOSCSI
*virtio
= CAST(VirtIOSCSI
, bus
->parent
, TYPE_VIRTIO_SCSI
);
2878 USBDevice
*usb
= CAST(USBDevice
, bus
->parent
, TYPE_USB_DEVICE
);
2882 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2883 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2884 * in the top 16 bits of the 64-bit LUN
2886 unsigned id
= 0x8000 | (d
->id
<< 8) | d
->lun
;
2887 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
2888 (uint64_t)id
<< 48);
2889 } else if (virtio
) {
2891 * We use SRP luns of the form 01000000 | (target << 8) | lun
2892 * in the top 32 bits of the 64-bit LUN
2893 * Note: the quote above is from SLOF and it is wrong,
2894 * the actual binding is:
2895 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2897 unsigned id
= 0x1000000 | (d
->id
<< 16) | d
->lun
;
2898 if (d
->lun
>= 256) {
2899 /* Use the LUN "flat space addressing method" */
2902 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
2903 (uint64_t)id
<< 32);
2906 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2907 * in the top 32 bits of the 64-bit LUN
2909 unsigned usb_port
= atoi(usb
->port
->path
);
2910 unsigned id
= 0x1000000 | (usb_port
<< 16) | d
->lun
;
2911 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
2912 (uint64_t)id
<< 32);
2917 * SLOF probes the USB devices, and if it recognizes that the device is a
2918 * storage device, it changes its name to "storage" instead of "usb-host",
2919 * and additionally adds a child node for the SCSI LUN, so the correct
2920 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2922 if (strcmp("usb-host", qdev_fw_name(dev
)) == 0) {
2923 USBDevice
*usbdev
= CAST(USBDevice
, dev
, TYPE_USB_DEVICE
);
2924 if (usb_host_dev_is_scsi_storage(usbdev
)) {
2925 return g_strdup_printf("storage@%s/disk", usbdev
->port
->path
);
2930 /* Replace "pci" with "pci@800000020000000" */
2931 return g_strdup_printf("pci@%"PRIX64
, phb
->buid
);
2935 /* Same logic as virtio above */
2936 unsigned id
= 0x1000000 | (vsc
->target
<< 16) | vsc
->lun
;
2937 return g_strdup_printf("disk@%"PRIX64
, (uint64_t)id
<< 32);
2940 if (g_str_equal("pci-bridge", qdev_fw_name(dev
))) {
2941 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
2942 PCIDevice
*pcidev
= CAST(PCIDevice
, dev
, TYPE_PCI_DEVICE
);
2943 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev
->devfn
));
2949 static char *spapr_get_kvm_type(Object
*obj
, Error
**errp
)
2951 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2953 return g_strdup(spapr
->kvm_type
);
2956 static void spapr_set_kvm_type(Object
*obj
, const char *value
, Error
**errp
)
2958 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2960 g_free(spapr
->kvm_type
);
2961 spapr
->kvm_type
= g_strdup(value
);
2964 static bool spapr_get_modern_hotplug_events(Object
*obj
, Error
**errp
)
2966 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2968 return spapr
->use_hotplug_event_source
;
2971 static void spapr_set_modern_hotplug_events(Object
*obj
, bool value
,
2974 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2976 spapr
->use_hotplug_event_source
= value
;
2979 static bool spapr_get_msix_emulation(Object
*obj
, Error
**errp
)
2984 static char *spapr_get_resize_hpt(Object
*obj
, Error
**errp
)
2986 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2988 switch (spapr
->resize_hpt
) {
2989 case SPAPR_RESIZE_HPT_DEFAULT
:
2990 return g_strdup("default");
2991 case SPAPR_RESIZE_HPT_DISABLED
:
2992 return g_strdup("disabled");
2993 case SPAPR_RESIZE_HPT_ENABLED
:
2994 return g_strdup("enabled");
2995 case SPAPR_RESIZE_HPT_REQUIRED
:
2996 return g_strdup("required");
2998 g_assert_not_reached();
3001 static void spapr_set_resize_hpt(Object
*obj
, const char *value
, Error
**errp
)
3003 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
3005 if (strcmp(value
, "default") == 0) {
3006 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_DEFAULT
;
3007 } else if (strcmp(value
, "disabled") == 0) {
3008 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_DISABLED
;
3009 } else if (strcmp(value
, "enabled") == 0) {
3010 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_ENABLED
;
3011 } else if (strcmp(value
, "required") == 0) {
3012 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_REQUIRED
;
3014 error_setg(errp
, "Bad value for \"resize-hpt\" property");
3018 static void spapr_get_vsmt(Object
*obj
, Visitor
*v
, const char *name
,
3019 void *opaque
, Error
**errp
)
3021 visit_type_uint32(v
, name
, (uint32_t *)opaque
, errp
);
3024 static void spapr_set_vsmt(Object
*obj
, Visitor
*v
, const char *name
,
3025 void *opaque
, Error
**errp
)
3027 visit_type_uint32(v
, name
, (uint32_t *)opaque
, errp
);
3030 static void spapr_instance_init(Object
*obj
)
3032 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
3034 spapr
->htab_fd
= -1;
3035 spapr
->use_hotplug_event_source
= true;
3036 object_property_add_str(obj
, "kvm-type",
3037 spapr_get_kvm_type
, spapr_set_kvm_type
, NULL
);
3038 object_property_set_description(obj
, "kvm-type",
3039 "Specifies the KVM virtualization mode (HV, PR)",
3041 object_property_add_bool(obj
, "modern-hotplug-events",
3042 spapr_get_modern_hotplug_events
,
3043 spapr_set_modern_hotplug_events
,
3045 object_property_set_description(obj
, "modern-hotplug-events",
