target-arm: Add CP_ACCESS_TRAP_UNCATEGORIZED_EL2, 3
[qemu.git] / target-arm / kvm32.c
blob421ce0ea0d0af52788e9dab203f7e89c69f068c7
1 /*
2 * ARM implementation of KVM hooks, 32 bit specific code.
4 * Copyright Christoffer Dall 2009-2010
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
9 */
11 #include <stdio.h>
12 #include <sys/types.h>
13 #include <sys/ioctl.h>
14 #include <sys/mman.h>
16 #include <linux/kvm.h>
18 #include "qemu-common.h"
19 #include "qemu/timer.h"
20 #include "sysemu/sysemu.h"
21 #include "sysemu/kvm.h"
22 #include "kvm_arm.h"
23 #include "cpu.h"
24 #include "internals.h"
25 #include "hw/arm/arm.h"
27 static inline void set_feature(uint64_t *features, int feature)
29 *features |= 1ULL << feature;
32 bool kvm_arm_get_host_cpu_features(ARMHostCPUClass *ahcc)
34 /* Identify the feature bits corresponding to the host CPU, and
35 * fill out the ARMHostCPUClass fields accordingly. To do this
36 * we have to create a scratch VM, create a single CPU inside it,
37 * and then query that CPU for the relevant ID registers.
39 int i, ret, fdarray[3];
40 uint32_t midr, id_pfr0, id_isar0, mvfr1;
41 uint64_t features = 0;
42 /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
43 * we know these will only support creating one kind of guest CPU,
44 * which is its preferred CPU type.
46 static const uint32_t cpus_to_try[] = {
47 QEMU_KVM_ARM_TARGET_CORTEX_A15,
48 QEMU_KVM_ARM_TARGET_NONE
50 struct kvm_vcpu_init init;
51 struct kvm_one_reg idregs[] = {
53 .id = KVM_REG_ARM | KVM_REG_SIZE_U32
54 | ENCODE_CP_REG(15, 0, 0, 0, 0, 0, 0),
55 .addr = (uintptr_t)&midr,
58 .id = KVM_REG_ARM | KVM_REG_SIZE_U32
59 | ENCODE_CP_REG(15, 0, 0, 0, 1, 0, 0),
60 .addr = (uintptr_t)&id_pfr0,
63 .id = KVM_REG_ARM | KVM_REG_SIZE_U32
64 | ENCODE_CP_REG(15, 0, 0, 0, 2, 0, 0),
65 .addr = (uintptr_t)&id_isar0,
68 .id = KVM_REG_ARM | KVM_REG_SIZE_U32
69 | KVM_REG_ARM_VFP | KVM_REG_ARM_VFP_MVFR1,
70 .addr = (uintptr_t)&mvfr1,
74 if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
75 return false;
78 ahcc->target = init.target;
80 /* This is not strictly blessed by the device tree binding docs yet,
81 * but in practice the kernel does not care about this string so
82 * there is no point maintaining an KVM_ARM_TARGET_* -> string table.
84 ahcc->dtb_compatible = "arm,arm-v7";
86 for (i = 0; i < ARRAY_SIZE(idregs); i++) {
87 ret = ioctl(fdarray[2], KVM_GET_ONE_REG, &idregs[i]);
88 if (ret) {
89 break;
93 kvm_arm_destroy_scratch_host_vcpu(fdarray);
95 if (ret) {
96 return false;
99 /* Now we've retrieved all the register information we can
100 * set the feature bits based on the ID register fields.
101 * We can assume any KVM supporting CPU is at least a v7
102 * with VFPv3, LPAE and the generic timers; this in turn implies
103 * most of the other feature bits, but a few must be tested.
