target/mips: Use tcg_constant_i32() in gen_msa_2rf()
[qemu.git] / block / io.c
blobbb0a254def115718a1aa232b17bf5088533ea2c8
1 /*
2 * Block layer I/O functions
4 * Copyright (c) 2003 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "block/coroutines.h"
33 #include "block/write-threshold.h"
34 #include "qemu/cutils.h"
35 #include "qapi/error.h"
36 #include "qemu/error-report.h"
37 #include "qemu/main-loop.h"
38 #include "sysemu/replay.h"
40 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
41 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
43 static void bdrv_parent_cb_resize(BlockDriverState *bs);
44 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
45 int64_t offset, int64_t bytes, BdrvRequestFlags flags);
47 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore,
48 bool ignore_bds_parents)
50 BdrvChild *c, *next;
52 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
53 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
54 continue;
56 bdrv_parent_drained_begin_single(c, false);
60 static void bdrv_parent_drained_end_single_no_poll(BdrvChild *c,
61 int *drained_end_counter)
63 assert(c->parent_quiesce_counter > 0);
64 c->parent_quiesce_counter--;
65 if (c->klass->drained_end) {
66 c->klass->drained_end(c, drained_end_counter);
70 void bdrv_parent_drained_end_single(BdrvChild *c)
72 int drained_end_counter = 0;
73 bdrv_parent_drained_end_single_no_poll(c, &drained_end_counter);
74 BDRV_POLL_WHILE(c->bs, qatomic_read(&drained_end_counter) > 0);
77 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore,
78 bool ignore_bds_parents,
79 int *drained_end_counter)
81 BdrvChild *c;
83 QLIST_FOREACH(c, &bs->parents, next_parent) {
84 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
85 continue;
87 bdrv_parent_drained_end_single_no_poll(c, drained_end_counter);
91 static bool bdrv_parent_drained_poll_single(BdrvChild *c)
93 if (c->klass->drained_poll) {
94 return c->klass->drained_poll(c);
96 return false;
99 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
100 bool ignore_bds_parents)
102 BdrvChild *c, *next;
103 bool busy = false;
105 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
106 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
107 continue;
109 busy |= bdrv_parent_drained_poll_single(c);
112 return busy;
115 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll)
117 c->parent_quiesce_counter++;
118 if (c->klass->drained_begin) {
119 c->klass->drained_begin(c);
121 if (poll) {
122 BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c));
126 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
128 dst->pdiscard_alignment = MAX(dst->pdiscard_alignment,
129 src->pdiscard_alignment);
130 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
131 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
132 dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer,
133 src->max_hw_transfer);
134 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
135 src->opt_mem_alignment);
136 dst->min_mem_alignment = MAX(dst->min_mem_alignment,
137 src->min_mem_alignment);
138 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
139 dst->max_hw_iov = MIN_NON_ZERO(dst->max_hw_iov, src->max_hw_iov);
142 typedef struct BdrvRefreshLimitsState {
143 BlockDriverState *bs;
144 BlockLimits old_bl;
145 } BdrvRefreshLimitsState;
147 static void bdrv_refresh_limits_abort(void *opaque)
149 BdrvRefreshLimitsState *s = opaque;
151 s->bs->bl = s->old_bl;
154 static TransactionActionDrv bdrv_refresh_limits_drv = {
155 .abort = bdrv_refresh_limits_abort,
156 .clean = g_free,
159 /* @tran is allowed to be NULL, in this case no rollback is possible. */
160 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp)
162 ERRP_GUARD();
163 BlockDriver *drv = bs->drv;
164 BdrvChild *c;
165 bool have_limits;
167 if (tran) {
168 BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1);
169 *s = (BdrvRefreshLimitsState) {
170 .bs = bs,
171 .old_bl = bs->bl,
173 tran_add(tran, &bdrv_refresh_limits_drv, s);
176 memset(&bs->bl, 0, sizeof(bs->bl));
178 if (!drv) {
179 return;
182 /* Default alignment based on whether driver has byte interface */
183 bs->bl.request_alignment = (drv->bdrv_co_preadv ||
184 drv->bdrv_aio_preadv ||
185 drv->bdrv_co_preadv_part) ? 1 : 512;
187 /* Take some limits from the children as a default */
188 have_limits = false;
189 QLIST_FOREACH(c, &bs->children, next) {
190 if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW))
192 bdrv_refresh_limits(c->bs, tran, errp);
193 if (*errp) {
194 return;
196 bdrv_merge_limits(&bs->bl, &c->bs->bl);
197 have_limits = true;
201 if (!have_limits) {
202 bs->bl.min_mem_alignment = 512;
203 bs->bl.opt_mem_alignment = qemu_real_host_page_size;
205 /* Safe default since most protocols use readv()/writev()/etc */
206 bs->bl.max_iov = IOV_MAX;
209 /* Then let the driver override it */
210 if (drv->bdrv_refresh_limits) {
211 drv->bdrv_refresh_limits(bs, errp);
212 if (*errp) {
213 return;
217 if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) {
218 error_setg(errp, "Driver requires too large request alignment");
223 * The copy-on-read flag is actually a reference count so multiple users may
224 * use the feature without worrying about clobbering its previous state.
225 * Copy-on-read stays enabled until all users have called to disable it.
227 void bdrv_enable_copy_on_read(BlockDriverState *bs)
229 qatomic_inc(&bs->copy_on_read);
232 void bdrv_disable_copy_on_read(BlockDriverState *bs)
234 int old = qatomic_fetch_dec(&bs->copy_on_read);
235 assert(old >= 1);
238 typedef struct {
239 Coroutine *co;
240 BlockDriverState *bs;
241 bool done;
242 bool begin;
243 bool recursive;
244 bool poll;
245 BdrvChild *parent;
246 bool ignore_bds_parents;
247 int *drained_end_counter;
248 } BdrvCoDrainData;
250 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque)
252 BdrvCoDrainData *data = opaque;
253 BlockDriverState *bs = data->bs;
255 if (data->begin) {
256 bs->drv->bdrv_co_drain_begin(bs);
257 } else {
258 bs->drv->bdrv_co_drain_end(bs);
261 /* Set data->done and decrement drained_end_counter before bdrv_wakeup() */
262 qatomic_mb_set(&data->done, true);
263 if (!data->begin) {
264 qatomic_dec(data->drained_end_counter);
266 bdrv_dec_in_flight(bs);
268 g_free(data);
271 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */
272 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin,
273 int *drained_end_counter)
275 BdrvCoDrainData *data;
277 if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) ||
278 (!begin && !bs->drv->bdrv_co_drain_end)) {
279 return;
282 data = g_new(BdrvCoDrainData, 1);
283 *data = (BdrvCoDrainData) {
284 .bs = bs,
285 .done = false,
286 .begin = begin,
287 .drained_end_counter = drained_end_counter,
290 if (!begin) {
291 qatomic_inc(drained_end_counter);
294 /* Make sure the driver callback completes during the polling phase for
295 * drain_begin. */
296 bdrv_inc_in_flight(bs);
297 data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data);
298 aio_co_schedule(bdrv_get_aio_context(bs), data->co);
301 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
302 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive,
303 BdrvChild *ignore_parent, bool ignore_bds_parents)
305 BdrvChild *child, *next;
307 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
308 return true;
311 if (qatomic_read(&bs->in_flight)) {
312 return true;
315 if (recursive) {
316 assert(!ignore_bds_parents);
317 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
318 if (bdrv_drain_poll(child->bs, recursive, child, false)) {
319 return true;
324 return false;
327 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive,
328 BdrvChild *ignore_parent)
330 return bdrv_drain_poll(bs, recursive, ignore_parent, false);
333 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
334 BdrvChild *parent, bool ignore_bds_parents,
335 bool poll);
336 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
337 BdrvChild *parent, bool ignore_bds_parents,
338 int *drained_end_counter);
340 static void bdrv_co_drain_bh_cb(void *opaque)
342 BdrvCoDrainData *data = opaque;
343 Coroutine *co = data->co;
344 BlockDriverState *bs = data->bs;
346 if (bs) {
347 AioContext *ctx = bdrv_get_aio_context(bs);
348 aio_context_acquire(ctx);
349 bdrv_dec_in_flight(bs);
350 if (data->begin) {
351 assert(!data->drained_end_counter);
352 bdrv_do_drained_begin(bs, data->recursive, data->parent,
353 data->ignore_bds_parents, data->poll);
354 } else {
355 assert(!data->poll);
356 bdrv_do_drained_end(bs, data->recursive, data->parent,
357 data->ignore_bds_parents,
358 data->drained_end_counter);
360 aio_context_release(ctx);
361 } else {
362 assert(data->begin);
363 bdrv_drain_all_begin();
366 data->done = true;
367 aio_co_wake(co);
370 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
371 bool begin, bool recursive,
372 BdrvChild *parent,
373 bool ignore_bds_parents,
374 bool poll,
375 int *drained_end_counter)
377 BdrvCoDrainData data;
378 Coroutine *self = qemu_coroutine_self();
379 AioContext *ctx = bdrv_get_aio_context(bs);
380 AioContext *co_ctx = qemu_coroutine_get_aio_context(self);
382 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
383 * other coroutines run if they were queued by aio_co_enter(). */
385 assert(qemu_in_coroutine());
386 data = (BdrvCoDrainData) {
387 .co = self,
388 .bs = bs,
389 .done = false,
390 .begin = begin,
391 .recursive = recursive,
392 .parent = parent,
393 .ignore_bds_parents = ignore_bds_parents,
394 .poll = poll,
395 .drained_end_counter = drained_end_counter,
398 if (bs) {
399 bdrv_inc_in_flight(bs);
403 * Temporarily drop the lock across yield or we would get deadlocks.
404 * bdrv_co_drain_bh_cb() reaquires the lock as needed.
406 * When we yield below, the lock for the current context will be
407 * released, so if this is actually the lock that protects bs, don't drop
408 * it a second time.
410 if (ctx != co_ctx) {
411 aio_context_release(ctx);
413 replay_bh_schedule_oneshot_event(ctx, bdrv_co_drain_bh_cb, &data);
415 qemu_coroutine_yield();
416 /* If we are resumed from some other event (such as an aio completion or a
417 * timer callback), it is a bug in the caller that should be fixed. */
418 assert(data.done);
420 /* Reaquire the AioContext of bs if we dropped it */
421 if (ctx != co_ctx) {
422 aio_context_acquire(ctx);
426 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs,
427 BdrvChild *parent, bool ignore_bds_parents)
429 assert(!qemu_in_coroutine());
431 /* Stop things in parent-to-child order */
432 if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) {
433 aio_disable_external(bdrv_get_aio_context(bs));
436 bdrv_parent_drained_begin(bs, parent, ignore_bds_parents);
437 bdrv_drain_invoke(bs, true, NULL);
440 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
441 BdrvChild *parent, bool ignore_bds_parents,
442 bool poll)
444 BdrvChild *child, *next;
446 if (qemu_in_coroutine()) {
447 bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents,
448 poll, NULL);
449 return;
452 bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents);
454 if (recursive) {
455 assert(!ignore_bds_parents);
456 bs->recursive_quiesce_counter++;
457 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
458 bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents,
459 false);
464 * Wait for drained requests to finish.
466 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
467 * call is needed so things in this AioContext can make progress even
468 * though we don't return to the main AioContext loop - this automatically
469 * includes other nodes in the same AioContext and therefore all child
470 * nodes.
472 if (poll) {
473 assert(!ignore_bds_parents);
474 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent));
478 void bdrv_drained_begin(BlockDriverState *bs)
480 bdrv_do_drained_begin(bs, false, NULL, false, true);
483 void bdrv_subtree_drained_begin(BlockDriverState *bs)
485 bdrv_do_drained_begin(bs, true, NULL, false, true);
489 * This function does not poll, nor must any of its recursively called
490 * functions. The *drained_end_counter pointee will be incremented
491 * once for every background operation scheduled, and decremented once
492 * the operation settles. Therefore, the pointer must remain valid
493 * until the pointee reaches 0. That implies that whoever sets up the
494 * pointee has to poll until it is 0.