3046 "Use dedicated hotplug event mechanism in"
3047 " place of standard EPOW events when possible"
3048 " (required for memory hot-unplug support)",
3050 ppc_compat_add_property(obj
, "max-cpu-compat", &spapr
->max_compat_pvr
,
3051 "Maximum permitted CPU compatibility mode",
3054 object_property_add_str(obj
, "resize-hpt",
3055 spapr_get_resize_hpt
, spapr_set_resize_hpt
, NULL
);
3056 object_property_set_description(obj
, "resize-hpt",
3057 "Resizing of the Hash Page Table (enabled, disabled, required)",
3059 object_property_add(obj
, "vsmt", "uint32", spapr_get_vsmt
,
3060 spapr_set_vsmt
, NULL
, &spapr
->vsmt
, &error_abort
);
3061 object_property_set_description(obj
, "vsmt",
3062 "Virtual SMT: KVM behaves as if this were"
3063 " the host's SMT mode", &error_abort
);
3064 object_property_add_bool(obj
, "vfio-no-msix-emulation",
3065 spapr_get_msix_emulation
, NULL
, NULL
);
3068 static void spapr_machine_finalizefn(Object
*obj
)
3070 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
3072 g_free(spapr
->kvm_type
);
3075 void spapr_do_system_reset_on_cpu(CPUState
*cs
, run_on_cpu_data arg
)
3077 cpu_synchronize_state(cs
);
3078 ppc_cpu_do_system_reset(cs
);
3081 static void spapr_nmi(NMIState
*n
, int cpu_index
, Error
**errp
)
3086 async_run_on_cpu(cs
, spapr_do_system_reset_on_cpu
, RUN_ON_CPU_NULL
);
3090 static void spapr_add_lmbs(DeviceState
*dev
, uint64_t addr_start
, uint64_t size
,
3091 uint32_t node
, bool dedicated_hp_event_source
,
3094 sPAPRDRConnector
*drc
;
3095 uint32_t nr_lmbs
= size
/SPAPR_MEMORY_BLOCK_SIZE
;
3096 int i
, fdt_offset
, fdt_size
;
3098 uint64_t addr
= addr_start
;
3099 bool hotplugged
= spapr_drc_hotplugged(dev
);
3100 Error
*local_err
= NULL
;
3102 for (i
= 0; i
< nr_lmbs
; i
++) {
3103 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3104 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
3107 fdt
= create_device_tree(&fdt_size
);
3108 fdt_offset
= spapr_populate_memory_node(fdt
, node
, addr
,
3109 SPAPR_MEMORY_BLOCK_SIZE
);
3111 spapr_drc_attach(drc
, dev
, fdt
, fdt_offset
, &local_err
);
3113 while (addr
> addr_start
) {
3114 addr
-= SPAPR_MEMORY_BLOCK_SIZE
;
3115 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3116 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
3117 spapr_drc_detach(drc
);
3120 error_propagate(errp
, local_err
);
3124 spapr_drc_reset(drc
);
3126 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
3128 /* send hotplug notification to the
3129 * guest only in case of hotplugged memory
3132 if (dedicated_hp_event_source
) {
3133 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3134 addr_start
/ SPAPR_MEMORY_BLOCK_SIZE
);
3135 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB
,
3137 spapr_drc_index(drc
));
3139 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB
,
3145 static void spapr_memory_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3148 Error
*local_err
= NULL
;
3149 sPAPRMachineState
*ms
= SPAPR_MACHINE(hotplug_dev
);
3150 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
3151 PCDIMMDeviceClass
*ddc
= PC_DIMM_GET_CLASS(dimm
);
3152 MemoryRegion
*mr
= ddc
->get_memory_region(dimm
, &error_abort
);
3153 uint64_t align
, size
, addr
;
3156 align
= memory_region_get_alignment(mr
);
3157 size
= memory_region_size(mr
);
3159 pc_dimm_plug(dev
, MACHINE(ms
), align
, &local_err
);
3164 addr
= object_property_get_uint(OBJECT(dimm
),
3165 PC_DIMM_ADDR_PROP
, &local_err
);
3170 node
= object_property_get_uint(OBJECT(dev
), PC_DIMM_NODE_PROP
,
3172 spapr_add_lmbs(dev
, addr
, size
, node
,
3173 spapr_ovec_test(ms
->ov5_cas
, OV5_HP_EVT
),
3182 pc_dimm_unplug(dev
, MACHINE(ms
));
3184 error_propagate(errp
, local_err
);
3187 static void spapr_memory_pre_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3190 const sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(hotplug_dev
);
3191 sPAPRMachineState
*spapr
= SPAPR_MACHINE(hotplug_dev
);
3192 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
3193 PCDIMMDeviceClass
*ddc
= PC_DIMM_GET_CLASS(dimm
);
3199 if (!smc
->dr_lmb_enabled
) {
3200 error_setg(errp
, "Memory hotplug not supported for this machine");
3204 mr
= ddc
->get_memory_region(dimm
, errp
);
3208 size
= memory_region_size(mr
);
3210 if (size
% SPAPR_MEMORY_BLOCK_SIZE
) {
3211 error_setg(errp
, "Hotplugged memory size must be a multiple of "
3212 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE
/ M_BYTE
);
3216 memdev
= object_property_get_link(OBJECT(dimm
), PC_DIMM_MEMDEV_PROP
,
3218 pagesize
= host_memory_backend_pagesize(MEMORY_BACKEND(memdev
));
3219 spapr_check_pagesize(spapr
, pagesize
, errp
);
3222 struct sPAPRDIMMState
{
3225 QTAILQ_ENTRY(sPAPRDIMMState
) next
;
3228 static sPAPRDIMMState
*spapr_pending_dimm_unplugs_find(sPAPRMachineState
*s
,
3231 sPAPRDIMMState
*dimm_state
= NULL
;
3233 QTAILQ_FOREACH(dimm_state
, &s
->pending_dimm_unplugs
, next
) {
3234 if (dimm_state
->dimm
== dimm
) {
3241 static sPAPRDIMMState
*spapr_pending_dimm_unplugs_add(sPAPRMachineState
*spapr
,
3245 sPAPRDIMMState
*ds
= NULL
;
3248 * If this request is for a DIMM whose removal had failed earlier
3249 * (due to guest's refusal to remove the LMBs), we would have this
3250 * dimm already in the pending_dimm_unplugs list. In that
3251 * case don't add again.
