s390x/kvm: disable cpu model for the 2.7 machine
[qemu.git] / cpus.c
blobe39ccb7f3064c821e97a5822d60fb4e8a3c48671
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 /* Needed early for CONFIG_BSD etc. */
26 #include "qemu/osdep.h"
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "monitor/monitor.h"
30 #include "qapi/qmp/qerror.h"
31 #include "qemu/error-report.h"
32 #include "sysemu/sysemu.h"
33 #include "sysemu/block-backend.h"
34 #include "exec/gdbstub.h"
35 #include "sysemu/dma.h"
36 #include "sysemu/kvm.h"
37 #include "qmp-commands.h"
38 #include "exec/exec-all.h"
40 #include "qemu/thread.h"
41 #include "sysemu/cpus.h"
42 #include "sysemu/qtest.h"
43 #include "qemu/main-loop.h"
44 #include "qemu/bitmap.h"
45 #include "qemu/seqlock.h"
46 #include "qapi-event.h"
47 #include "hw/nmi.h"
48 #include "sysemu/replay.h"
50 #ifndef _WIN32
51 #include "qemu/compatfd.h"
52 #endif
54 #ifdef CONFIG_LINUX
56 #include <sys/prctl.h>
58 #ifndef PR_MCE_KILL
59 #define PR_MCE_KILL 33
60 #endif
62 #ifndef PR_MCE_KILL_SET
63 #define PR_MCE_KILL_SET 1
64 #endif
66 #ifndef PR_MCE_KILL_EARLY
67 #define PR_MCE_KILL_EARLY 1
68 #endif
70 #endif /* CONFIG_LINUX */
72 static CPUState *next_cpu;
73 int64_t max_delay;
74 int64_t max_advance;
76 /* vcpu throttling controls */
77 static QEMUTimer *throttle_timer;
78 static unsigned int throttle_percentage;
80 #define CPU_THROTTLE_PCT_MIN 1
81 #define CPU_THROTTLE_PCT_MAX 99
82 #define CPU_THROTTLE_TIMESLICE_NS 10000000
84 bool cpu_is_stopped(CPUState *cpu)
86 return cpu->stopped || !runstate_is_running();
89 static bool cpu_thread_is_idle(CPUState *cpu)
91 if (cpu->stop || cpu->queued_work_first) {
92 return false;
94 if (cpu_is_stopped(cpu)) {
95 return true;
97 if (!cpu->halted || cpu_has_work(cpu) ||
98 kvm_halt_in_kernel()) {
99 return false;
101 return true;
104 static bool all_cpu_threads_idle(void)
106 CPUState *cpu;
108 CPU_FOREACH(cpu) {
109 if (!cpu_thread_is_idle(cpu)) {
110 return false;
113 return true;
116 /***********************************************************/
117 /* guest cycle counter */
119 /* Protected by TimersState seqlock */
121 static bool icount_sleep = true;
122 static int64_t vm_clock_warp_start = -1;
123 /* Conversion factor from emulated instructions to virtual clock ticks. */
124 static int icount_time_shift;
125 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
126 #define MAX_ICOUNT_SHIFT 10
128 static QEMUTimer *icount_rt_timer;
129 static QEMUTimer *icount_vm_timer;
130 static QEMUTimer *icount_warp_timer;
132 typedef struct TimersState {
133 /* Protected by BQL. */
134 int64_t cpu_ticks_prev;
135 int64_t cpu_ticks_offset;
137 /* cpu_clock_offset can be read out of BQL, so protect it with
138 * this lock.