496 * We use atomic operations to access *drained_end_counter, because
497 * (1) when called from bdrv_set_aio_context_ignore(), the subgraph of
498 * @bs may contain nodes in different AioContexts,
499 * (2) bdrv_drain_all_end() uses the same counter for all nodes,
500 * regardless of which AioContext they are in.
502 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
503 BdrvChild *parent, bool ignore_bds_parents,
504 int *drained_end_counter)
506 BdrvChild *child;
507 int old_quiesce_counter;
509 assert(drained_end_counter != NULL);
511 if (qemu_in_coroutine()) {
512 bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents,
513 false, drained_end_counter);
514 return;
516 assert(bs->quiesce_counter > 0);
518 /* Re-enable things in child-to-parent order */
519 bdrv_drain_invoke(bs, false, drained_end_counter);
520 bdrv_parent_drained_end(bs, parent, ignore_bds_parents,
521 drained_end_counter);
523 old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter);
524 if (old_quiesce_counter == 1) {
525 aio_enable_external(bdrv_get_aio_context(bs));
528 if (recursive) {
529 assert(!ignore_bds_parents);
530 bs->recursive_quiesce_counter--;
531 QLIST_FOREACH(child, &bs->children, next) {
532 bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents,
533 drained_end_counter);
538 void bdrv_drained_end(BlockDriverState *bs)
540 int drained_end_counter = 0;
541 bdrv_do_drained_end(bs, false, NULL, false, &drained_end_counter);
542 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
545 void bdrv_drained_end_no_poll(BlockDriverState *bs, int *drained_end_counter)
547 bdrv_do_drained_end(bs, false, NULL, false, drained_end_counter);
550 void bdrv_subtree_drained_end(BlockDriverState *bs)
552 int drained_end_counter = 0;
553 bdrv_do_drained_end(bs, true, NULL, false, &drained_end_counter);
554 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
557 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent)
559 int i;
561 for (i = 0; i < new_parent->recursive_quiesce_counter; i++) {
562 bdrv_do_drained_begin(child->bs, true, child, false, true);
566 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent)
568 int drained_end_counter = 0;
569 int i;
571 for (i = 0; i < old_parent->recursive_quiesce_counter; i++) {
572 bdrv_do_drained_end(child->bs, true, child, false,
573 &drained_end_counter);
576 BDRV_POLL_WHILE(child->bs, qatomic_read(&drained_end_counter) > 0);
580 * Wait for pending requests to complete on a single BlockDriverState subtree,
581 * and suspend block driver's internal I/O until next request arrives.
583 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
584 * AioContext.
586 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
588 assert(qemu_in_coroutine());
589 bdrv_drained_begin(bs);
590 bdrv_drained_end(bs);
593 void bdrv_drain(BlockDriverState *bs)
595 bdrv_drained_begin(bs);
596 bdrv_drained_end(bs);
599 static void bdrv_drain_assert_idle(BlockDriverState *bs)
601 BdrvChild *child, *next;
603 assert(qatomic_read(&bs->in_flight) == 0);
604 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
605 bdrv_drain_assert_idle(child->bs);
609 unsigned int bdrv_drain_all_count = 0;
611 static bool bdrv_drain_all_poll(void)
613 BlockDriverState *bs = NULL;
614 bool result = false;
616 /* bdrv_drain_poll() can't make changes to the graph and we are holding the
617 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */
618 while ((bs = bdrv_next_all_states(bs))) {
619 AioContext *aio_context = bdrv_get_aio_context(bs);
620 aio_context_acquire(aio_context);
621 result |= bdrv_drain_poll(bs, false, NULL, true);
622 aio_context_release(aio_context);
625 return result;
629 * Wait for pending requests to complete across all BlockDriverStates
631 * This function does not flush data to disk, use bdrv_flush_all() for that
632 * after calling this function.
634 * This pauses all block jobs and disables external clients. It must
635 * be paired with bdrv_drain_all_end().
637 * NOTE: no new block jobs or BlockDriverStates can be created between
638 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
640 void bdrv_drain_all_begin(void)
642 BlockDriverState *bs = NULL;
644 if (qemu_in_coroutine()) {
645 bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true, NULL);
646 return;
650 * bdrv queue is managed by record/replay,
651 * waiting for finishing the I/O requests may
652 * be infinite
654 if (replay_events_enabled()) {
655 return;
658 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
659 * loop AioContext, so make sure we're in the main context. */
660 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
661 assert(bdrv_drain_all_count < INT_MAX);
662 bdrv_drain_all_count++;
664 /* Quiesce all nodes, without polling in-flight requests yet. The graph
665 * cannot change during this loop. */
666 while ((bs = bdrv_next_all_states(bs))) {
667 AioContext *aio_context = bdrv_get_aio_context(bs);
669 aio_context_acquire(aio_context);
670 bdrv_do_drained_begin(bs, false, NULL, true, false);
671 aio_context_release(aio_context);
674 /* Now poll the in-flight requests */
675 AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll());
677 while ((bs = bdrv_next_all_states(bs))) {
678 bdrv_drain_assert_idle(bs);
682 void bdrv_drain_all_end_quiesce(BlockDriverState *bs)
684 int drained_end_counter = 0;
686 g_assert(bs->quiesce_counter > 0);
687 g_assert(!bs->refcnt);
689 while (bs->quiesce_counter) {
690 bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter);
692 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
695 void bdrv_drain_all_end(void)
697 BlockDriverState *bs = NULL;
698 int drained_end_counter = 0;
701 * bdrv queue is managed by record/replay,
702 * waiting for finishing the I/O requests may
703 * be endless
705 if (replay_events_enabled()) {
706 return;
709 while ((bs = bdrv_next_all_states(bs))) {
710 AioContext *aio_context = bdrv_get_aio_context(bs);
712 aio_context_acquire(aio_context);
713 bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter);
714 aio_context_release(aio_context);
717 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
718 AIO_WAIT_WHILE(NULL, qatomic_read(&drained_end_counter) > 0);
720 assert(bdrv_drain_all_count > 0);
721 bdrv_drain_all_count--;
724 void bdrv_drain_all(void)
726 bdrv_drain_all_begin();
727 bdrv_drain_all_end();
731 * Remove an active request from the tracked requests list
733 * This function should be called when a tracked request is completing.
735 static void tracked_request_end(BdrvTrackedRequest *req)
737 if (req->serialising) {
738 qatomic_dec(&req->bs->serialising_in_flight);
741 qemu_co_mutex_lock(&req->bs->reqs_lock);
742 QLIST_REMOVE(req, list);
743 qemu_co_queue_restart_all(&req->wait_queue);
744 qemu_co_mutex_unlock(&req->bs->reqs_lock);
748 * Add an active request to the tracked requests list
750 static void tracked_request_begin(BdrvTrackedRequest *req,
751 BlockDriverState *bs,
752 int64_t offset,
753 int64_t bytes,
754 enum BdrvTrackedRequestType type)
756 bdrv_check_request(offset, bytes, &error_abort);
758 *req = (BdrvTrackedRequest){
759 .bs = bs,
760 .offset = offset,
761 .bytes = bytes,
762 .type = type,
763 .co = qemu_coroutine_self(),
764 .serialising = false,
765 .overlap_offset = offset,
766 .overlap_bytes = bytes,
769 qemu_co_queue_init(&req->wait_queue);
771 qemu_co_mutex_lock(&bs->reqs_lock);
772 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
773 qemu_co_mutex_unlock(&bs->reqs_lock);
776 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
777 int64_t offset, int64_t bytes)
779 bdrv_check_request(offset, bytes, &error_abort);
781 /* aaaa bbbb */
782 if (offset >= req->overlap_offset + req->overlap_bytes) {
783 return false;
785 /* bbbb aaaa */
786 if (req->overlap_offset >= offset + bytes) {
787 return false;
789 return true;
792 /* Called with self->bs->reqs_lock held */
793 static BdrvTrackedRequest *
794 bdrv_find_conflicting_request(BdrvTrackedRequest *self)
796 BdrvTrackedRequest *req;
798 QLIST_FOREACH(req, &self->bs->tracked_requests, list) {
799 if (req == self || (!req->serialising && !self->serialising)) {
800 continue;
802 if (tracked_request_overlaps(req, self->overlap_offset,
803 self->overlap_bytes))
806 * Hitting this means there was a reentrant request, for
807 * example, a block driver issuing nested requests. This must
808 * never happen since it means deadlock.
810 assert(qemu_coroutine_self() != req->co);
813 * If the request is already (indirectly) waiting for us, or
814 * will wait for us as soon as it wakes up, then just go on
815 * (instead of producing a deadlock in the former case).
817 if (!req->waiting_for) {
818 return req;
823 return NULL;
826 /* Called with self->bs->reqs_lock held */
827 static bool coroutine_fn
828 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self)
830 BdrvTrackedRequest *req;
831 bool waited = false;
833 while ((req = bdrv_find_conflicting_request(self))) {
834 self->waiting_for = req;
835 qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock);
836 self->waiting_for = NULL;
837 waited = true;
840 return waited;
843 /* Called with req->bs->reqs_lock held */
844 static void tracked_request_set_serialising(BdrvTrackedRequest *req,
845 uint64_t align)
847 int64_t overlap_offset = req->offset & ~(align - 1);
848 int64_t overlap_bytes =
849 ROUND_UP(req->offset + req->bytes, align) - overlap_offset;
851 bdrv_check_request(req->offset, req->bytes, &error_abort);
853 if (!req->serialising) {
854 qatomic_inc(&req->bs->serialising_in_flight);
855 req->serialising = true;
858 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
859 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
863 * Return the tracked request on @bs for the current coroutine, or
864 * NULL if there is none.