3253 ds
= spapr_pending_dimm_unplugs_find(spapr
, dimm
);
3255 ds
= g_malloc0(sizeof(sPAPRDIMMState
));
3256 ds
->nr_lmbs
= nr_lmbs
;
3258 QTAILQ_INSERT_HEAD(&spapr
->pending_dimm_unplugs
, ds
, next
);
3263 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState
*spapr
,
3264 sPAPRDIMMState
*dimm_state
)
3266 QTAILQ_REMOVE(&spapr
->pending_dimm_unplugs
, dimm_state
, next
);
3270 static sPAPRDIMMState
*spapr_recover_pending_dimm_state(sPAPRMachineState
*ms
,
3273 sPAPRDRConnector
*drc
;
3274 PCDIMMDeviceClass
*ddc
= PC_DIMM_GET_CLASS(dimm
);
3275 MemoryRegion
*mr
= ddc
->get_memory_region(dimm
, &error_abort
);
3276 uint64_t size
= memory_region_size(mr
);
3277 uint32_t nr_lmbs
= size
/ SPAPR_MEMORY_BLOCK_SIZE
;
3278 uint32_t avail_lmbs
= 0;
3279 uint64_t addr_start
, addr
;
3282 addr_start
= object_property_get_int(OBJECT(dimm
), PC_DIMM_ADDR_PROP
,
3286 for (i
= 0; i
< nr_lmbs
; i
++) {
3287 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3288 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
3293 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
3296 return spapr_pending_dimm_unplugs_add(ms
, avail_lmbs
, dimm
);
3299 /* Callback to be called during DRC release. */
3300 void spapr_lmb_release(DeviceState
*dev
)
3302 HotplugHandler
*hotplug_ctrl
= qdev_get_hotplug_handler(dev
);
3303 sPAPRMachineState
*spapr
= SPAPR_MACHINE(hotplug_ctrl
);
3304 sPAPRDIMMState
*ds
= spapr_pending_dimm_unplugs_find(spapr
, PC_DIMM(dev
));
3306 /* This information will get lost if a migration occurs
3307 * during the unplug process. In this case recover it. */
3309 ds
= spapr_recover_pending_dimm_state(spapr
, PC_DIMM(dev
));
3311 /* The DRC being examined by the caller at least must be counted */
3312 g_assert(ds
->nr_lmbs
);
3315 if (--ds
->nr_lmbs
) {
3320 * Now that all the LMBs have been removed by the guest, call the
3321 * unplug handler chain. This can never fail.
3323 hotplug_handler_unplug(hotplug_ctrl
, dev
, &error_abort
);
3326 static void spapr_memory_unplug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
3328 sPAPRMachineState
*spapr
= SPAPR_MACHINE(hotplug_dev
);
3329 sPAPRDIMMState
*ds
= spapr_pending_dimm_unplugs_find(spapr
, PC_DIMM(dev
));
3331 pc_dimm_unplug(dev
, MACHINE(hotplug_dev
));
3332 object_unparent(OBJECT(dev
));
3333 spapr_pending_dimm_unplugs_remove(spapr
, ds
);
3336 static void spapr_memory_unplug_request(HotplugHandler
*hotplug_dev
,
3337 DeviceState
*dev
, Error
**errp
)
3339 sPAPRMachineState
*spapr
= SPAPR_MACHINE(hotplug_dev
);
3340 Error
*local_err
= NULL
;
3341 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
3342 PCDIMMDeviceClass
*ddc
= PC_DIMM_GET_CLASS(dimm
);
3343 MemoryRegion
*mr
= ddc
->get_memory_region(dimm
, &error_abort
);
3345 uint64_t size
, addr_start
, addr
;
3347 sPAPRDRConnector
*drc
;
3349 size
= memory_region_size(mr
);
3350 nr_lmbs
= size
/ SPAPR_MEMORY_BLOCK_SIZE
;
3352 addr_start
= object_property_get_uint(OBJECT(dimm
), PC_DIMM_ADDR_PROP
,
3359 * An existing pending dimm state for this DIMM means that there is an
3360 * unplug operation in progress, waiting for the spapr_lmb_release
3361 * callback to complete the job (BQL can't cover that far). In this case,
3362 * bail out to avoid detaching DRCs that were already released.
3364 if (spapr_pending_dimm_unplugs_find(spapr
, dimm
)) {
3365 error_setg(&local_err
,
3366 "Memory unplug already in progress for device %s",
3371 spapr_pending_dimm_unplugs_add(spapr
, nr_lmbs
, dimm
);
3374 for (i
= 0; i
< nr_lmbs
; i
++) {
3375 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3376 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
3379 spapr_drc_detach(drc
);
3380 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
3383 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3384 addr_start
/ SPAPR_MEMORY_BLOCK_SIZE
);
3385 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB
,
3386 nr_lmbs
, spapr_drc_index(drc
));
3388 error_propagate(errp
, local_err
);
3391 static void *spapr_populate_hotplug_cpu_dt(CPUState
*cs
, int *fdt_offset
,
3392 sPAPRMachineState
*spapr
)
3394 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
3395 DeviceClass
*dc
= DEVICE_GET_CLASS(cs
);
3396 int id
= spapr_get_vcpu_id(cpu
);
3398 int offset
, fdt_size
;
3401 fdt
= create_device_tree(&fdt_size
);
3402 nodename
= g_strdup_printf("%s@%x", dc
->fw_name
, id
);
3403 offset
= fdt_add_subnode(fdt
, 0, nodename
);
3405 spapr_populate_cpu_dt(cs
, fdt
, offset
, spapr
);
3408 *fdt_offset
= offset
;
3412 /* Callback to be called during DRC release. */
3413 void spapr_core_release(DeviceState
*dev
)
3415 HotplugHandler
*hotplug_ctrl
= qdev_get_hotplug_handler(dev
);
3417 /* Call the unplug handler chain. This can never fail. */
3418 hotplug_handler_unplug(hotplug_ctrl
, dev
, &error_abort
);
3421 static void spapr_core_unplug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
3423 MachineState
*ms
= MACHINE(hotplug_dev
);
3424 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(ms
);
3425 CPUCore
*cc
= CPU_CORE(dev
);
3426 CPUArchId
*core_slot
= spapr_find_cpu_slot(ms
, cc
->core_id
, NULL
);
3428 if (smc
->pre_2_10_has_unused_icps
) {
3429 sPAPRCPUCore
*sc
= SPAPR_CPU_CORE(OBJECT(dev
));
3432 for (i
= 0; i
< cc
->nr_threads
; i
++) {
3433 CPUState
*cs
= CPU(sc
->threads
[i
]);
3435 pre_2_10_vmstate_register_dummy_icp(cs
->cpu_index
);
3440 core_slot
->cpu
= NULL
;
3441 object_unparent(OBJECT(dev
));
3445 void spapr_core_unplug_request(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3448 sPAPRMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
3450 sPAPRDRConnector
*drc
;
3451 CPUCore
*cc
= CPU_CORE(dev
);
3453 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev
), cc
->core_id
, &index
)) {
3454 error_setg(errp
, "Unable to find CPU core with core-id: %d",
3459 error_setg(errp
, "Boot CPU core may not be unplugged");
3463 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_CPU
,
3464 spapr_vcpu_id(spapr
, cc
->core_id
));
3467 spapr_drc_detach(drc
);
3469 spapr_hotplug_req_remove_by_index(drc
);
3472 static void spapr_core_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3475 sPAPRMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
3476 MachineClass
*mc
= MACHINE_GET_CLASS(spapr
);
3477 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
3478 sPAPRCPUCore
*core
= SPAPR_CPU_CORE(OBJECT(dev
));
3479 CPUCore
*cc
= CPU_CORE(dev
);
3480 CPUState
*cs
= CPU(core
->threads
[0]);
3481 sPAPRDRConnector
*drc
;
3482 Error
*local_err
= NULL
;
3483 CPUArchId
*core_slot
;
3485 bool hotplugged
= spapr_drc_hotplugged(dev
);
3487 core_slot
= spapr_find_cpu_slot(MACHINE(hotplug_dev
), cc
->core_id
, &index
);
3489 error_setg(errp
, "Unable to find CPU core with core-id: %d",
3493 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_CPU
,
3494 spapr_vcpu_id(spapr
, cc
->core_id
));
3496 g_assert(drc
|| !mc
->has_hotpluggable_cpus
);
3502 fdt
= spapr_populate_hotplug_cpu_dt(cs
, &fdt_offset
, spapr
);
3504 spapr_drc_attach(drc
, dev
, fdt
, fdt_offset
, &local_err
);
3507 error_propagate(errp
, local_err
);
3513 * Send hotplug notification interrupt to the guest only
3514 * in case of hotplugged CPUs.