105 set_feature(&features, ARM_FEATURE_V7);
106 set_feature(&features, ARM_FEATURE_VFP3);
107 set_feature(&features, ARM_FEATURE_LPAE);
108 set_feature(&features, ARM_FEATURE_GENERIC_TIMER);
110 switch (extract32(id_isar0, 24, 4)) {
111 case 1:
112 set_feature(&features, ARM_FEATURE_THUMB_DIV);
113 break;
114 case 2:
115 set_feature(&features, ARM_FEATURE_ARM_DIV);
116 set_feature(&features, ARM_FEATURE_THUMB_DIV);
117 break;
118 default:
119 break;
122 if (extract32(id_pfr0, 12, 4) == 1) {
123 set_feature(&features, ARM_FEATURE_THUMB2EE);
125 if (extract32(mvfr1, 20, 4) == 1) {
126 set_feature(&features, ARM_FEATURE_VFP_FP16);
128 if (extract32(mvfr1, 12, 4) == 1) {
129 set_feature(&features, ARM_FEATURE_NEON);
131 if (extract32(mvfr1, 28, 4) == 1) {
132 /* FMAC support implies VFPv4 */
133 set_feature(&features, ARM_FEATURE_VFP4);
136 ahcc->features = features;
138 return true;
141 bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
143 /* Return true if the regidx is a register we should synchronize
144 * via the cpreg_tuples array (ie is not a core reg we sync by
145 * hand in kvm_arch_get/put_registers())
147 switch (regidx & KVM_REG_ARM_COPROC_MASK) {
148 case KVM_REG_ARM_CORE:
149 case KVM_REG_ARM_VFP:
150 return false;
151 default:
152 return true;
156 typedef struct CPRegStateLevel {
157 uint64_t regidx;
158 int level;
159 } CPRegStateLevel;
161 /* All coprocessor registers not listed in the following table are assumed to
162 * be of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
163 * often, you must add it to this table with a state of either
164 * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
166 static const CPRegStateLevel non_runtime_cpregs[] = {
167 { KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE },
170 int kvm_arm_cpreg_level(uint64_t regidx)
172 int i;
174 for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) {
175 const CPRegStateLevel *l = &non_runtime_cpregs[i];
176 if (l->regidx == regidx) {
177 return l->level;
181 return KVM_PUT_RUNTIME_STATE;
184 #define ARM_MPIDR_HWID_BITMASK 0xFFFFFF
185 #define ARM_CPU_ID_MPIDR 0, 0, 0, 5
187 int kvm_arch_init_vcpu(CPUState *cs)
189 int ret;
190 uint64_t v;
191 uint32_t mpidr;
192 struct kvm_one_reg r;
193 ARMCPU *cpu = ARM_CPU(cs);
195 if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE) {
196 fprintf(stderr, "KVM is not supported for this guest CPU type\n");
197 return -EINVAL;
200 /* Determine init features for this CPU */
201 memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
202 if (cpu->start_powered_off) {
203 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
205 if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
206 cpu->psci_version = 2;
207 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
210 /* Do KVM_ARM_VCPU_INIT ioctl */
211 ret = kvm_arm_vcpu_init(cs);
212 if (ret) {
213 return ret;
216 /* Query the kernel to make sure it supports 32 VFP
217 * registers: QEMU's "cortex-a15" CPU is always a
218 * VFP-D32 core. The simplest way to do this is just
219 * to attempt to read register d31.
221 r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP | 31;
222 r.addr = (uintptr_t)(&v);
223 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
224 if (ret == -ENOENT) {
225 return -EINVAL;
229 * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
230 * Currently KVM has its own idea about MPIDR assignment, so we
231 * override our defaults with what we get from KVM.