866 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs)
868 BdrvTrackedRequest *req;
869 Coroutine *self = qemu_coroutine_self();
871 QLIST_FOREACH(req, &bs->tracked_requests, list) {
872 if (req->co == self) {
873 return req;
877 return NULL;
881 * Round a region to cluster boundaries
883 void bdrv_round_to_clusters(BlockDriverState *bs,
884 int64_t offset, int64_t bytes,
885 int64_t *cluster_offset,
886 int64_t *cluster_bytes)
888 BlockDriverInfo bdi;
890 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
891 *cluster_offset = offset;
892 *cluster_bytes = bytes;
893 } else {
894 int64_t c = bdi.cluster_size;
895 *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
896 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
900 static int bdrv_get_cluster_size(BlockDriverState *bs)
902 BlockDriverInfo bdi;
903 int ret;
905 ret = bdrv_get_info(bs, &bdi);
906 if (ret < 0 || bdi.cluster_size == 0) {
907 return bs->bl.request_alignment;
908 } else {
909 return bdi.cluster_size;
913 void bdrv_inc_in_flight(BlockDriverState *bs)
915 qatomic_inc(&bs->in_flight);
918 void bdrv_wakeup(BlockDriverState *bs)
920 aio_wait_kick();
923 void bdrv_dec_in_flight(BlockDriverState *bs)
925 qatomic_dec(&bs->in_flight);
926 bdrv_wakeup(bs);
929 static bool coroutine_fn bdrv_wait_serialising_requests(BdrvTrackedRequest *self)
931 BlockDriverState *bs = self->bs;
932 bool waited = false;
934 if (!qatomic_read(&bs->serialising_in_flight)) {
935 return false;
938 qemu_co_mutex_lock(&bs->reqs_lock);
939 waited = bdrv_wait_serialising_requests_locked(self);
940 qemu_co_mutex_unlock(&bs->reqs_lock);
942 return waited;
945 bool coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req,
946 uint64_t align)
948 bool waited;
950 qemu_co_mutex_lock(&req->bs->reqs_lock);
952 tracked_request_set_serialising(req, align);
953 waited = bdrv_wait_serialising_requests_locked(req);
955 qemu_co_mutex_unlock(&req->bs->reqs_lock);
957 return waited;
960 int bdrv_check_qiov_request(int64_t offset, int64_t bytes,
961 QEMUIOVector *qiov, size_t qiov_offset,
962 Error **errp)
965 * Check generic offset/bytes correctness
968 if (offset < 0) {
969 error_setg(errp, "offset is negative: %" PRIi64, offset);
970 return -EIO;
973 if (bytes < 0) {
974 error_setg(errp, "bytes is negative: %" PRIi64, bytes);
975 return -EIO;
978 if (bytes > BDRV_MAX_LENGTH) {
979 error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
980 bytes, BDRV_MAX_LENGTH);
981 return -EIO;
984 if (offset > BDRV_MAX_LENGTH) {
985 error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
986 offset, BDRV_MAX_LENGTH);
987 return -EIO;
990 if (offset > BDRV_MAX_LENGTH - bytes) {
991 error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") "
992 "exceeds maximum(%" PRIi64 ")", offset, bytes,
993 BDRV_MAX_LENGTH);
994 return -EIO;
997 if (!qiov) {
998 return 0;
1002 * Check qiov and qiov_offset
1005 if (qiov_offset > qiov->size) {
1006 error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)",
1007 qiov_offset, qiov->size);
1008 return -EIO;
1011 if (bytes > qiov->size - qiov_offset) {
1012 error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io "
1013 "vector size(%zu)", bytes, qiov_offset, qiov->size);
1014 return -EIO;
1017 return 0;
1020 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp)
1022 return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp);
1025 static int bdrv_check_request32(int64_t offset, int64_t bytes,
1026 QEMUIOVector *qiov, size_t qiov_offset)
1028 int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
1029 if (ret < 0) {
1030 return ret;
1033 if (bytes > BDRV_REQUEST_MAX_BYTES) {
1034 return -EIO;
1037 return 0;
1040 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
1041 int64_t bytes, BdrvRequestFlags flags)
1043 return bdrv_pwritev(child, offset, bytes, NULL,
1044 BDRV_REQ_ZERO_WRITE | flags);
1048 * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
1049 * The operation is sped up by checking the block status and only writing
1050 * zeroes to the device if they currently do not return zeroes. Optional
1051 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
1052 * BDRV_REQ_FUA).
1054 * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite().
1056 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
1058 int ret;
1059 int64_t target_size, bytes, offset = 0;
1060 BlockDriverState *bs = child->bs;
1062 target_size = bdrv_getlength(bs);
1063 if (target_size < 0) {
1064 return target_size;
1067 for (;;) {
1068 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
1069 if (bytes <= 0) {
1070 return 0;
1072 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
1073 if (ret < 0) {
1074 return ret;
1076 if (ret & BDRV_BLOCK_ZERO) {
1077 offset += bytes;
1078 continue;
1080 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
1081 if (ret < 0) {
1082 return ret;
1084 offset += bytes;
1088 /* See bdrv_pwrite() for the return codes */
1089 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int64_t bytes)
1091 int ret;
1092 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
1094 if (bytes < 0) {
1095 return -EINVAL;
1098 ret = bdrv_preadv(child, offset, bytes, &qiov, 0);
1100 return ret < 0 ? ret : bytes;
1103 /* Return no. of bytes on success or < 0 on error. Important errors are:
1104 -EIO generic I/O error (may happen for all errors)
1105 -ENOMEDIUM No media inserted.
1106 -EINVAL Invalid offset or number of bytes
1107 -EACCES Trying to write a read-only device
1109 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf,
1110 int64_t bytes)
1112 int ret;
1113 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
1115 if (bytes < 0) {
1116 return -EINVAL;
1119 ret = bdrv_pwritev(child, offset, bytes, &qiov, 0);
1121 return ret < 0 ? ret : bytes;
1125 * Writes to the file and ensures that no writes are reordered across this
1126 * request (acts as a barrier)
1128 * Returns 0 on success, -errno in error cases.
1130 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
1131 const void *buf, int64_t count)
1133 int ret;
1135 ret = bdrv_pwrite(child, offset, buf, count);
1136 if (ret < 0) {
1137 return ret;
1140 ret = bdrv_flush(child->bs);
1141 if (ret < 0) {
1142 return ret;
1145 return 0;
1148 typedef struct CoroutineIOCompletion {
1149 Coroutine *coroutine;
1150 int ret;
1151 } CoroutineIOCompletion;
1153 static void bdrv_co_io_em_complete(void *opaque, int ret)
1155 CoroutineIOCompletion *co = opaque;
1157 co->ret = ret;
1158 aio_co_wake(co->coroutine);
1161 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
1162 int64_t offset, int64_t bytes,
1163 QEMUIOVector *qiov,
1164 size_t qiov_offset, int flags)
1166 BlockDriver *drv = bs->drv;
1167 int64_t sector_num;
1168 unsigned int nb_sectors;
1169 QEMUIOVector local_qiov;
1170 int ret;
1172 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1173 assert(!(flags & ~BDRV_REQ_MASK));
1174 assert(!(flags & BDRV_REQ_NO_FALLBACK));
1176 if (!drv) {
1177 return -ENOMEDIUM;
1180 if (drv->bdrv_co_preadv_part) {
1181 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset,
1182 flags);
1185 if (qiov_offset > 0 || bytes != qiov->size) {
1186 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1187 qiov = &local_qiov;
1190 if (drv->bdrv_co_preadv) {
1191 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
1192 goto out;
1195 if (drv->bdrv_aio_preadv) {
1196 BlockAIOCB *acb;
1197 CoroutineIOCompletion co = {
1198 .coroutine = qemu_coroutine_self(),
1201 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1202 bdrv_co_io_em_complete, &co);
1203 if (acb == NULL) {
1204 ret = -EIO;
1205 goto out;
1206 } else {
1207 qemu_coroutine_yield();
1208 ret = co.ret;
1209 goto out;
1213 sector_num = offset >> BDRV_SECTOR_BITS;
1214 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1216 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1217 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1218 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1219 assert(drv->bdrv_co_readv);
1221 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1223 out:
1224 if (qiov == &local_qiov) {
1225 qemu_iovec_destroy(&local_qiov);
1228 return ret;
1231 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
1232 int64_t offset, int64_t bytes,
1233 QEMUIOVector *qiov,
1234 size_t qiov_offset,
1235 BdrvRequestFlags flags)
1237 BlockDriver *drv = bs->drv;
1238 int64_t sector_num;
1239 unsigned int nb_sectors;
1240 QEMUIOVector local_qiov;
1241 int ret;
1243 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1244 assert(!(flags & ~BDRV_REQ_MASK));
1245 assert(!(flags & BDRV_REQ_NO_FALLBACK));
1247 if (!drv) {
1248 return -ENOMEDIUM;
1251 if (drv->bdrv_co_pwritev_part) {
1252 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset,
1253 flags & bs->supported_write_flags);
1254 flags &= ~bs->supported_write_flags;
1255 goto emulate_flags;
1258 if (qiov_offset > 0 || bytes != qiov->size) {
1259 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1260 qiov = &local_qiov;
1263 if (drv->bdrv_co_pwritev) {
1264 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
1265 flags & bs->supported_write_flags);
1266 flags &= ~bs->supported_write_flags;
1267 goto emulate_flags;
1270 if (drv->bdrv_aio_pwritev) {
1271 BlockAIOCB *acb;
1272 CoroutineIOCompletion co = {
1273 .coroutine = qemu_coroutine_self(),
1276 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov,
1277 flags & bs->supported_write_flags,
1278 bdrv_co_io_em_complete, &co);
1279 flags &= ~bs->supported_write_flags;
1280 if (acb == NULL) {
1281 ret = -EIO;
1282 } else {
1283 qemu_coroutine_yield();
1284 ret = co.ret;
1286 goto emulate_flags;
1289 sector_num = offset >> BDRV_SECTOR_BITS;
1290 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1292 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1293 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1294 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1296 assert(drv->bdrv_co_writev);
1297 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov,
1298 flags & bs->supported_write_flags);
1299 flags &= ~bs->supported_write_flags;
1301 emulate_flags:
1302 if (ret == 0 && (flags & BDRV_REQ_FUA)) {
1303 ret = bdrv_co_flush(bs);
1306 if (qiov == &local_qiov) {
1307 qemu_iovec_destroy(&local_qiov);
1310 return ret;
1313 static int coroutine_fn
1314 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset,
1315 int64_t bytes, QEMUIOVector *qiov,
1316 size_t qiov_offset)
1318 BlockDriver *drv = bs->drv;
1319 QEMUIOVector local_qiov;
1320 int ret;
1322 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1324 if (!drv) {
1325 return -ENOMEDIUM;
1328 if (!block_driver_can_compress(drv)) {
1329 return -ENOTSUP;
1332 if (drv->bdrv_co_pwritev_compressed_part) {
1333 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes,
1334 qiov, qiov_offset);
1337 if (qiov_offset == 0) {
1338 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1341 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1342 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov);
1343 qemu_iovec_destroy(&local_qiov);
1345 return ret;
1348 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
1349 int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1350 size_t qiov_offset, int flags)
1352 BlockDriverState *bs = child->bs;
1354 /* Perform I/O through a temporary buffer so that users who scribble over
1355 * their read buffer while the operation is in progress do not end up
1356 * modifying the image file. This is critical for zero-copy guest I/O
1357 * where anything might happen inside guest memory.
1359 void *bounce_buffer = NULL;
1361 BlockDriver *drv = bs->drv;
1362 int64_t cluster_offset;
1363 int64_t cluster_bytes;
1364 int64_t skip_bytes;
1365 int ret;
1366 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1367 BDRV_REQUEST_MAX_BYTES);
1368 int64_t progress = 0;
1369 bool skip_write;
1371 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1373 if (!drv) {
1374 return -ENOMEDIUM;
1378 * Do not write anything when the BDS is inactive. That is not
1379 * allowed, and it would not help.
1381 skip_write = (bs->open_flags & BDRV_O_INACTIVE);
1383 /* FIXME We cannot require callers to have write permissions when all they
1384 * are doing is a read request. If we did things right, write permissions
1385 * would be obtained anyway, but internally by the copy-on-read code. As
1386 * long as it is implemented here rather than in a separate filter driver,
1387 * the copy-on-read code doesn't have its own BdrvChild, however, for which
1388 * it could request permissions. Therefore we have to bypass the permission
1389 * system for the moment. */
1390 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1392 /* Cover entire cluster so no additional backing file I/O is required when
1393 * allocating cluster in the image file. Note that this value may exceed
1394 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1395 * is one reason we loop rather than doing it all at once.
1397 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1398 skip_bytes = offset - cluster_offset;
1400 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1401 cluster_offset, cluster_bytes);
1403 while (cluster_bytes) {
1404 int64_t pnum;
1406 if (skip_write) {
1407 ret = 1; /* "already allocated", so nothing will be copied */
1408 pnum = MIN(cluster_bytes, max_transfer);
1409 } else {
1410 ret = bdrv_is_allocated(bs, cluster_offset,
1411 MIN(cluster_bytes, max_transfer), &pnum);
1412 if (ret < 0) {
1414 * Safe to treat errors in querying allocation as if
1415 * unallocated; we'll probably fail again soon on the
1416 * read, but at least that will set a decent errno.