3516 spapr_hotplug_req_add_by_index(drc
);
3518 spapr_drc_reset(drc
);
3522 core_slot
->cpu
= OBJECT(dev
);
3524 if (smc
->pre_2_10_has_unused_icps
) {
3527 for (i
= 0; i
< cc
->nr_threads
; i
++) {
3528 cs
= CPU(core
->threads
[i
]);
3529 pre_2_10_vmstate_unregister_dummy_icp(cs
->cpu_index
);
3534 static void spapr_core_pre_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3537 MachineState
*machine
= MACHINE(OBJECT(hotplug_dev
));
3538 MachineClass
*mc
= MACHINE_GET_CLASS(hotplug_dev
);
3539 Error
*local_err
= NULL
;
3540 CPUCore
*cc
= CPU_CORE(dev
);
3541 const char *base_core_type
= spapr_get_cpu_core_type(machine
->cpu_type
);
3542 const char *type
= object_get_typename(OBJECT(dev
));
3543 CPUArchId
*core_slot
;
3546 if (dev
->hotplugged
&& !mc
->has_hotpluggable_cpus
) {
3547 error_setg(&local_err
, "CPU hotplug not supported for this machine");
3551 if (strcmp(base_core_type
, type
)) {
3552 error_setg(&local_err
, "CPU core type should be %s", base_core_type
);
3556 if (cc
->core_id
% smp_threads
) {
3557 error_setg(&local_err
, "invalid core id %d", cc
->core_id
);
3562 * In general we should have homogeneous threads-per-core, but old
3563 * (pre hotplug support) machine types allow the last core to have
3564 * reduced threads as a compatibility hack for when we allowed
3565 * total vcpus not a multiple of threads-per-core.
3567 if (mc
->has_hotpluggable_cpus
&& (cc
->nr_threads
!= smp_threads
)) {
3568 error_setg(&local_err
, "invalid nr-threads %d, must be %d",
3569 cc
->nr_threads
, smp_threads
);
3573 core_slot
= spapr_find_cpu_slot(MACHINE(hotplug_dev
), cc
->core_id
, &index
);
3575 error_setg(&local_err
, "core id %d out of range", cc
->core_id
);
3579 if (core_slot
->cpu
) {
3580 error_setg(&local_err
, "core %d already populated", cc
->core_id
);
3584 numa_cpu_pre_plug(core_slot
, dev
, &local_err
);
3587 error_propagate(errp
, local_err
);
3590 static void spapr_machine_device_plug(HotplugHandler
*hotplug_dev
,
3591 DeviceState
*dev
, Error
**errp
)
3593 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
3594 spapr_memory_plug(hotplug_dev
, dev
, errp
);
3595 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
3596 spapr_core_plug(hotplug_dev
, dev
, errp
);
3600 static void spapr_machine_device_unplug(HotplugHandler
*hotplug_dev
,
3601 DeviceState
*dev
, Error
**errp
)
3603 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
3604 spapr_memory_unplug(hotplug_dev
, dev
);
3605 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
3606 spapr_core_unplug(hotplug_dev
, dev
);
3610 static void spapr_machine_device_unplug_request(HotplugHandler
*hotplug_dev
,
3611 DeviceState
*dev
, Error
**errp
)
3613 sPAPRMachineState
*sms
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
3614 MachineClass
*mc
= MACHINE_GET_CLASS(sms
);
3616 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
3617 if (spapr_ovec_test(sms
->ov5_cas
, OV5_HP_EVT
)) {
3618 spapr_memory_unplug_request(hotplug_dev
, dev
, errp
);
3620 /* NOTE: this means there is a window after guest reset, prior to
3621 * CAS negotiation, where unplug requests will fail due to the
3622 * capability not being detected yet. This is a bit different than
3623 * the case with PCI unplug, where the events will be queued and
3624 * eventually handled by the guest after boot
3626 error_setg(errp
, "Memory hot unplug not supported for this guest");
3628 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
3629 if (!mc
->has_hotpluggable_cpus
) {
3630 error_setg(errp
, "CPU hot unplug not supported on this machine");
3633 spapr_core_unplug_request(hotplug_dev
, dev
, errp
);
3637 static void spapr_machine_device_pre_plug(HotplugHandler
*hotplug_dev
,
3638 DeviceState
*dev
, Error
**errp
)
3640 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
3641 spapr_memory_pre_plug(hotplug_dev
, dev
, errp
);
3642 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
3643 spapr_core_pre_plug(hotplug_dev
, dev
, errp
);
3647 static HotplugHandler
*spapr_get_hotplug_handler(MachineState
*machine
,
3650 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
) ||
3651 object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
3652 return HOTPLUG_HANDLER(machine
);
3657 static CpuInstanceProperties
3658 spapr_cpu_index_to_props(MachineState
*machine
, unsigned cpu_index
)
3660 CPUArchId
*core_slot
;
3661 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
3663 /* make sure possible_cpu are intialized */
3664 mc
->possible_cpu_arch_ids(machine
);
3665 /* get CPU core slot containing thread that matches cpu_index */
3666 core_slot
= spapr_find_cpu_slot(machine
, cpu_index
, NULL
);
3668 return core_slot
->props
;
3671 static int64_t spapr_get_default_cpu_node_id(const MachineState
*ms
, int idx
)
3673 return idx
/ smp_cores
% nb_numa_nodes
;
3676 static const CPUArchIdList
*spapr_possible_cpu_arch_ids(MachineState
*machine
)
3679 const char *core_type
;
3680 int spapr_max_cores
= max_cpus
/ smp_threads
;
3681 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
3683 if (!mc
->has_hotpluggable_cpus
) {
3684 spapr_max_cores
= QEMU_ALIGN_UP(smp_cpus
, smp_threads
) / smp_threads
;
3686 if (machine
->possible_cpus
) {
3687 assert(machine
->possible_cpus
->len
== spapr_max_cores
);
3688 return machine
->possible_cpus
;
3691 core_type
= spapr_get_cpu_core_type(machine
->cpu_type
);
3693 error_report("Unable to find sPAPR CPU Core definition");
3697 machine
->possible_cpus
= g_malloc0(sizeof(CPUArchIdList
) +
3698 sizeof(CPUArchId
) * spapr_max_cores
);
3699 machine
->possible_cpus
->len
= spapr_max_cores
;
3700 for (i
= 0; i
< machine
->possible_cpus
->len
; i
++) {
3701 int core_id
= i
* smp_threads
;
3703 machine
->possible_cpus
->cpus
[i
].type
= core_type
;
3704 machine
->possible_cpus
->cpus
[i
].vcpus_count
= smp_threads
;
3705 machine
->possible_cpus
->cpus
[i
].arch_id
= core_id
;
3706 machine
->possible_cpus
->cpus
[i
].props
.has_core_id
= true;
3707 machine
->possible_cpus
->cpus
[i
].props
.core_id
= core_id
;
3709 return machine
->possible_cpus
;
3712 static void spapr_phb_placement(sPAPRMachineState
*spapr
, uint32_t index
,
3713 uint64_t *buid
, hwaddr
*pio
,
3714 hwaddr
*mmio32
, hwaddr
*mmio64
,
3715 unsigned n_dma
, uint32_t *liobns
, Error
**errp
)
3718 * New-style PHB window placement.