140 QemuSeqLock vm_clock_seqlock;
141 int64_t cpu_clock_offset;
142 int32_t cpu_ticks_enabled;
143 int64_t dummy;
145 /* Compensate for varying guest execution speed. */
146 int64_t qemu_icount_bias;
147 /* Only written by TCG thread */
148 int64_t qemu_icount;
149 } TimersState;
151 static TimersState timers_state;
153 int64_t cpu_get_icount_raw(void)
155 int64_t icount;
156 CPUState *cpu = current_cpu;
158 icount = timers_state.qemu_icount;
159 if (cpu) {
160 if (!cpu->can_do_io) {
161 fprintf(stderr, "Bad icount read\n");
162 exit(1);
164 icount -= (cpu->icount_decr.u16.low + cpu->icount_extra);
166 return icount;
169 /* Return the virtual CPU time, based on the instruction counter. */
170 static int64_t cpu_get_icount_locked(void)
172 int64_t icount = cpu_get_icount_raw();
173 return timers_state.qemu_icount_bias + cpu_icount_to_ns(icount);
176 int64_t cpu_get_icount(void)
178 int64_t icount;
179 unsigned start;
181 do {
182 start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
183 icount = cpu_get_icount_locked();
184 } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
186 return icount;
189 int64_t cpu_icount_to_ns(int64_t icount)
191 return icount << icount_time_shift;
194 /* return the time elapsed in VM between vm_start and vm_stop. Unless
195 * icount is active, cpu_get_ticks() uses units of the host CPU cycle
196 * counter.
198 * Caller must hold the BQL
200 int64_t cpu_get_ticks(void)
202 int64_t ticks;
204 if (use_icount) {
205 return cpu_get_icount();
208 ticks = timers_state.cpu_ticks_offset;
209 if (timers_state.cpu_ticks_enabled) {
210 ticks += cpu_get_host_ticks();
213 if (timers_state.cpu_ticks_prev > ticks) {
214 /* Note: non increasing ticks may happen if the host uses
215 software suspend */
216 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
217 ticks = timers_state.cpu_ticks_prev;
220 timers_state.cpu_ticks_prev = ticks;
221 return ticks;
224 static int64_t cpu_get_clock_locked(void)
226 int64_t time;
228 time = timers_state.cpu_clock_offset;
229 if (timers_state.cpu_ticks_enabled) {
230 time += get_clock();
233 return time;
236 /* Return the monotonic time elapsed in VM, i.e.,
237 * the time between vm_start and vm_stop
239 int64_t cpu_get_clock(void)
241 int64_t ti;
242 unsigned start;
244 do {
245 start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
246 ti = cpu_get_clock_locked();
247 } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
249 return ti;
252 /* enable cpu_get_ticks()
253 * Caller must hold BQL which serves as mutex for vm_clock_seqlock.
255 void cpu_enable_ticks(void)
257 /* Here, the really thing protected by seqlock is cpu_clock_offset. */
258 seqlock_write_begin(&timers_state.vm_clock_seqlock);
259 if (!timers_state.cpu_ticks_enabled) {
260 timers_state.cpu_ticks_offset -= cpu_get_host_ticks();
261 timers_state.cpu_clock_offset -= get_clock();
262 timers_state.cpu_ticks_enabled = 1;
264 seqlock_write_end(&timers_state.vm_clock_seqlock);
267 /* disable cpu_get_ticks() : the clock is stopped. You must not call
268 * cpu_get_ticks() after that.
269 * Caller must hold BQL which serves as mutex for vm_clock_seqlock.
271 void cpu_disable_ticks(void)
273 /* Here, the really thing protected by seqlock is cpu_clock_offset. */
274 seqlock_write_begin(&timers_state.vm_clock_seqlock);
275 if (timers_state.cpu_ticks_enabled) {
276 timers_state.cpu_ticks_offset += cpu_get_host_ticks();
277 timers_state.cpu_clock_offset = cpu_get_clock_locked();
278 timers_state.cpu_ticks_enabled = 0;
280 seqlock_write_end(&timers_state.vm_clock_seqlock);
283 /* Correlation between real and virtual time is always going to be
284 fairly approximate, so ignore small variation.