1418 pnum = MIN(cluster_bytes, max_transfer);
1421 /* Stop at EOF if the image ends in the middle of the cluster */
1422 if (ret == 0 && pnum == 0) {
1423 assert(progress >= bytes);
1424 break;
1427 assert(skip_bytes < pnum);
1430 if (ret <= 0) {
1431 QEMUIOVector local_qiov;
1433 /* Must copy-on-read; use the bounce buffer */
1434 pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1435 if (!bounce_buffer) {
1436 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum);
1437 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER);
1438 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed);
1440 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len);
1441 if (!bounce_buffer) {
1442 ret = -ENOMEM;
1443 goto err;
1446 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
1448 ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1449 &local_qiov, 0, 0);
1450 if (ret < 0) {
1451 goto err;
1454 bdrv_debug_event(bs, BLKDBG_COR_WRITE);
1455 if (drv->bdrv_co_pwrite_zeroes &&
1456 buffer_is_zero(bounce_buffer, pnum)) {
1457 /* FIXME: Should we (perhaps conditionally) be setting
1458 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1459 * that still correctly reads as zero? */
1460 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum,
1461 BDRV_REQ_WRITE_UNCHANGED);
1462 } else {
1463 /* This does not change the data on the disk, it is not
1464 * necessary to flush even in cache=writethrough mode.
1466 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1467 &local_qiov, 0,
1468 BDRV_REQ_WRITE_UNCHANGED);
1471 if (ret < 0) {
1472 /* It might be okay to ignore write errors for guest
1473 * requests. If this is a deliberate copy-on-read
1474 * then we don't want to ignore the error. Simply
1475 * report it in all cases.
1477 goto err;
1480 if (!(flags & BDRV_REQ_PREFETCH)) {
1481 qemu_iovec_from_buf(qiov, qiov_offset + progress,
1482 bounce_buffer + skip_bytes,
1483 MIN(pnum - skip_bytes, bytes - progress));
1485 } else if (!(flags & BDRV_REQ_PREFETCH)) {
1486 /* Read directly into the destination */
1487 ret = bdrv_driver_preadv(bs, offset + progress,
1488 MIN(pnum - skip_bytes, bytes - progress),
1489 qiov, qiov_offset + progress, 0);
1490 if (ret < 0) {
1491 goto err;
1495 cluster_offset += pnum;
1496 cluster_bytes -= pnum;
1497 progress += pnum - skip_bytes;
1498 skip_bytes = 0;
1500 ret = 0;
1502 err:
1503 qemu_vfree(bounce_buffer);
1504 return ret;
1508 * Forwards an already correctly aligned request to the BlockDriver. This
1509 * handles copy on read, zeroing after EOF, and fragmentation of large
1510 * reads; any other features must be implemented by the caller.
1512 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1513 BdrvTrackedRequest *req, int64_t offset, int64_t bytes,
1514 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags)
1516 BlockDriverState *bs = child->bs;
1517 int64_t total_bytes, max_bytes;
1518 int ret = 0;
1519 int64_t bytes_remaining = bytes;
1520 int max_transfer;
1522 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1523 assert(is_power_of_2(align));
1524 assert((offset & (align - 1)) == 0);
1525 assert((bytes & (align - 1)) == 0);
1526 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1527 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1528 align);
1530 /* TODO: We would need a per-BDS .supported_read_flags and
1531 * potential fallback support, if we ever implement any read flags
1532 * to pass through to drivers. For now, there aren't any
1533 * passthrough flags. */
1534 assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH)));
1536 /* Handle Copy on Read and associated serialisation */
1537 if (flags & BDRV_REQ_COPY_ON_READ) {
1538 /* If we touch the same cluster it counts as an overlap. This
1539 * guarantees that allocating writes will be serialized and not race
1540 * with each other for the same cluster. For example, in copy-on-read
1541 * it ensures that the CoR read and write operations are atomic and
1542 * guest writes cannot interleave between them. */
1543 bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs));
1544 } else {
1545 bdrv_wait_serialising_requests(req);
1548 if (flags & BDRV_REQ_COPY_ON_READ) {
1549 int64_t pnum;
1551 /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */
1552 flags &= ~BDRV_REQ_COPY_ON_READ;
1554 ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1555 if (ret < 0) {
1556 goto out;
1559 if (!ret || pnum != bytes) {
1560 ret = bdrv_co_do_copy_on_readv(child, offset, bytes,
1561 qiov, qiov_offset, flags);
1562 goto out;
1563 } else if (flags & BDRV_REQ_PREFETCH) {
1564 goto out;
1568 /* Forward the request to the BlockDriver, possibly fragmenting it */
1569 total_bytes = bdrv_getlength(bs);
1570 if (total_bytes < 0) {
1571 ret = total_bytes;
1572 goto out;
1575 assert(!(flags & ~bs->supported_read_flags));
1577 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1578 if (bytes <= max_bytes && bytes <= max_transfer) {
1579 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags);
1580 goto out;
1583 while (bytes_remaining) {
1584 int64_t num;
1586 if (max_bytes) {
1587 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1588 assert(num);
1590 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1591 num, qiov,
1592 qiov_offset + bytes - bytes_remaining,
1593 flags);
1594 max_bytes -= num;
1595 } else {
1596 num = bytes_remaining;
1597 ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining,
1598 0, bytes_remaining);
1600 if (ret < 0) {
1601 goto out;
1603 bytes_remaining -= num;
1606 out:
1607 return ret < 0 ? ret : 0;
1611 * Request padding
1613 * |<---- align ----->| |<----- align ---->|
1614 * |<- head ->|<------------- bytes ------------->|<-- tail -->|
1615 * | | | | | |
1616 * -*----------$-------*-------- ... --------*-----$------------*---
1617 * | | | | | |
1618 * | offset | | end |
1619 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end)
1620 * [buf ... ) [tail_buf )
1622 * @buf is an aligned allocation needed to store @head and @tail paddings. @head
1623 * is placed at the beginning of @buf and @tail at the @end.
1625 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk
1626 * around tail, if tail exists.
1628 * @merge_reads is true for small requests,
1629 * if @buf_len == @head + bytes + @tail. In this case it is possible that both
1630 * head and tail exist but @buf_len == align and @tail_buf == @buf.
1632 typedef struct BdrvRequestPadding {
1633 uint8_t *buf;
1634 size_t buf_len;
1635 uint8_t *tail_buf;
1636 size_t head;
1637 size_t tail;
1638 bool merge_reads;
1639 QEMUIOVector local_qiov;
1640 } BdrvRequestPadding;
1642 static bool bdrv_init_padding(BlockDriverState *bs,
1643 int64_t offset, int64_t bytes,
1644 BdrvRequestPadding *pad)
1646 int64_t align = bs->bl.request_alignment;
1647 int64_t sum;
1649 bdrv_check_request(offset, bytes, &error_abort);
1650 assert(align <= INT_MAX); /* documented in block/block_int.h */
1651 assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */
1653 memset(pad, 0, sizeof(*pad));
1655 pad->head = offset & (align - 1);
1656 pad->tail = ((offset + bytes) & (align - 1));
1657 if (pad->tail) {
1658 pad->tail = align - pad->tail;
1661 if (!pad->head && !pad->tail) {
1662 return false;
1665 assert(bytes); /* Nothing good in aligning zero-length requests */
1667 sum = pad->head + bytes + pad->tail;
1668 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align;
1669 pad->buf = qemu_blockalign(bs, pad->buf_len);
1670 pad->merge_reads = sum == pad->buf_len;
1671 if (pad->tail) {
1672 pad->tail_buf = pad->buf + pad->buf_len - align;
1675 return true;
1678 static int bdrv_padding_rmw_read(BdrvChild *child,
1679 BdrvTrackedRequest *req,
1680 BdrvRequestPadding *pad,
1681 bool zero_middle)
1683 QEMUIOVector local_qiov;
1684 BlockDriverState *bs = child->bs;
1685 uint64_t align = bs->bl.request_alignment;
1686 int ret;
1688 assert(req->serialising && pad->buf);
1690 if (pad->head || pad->merge_reads) {
1691 int64_t bytes = pad->merge_reads ? pad->buf_len : align;
1693 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes);
1695 if (pad->head) {
1696 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1698 if (pad->merge_reads && pad->tail) {
1699 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1701 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes,
1702 align, &local_qiov, 0, 0);
1703 if (ret < 0) {
1704 return ret;
1706 if (pad->head) {
1707 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1709 if (pad->merge_reads && pad->tail) {
1710 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1713 if (pad->merge_reads) {
1714 goto zero_mem;
1718 if (pad->tail) {
1719 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align);
1721 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1722 ret = bdrv_aligned_preadv(
1723 child, req,
1724 req->overlap_offset + req->overlap_bytes - align,
1725 align, align, &local_qiov, 0, 0);
1726 if (ret < 0) {
1727 return ret;
1729 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1732 zero_mem:
1733 if (zero_middle) {
1734 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail);
1737 return 0;
1740 static void bdrv_padding_destroy(BdrvRequestPadding *pad)
1742 if (pad->buf) {
1743 qemu_vfree(pad->buf);
1744 qemu_iovec_destroy(&pad->local_qiov);
1746 memset(pad, 0, sizeof(*pad));
1750 * bdrv_pad_request
1752 * Exchange request parameters with padded request if needed. Don't include RMW
1753 * read of padding, bdrv_padding_rmw_read() should be called separately if
1754 * needed.
1756 * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out:
1757 * - on function start they represent original request
1758 * - on failure or when padding is not needed they are unchanged
1759 * - on success when padding is needed they represent padded request
1761 static int bdrv_pad_request(BlockDriverState *bs,
1762 QEMUIOVector **qiov, size_t *qiov_offset,
1763 int64_t *offset, int64_t *bytes,
1764 BdrvRequestPadding *pad, bool *padded)
1766 int ret;
1768 bdrv_check_qiov_request(*offset, *bytes, *qiov, *qiov_offset, &error_abort);
1770 if (!bdrv_init_padding(bs, *offset, *bytes, pad)) {
1771 if (padded) {
1772 *padded = false;
1774 return 0;
1777 ret = qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head,
1778 *qiov, *qiov_offset, *bytes,
1779 pad->buf + pad->buf_len - pad->tail,
1780 pad->tail);
1781 if (ret < 0) {
1782 bdrv_padding_destroy(pad);
1783 return ret;
1785 *bytes += pad->head + pad->tail;
1786 *offset -= pad->head;
1787 *qiov = &pad->local_qiov;
1788 *qiov_offset = 0;
1789 if (padded) {
1790 *padded = true;
1793 return 0;
1796 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1797 int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1798 BdrvRequestFlags flags)
1800 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags);
1803 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child,
1804 int64_t offset, int64_t bytes,
1805 QEMUIOVector *qiov, size_t qiov_offset,
1806 BdrvRequestFlags flags)
1808 BlockDriverState *bs = child->bs;
1809 BdrvTrackedRequest req;
1810 BdrvRequestPadding pad;
1811 int ret;
1813 trace_bdrv_co_preadv_part(bs, offset, bytes, flags);
1815 if (!bdrv_is_inserted(bs)) {
1816 return -ENOMEDIUM;
1819 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
1820 if (ret < 0) {
1821 return ret;
1824 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
1826 * Aligning zero request is nonsense. Even if driver has special meaning
1827 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
1828 * it to driver due to request_alignment.
1830 * Still, no reason to return an error if someone do unaligned
1831 * zero-length read occasionally.