3720 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3721 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3724 * Some guest kernels can't work with MMIO windows above 1<<46
3725 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3727 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3728 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
3729 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
3730 * 1TiB 64-bit MMIO windows for each PHB.
3732 const uint64_t base_buid
= 0x800000020000000ULL
;
3733 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3734 SPAPR_PCI_MEM64_WIN_SIZE - 1)
3737 /* Sanity check natural alignments */
3738 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE
% SPAPR_PCI_MEM64_WIN_SIZE
) != 0);
3739 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT
% SPAPR_PCI_MEM64_WIN_SIZE
) != 0);
3740 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE
% SPAPR_PCI_MEM32_WIN_SIZE
) != 0);
3741 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE
% SPAPR_PCI_IO_WIN_SIZE
) != 0);
3742 /* Sanity check bounds */
3743 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS
* SPAPR_PCI_IO_WIN_SIZE
) >
3744 SPAPR_PCI_MEM32_WIN_SIZE
);
3745 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS
* SPAPR_PCI_MEM32_WIN_SIZE
) >
3746 SPAPR_PCI_MEM64_WIN_SIZE
);
3748 if (index
>= SPAPR_MAX_PHBS
) {
3749 error_setg(errp
, "\"index\" for PAPR PHB is too large (max %llu)",
3750 SPAPR_MAX_PHBS
- 1);
3754 *buid
= base_buid
+ index
;
3755 for (i
= 0; i
< n_dma
; ++i
) {
3756 liobns
[i
] = SPAPR_PCI_LIOBN(index
, i
);
3759 *pio
= SPAPR_PCI_BASE
+ index
* SPAPR_PCI_IO_WIN_SIZE
;
3760 *mmio32
= SPAPR_PCI_BASE
+ (index
+ 1) * SPAPR_PCI_MEM32_WIN_SIZE
;
3761 *mmio64
= SPAPR_PCI_BASE
+ (index
+ 1) * SPAPR_PCI_MEM64_WIN_SIZE
;
3764 static ICSState
*spapr_ics_get(XICSFabric
*dev
, int irq
)
3766 sPAPRMachineState
*spapr
= SPAPR_MACHINE(dev
);
3768 return ics_valid_irq(spapr
->ics
, irq
) ? spapr
->ics
: NULL
;
3771 static void spapr_ics_resend(XICSFabric
*dev
)
3773 sPAPRMachineState
*spapr
= SPAPR_MACHINE(dev
);
3775 ics_resend(spapr
->ics
);
3778 static ICPState
*spapr_icp_get(XICSFabric
*xi
, int vcpu_id
)
3780 PowerPCCPU
*cpu
= spapr_find_cpu(vcpu_id
);
3782 return cpu
? ICP(cpu
->intc
) : NULL
;
3785 #define ICS_IRQ_FREE(ics, srcno) \
3786 (!((ics)->irqs[(srcno)].flags & (XICS_FLAGS_IRQ_MASK)))
3788 static int ics_find_free_block(ICSState
*ics
, int num
, int alignnum
)
3792 for (first
= 0; first
< ics
->nr_irqs
; first
+= alignnum
) {
3793 if (num
> (ics
->nr_irqs
- first
)) {
3796 for (i
= first
; i
< first
+ num
; ++i
) {
3797 if (!ICS_IRQ_FREE(ics
, i
)) {
3801 if (i
== (first
+ num
)) {
3809 int spapr_irq_find(sPAPRMachineState
*spapr
, int num
, bool align
, Error
**errp
)
3811 ICSState
*ics
= spapr
->ics
;
3817 * MSIMesage::data is used for storing VIRQ so
3818 * it has to be aligned to num to support multiple
3819 * MSI vectors. MSI-X is not affected by this.
3820 * The hint is used for the first IRQ, the rest should
3821 * be allocated continuously.