285 When the guest is idle real and virtual time will be aligned in
286 the IO wait loop. */
287 #define ICOUNT_WOBBLE (NANOSECONDS_PER_SECOND / 10)
289 static void icount_adjust(void)
291 int64_t cur_time;
292 int64_t cur_icount;
293 int64_t delta;
295 /* Protected by TimersState mutex. */
296 static int64_t last_delta;
298 /* If the VM is not running, then do nothing. */
299 if (!runstate_is_running()) {
300 return;
303 seqlock_write_begin(&timers_state.vm_clock_seqlock);
304 cur_time = cpu_get_clock_locked();
305 cur_icount = cpu_get_icount_locked();
307 delta = cur_icount - cur_time;
308 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
309 if (delta > 0
310 && last_delta + ICOUNT_WOBBLE < delta * 2
311 && icount_time_shift > 0) {
312 /* The guest is getting too far ahead. Slow time down. */
313 icount_time_shift--;
315 if (delta < 0
316 && last_delta - ICOUNT_WOBBLE > delta * 2
317 && icount_time_shift < MAX_ICOUNT_SHIFT) {
318 /* The guest is getting too far behind. Speed time up. */
319 icount_time_shift++;
321 last_delta = delta;
322 timers_state.qemu_icount_bias = cur_icount
323 - (timers_state.qemu_icount << icount_time_shift);
324 seqlock_write_end(&timers_state.vm_clock_seqlock);
327 static void icount_adjust_rt(void *opaque)
329 timer_mod(icount_rt_timer,
330 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
331 icount_adjust();
334 static void icount_adjust_vm(void *opaque)
336 timer_mod(icount_vm_timer,
337 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
338 NANOSECONDS_PER_SECOND / 10);
339 icount_adjust();
342 static int64_t qemu_icount_round(int64_t count)
344 return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;
347 static void icount_warp_rt(void)
349 unsigned seq;
350 int64_t warp_start;
352 /* The icount_warp_timer is rescheduled soon after vm_clock_warp_start
353 * changes from -1 to another value, so the race here is okay.
355 do {
356 seq = seqlock_read_begin(&timers_state.vm_clock_seqlock);
357 warp_start = vm_clock_warp_start;
358 } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, seq));
360 if (warp_start == -1) {
361 return;
364 seqlock_write_begin(&timers_state.vm_clock_seqlock);
365 if (runstate_is_running()) {
366 int64_t clock = REPLAY_CLOCK(REPLAY_CLOCK_VIRTUAL_RT,
367 cpu_get_clock_locked());
368 int64_t warp_delta;
370 warp_delta = clock - vm_clock_warp_start;
371 if (use_icount == 2) {
373 * In adaptive mode, do not let QEMU_CLOCK_VIRTUAL run too
374 * far ahead of real time.
376 int64_t cur_icount = cpu_get_icount_locked();
377 int64_t delta = clock - cur_icount;
378 warp_delta = MIN(warp_delta, delta);
380 timers_state.qemu_icount_bias += warp_delta;
382 vm_clock_warp_start = -1;
383 seqlock_write_end(&timers_state.vm_clock_seqlock);
385 if (qemu_clock_expired(QEMU_CLOCK_VIRTUAL)) {
386 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
390 static void icount_timer_cb(void *opaque)
392 /* No need for a checkpoint because the timer already synchronizes
393 * with CHECKPOINT_CLOCK_VIRTUAL_RT.
395 icount_warp_rt();
398 void qtest_clock_warp(int64_t dest)
400 int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
401 AioContext *aio_context;
402 assert(qtest_enabled());
403 aio_context = qemu_get_aio_context();
404 while (clock < dest) {
405 int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
406 int64_t warp = qemu_soonest_timeout(dest - clock, deadline);
408 seqlock_write_begin(&timers_state.vm_clock_seqlock);
409 timers_state.qemu_icount_bias += warp;
410 seqlock_write_end(&timers_state.vm_clock_seqlock);
412 qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL);
413 timerlist_run_timers(aio_context->tlg.tl[QEMU_CLOCK_VIRTUAL]);
414 clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
416 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
419 void qemu_start_warp_timer(void)
421 int64_t clock;
422 int64_t deadline;
424 if (!use_icount) {
425 return;
428 /* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
429 * do not fire, so computing the deadline does not make sense.