1833 return 0;
1836 bdrv_inc_in_flight(bs);
1838 /* Don't do copy-on-read if we read data before write operation */
1839 if (qatomic_read(&bs->copy_on_read)) {
1840 flags |= BDRV_REQ_COPY_ON_READ;
1843 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad,
1844 NULL);
1845 if (ret < 0) {
1846 goto fail;
1849 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1850 ret = bdrv_aligned_preadv(child, &req, offset, bytes,
1851 bs->bl.request_alignment,
1852 qiov, qiov_offset, flags);
1853 tracked_request_end(&req);
1854 bdrv_padding_destroy(&pad);
1856 fail:
1857 bdrv_dec_in_flight(bs);
1859 return ret;
1862 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1863 int64_t offset, int64_t bytes, BdrvRequestFlags flags)
1865 BlockDriver *drv = bs->drv;
1866 QEMUIOVector qiov;
1867 void *buf = NULL;
1868 int ret = 0;
1869 bool need_flush = false;
1870 int head = 0;
1871 int tail = 0;
1873 int64_t max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes,
1874 INT64_MAX);
1875 int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1876 bs->bl.request_alignment);
1877 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1879 bdrv_check_request(offset, bytes, &error_abort);
1881 if (!drv) {
1882 return -ENOMEDIUM;
1885 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) {
1886 return -ENOTSUP;
1889 /* Invalidate the cached block-status data range if this write overlaps */
1890 bdrv_bsc_invalidate_range(bs, offset, bytes);
1892 assert(alignment % bs->bl.request_alignment == 0);
1893 head = offset % alignment;
1894 tail = (offset + bytes) % alignment;
1895 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1896 assert(max_write_zeroes >= bs->bl.request_alignment);
1898 while (bytes > 0 && !ret) {
1899 int64_t num = bytes;
1901 /* Align request. Block drivers can expect the "bulk" of the request
1902 * to be aligned, and that unaligned requests do not cross cluster
1903 * boundaries.
1905 if (head) {
1906 /* Make a small request up to the first aligned sector. For
1907 * convenience, limit this request to max_transfer even if
1908 * we don't need to fall back to writes. */
1909 num = MIN(MIN(bytes, max_transfer), alignment - head);
1910 head = (head + num) % alignment;
1911 assert(num < max_write_zeroes);
1912 } else if (tail && num > alignment) {
1913 /* Shorten the request to the last aligned sector. */
1914 num -= tail;
1917 /* limit request size */
1918 if (num > max_write_zeroes) {
1919 num = max_write_zeroes;
1922 ret = -ENOTSUP;
1923 /* First try the efficient write zeroes operation */
1924 if (drv->bdrv_co_pwrite_zeroes) {
1925 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1926 flags & bs->supported_zero_flags);
1927 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1928 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1929 need_flush = true;
1931 } else {
1932 assert(!bs->supported_zero_flags);
1935 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) {
1936 /* Fall back to bounce buffer if write zeroes is unsupported */
1937 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1939 if ((flags & BDRV_REQ_FUA) &&
1940 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1941 /* No need for bdrv_driver_pwrite() to do a fallback
1942 * flush on each chunk; use just one at the end */
1943 write_flags &= ~BDRV_REQ_FUA;
1944 need_flush = true;
1946 num = MIN(num, max_transfer);
1947 if (buf == NULL) {
1948 buf = qemu_try_blockalign0(bs, num);
1949 if (buf == NULL) {
1950 ret = -ENOMEM;
1951 goto fail;
1954 qemu_iovec_init_buf(&qiov, buf, num);
1956 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags);
1958 /* Keep bounce buffer around if it is big enough for all
1959 * all future requests.
1961 if (num < max_transfer) {
1962 qemu_vfree(buf);
1963 buf = NULL;
1967 offset += num;
1968 bytes -= num;
1971 fail:
1972 if (ret == 0 && need_flush) {
1973 ret = bdrv_co_flush(bs);
1975 qemu_vfree(buf);
1976 return ret;
1979 static inline int coroutine_fn
1980 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes,
1981 BdrvTrackedRequest *req, int flags)
1983 BlockDriverState *bs = child->bs;
1985 bdrv_check_request(offset, bytes, &error_abort);
1987 if (bdrv_is_read_only(bs)) {
1988 return -EPERM;
1991 assert(!(bs->open_flags & BDRV_O_INACTIVE));
1992 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1993 assert(!(flags & ~BDRV_REQ_MASK));
1994 assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING)));
1996 if (flags & BDRV_REQ_SERIALISING) {
1997 QEMU_LOCK_GUARD(&bs->reqs_lock);
1999 tracked_request_set_serialising(req, bdrv_get_cluster_size(bs));
2001 if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) {
2002 return -EBUSY;
2005 bdrv_wait_serialising_requests_locked(req);
2006 } else {
2007 bdrv_wait_serialising_requests(req);
2010 assert(req->overlap_offset <= offset);
2011 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
2012 assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE ||
2013 child->perm & BLK_PERM_RESIZE);
2015 switch (req->type) {
2016 case BDRV_TRACKED_WRITE:
2017 case BDRV_TRACKED_DISCARD:
2018 if (flags & BDRV_REQ_WRITE_UNCHANGED) {
2019 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
2020 } else {
2021 assert(child->perm & BLK_PERM_WRITE);
2023 bdrv_write_threshold_check_write(bs, offset, bytes);
2024 return 0;
2025 case BDRV_TRACKED_TRUNCATE:
2026 assert(child->perm & BLK_PERM_RESIZE);
2027 return 0;
2028 default:
2029 abort();
2033 static inline void coroutine_fn
2034 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes,
2035 BdrvTrackedRequest *req, int ret)
2037 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
2038 BlockDriverState *bs = child->bs;
2040 bdrv_check_request(offset, bytes, &error_abort);
2042 qatomic_inc(&bs->write_gen);
2045 * Discard cannot extend the image, but in error handling cases, such as
2046 * when reverting a qcow2 cluster allocation, the discarded range can pass
2047 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
2048 * here. Instead, just skip it, since semantically a discard request
2049 * beyond EOF cannot expand the image anyway.
2051 if (ret == 0 &&
2052 (req->type == BDRV_TRACKED_TRUNCATE ||
2053 end_sector > bs->total_sectors) &&
2054 req->type != BDRV_TRACKED_DISCARD) {
2055 bs->total_sectors = end_sector;
2056 bdrv_parent_cb_resize(bs);
2057 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
2059 if (req->bytes) {
2060 switch (req->type) {
2061 case BDRV_TRACKED_WRITE:
2062 stat64_max(&bs->wr_highest_offset, offset + bytes);
2063 /* fall through, to set dirty bits */
2064 case BDRV_TRACKED_DISCARD:
2065 bdrv_set_dirty(bs, offset, bytes);
2066 break;
2067 default:
2068 break;
2074 * Forwards an already correctly aligned write request to the BlockDriver,
2075 * after possibly fragmenting it.
2077 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
2078 BdrvTrackedRequest *req, int64_t offset, int64_t bytes,
2079 int64_t align, QEMUIOVector *qiov, size_t qiov_offset,
2080 BdrvRequestFlags flags)
2082 BlockDriverState *bs = child->bs;
2083 BlockDriver *drv = bs->drv;
2084 int ret;
2086 int64_t bytes_remaining = bytes;
2087 int max_transfer;
2089 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
2091 if (!drv) {
2092 return -ENOMEDIUM;
2095 if (bdrv_has_readonly_bitmaps(bs)) {
2096 return -EPERM;
2099 assert(is_power_of_2(align));
2100 assert((offset & (align - 1)) == 0);
2101 assert((bytes & (align - 1)) == 0);
2102 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
2103 align);
2105 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
2107 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
2108 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
2109 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) {
2110 flags |= BDRV_REQ_ZERO_WRITE;
2111 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
2112 flags |= BDRV_REQ_MAY_UNMAP;
2116 if (ret < 0) {
2117 /* Do nothing, write notifier decided to fail this request */
2118 } else if (flags & BDRV_REQ_ZERO_WRITE) {
2119 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
2120 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
2121 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
2122 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes,
2123 qiov, qiov_offset);
2124 } else if (bytes <= max_transfer) {
2125 bdrv_debug_event(bs, BLKDBG_PWRITEV);
2126 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags);
2127 } else {
2128 bdrv_debug_event(bs, BLKDBG_PWRITEV);
2129 while (bytes_remaining) {
2130 int num = MIN(bytes_remaining, max_transfer);
2131 int local_flags = flags;
2133 assert(num);
2134 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
2135 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
2136 /* If FUA is going to be emulated by flush, we only
2137 * need to flush on the last iteration */
2138 local_flags &= ~BDRV_REQ_FUA;
2141 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
2142 num, qiov,
2143 qiov_offset + bytes - bytes_remaining,
2144 local_flags);
2145 if (ret < 0) {
2146 break;
2148 bytes_remaining -= num;
2151 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
2153 if (ret >= 0) {
2154 ret = 0;
2156 bdrv_co_write_req_finish(child, offset, bytes, req, ret);
2158 return ret;
2161 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
2162 int64_t offset,
2163 int64_t bytes,
2164 BdrvRequestFlags flags,
2165 BdrvTrackedRequest *req)
2167 BlockDriverState *bs = child->bs;
2168 QEMUIOVector local_qiov;
2169 uint64_t align = bs->bl.request_alignment;
2170 int ret = 0;
2171 bool padding;
2172 BdrvRequestPadding pad;
2174 padding = bdrv_init_padding(bs, offset, bytes, &pad);
2175 if (padding) {
2176 bdrv_make_request_serialising(req, align);
2178 bdrv_padding_rmw_read(child, req, &pad, true);
2180 if (pad.head || pad.merge_reads) {
2181 int64_t aligned_offset = offset & ~(align - 1);
2182 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align;
2184 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes);
2185 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes,
2186 align, &local_qiov, 0,
2187 flags & ~BDRV_REQ_ZERO_WRITE);
2188 if (ret < 0 || pad.merge_reads) {
2189 /* Error or all work is done */
2190 goto out;
2192 offset += write_bytes - pad.head;
2193 bytes -= write_bytes - pad.head;
2197 assert(!bytes || (offset & (align - 1)) == 0);
2198 if (bytes >= align) {
2199 /* Write the aligned part in the middle. */
2200 int64_t aligned_bytes = bytes & ~(align - 1);
2201 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
2202 NULL, 0, flags);
2203 if (ret < 0) {
2204 goto out;
2206 bytes -= aligned_bytes;
2207 offset += aligned_bytes;
2210 assert(!bytes || (offset & (align - 1)) == 0);
2211 if (bytes) {
2212 assert(align == pad.tail + bytes);
2214 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align);
2215 ret = bdrv_aligned_pwritev(child, req, offset, align, align,
2216 &local_qiov, 0,
2217 flags & ~BDRV_REQ_ZERO_WRITE);
2220 out:
2221 bdrv_padding_destroy(&pad);
2223 return ret;
2227 * Handle a write request in coroutine context
2229 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
2230 int64_t offset, int64_t bytes, QEMUIOVector *qiov,
2231 BdrvRequestFlags flags)
2233 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags);
2236 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child,
2237 int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset,
2238 BdrvRequestFlags flags)
2240 BlockDriverState *bs = child->bs;
2241 BdrvTrackedRequest req;
2242 uint64_t align = bs->bl.request_alignment;
2243 BdrvRequestPadding pad;
2244 int ret;
2245 bool padded = false;
2247 trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags);
2249 if (!bdrv_is_inserted(bs)) {
2250 return -ENOMEDIUM;
2253 if (flags & BDRV_REQ_ZERO_WRITE) {
2254 ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
2255 } else {
2256 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
2258 if (ret < 0) {
2259 return ret;
2262 /* If the request is misaligned then we can't make it efficient */
2263 if ((flags & BDRV_REQ_NO_FALLBACK) &&
2264 !QEMU_IS_ALIGNED(offset | bytes, align))
2266 return -ENOTSUP;
2269 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
2271 * Aligning zero request is nonsense. Even if driver has special meaning
2272 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
2273 * it to driver due to request_alignment.
2275 * Still, no reason to return an error if someone do unaligned
2276 * zero-length write occasionally.
2278 return 0;
2281 if (!(flags & BDRV_REQ_ZERO_WRITE)) {
2283 * Pad request for following read-modify-write cycle.
2284 * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do
2285 * alignment only if there is no ZERO flag.