233 ret = kvm_get_one_reg(cs, ARM_CP15_REG32(ARM_CPU_ID_MPIDR), &mpidr);
234 if (ret) {
235 return ret;
237 cpu->mp_affinity = mpidr & ARM_MPIDR_HWID_BITMASK;
239 return kvm_arm_init_cpreg_list(cpu);
242 typedef struct Reg {
243 uint64_t id;
244 int offset;
245 } Reg;
247 #define COREREG(KERNELNAME, QEMUFIELD) \
249 KVM_REG_ARM | KVM_REG_SIZE_U32 | \
250 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
251 offsetof(CPUARMState, QEMUFIELD) \
254 #define VFPSYSREG(R) \
256 KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | \
257 KVM_REG_ARM_VFP_##R, \
258 offsetof(CPUARMState, vfp.xregs[ARM_VFP_##R]) \
261 /* Like COREREG, but handle fields which are in a uint64_t in CPUARMState. */
262 #define COREREG64(KERNELNAME, QEMUFIELD) \
264 KVM_REG_ARM | KVM_REG_SIZE_U32 | \
265 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
266 offsetoflow32(CPUARMState, QEMUFIELD) \
269 static const Reg regs[] = {
270 /* R0_usr .. R14_usr */
271 COREREG(usr_regs.uregs[0], regs[0]),
272 COREREG(usr_regs.uregs[1], regs[1]),
273 COREREG(usr_regs.uregs[2], regs[2]),
274 COREREG(usr_regs.uregs[3], regs[3]),
275 COREREG(usr_regs.uregs[4], regs[4]),
276 COREREG(usr_regs.uregs[5], regs[5]),
277 COREREG(usr_regs.uregs[6], regs[6]),
278 COREREG(usr_regs.uregs[7], regs[7]),
279 COREREG(usr_regs.uregs[8], usr_regs[0]),
280 COREREG(usr_regs.uregs[9], usr_regs[1]),
281 COREREG(usr_regs.uregs[10], usr_regs[2]),
282 COREREG(usr_regs.uregs[11], usr_regs[3]),
283 COREREG(usr_regs.uregs[12], usr_regs[4]),
284 COREREG(usr_regs.uregs[13], banked_r13[0]),
285 COREREG(usr_regs.uregs[14], banked_r14[0]),
286 /* R13, R14, SPSR for SVC, ABT, UND, IRQ banks */
287 COREREG(svc_regs[0], banked_r13[1]),
288 COREREG(svc_regs[1], banked_r14[1]),
289 COREREG64(svc_regs[2], banked_spsr[1]),
290 COREREG(abt_regs[0], banked_r13[2]),
291 COREREG(abt_regs[1], banked_r14[2]),
292 COREREG64(abt_regs[2], banked_spsr[2]),
293 COREREG(und_regs[0], banked_r13[3]),
294 COREREG(und_regs[1], banked_r14[3]),
295 COREREG64(und_regs[2], banked_spsr[3]),
296 COREREG(irq_regs[0], banked_r13[4]),
297 COREREG(irq_regs[1], banked_r14[4]),
298 COREREG64(irq_regs[2], banked_spsr[4]),
299 /* R8_fiq .. R14_fiq and SPSR_fiq */
300 COREREG(fiq_regs[0], fiq_regs[0]),
301 COREREG(fiq_regs[1], fiq_regs[1]),
302 COREREG(fiq_regs[2], fiq_regs[2]),
303 COREREG(fiq_regs[3], fiq_regs[3]),
304 COREREG(fiq_regs[4], fiq_regs[4]),
305 COREREG(fiq_regs[5], banked_r13[5]),
306 COREREG(fiq_regs[6], banked_r14[5]),
307 COREREG64(fiq_regs[7], banked_spsr[5]),
308 /* R15 */
309 COREREG(usr_regs.uregs[15], regs[15]),
310 /* VFP system registers */
311 VFPSYSREG(FPSID),
312 VFPSYSREG(MVFR1),
313 VFPSYSREG(MVFR0),
314 VFPSYSREG(FPEXC),
315 VFPSYSREG(FPINST),
316 VFPSYSREG(FPINST2),
319 int kvm_arch_put_registers(CPUState *cs, int level)
321 ARMCPU *cpu = ARM_CPU(cs);
322 CPUARMState *env = &cpu->env;
323 struct kvm_one_reg r;
324 int mode, bn;
325 int ret, i;
326 uint32_t cpsr, fpscr;
328 /* Make sure the banked regs are properly set */
329 mode = env->uncached_cpsr & CPSR_M;
330 bn = bank_number(mode);
331 if (mode == ARM_CPU_MODE_FIQ) {
332 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
333 } else {
334 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
336 env->banked_r13[bn] = env->regs[13];
337 env->banked_r14[bn] = env->regs[14];
338 env->banked_spsr[bn] = env->spsr;
340 /* Now we can safely copy stuff down to the kernel */
341 for (i = 0; i < ARRAY_SIZE(regs); i++) {
342 r.id = regs[i].id;
343 r.addr = (uintptr_t)(env) + regs[i].offset;
344 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
345 if (ret) {
346 return ret;
350 /* Special cases which aren't a single CPUARMState field */
351 cpsr = cpsr_read(env);
352 r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