431 if (!runstate_is_running()) {
432 return;
435 /* warp clock deterministically in record/replay mode */
436 if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_START)) {
437 return;
440 if (!all_cpu_threads_idle()) {
441 return;
444 if (qtest_enabled()) {
445 /* When testing, qtest commands advance icount. */
446 return;
449 /* We want to use the earliest deadline from ALL vm_clocks */
450 clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
451 deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
452 if (deadline < 0) {
453 static bool notified;
454 if (!icount_sleep && !notified) {
455 error_report("WARNING: icount sleep disabled and no active timers");
456 notified = true;
458 return;
461 if (deadline > 0) {
463 * Ensure QEMU_CLOCK_VIRTUAL proceeds even when the virtual CPU goes to
464 * sleep. Otherwise, the CPU might be waiting for a future timer
465 * interrupt to wake it up, but the interrupt never comes because
466 * the vCPU isn't running any insns and thus doesn't advance the
467 * QEMU_CLOCK_VIRTUAL.
469 if (!icount_sleep) {
471 * We never let VCPUs sleep in no sleep icount mode.
472 * If there is a pending QEMU_CLOCK_VIRTUAL timer we just advance
473 * to the next QEMU_CLOCK_VIRTUAL event and notify it.
474 * It is useful when we want a deterministic execution time,
475 * isolated from host latencies.
477 seqlock_write_begin(&timers_state.vm_clock_seqlock);
478 timers_state.qemu_icount_bias += deadline;
479 seqlock_write_end(&timers_state.vm_clock_seqlock);
480 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
481 } else {
483 * We do stop VCPUs and only advance QEMU_CLOCK_VIRTUAL after some
484 * "real" time, (related to the time left until the next event) has
485 * passed. The QEMU_CLOCK_VIRTUAL_RT clock will do this.
486 * This avoids that the warps are visible externally; for example,
487 * you will not be sending network packets continuously instead of
488 * every 100ms.
490 seqlock_write_begin(&timers_state.vm_clock_seqlock);
491 if (vm_clock_warp_start == -1 || vm_clock_warp_start > clock) {
492 vm_clock_warp_start = clock;
494 seqlock_write_end(&timers_state.vm_clock_seqlock);
495 timer_mod_anticipate(icount_warp_timer, clock + deadline);
497 } else if (deadline == 0) {
498 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
502 static void qemu_account_warp_timer(void)
504 if (!use_icount || !icount_sleep) {
505 return;
508 /* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
509 * do not fire, so computing the deadline does not make sense.
511 if (!runstate_is_running()) {
512 return;
515 /* warp clock deterministically in record/replay mode */
516 if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_ACCOUNT)) {
517 return;
520 timer_del(icount_warp_timer);
521 icount_warp_rt();
524 static bool icount_state_needed(void *opaque)
526 return use_icount;
530 * This is a subsection for icount migration.
532 static const VMStateDescription icount_vmstate_timers = {
533 .name = "timer/icount",
534 .version_id = 1,
535 .minimum_version_id = 1,
536 .needed = icount_state_needed,
537 .fields = (VMStateField[]) {
538 VMSTATE_INT64(qemu_icount_bias, TimersState),
539 VMSTATE_INT64(qemu_icount, TimersState),
540 VMSTATE_END_OF_LIST()
544 static const VMStateDescription vmstate_timers = {
545 .name = "timer",
546 .version_id = 2,
547 .minimum_version_id = 1,
548 .fields = (VMStateField[]) {
549 VMSTATE_INT64(cpu_ticks_offset, TimersState),
550 VMSTATE_INT64(dummy, TimersState),
551 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
552 VMSTATE_END_OF_LIST()
554 .subsections = (const VMStateDescription*[]) {
555 &icount_vmstate_timers,
556 NULL
560 static void cpu_throttle_thread(void *opaque)
562 CPUState *cpu = opaque;
563 double pct;
564 double throttle_ratio;
565 long sleeptime_ns;
567 if (!cpu_throttle_get_percentage()) {
568 return;
571 pct = (double)cpu_throttle_get_percentage()/100;
572 throttle_ratio = pct / (1 - pct);
573 sleeptime_ns = (long)(throttle_ratio * CPU_THROTTLE_TIMESLICE_NS);