2287 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad,
2288 &padded);
2289 if (ret < 0) {
2290 return ret;
2294 bdrv_inc_in_flight(bs);
2295 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
2297 if (flags & BDRV_REQ_ZERO_WRITE) {
2298 assert(!padded);
2299 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
2300 goto out;
2303 if (padded) {
2305 * Request was unaligned to request_alignment and therefore
2306 * padded. We are going to do read-modify-write, and must
2307 * serialize the request to prevent interactions of the
2308 * widened region with other transactions.
2310 bdrv_make_request_serialising(&req, align);
2311 bdrv_padding_rmw_read(child, &req, &pad, false);
2314 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
2315 qiov, qiov_offset, flags);
2317 bdrv_padding_destroy(&pad);
2319 out:
2320 tracked_request_end(&req);
2321 bdrv_dec_in_flight(bs);
2323 return ret;
2326 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
2327 int64_t bytes, BdrvRequestFlags flags)
2329 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
2331 if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
2332 flags &= ~BDRV_REQ_MAY_UNMAP;
2335 return bdrv_co_pwritev(child, offset, bytes, NULL,
2336 BDRV_REQ_ZERO_WRITE | flags);
2340 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
2342 int bdrv_flush_all(void)
2344 BdrvNextIterator it;
2345 BlockDriverState *bs = NULL;
2346 int result = 0;
2349 * bdrv queue is managed by record/replay,
2350 * creating new flush request for stopping
2351 * the VM may break the determinism
2353 if (replay_events_enabled()) {
2354 return result;
2357 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
2358 AioContext *aio_context = bdrv_get_aio_context(bs);
2359 int ret;
2361 aio_context_acquire(aio_context);
2362 ret = bdrv_flush(bs);
2363 if (ret < 0 && !result) {
2364 result = ret;
2366 aio_context_release(aio_context);
2369 return result;
2373 * Returns the allocation status of the specified sectors.
2374 * Drivers not implementing the functionality are assumed to not support
2375 * backing files, hence all their sectors are reported as allocated.
2377 * If 'want_zero' is true, the caller is querying for mapping
2378 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
2379 * _ZERO where possible; otherwise, the result favors larger 'pnum',
2380 * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2382 * If 'offset' is beyond the end of the disk image the return value is
2383 * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2385 * 'bytes' is the max value 'pnum' should be set to. If bytes goes
2386 * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2387 * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2389 * 'pnum' is set to the number of bytes (including and immediately
2390 * following the specified offset) that are easily known to be in the
2391 * same allocated/unallocated state. Note that a second call starting
2392 * at the original offset plus returned pnum may have the same status.
2393 * The returned value is non-zero on success except at end-of-file.
2395 * Returns negative errno on failure. Otherwise, if the
2396 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2397 * set to the host mapping and BDS corresponding to the guest offset.
2399 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs,
2400 bool want_zero,
2401 int64_t offset, int64_t bytes,
2402 int64_t *pnum, int64_t *map,
2403 BlockDriverState **file)
2405 int64_t total_size;
2406 int64_t n; /* bytes */
2407 int ret;
2408 int64_t local_map = 0;
2409 BlockDriverState *local_file = NULL;
2410 int64_t aligned_offset, aligned_bytes;
2411 uint32_t align;
2412 bool has_filtered_child;
2414 assert(pnum);
2415 *pnum = 0;
2416 total_size = bdrv_getlength(bs);
2417 if (total_size < 0) {
2418 ret = total_size;
2419 goto early_out;
2422 if (offset >= total_size) {
2423 ret = BDRV_BLOCK_EOF;
2424 goto early_out;
2426 if (!bytes) {
2427 ret = 0;
2428 goto early_out;
2431 n = total_size - offset;
2432 if (n < bytes) {
2433 bytes = n;
2436 /* Must be non-NULL or bdrv_getlength() would have failed */
2437 assert(bs->drv);
2438 has_filtered_child = bdrv_filter_child(bs);
2439 if (!bs->drv->bdrv_co_block_status && !has_filtered_child) {
2440 *pnum = bytes;
2441 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2442 if (offset + bytes == total_size) {
2443 ret |= BDRV_BLOCK_EOF;
2445 if (bs->drv->protocol_name) {
2446 ret |= BDRV_BLOCK_OFFSET_VALID;
2447 local_map = offset;
2448 local_file = bs;
2450 goto early_out;
2453 bdrv_inc_in_flight(bs);
2455 /* Round out to request_alignment boundaries */
2456 align = bs->bl.request_alignment;
2457 aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2458 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2460 if (bs->drv->bdrv_co_block_status) {
2462 * Use the block-status cache only for protocol nodes: Format
2463 * drivers are generally quick to inquire the status, but protocol
2464 * drivers often need to get information from outside of qemu, so
2465 * we do not have control over the actual implementation. There
2466 * have been cases where inquiring the status took an unreasonably
2467 * long time, and we can do nothing in qemu to fix it.
2468 * This is especially problematic for images with large data areas,
2469 * because finding the few holes in them and giving them special
2470 * treatment does not gain much performance. Therefore, we try to
2471 * cache the last-identified data region.
2473 * Second, limiting ourselves to protocol nodes allows us to assume
2474 * the block status for data regions to be DATA | OFFSET_VALID, and
2475 * that the host offset is the same as the guest offset.
2477 * Note that it is possible that external writers zero parts of
2478 * the cached regions without the cache being invalidated, and so
2479 * we may report zeroes as data. This is not catastrophic,
2480 * however, because reporting zeroes as data is fine.
2482 if (QLIST_EMPTY(&bs->children) &&
2483 bdrv_bsc_is_data(bs, aligned_offset, pnum))
2485 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
2486 local_file = bs;
2487 local_map = aligned_offset;
2488 } else {
2489 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2490 aligned_bytes, pnum, &local_map,
2491 &local_file);
2494 * Note that checking QLIST_EMPTY(&bs->children) is also done when
2495 * the cache is queried above. Technically, we do not need to check
2496 * it here; the worst that can happen is that we fill the cache for
2497 * non-protocol nodes, and then it is never used. However, filling
2498 * the cache requires an RCU update, so double check here to avoid
2499 * such an update if possible.
2501 if (ret == (BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID) &&
2502 QLIST_EMPTY(&bs->children))
2505 * When a protocol driver reports BLOCK_OFFSET_VALID, the
2506 * returned local_map value must be the same as the offset we
2507 * have passed (aligned_offset), and local_bs must be the node
2508 * itself.
2509 * Assert this, because we follow this rule when reading from
2510 * the cache (see the `local_file = bs` and
2511 * `local_map = aligned_offset` assignments above), and the
2512 * result the cache delivers must be the same as the driver
2513 * would deliver.
2515 assert(local_file == bs);
2516 assert(local_map == aligned_offset);
2517 bdrv_bsc_fill(bs, aligned_offset, *pnum);
2520 } else {
2521 /* Default code for filters */
2523 local_file = bdrv_filter_bs(bs);
2524 assert(local_file);
2526 *pnum = aligned_bytes;
2527 local_map = aligned_offset;
2528 ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2530 if (ret < 0) {
2531 *pnum = 0;
2532 goto out;
2536 * The driver's result must be a non-zero multiple of request_alignment.
2537 * Clamp pnum and adjust map to original request.
2539 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2540 align > offset - aligned_offset);
2541 if (ret & BDRV_BLOCK_RECURSE) {
2542 assert(ret & BDRV_BLOCK_DATA);
2543 assert(ret & BDRV_BLOCK_OFFSET_VALID);
2544 assert(!(ret & BDRV_BLOCK_ZERO));
2547 *pnum -= offset - aligned_offset;
2548 if (*pnum > bytes) {
2549 *pnum = bytes;
2551 if (ret & BDRV_BLOCK_OFFSET_VALID) {
2552 local_map += offset - aligned_offset;
2555 if (ret & BDRV_BLOCK_RAW) {
2556 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2557 ret = bdrv_co_block_status(local_file, want_zero, local_map,
2558 *pnum, pnum, &local_map, &local_file);
2559 goto out;
2562 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2563 ret |= BDRV_BLOCK_ALLOCATED;
2564 } else if (bs->drv->supports_backing) {
2565 BlockDriverState *cow_bs = bdrv_cow_bs(bs);
2567 if (!cow_bs) {
2568 ret |= BDRV_BLOCK_ZERO;
2569 } else if (want_zero) {
2570 int64_t size2 = bdrv_getlength(cow_bs);
2572 if (size2 >= 0 && offset >= size2) {
2573 ret |= BDRV_BLOCK_ZERO;
2578 if (want_zero && ret & BDRV_BLOCK_RECURSE &&
2579 local_file && local_file != bs &&
2580 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2581 (ret & BDRV_BLOCK_OFFSET_VALID)) {
2582 int64_t file_pnum;
2583 int ret2;
2585 ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2586 *pnum, &file_pnum, NULL, NULL);
2587 if (ret2 >= 0) {
2588 /* Ignore errors. This is just providing extra information, it
2589 * is useful but not necessary.
2591 if (ret2 & BDRV_BLOCK_EOF &&
2592 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2594 * It is valid for the format block driver to read
2595 * beyond the end of the underlying file's current
2596 * size; such areas read as zero.
2598 ret |= BDRV_BLOCK_ZERO;
2599 } else {
2600 /* Limit request to the range reported by the protocol driver */
2601 *pnum = file_pnum;
2602 ret |= (ret2 & BDRV_BLOCK_ZERO);
2607 out:
2608 bdrv_dec_in_flight(bs);
2609 if (ret >= 0 && offset + *pnum == total_size) {
2610 ret |= BDRV_BLOCK_EOF;
2612 early_out:
2613 if (file) {
2614 *file = local_file;
2616 if (map) {
2617 *map = local_map;
2619 return ret;
2622 int coroutine_fn
2623 bdrv_co_common_block_status_above(BlockDriverState *bs,
2624 BlockDriverState *base,
2625 bool include_base,
2626 bool want_zero,
2627 int64_t offset,
2628 int64_t bytes,
2629 int64_t *pnum,
2630 int64_t *map,
2631 BlockDriverState **file,
2632 int *depth)
2634 int ret;
2635 BlockDriverState *p;
2636 int64_t eof = 0;
2637 int dummy;
2639 assert(!include_base || base); /* Can't include NULL base */
2641 if (!depth) {
2642 depth = &dummy;
2644 *depth = 0;
2646 if (!include_base && bs == base) {
2647 *pnum = bytes;
2648 return 0;
2651 ret = bdrv_co_block_status(bs, want_zero, offset, bytes, pnum, map, file);
2652 ++*depth;
2653 if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) {
2654 return ret;
2657 if (ret & BDRV_BLOCK_EOF) {
2658 eof = offset + *pnum;
2661 assert(*pnum <= bytes);
2662 bytes = *pnum;
2664 for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base;
2665 p = bdrv_filter_or_cow_bs(p))
2667 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2668 file);
2669 ++*depth;
2670 if (ret < 0) {
2671 return ret;
2673 if (*pnum == 0) {
2675 * The top layer deferred to this layer, and because this layer is
2676 * short, any zeroes that we synthesize beyond EOF behave as if they
2677 * were allocated at this layer.
2679 * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be
2680 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2681 * below.
2683 assert(ret & BDRV_BLOCK_EOF);
2684 *pnum = bytes;
2685 if (file) {
2686 *file = p;
2688 ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED;
2689 break;
2691 if (ret & BDRV_BLOCK_ALLOCATED) {
2693 * We've found the node and the status, we must break.
2695 * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be
2696 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2697 * below.
2699 ret &= ~BDRV_BLOCK_EOF;
2700 break;
2703 if (p == base) {
2704 assert(include_base);
2705 break;
2709 * OK, [offset, offset + *pnum) region is unallocated on this layer,
2710 * let's continue the diving.