3824 assert((num
== 1) || (num
== 2) || (num
== 4) ||
3825 (num
== 8) || (num
== 16) || (num
== 32));
3826 first
= ics_find_free_block(ics
, num
, num
);
3828 first
= ics_find_free_block(ics
, num
, 1);
3832 error_setg(errp
, "can't find a free %d-IRQ block", num
);
3836 return first
+ ics
->offset
;
3839 int spapr_irq_claim(sPAPRMachineState
*spapr
, int irq
, bool lsi
, Error
**errp
)
3841 ICSState
*ics
= spapr
->ics
;
3845 if (!ics_valid_irq(ics
, irq
)) {
3846 error_setg(errp
, "IRQ %d is invalid", irq
);
3850 if (!ICS_IRQ_FREE(ics
, irq
- ics
->offset
)) {
3851 error_setg(errp
, "IRQ %d is not free", irq
);
3855 ics_set_irq_type(ics
, irq
- ics
->offset
, lsi
);
3859 void spapr_irq_free(sPAPRMachineState
*spapr
, int irq
, int num
)
3861 ICSState
*ics
= spapr
->ics
;
3862 int srcno
= irq
- ics
->offset
;
3865 if (ics_valid_irq(ics
, irq
)) {
3866 trace_spapr_irq_free(0, irq
, num
);
3867 for (i
= srcno
; i
< srcno
+ num
; ++i
) {
3868 if (ICS_IRQ_FREE(ics
, i
)) {
3869 trace_spapr_irq_free_warn(0, i
+ ics
->offset
);
3871 memset(&ics
->irqs
[i
], 0, sizeof(ICSIRQState
));
3876 qemu_irq
spapr_qirq(sPAPRMachineState
*spapr
, int irq
)
3878 ICSState
*ics
= spapr
->ics
;
3880 if (ics_valid_irq(ics
, irq
)) {
3881 return ics
->qirqs
[irq
- ics
->offset
];
3887 static void spapr_pic_print_info(InterruptStatsProvider
*obj
,
3890 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
3894 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
3896 icp_pic_print_info(ICP(cpu
->intc
), mon
);
3899 ics_pic_print_info(spapr
->ics
, mon
);
3902 int spapr_get_vcpu_id(PowerPCCPU
*cpu
)
3904 return cpu
->vcpu_id
;
3907 void spapr_set_vcpu_id(PowerPCCPU
*cpu
, int cpu_index
, Error
**errp
)
3909 sPAPRMachineState
*spapr
= SPAPR_MACHINE(qdev_get_machine());
3912 vcpu_id
= spapr_vcpu_id(spapr
, cpu_index
);
3914 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id
)) {
3915 error_setg(errp
, "Can't create CPU with id %d in KVM", vcpu_id
);
3916 error_append_hint(errp
, "Adjust the number of cpus to %d "
3917 "or try to raise the number of threads per core\n",
3918 vcpu_id
* smp_threads
/ spapr
->vsmt
);
3922 cpu
->vcpu_id
= vcpu_id
;
3925 PowerPCCPU
*spapr_find_cpu(int vcpu_id
)
3930 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
3932 if (spapr_get_vcpu_id(cpu
) == vcpu_id
) {
3940 static void spapr_machine_class_init(ObjectClass
*oc
, void *data
)
3942 MachineClass
*mc
= MACHINE_CLASS(oc
);
3943 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(oc
);
3944 FWPathProviderClass
*fwc
= FW_PATH_PROVIDER_CLASS(oc
);
3945 NMIClass
*nc
= NMI_CLASS(oc
);
3946 HotplugHandlerClass
*hc
= HOTPLUG_HANDLER_CLASS(oc
);
3947 PPCVirtualHypervisorClass
*vhc
= PPC_VIRTUAL_HYPERVISOR_CLASS(oc
);
3948 XICSFabricClass
*xic
= XICS_FABRIC_CLASS(oc
);
3949 InterruptStatsProviderClass
*ispc
= INTERRUPT_STATS_PROVIDER_CLASS(oc
);
3951 mc
->desc
= "pSeries Logical Partition (PAPR compliant)";
3954 * We set up the default / latest behaviour here. The class_init
3955 * functions for the specific versioned machine types can override
3956 * these details for backwards compatibility
3958 mc
->init
= spapr_machine_init
;
3959 mc
->reset
= spapr_machine_reset
;
3960 mc
->block_default_type
= IF_SCSI
;
3961 mc
->max_cpus
= 1024;
3962 mc
->no_parallel
= 1;
3963 mc
->default_boot_order
= "";
3964 mc
->default_ram_size
= 512 * M_BYTE
;
3965 mc
->kvm_type
= spapr_kvm_type
;
3966 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_SPAPR_PCI_HOST_BRIDGE
);
3967 mc
->pci_allow_0_address
= true;
3968 assert(!mc
->get_hotplug_handler
);
3969 mc
->get_hotplug_handler
= spapr_get_hotplug_handler
;
3970 hc
->pre_plug
= spapr_machine_device_pre_plug
;
3971 hc
->plug
= spapr_machine_device_plug
;
3972 mc
->cpu_index_to_instance_props
= spapr_cpu_index_to_props
;
3973 mc
->get_default_cpu_node_id
= spapr_get_default_cpu_node_id
;
3974 mc
->possible_cpu_arch_ids
= spapr_possible_cpu_arch_ids
;
3975 hc
->unplug_request
= spapr_machine_device_unplug_request
;
3976 hc
->unplug
= spapr_machine_device_unplug
;
3978 smc
->dr_lmb_enabled
= true;
3979 mc
->default_cpu_type
= POWERPC_CPU_TYPE_NAME("power8_v2.0");
3980 mc
->has_hotpluggable_cpus
= true;
3981 smc
->resize_hpt_default
= SPAPR_RESIZE_HPT_ENABLED
;
3982 fwc
->get_dev_path
= spapr_get_fw_dev_path
;
3983 nc
->nmi_monitor_handler
= spapr_nmi
;
3984 smc
->phb_placement
= spapr_phb_placement
;
3985 vhc
->hypercall
= emulate_spapr_hypercall
;
3986 vhc
->hpt_mask
= spapr_hpt_mask
;
3987 vhc
->map_hptes
= spapr_map_hptes
;
3988 vhc
->unmap_hptes
= spapr_unmap_hptes
;
3989 vhc
->store_hpte
= spapr_store_hpte
;
3990 vhc
->get_patbe
= spapr_get_patbe
;
3991 vhc
->encode_hpt_for_kvm_pr
= spapr_encode_hpt_for_kvm_pr
;
3992 xic
->ics_get
= spapr_ics_get
;
3993 xic
->ics_resend
= spapr_ics_resend
;
3994 xic
->icp_get
= spapr_icp_get
;
3995 ispc
->print_info
= spapr_pic_print_info
;
3996 /* Force NUMA node memory size to be a multiple of
3997 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
3998 * in which LMBs are represented and hot-added
4000 mc
->numa_mem_align_shift
= 28;
4002 smc
->default_caps
.caps
[SPAPR_CAP_HTM
] = SPAPR_CAP_OFF
;
4003 smc
->default_caps
.caps
[SPAPR_CAP_VSX
] = SPAPR_CAP_ON
;
4004 smc
->default_caps
.caps
[SPAPR_CAP_DFP
] = SPAPR_CAP_ON
;
4005 smc
->default_caps
.caps
[SPAPR_CAP_CFPC
] = SPAPR_CAP_BROKEN
;
4006 smc
->default_caps
.caps
[SPAPR_CAP_SBBC
] = SPAPR_CAP_BROKEN
;
4007 smc
->default_caps
.caps
[SPAPR_CAP_IBS
] = SPAPR_CAP_BROKEN
;
4008 smc
->default_caps
.caps
[SPAPR_CAP_HPT_MAXPAGESIZE
] = 16; /* 64kiB */
4009 spapr_caps_add_properties(smc