353 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
354 r.addr = (uintptr_t)(&cpsr);
355 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
356 if (ret) {
357 return ret;
360 /* VFP registers */
361 r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
362 for (i = 0; i < 32; i++) {
363 r.addr = (uintptr_t)(&env->vfp.regs[i]);
364 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
365 if (ret) {
366 return ret;
368 r.id++;
371 r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
372 KVM_REG_ARM_VFP_FPSCR;
373 fpscr = vfp_get_fpscr(env);
374 r.addr = (uintptr_t)&fpscr;
375 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
376 if (ret) {
377 return ret;
380 /* Note that we do not call write_cpustate_to_list()
381 * here, so we are only writing the tuple list back to
382 * KVM. This is safe because nothing can change the
383 * CPUARMState cp15 fields (in particular gdb accesses cannot)
384 * and so there are no changes to sync. In fact syncing would
385 * be wrong at this point: for a constant register where TCG and
386 * KVM disagree about its value, the preceding write_list_to_cpustate()
387 * would not have had any effect on the CPUARMState value (since the
388 * register is read-only), and a write_cpustate_to_list() here would
389 * then try to write the TCG value back into KVM -- this would either
390 * fail or incorrectly change the value the guest sees.
392 * If we ever want to allow the user to modify cp15 registers via
393 * the gdb stub, we would need to be more clever here (for instance
394 * tracking the set of registers kvm_arch_get_registers() successfully
395 * managed to update the CPUARMState with, and only allowing those
396 * to be written back up into the kernel).
398 if (!write_list_to_kvmstate(cpu, level)) {
399 return EINVAL;
402 kvm_arm_sync_mpstate_to_kvm(cpu);
404 return ret;
407 int kvm_arch_get_registers(CPUState *cs)
409 ARMCPU *cpu = ARM_CPU(cs);
410 CPUARMState *env = &cpu->env;
411 struct kvm_one_reg r;
412 int mode, bn;
413 int ret, i;
414 uint32_t cpsr, fpscr;
416 for (i = 0; i < ARRAY_SIZE(regs); i++) {
417 r.id = regs[i].id;
418 r.addr = (uintptr_t)(env) + regs[i].offset;
419 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
420 if (ret) {
421 return ret;
425 /* Special cases which aren't a single CPUARMState field */
426 r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
427 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
428 r.addr = (uintptr_t)(&cpsr);
429 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
430 if (ret) {
431 return ret;
433 cpsr_write(env, cpsr, 0xffffffff);
435 /* Make sure the current mode regs are properly set */
436 mode = env->uncached_cpsr & CPSR_M;
437 bn = bank_number(mode);
438 if (mode == ARM_CPU_MODE_FIQ) {
439 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
440 } else {
441 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
443 env->regs[13] = env->banked_r13[bn];
444 env->regs[14] = env->banked_r14[bn];
445 env->spsr = env->banked_spsr[bn];
447 /* VFP registers */
448 r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
449 for (i = 0; i < 32; i++) {
450 r.addr = (uintptr_t)(&env->vfp.regs[i]);
451 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
452 if (ret) {
453 return ret;
455 r.id++;
458 r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
459 KVM_REG_ARM_VFP_FPSCR;
460 r.addr = (uintptr_t)&fpscr;
461 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
462 if (ret) {
463 return ret;
465 vfp_set_fpscr(env, fpscr);
467 if (!write_kvmstate_to_list(cpu)) {
468 return EINVAL;
470 /* Note that it's OK to have registers which aren't in CPUState,
471 * so we can ignore a failure return here.
473 write_list_to_cpustate(cpu);
475 kvm_arm_sync_mpstate_to_qemu(cpu);
477 return 0;