2712 assert(*pnum <= bytes);
2713 bytes = *pnum;
2716 if (offset + *pnum == eof) {
2717 ret |= BDRV_BLOCK_EOF;
2720 return ret;
2723 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2724 int64_t offset, int64_t bytes, int64_t *pnum,
2725 int64_t *map, BlockDriverState **file)
2727 return bdrv_common_block_status_above(bs, base, false, true, offset, bytes,
2728 pnum, map, file, NULL);
2731 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2732 int64_t *pnum, int64_t *map, BlockDriverState **file)
2734 return bdrv_block_status_above(bs, bdrv_filter_or_cow_bs(bs),
2735 offset, bytes, pnum, map, file);
2739 * Check @bs (and its backing chain) to see if the range defined
2740 * by @offset and @bytes is known to read as zeroes.
2741 * Return 1 if that is the case, 0 otherwise and -errno on error.
2742 * This test is meant to be fast rather than accurate so returning 0
2743 * does not guarantee non-zero data.
2745 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset,
2746 int64_t bytes)
2748 int ret;
2749 int64_t pnum = bytes;
2751 if (!bytes) {
2752 return 1;
2755 ret = bdrv_common_block_status_above(bs, NULL, false, false, offset,
2756 bytes, &pnum, NULL, NULL, NULL);
2758 if (ret < 0) {
2759 return ret;
2762 return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO);
2765 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset,
2766 int64_t bytes, int64_t *pnum)
2768 int ret;
2769 int64_t dummy;
2771 ret = bdrv_common_block_status_above(bs, bs, true, false, offset,
2772 bytes, pnum ? pnum : &dummy, NULL,
2773 NULL, NULL);
2774 if (ret < 0) {
2775 return ret;
2777 return !!(ret & BDRV_BLOCK_ALLOCATED);
2781 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2783 * Return a positive depth if (a prefix of) the given range is allocated
2784 * in any image between BASE and TOP (BASE is only included if include_base
2785 * is set). Depth 1 is TOP, 2 is the first backing layer, and so forth.
2786 * BASE can be NULL to check if the given offset is allocated in any
2787 * image of the chain. Return 0 otherwise, or negative errno on
2788 * failure.
2790 * 'pnum' is set to the number of bytes (including and immediately
2791 * following the specified offset) that are known to be in the same
2792 * allocated/unallocated state. Note that a subsequent call starting
2793 * at 'offset + *pnum' may return the same allocation status (in other
2794 * words, the result is not necessarily the maximum possible range);
2795 * but 'pnum' will only be 0 when end of file is reached.
2797 int bdrv_is_allocated_above(BlockDriverState *top,
2798 BlockDriverState *base,
2799 bool include_base, int64_t offset,
2800 int64_t bytes, int64_t *pnum)
2802 int depth;
2803 int ret = bdrv_common_block_status_above(top, base, include_base, false,
2804 offset, bytes, pnum, NULL, NULL,
2805 &depth);
2806 if (ret < 0) {
2807 return ret;
2810 if (ret & BDRV_BLOCK_ALLOCATED) {
2811 return depth;
2813 return 0;
2816 int coroutine_fn
2817 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2819 BlockDriver *drv = bs->drv;
2820 BlockDriverState *child_bs = bdrv_primary_bs(bs);
2821 int ret;
2823 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2824 if (ret < 0) {
2825 return ret;
2828 if (!drv) {
2829 return -ENOMEDIUM;
2832 bdrv_inc_in_flight(bs);
2834 if (drv->bdrv_load_vmstate) {
2835 ret = drv->bdrv_load_vmstate(bs, qiov, pos);
2836 } else if (child_bs) {
2837 ret = bdrv_co_readv_vmstate(child_bs, qiov, pos);
2838 } else {
2839 ret = -ENOTSUP;
2842 bdrv_dec_in_flight(bs);
2844 return ret;
2847 int coroutine_fn
2848 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2850 BlockDriver *drv = bs->drv;
2851 BlockDriverState *child_bs = bdrv_primary_bs(bs);
2852 int ret;
2854 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2855 if (ret < 0) {
2856 return ret;
2859 if (!drv) {
2860 return -ENOMEDIUM;
2863 bdrv_inc_in_flight(bs);
2865 if (drv->bdrv_save_vmstate) {
2866 ret = drv->bdrv_save_vmstate(bs, qiov, pos);
2867 } else if (child_bs) {
2868 ret = bdrv_co_writev_vmstate(child_bs, qiov, pos);
2869 } else {
2870 ret = -ENOTSUP;
2873 bdrv_dec_in_flight(bs);
2875 return ret;
2878 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2879 int64_t pos, int size)
2881 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2882 int ret = bdrv_writev_vmstate(bs, &qiov, pos);
2884 return ret < 0 ? ret : size;
2887 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2888 int64_t pos, int size)
2890 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2891 int ret = bdrv_readv_vmstate(bs, &qiov, pos);
2893 return ret < 0 ? ret : size;
2896 /**************************************************************/
2897 /* async I/Os */
2899 void bdrv_aio_cancel(BlockAIOCB *acb)
2901 qemu_aio_ref(acb);
2902 bdrv_aio_cancel_async(acb);
2903 while (acb->refcnt > 1) {
2904 if (acb->aiocb_info->get_aio_context) {
2905 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2906 } else if (acb->bs) {
2907 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2908 * assert that we're not using an I/O thread. Thread-safe
2909 * code should use bdrv_aio_cancel_async exclusively.
2911 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2912 aio_poll(bdrv_get_aio_context(acb->bs), true);
2913 } else {
2914 abort();
2917 qemu_aio_unref(acb);
2920 /* Async version of aio cancel. The caller is not blocked if the acb implements
2921 * cancel_async, otherwise we do nothing and let the request normally complete.
2922 * In either case the completion callback must be called. */
2923 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2925 if (acb->aiocb_info->cancel_async) {
2926 acb->aiocb_info->cancel_async(acb);
2930 /**************************************************************/
2931 /* Coroutine block device emulation */
2933 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2935 BdrvChild *primary_child = bdrv_primary_child(bs);
2936 BdrvChild *child;
2937 int current_gen;
2938 int ret = 0;
2940 bdrv_inc_in_flight(bs);
2942 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2943 bdrv_is_sg(bs)) {
2944 goto early_exit;
2947 qemu_co_mutex_lock(&bs->reqs_lock);
2948 current_gen = qatomic_read(&bs->write_gen);
2950 /* Wait until any previous flushes are completed */
2951 while (bs->active_flush_req) {
2952 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2955 /* Flushes reach this point in nondecreasing current_gen order. */
2956 bs->active_flush_req = true;
2957 qemu_co_mutex_unlock(&bs->reqs_lock);
2959 /* Write back all layers by calling one driver function */
2960 if (bs->drv->bdrv_co_flush) {
2961 ret = bs->drv->bdrv_co_flush(bs);
2962 goto out;
2965 /* Write back cached data to the OS even with cache=unsafe */
2966 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_OS);
2967 if (bs->drv->bdrv_co_flush_to_os) {
2968 ret = bs->drv->bdrv_co_flush_to_os(bs);
2969 if (ret < 0) {
2970 goto out;
2974 /* But don't actually force it to the disk with cache=unsafe */
2975 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2976 goto flush_children;
2979 /* Check if we really need to flush anything */
2980 if (bs->flushed_gen == current_gen) {
2981 goto flush_children;
2984 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK);
2985 if (!bs->drv) {
2986 /* bs->drv->bdrv_co_flush() might have ejected the BDS
2987 * (even in case of apparent success) */
2988 ret = -ENOMEDIUM;
2989 goto out;
2991 if (bs->drv->bdrv_co_flush_to_disk) {
2992 ret = bs->drv->bdrv_co_flush_to_disk(bs);
2993 } else if (bs->drv->bdrv_aio_flush) {
2994 BlockAIOCB *acb;
2995 CoroutineIOCompletion co = {
2996 .coroutine = qemu_coroutine_self(),
2999 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
3000 if (acb == NULL) {
3001 ret = -EIO;
3002 } else {
3003 qemu_coroutine_yield();
3004 ret = co.ret;
3006 } else {
3008 * Some block drivers always operate in either writethrough or unsafe
3009 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
3010 * know how the server works (because the behaviour is hardcoded or
3011 * depends on server-side configuration), so we can't ensure that
3012 * everything is safe on disk. Returning an error doesn't work because
3013 * that would break guests even if the server operates in writethrough
3014 * mode.
3016 * Let's hope the user knows what he's doing.
3018 ret = 0;
3021 if (ret < 0) {
3022 goto out;
3025 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
3026 * in the case of cache=unsafe, so there are no useless flushes.
3028 flush_children:
3029 ret = 0;
3030 QLIST_FOREACH(child, &bs->children, next) {
3031 if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) {
3032 int this_child_ret = bdrv_co_flush(child->bs);
3033 if (!ret) {
3034 ret = this_child_ret;
3039 out:
3040 /* Notify any pending flushes that we have completed */
3041 if (ret == 0) {
3042 bs->flushed_gen = current_gen;
3045 qemu_co_mutex_lock(&bs->reqs_lock);
3046 bs->active_flush_req = false;
3047 /* Return value is ignored - it's ok if wait queue is empty */
3048 qemu_co_queue_next(&bs->flush_queue);
3049 qemu_co_mutex_unlock(&bs->reqs_lock);
3051 early_exit:
3052 bdrv_dec_in_flight(bs);
3053 return ret;
3056 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset,
3057 int64_t bytes)
3059 BdrvTrackedRequest req;
3060 int ret;
3061 int64_t max_pdiscard;
3062 int head, tail, align;
3063 BlockDriverState *bs = child->bs;
3065 if (!bs || !bs->drv || !bdrv_is_inserted(bs)) {
3066 return -ENOMEDIUM;
3069 if (bdrv_has_readonly_bitmaps(bs)) {
3070 return -EPERM;
3073 ret = bdrv_check_request(offset, bytes, NULL);
3074 if (ret < 0) {
3075 return ret;
3078 /* Do nothing if disabled. */
3079 if (!(bs->open_flags & BDRV_O_UNMAP)) {
3080 return 0;
3083 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
3084 return 0;
3087 /* Invalidate the cached block-status data range if this discard overlaps */
3088 bdrv_bsc_invalidate_range(bs, offset, bytes);
3090 /* Discard is advisory, but some devices track and coalesce
3091 * unaligned requests, so we must pass everything down rather than
3092 * round here. Still, most devices will just silently ignore
3093 * unaligned requests (by returning -ENOTSUP), so we must fragment
3094 * the request accordingly. */
3095 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
3096 assert(align % bs->bl.request_alignment == 0);
3097 head = offset % align;
3098 tail = (offset + bytes) % align;
3100 bdrv_inc_in_flight(bs);
3101 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
3103 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
3104 if (ret < 0) {
3105 goto out;
3108 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT64_MAX),
3109 align);
3110 assert(max_pdiscard >= bs->bl.request_alignment);
3112 while (bytes > 0) {
3113 int64_t num = bytes;
3115 if (head) {
3116 /* Make small requests to get to alignment boundaries. */
3117 num = MIN(bytes, align - head);
3118 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
3119 num %= bs->bl.request_alignment;
3121 head = (head + num) % align;
3122 assert(num < max_pdiscard);
3123 } else if (tail) {
3124 if (num > align) {
3125 /* Shorten the request to the last aligned cluster. */
3126 num -= tail;
3127 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
3128 tail > bs->bl.request_alignment) {
3129 tail %= bs->bl.request_alignment;
3130 num -= tail;
3133 /* limit request size */
3134 if (num > max_pdiscard) {
3135 num = max_pdiscard;
3138 if (!bs->drv) {
3139 ret = -ENOMEDIUM;
3140 goto out;
3142 if (bs->drv->bdrv_co_pdiscard) {
3143 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
3144 } else {
3145 BlockAIOCB *acb;
3146 CoroutineIOCompletion co = {
3147 .coroutine = qemu_coroutine_self(),
3150 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
3151 bdrv_co_io_em_complete, &co);
3152 if (acb == NULL) {
3153 ret = -EIO;
3154 goto out;
3155 } else {
3156 qemu_coroutine_yield();
3157 ret = co.ret;
3160 if (ret && ret != -ENOTSUP) {
3161 goto out;
3164 offset += num;
3165 bytes -= num;
3167 ret = 0;
3168 out:
3169 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
3170 tracked_request_end(&req);
3171 bdrv_dec_in_flight(bs);
3172 return ret;
3175 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
3177 BlockDriver *drv = bs->drv;
3178 CoroutineIOCompletion co = {
3179 .coroutine = qemu_coroutine_self(),
3181 BlockAIOCB *acb;
3183 bdrv_inc_in_flight(bs);
3184 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
3185 co.ret = -ENOTSUP;
3186 goto out;
3189 if (drv->bdrv_co_ioctl) {
3190 co.ret = drv->bdrv_co_ioctl(bs, req, buf);
3191 } else {
3192 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
3193 if (!acb) {
3194 co.ret = -ENOTSUP;
3195 goto out;
3197 qemu_coroutine_yield();
3199 out:
3200 bdrv_dec_in_flight(bs);
3201 return co.ret;
3204 void *qemu_blockalign(BlockDriverState *bs, size_t size)
3206 return qemu_memalign(bdrv_opt_mem_align(bs), size);
3209 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
3211 return memset(qemu_blockalign(bs, size), 0, size);
3214 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
3216 size_t align = bdrv_opt_mem_align(bs);
3218 /* Ensure that NULL is never returned on success */
3219 assert(align > 0);
3220 if (size == 0) {
3221 size = align;
3224 return qemu_try_memalign(align, size);
3227 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
3229 void *mem = qemu_try_blockalign(bs, size);
3231 if (mem) {
3232 memset(mem, 0, size);
3235 return mem;
3239 * Check if all memory in this vector is sector aligned.