, &error_abort
);
4012 static const TypeInfo spapr_machine_info
= {
4013 .name
= TYPE_SPAPR_MACHINE
,
4014 .parent
= TYPE_MACHINE
,
4016 .instance_size
= sizeof(sPAPRMachineState
),
4017 .instance_init
= spapr_instance_init
,
4018 .instance_finalize
= spapr_machine_finalizefn
,
4019 .class_size
= sizeof(sPAPRMachineClass
),
4020 .class_init
= spapr_machine_class_init
,
4021 .interfaces
= (InterfaceInfo
[]) {
4022 { TYPE_FW_PATH_PROVIDER
},
4024 { TYPE_HOTPLUG_HANDLER
},
4025 { TYPE_PPC_VIRTUAL_HYPERVISOR
},
4026 { TYPE_XICS_FABRIC
},
4027 { TYPE_INTERRUPT_STATS_PROVIDER
},
4032 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4033 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4036 MachineClass *mc = MACHINE_CLASS(oc); \
4037 spapr_machine_##suffix##_class_options(mc); \
4039 mc->alias = "pseries"; \
4040 mc->is_default = 1; \
4043 static void spapr_machine_##suffix##_instance_init(Object *obj) \
4045 MachineState *machine = MACHINE(obj); \
4046 spapr_machine_##suffix##_instance_options(machine); \
4048 static const TypeInfo spapr_machine_##suffix##_info = { \
4049 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4050 .parent = TYPE_SPAPR_MACHINE, \
4051 .class_init = spapr_machine_##suffix##_class_init, \
4052 .instance_init = spapr_machine_##suffix##_instance_init, \
4054 static void spapr_machine_register_##suffix(void) \
4056 type_register(&spapr_machine_##suffix##_info); \
4058 type_init(spapr_machine_register_##suffix)
4063 static void spapr_machine_3_0_instance_options(MachineState
*machine
)
4067 static void spapr_machine_3_0_class_options(MachineClass
*mc
)
4069 /* Defaults for the latest behaviour inherited from the base class */
4072 DEFINE_SPAPR_MACHINE(3_0
, "3.0", true);
4077 #define SPAPR_COMPAT_2_12 \
4080 .driver = TYPE_POWERPC_CPU, \
4081 .property = "pre-3.0-migration", \
4085 .driver = TYPE_SPAPR_CPU_CORE, \
4086 .property = "pre-3.0-migration", \
4090 static void spapr_machine_2_12_instance_options(MachineState
*machine
)
4092 spapr_machine_3_0_instance_options(machine
);
4095 static void spapr_machine_2_12_class_options(MachineClass
*mc
)
4097 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4099 spapr_machine_3_0_class_options(mc
);
4100 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_12
);
4102 /* We depend on kvm_enabled() to choose a default value for the
4103 * hpt-max-page-size capability. Of course we can't do it here
4104 * because this is too early and the HW accelerator isn't initialzed
4105 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4107 smc
->default_caps
.caps
[SPAPR_CAP_HPT_MAXPAGESIZE
] = 0;
4110 DEFINE_SPAPR_MACHINE(2_12
, "2.12", false);
4112 static void spapr_machine_2_12_sxxm_instance_options(MachineState
*machine
)
4114 spapr_machine_2_12_instance_options(machine
);
4117 static void spapr_machine_2_12_sxxm_class_options(MachineClass
*mc
)
4119 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4121 spapr_machine_2_12_class_options(mc
);
4122 smc
->default_caps
.caps
[SPAPR_CAP_CFPC
] = SPAPR_CAP_WORKAROUND
;
4123 smc
->default_caps
.caps
[SPAPR_CAP_SBBC
] = SPAPR_CAP_WORKAROUND
;
4124 smc
->default_caps
.caps
[SPAPR_CAP_IBS
] = SPAPR_CAP_FIXED_CCD
;
4127 DEFINE_SPAPR_MACHINE(2_12_sxxm
, "2.12-sxxm", false);
4132 #define SPAPR_COMPAT_2_11 \
4135 static void spapr_machine_2_11_instance_options(MachineState
*machine
)
4137 spapr_machine_2_12_instance_options(machine
);
4140 static void spapr_machine_2_11_class_options(MachineClass
*mc
)
4142 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4144 spapr_machine_2_12_class_options(mc
);
4145 smc
->default_caps
.caps
[SPAPR_CAP_HTM
] = SPAPR_CAP_ON
;
4146 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_11
);
4149 DEFINE_SPAPR_MACHINE(2_11
, "2.11", false);
4154 #define SPAPR_COMPAT_2_10 \
4157 static void spapr_machine_2_10_instance_options(MachineState
*machine
)
4159 spapr_machine_2_11_instance_options(machine
);
4162 static void spapr_machine_2_10_class_options(MachineClass
*mc
)
4164 spapr_machine_2_11_class_options(mc
);
4165 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_10
);
4168 DEFINE_SPAPR_MACHINE(2_10
, "2.10", false);
4173 #define SPAPR_COMPAT_2_9 \
4176 .driver = TYPE_POWERPC_CPU, \
4177 .property = "pre-2.10-migration", \
4181 static void spapr_machine_2_9_instance_options(MachineState *machine)
4183 spapr_machine_2_10_instance_options(machine
);
4186 static void spapr_machine_2_9_class_options(MachineClass
*mc
)
4188 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4190 spapr_machine_2_10_class_options(mc
);
4191 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_9
);
4192 mc
->numa_auto_assign_ram
= numa_legacy_auto_assign_ram
;
4193 smc
->pre_2_10_has_unused_icps
= true;
4194 smc
->resize_hpt_default
= SPAPR_RESIZE_HPT_DISABLED
;
4197 DEFINE_SPAPR_MACHINE(2_9
, "2.9", false);
4202 #define SPAPR_COMPAT_2_8 \
4205 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4206 .property = "pcie-extended-configuration-space", \
4210 static void spapr_machine_2_8_instance_options(MachineState
*machine
)
4212 spapr_machine_2_9_instance_options(machine
);
4215 static void spapr_machine_2_8_class_options(MachineClass
*mc
)
4217 spapr_machine_2_9_class_options(mc
);
4218 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_8
);
4219 mc
->numa_mem_align_shift
= 23;
4222 DEFINE_SPAPR_MACHINE(2_8
, "2.8", false);
4227 #define SPAPR_COMPAT_2_7 \
4230 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4231 .property = "mem_win_size", \
4232 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