3241 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
3243 int i;
3244 size_t alignment = bdrv_min_mem_align(bs);
3246 for (i = 0; i < qiov->niov; i++) {
3247 if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
3248 return false;
3250 if (qiov->iov[i].iov_len % alignment) {
3251 return false;
3255 return true;
3258 void bdrv_io_plug(BlockDriverState *bs)
3260 BdrvChild *child;
3262 QLIST_FOREACH(child, &bs->children, next) {
3263 bdrv_io_plug(child->bs);
3266 if (qatomic_fetch_inc(&bs->io_plugged) == 0) {
3267 BlockDriver *drv = bs->drv;
3268 if (drv && drv->bdrv_io_plug) {
3269 drv->bdrv_io_plug(bs);
3274 void bdrv_io_unplug(BlockDriverState *bs)
3276 BdrvChild *child;
3278 assert(bs->io_plugged);
3279 if (qatomic_fetch_dec(&bs->io_plugged) == 1) {
3280 BlockDriver *drv = bs->drv;
3281 if (drv && drv->bdrv_io_unplug) {
3282 drv->bdrv_io_unplug(bs);
3286 QLIST_FOREACH(child, &bs->children, next) {
3287 bdrv_io_unplug(child->bs);
3291 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size)
3293 BdrvChild *child;
3295 if (bs->drv && bs->drv->bdrv_register_buf) {
3296 bs->drv->bdrv_register_buf(bs, host, size);
3298 QLIST_FOREACH(child, &bs->children, next) {
3299 bdrv_register_buf(child->bs, host, size);
3303 void bdrv_unregister_buf(BlockDriverState *bs, void *host)
3305 BdrvChild *child;
3307 if (bs->drv && bs->drv->bdrv_unregister_buf) {
3308 bs->drv->bdrv_unregister_buf(bs, host);
3310 QLIST_FOREACH(child, &bs->children, next) {
3311 bdrv_unregister_buf(child->bs, host);
3315 static int coroutine_fn bdrv_co_copy_range_internal(
3316 BdrvChild *src, int64_t src_offset, BdrvChild *dst,
3317 int64_t dst_offset, int64_t bytes,
3318 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
3319 bool recurse_src)
3321 BdrvTrackedRequest req;
3322 int ret;
3324 /* TODO We can support BDRV_REQ_NO_FALLBACK here */
3325 assert(!(read_flags & BDRV_REQ_NO_FALLBACK));
3326 assert(!(write_flags & BDRV_REQ_NO_FALLBACK));
3328 if (!dst || !dst->bs || !bdrv_is_inserted(dst->bs)) {
3329 return -ENOMEDIUM;
3331 ret = bdrv_check_request32(dst_offset, bytes, NULL, 0);
3332 if (ret) {
3333 return ret;
3335 if (write_flags & BDRV_REQ_ZERO_WRITE) {
3336 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
3339 if (!src || !src->bs || !bdrv_is_inserted(src->bs)) {
3340 return -ENOMEDIUM;
3342 ret = bdrv_check_request32(src_offset, bytes, NULL, 0);
3343 if (ret) {
3344 return ret;
3347 if (!src->bs->drv->bdrv_co_copy_range_from
3348 || !dst->bs->drv->bdrv_co_copy_range_to
3349 || src->bs->encrypted || dst->bs->encrypted) {
3350 return -ENOTSUP;
3353 if (recurse_src) {
3354 bdrv_inc_in_flight(src->bs);
3355 tracked_request_begin(&req, src->bs, src_offset, bytes,
3356 BDRV_TRACKED_READ);
3358 /* BDRV_REQ_SERIALISING is only for write operation */
3359 assert(!(read_flags & BDRV_REQ_SERIALISING));
3360 bdrv_wait_serialising_requests(&req);
3362 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
3363 src, src_offset,
3364 dst, dst_offset,
3365 bytes,
3366 read_flags, write_flags);
3368 tracked_request_end(&req);
3369 bdrv_dec_in_flight(src->bs);
3370 } else {
3371 bdrv_inc_in_flight(dst->bs);
3372 tracked_request_begin(&req, dst->bs, dst_offset, bytes,
3373 BDRV_TRACKED_WRITE);
3374 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
3375 write_flags);
3376 if (!ret) {
3377 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
3378 src, src_offset,
3379 dst, dst_offset,
3380 bytes,
3381 read_flags, write_flags);
3383 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
3384 tracked_request_end(&req);
3385 bdrv_dec_in_flight(dst->bs);
3388 return ret;
3391 /* Copy range from @src to @dst.
3393 * See the comment of bdrv_co_copy_range for the parameter and return value
3394 * semantics. */
3395 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset,
3396 BdrvChild *dst, int64_t dst_offset,
3397 int64_t bytes,
3398 BdrvRequestFlags read_flags,
3399 BdrvRequestFlags write_flags)
3401 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3402 read_flags, write_flags);
3403 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3404 bytes, read_flags, write_flags, true);
3407 /* Copy range from @src to @dst.
3409 * See the comment of bdrv_co_copy_range for the parameter and return value
3410 * semantics. */
3411 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset,
3412 BdrvChild *dst, int64_t dst_offset,
3413 int64_t bytes,
3414 BdrvRequestFlags read_flags,
3415 BdrvRequestFlags write_flags)
3417 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3418 read_flags, write_flags);
3419 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3420 bytes, read_flags, write_flags, false);
3423 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset,
3424 BdrvChild *dst, int64_t dst_offset,
3425 int64_t bytes, BdrvRequestFlags read_flags,
3426 BdrvRequestFlags write_flags)
3428 return bdrv_co_copy_range_from(src, src_offset,
3429 dst, dst_offset,
3430 bytes, read_flags, write_flags);
3433 static void bdrv_parent_cb_resize(BlockDriverState *bs)
3435 BdrvChild *c;
3436 QLIST_FOREACH(c, &bs->parents, next_parent) {
3437 if (c->klass->resize) {
3438 c->klass->resize(c);
3444 * Truncate file to 'offset' bytes (needed only for file protocols)
3446 * If 'exact' is true, the file must be resized to exactly the given
3447 * 'offset'. Otherwise, it is sufficient for the node to be at least
3448 * 'offset' bytes in length.
3450 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact,
3451 PreallocMode prealloc, BdrvRequestFlags flags,
3452 Error **errp)
3454 BlockDriverState *bs = child->bs;
3455 BdrvChild *filtered, *backing;
3456 BlockDriver *drv = bs->drv;
3457 BdrvTrackedRequest req;
3458 int64_t old_size, new_bytes;
3459 int ret;
3462 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3463 if (!drv) {
3464 error_setg(errp, "No medium inserted");
3465 return -ENOMEDIUM;
3467 if (offset < 0) {
3468 error_setg(errp, "Image size cannot be negative");
3469 return -EINVAL;
3472 ret = bdrv_check_request(offset, 0, errp);
3473 if (ret < 0) {
3474 return ret;
3477 old_size = bdrv_getlength(bs);
3478 if (old_size < 0) {
3479 error_setg_errno(errp, -old_size, "Failed to get old image size");
3480 return old_size;
3483 if (bdrv_is_read_only(bs)) {
3484 error_setg(errp, "Image is read-only");
3485 return -EACCES;
3488 if (offset > old_size) {
3489 new_bytes = offset - old_size;
3490 } else {
3491 new_bytes = 0;
3494 bdrv_inc_in_flight(bs);
3495 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3496 BDRV_TRACKED_TRUNCATE);
3498 /* If we are growing the image and potentially using preallocation for the
3499 * new area, we need to make sure that no write requests are made to it
3500 * concurrently or they might be overwritten by preallocation. */
3501 if (new_bytes) {
3502 bdrv_make_request_serialising(&req, 1);
3504 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3506 if (ret < 0) {
3507 error_setg_errno(errp, -ret,
3508 "Failed to prepare request for truncation");
3509 goto out;
3512 filtered = bdrv_filter_child(bs);
3513 backing = bdrv_cow_child(bs);
3516 * If the image has a backing file that is large enough that it would
3517 * provide data for the new area, we cannot leave it unallocated because
3518 * then the backing file content would become visible. Instead, zero-fill
3519 * the new area.
3521 * Note that if the image has a backing file, but was opened without the
3522 * backing file, taking care of keeping things consistent with that backing
3523 * file is the user's responsibility.
3525 if (new_bytes && backing) {
3526 int64_t backing_len;
3528 backing_len = bdrv_getlength(backing->bs);
3529 if (backing_len < 0) {
3530 ret = backing_len;
3531 error_setg_errno(errp, -ret, "Could not get backing file size");
3532 goto out;
3535 if (backing_len > old_size) {
3536 flags |= BDRV_REQ_ZERO_WRITE;
3540 if (drv->bdrv_co_truncate) {
3541 if (flags & ~bs->supported_truncate_flags) {
3542 error_setg(errp, "Block driver does not support requested flags");
3543 ret = -ENOTSUP;
3544 goto out;
3546 ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp);
3547 } else if (filtered) {
3548 ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp);
3549 } else {
3550 error_setg(errp, "Image format driver does not support resize");
3551 ret = -ENOTSUP;
3552 goto out;
3554 if (ret < 0) {
3555 goto out;
3558 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3559 if (ret < 0) {
3560 error_setg_errno(errp, -ret, "Could not refresh total sector count");
3561 } else {
3562 offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3564 /* It's possible that truncation succeeded but refresh_total_sectors
3565 * failed, but the latter doesn't affect how we should finish the request.
3566 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */
3567 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3569 out:
3570 tracked_request_end(&req);
3571 bdrv_dec_in_flight(bs);
3573 return ret;
3576 void bdrv_cancel_in_flight(BlockDriverState *bs)
3578 if (!bs || !bs->drv) {
3579 return;
3582 if (bs->drv->bdrv_cancel_in_flight) {
3583 bs->drv->bdrv_cancel_in_flight(bs);