4235 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4236 .property = "mem64_win_size", \
4240 .driver = TYPE_POWERPC_CPU, \
4241 .property = "pre-2.8-migration", \
4245 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4246 .property = "pre-2.8-migration", \
4250 static void phb_placement_2_7(sPAPRMachineState
*spapr
, uint32_t index
,
4251 uint64_t *buid
, hwaddr
*pio
,
4252 hwaddr
*mmio32
, hwaddr
*mmio64
,
4253 unsigned n_dma
, uint32_t *liobns
, Error
**errp
)
4255 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4256 const uint64_t base_buid
= 0x800000020000000ULL
;
4257 const hwaddr phb_spacing
= 0x1000000000ULL
; /* 64 GiB */
4258 const hwaddr mmio_offset
= 0xa0000000; /* 2 GiB + 512 MiB */
4259 const hwaddr pio_offset
= 0x80000000; /* 2 GiB */
4260 const uint32_t max_index
= 255;
4261 const hwaddr phb0_alignment
= 0x10000000000ULL
; /* 1 TiB */
4263 uint64_t ram_top
= MACHINE(spapr
)->ram_size
;
4264 hwaddr phb0_base
, phb_base
;
4267 /* Do we have device memory? */
4268 if (MACHINE(spapr
)->maxram_size
> ram_top
) {
4269 /* Can't just use maxram_size, because there may be an
4270 * alignment gap between normal and device memory regions
4272 ram_top
= MACHINE(spapr
)->device_memory
->base
+
4273 memory_region_size(&MACHINE(spapr
)->device_memory
->mr
);
4276 phb0_base
= QEMU_ALIGN_UP(ram_top
, phb0_alignment
);
4278 if (index
> max_index
) {
4279 error_setg(errp
, "\"index\" for PAPR PHB is too large (max %u)",
4284 *buid
= base_buid
+ index
;
4285 for (i
= 0; i
< n_dma
; ++i
) {
4286 liobns
[i
] = SPAPR_PCI_LIOBN(index
, i
);
4289 phb_base
= phb0_base
+ index
* phb_spacing
;
4290 *pio
= phb_base
+ pio_offset
;
4291 *mmio32
= phb_base
+ mmio_offset
;
4293 * We don't set the 64-bit MMIO window, relying on the PHB's
4294 * fallback behaviour of automatically splitting a large "32-bit"
4295 * window into contiguous 32-bit and 64-bit windows
4299 static void spapr_machine_2_7_instance_options(MachineState
*machine
)
4301 sPAPRMachineState
*spapr
= SPAPR_MACHINE(machine
);
4303 spapr_machine_2_8_instance_options(machine
);
4304 spapr
->use_hotplug_event_source
= false;
4307 static void spapr_machine_2_7_class_options(MachineClass
*mc
)
4309 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4311 spapr_machine_2_8_class_options(mc
);
4312 mc
->default_cpu_type
= POWERPC_CPU_TYPE_NAME("power7_v2.3");
4313 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_7
);
4314 smc
->phb_placement
= phb_placement_2_7
;
4317 DEFINE_SPAPR_MACHINE(2_7
, "2.7", false);
4322 #define SPAPR_COMPAT_2_6 \
4325 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4327 .value = stringify(off),\
4330 static void spapr_machine_2_6_instance_options(MachineState
*machine
)
4332 spapr_machine_2_7_instance_options(machine
);
4335 static void spapr_machine_2_6_class_options(MachineClass
*mc
)
4337 spapr_machine_2_7_class_options(mc
);
4338 mc
->has_hotpluggable_cpus
= false;
4339 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_6
);
4342 DEFINE_SPAPR_MACHINE(2_6
, "2.6", false);
4347 #define SPAPR_COMPAT_2_5 \
4350 .driver = "spapr-vlan", \
4351 .property = "use-rx-buffer-pools", \
4355 static void spapr_machine_2_5_instance_options(MachineState
*machine
)
4357 spapr_machine_2_6_instance_options(machine
);
4360 static void spapr_machine_2_5_class_options(MachineClass
*mc
)
4362 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4364 spapr_machine_2_6_class_options(mc
);
4365 smc
->use_ohci_by_default
= true;
4366 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_5
);
4369 DEFINE_SPAPR_MACHINE(2_5
, "2.5", false);
4374 #define SPAPR_COMPAT_2_4 \
4377 static void spapr_machine_2_4_instance_options(MachineState
*machine
)
4379 spapr_machine_2_5_instance_options(machine
);
4382 static void spapr_machine_2_4_class_options(MachineClass
*mc
)
4384 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4386 spapr_machine_2_5_class_options(mc
);
4387 smc
->dr_lmb_enabled
= false;
4388 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_4
);
4391 DEFINE_SPAPR_MACHINE(2_4
, "2.4", false);
4396 #define SPAPR_COMPAT_2_3 \
4399 .driver = "spapr-pci-host-bridge",\
4400 .property = "dynamic-reconfiguration",\
4404 static void spapr_machine_2_3_instance_options(MachineState
*machine
)
4406 spapr_machine_2_4_instance_options(machine
);
4409 static void spapr_machine_2_3_class_options(MachineClass
*mc
)
4411 spapr_machine_2_4_class_options(mc
);
4412 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_3
);
4414 DEFINE_SPAPR_MACHINE(2_3
, "2.3", false);
4420 #define SPAPR_COMPAT_2_2 \
4423 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4424 .property = "mem_win_size",\
4425 .value = "0x20000000",\
4428 static void spapr_machine_2_2_instance_options(MachineState
*machine
)
4430 spapr_machine_2_3_instance_options(machine
);
4431 machine
->suppress_vmdesc
= true;
4434 static void spapr_machine_2_2_class_options(MachineClass
*mc
)
4436 spapr_machine_2_3_class_options(mc
);
4437 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_2
);
4439 DEFINE_SPAPR_MACHINE(2_2
, "2.2", false);
4444 #define SPAPR_COMPAT_2_1 \
4447 static void spapr_machine_2_1_instance_options(MachineState
*machine
)
4449 spapr_machine_2_2_instance_options(machine
);
4452 static void spapr_machine_2_1_class_options(MachineClass
*mc
)
4454 spapr_machine_2_2_class_options(mc
);
4455 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_1
);
4457 DEFINE_SPAPR_MACHINE(2_1
, "2.1", false);
4459 static void spapr_machine_register_types(void)
4461 type_register_static(&spapr_machine_info
);
4464 type_init(spapr_machine_register_types
)