575 qemu_mutex_unlock_iothread();
576 atomic_set(&cpu->throttle_thread_scheduled, 0);
577 g_usleep(sleeptime_ns / 1000); /* Convert ns to us for usleep call */
578 qemu_mutex_lock_iothread();
581 static void cpu_throttle_timer_tick(void *opaque)
583 CPUState *cpu;
584 double pct;
586 /* Stop the timer if needed */
587 if (!cpu_throttle_get_percentage()) {
588 return;
590 CPU_FOREACH(cpu) {
591 if (!atomic_xchg(&cpu->throttle_thread_scheduled, 1)) {
592 async_run_on_cpu(cpu, cpu_throttle_thread, cpu);
596 pct = (double)cpu_throttle_get_percentage()/100;
597 timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) +
598 CPU_THROTTLE_TIMESLICE_NS / (1-pct));
601 void cpu_throttle_set(int new_throttle_pct)
603 /* Ensure throttle percentage is within valid range */
604 new_throttle_pct = MIN(new_throttle_pct, CPU_THROTTLE_PCT_MAX);
605 new_throttle_pct = MAX(new_throttle_pct, CPU_THROTTLE_PCT_MIN);
607 atomic_set(&throttle_percentage, new_throttle_pct);
609 timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) +
610 CPU_THROTTLE_TIMESLICE_NS);
613 void cpu_throttle_stop(void)
615 atomic_set(&throttle_percentage, 0);
618 bool cpu_throttle_active(void)
620 return (cpu_throttle_get_percentage() != 0);
623 int cpu_throttle_get_percentage(void)
625 return atomic_read(&throttle_percentage);
628 void cpu_ticks_init(void)
630 seqlock_init(&timers_state.vm_clock_seqlock);
631 vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
632 throttle_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT,
633 cpu_throttle_timer_tick, NULL);
636 void configure_icount(QemuOpts *opts, Error **errp)
638 const char *option;
639 char *rem_str = NULL;
641 option = qemu_opt_get(opts, "shift");
642 if (!option) {
643 if (qemu_opt_get(opts, "align") != NULL) {
644 error_setg(errp, "Please specify shift option when using align");
646 return;
649 icount_sleep = qemu_opt_get_bool(opts, "sleep", true);
650 if (icount_sleep) {
651 icount_warp_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT,
652 icount_timer_cb, NULL);
655 icount_align_option = qemu_opt_get_bool(opts, "align", false);
657 if (icount_align_option && !icount_sleep) {
658 error_setg(errp, "align=on and sleep=off are incompatible");
660 if (strcmp(option, "auto") != 0) {
661 errno = 0;
662 icount_time_shift = strtol(option, &rem_str, 0);
663 if (errno != 0 || *rem_str != '\0' || !strlen(option)) {
664 error_setg(errp, "icount: Invalid shift value");
666 use_icount = 1;
667 return;
668 } else if (icount_align_option) {
669 error_setg(errp, "shift=auto and align=on are incompatible");
670 } else if (!icount_sleep) {
671 error_setg(errp, "shift=auto and sleep=off are incompatible");
674 use_icount = 2;
676 /* 125MIPS seems a reasonable initial guess at the guest speed.
677 It will be corrected fairly quickly anyway. */
678 icount_time_shift = 3;
680 /* Have both realtime and virtual time triggers for speed adjustment.
681 The realtime trigger catches emulated time passing too slowly,
682 the virtual time trigger catches emulated time passing too fast.
683 Realtime triggers occur even when idle, so use them less frequently
684 than VM triggers. */
685 icount_rt_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL_RT,
686 icount_adjust_rt, NULL);
687 timer_mod(icount_rt_timer,
688 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
689 icount_vm_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
690 icount_adjust_vm, NULL);
691 timer_mod(icount_vm_timer,
692 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
693 NANOSECONDS_PER_SECOND / 10);
696 /***********************************************************/
697 void hw_error(const char *fmt, ...)
699 va_list ap;
700 CPUState *cpu;
702 va_start(ap, fmt);
703 fprintf(stderr, "qemu: hardware error: ");
704 vfprintf(stderr, fmt, ap);
705 fprintf(stderr, "\n");
706 CPU_FOREACH(cpu) {
707 fprintf(stderr, "CPU #%d:\n", cpu->cpu_index);
708 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU);
710 va_end(ap);
711 abort();
714 void cpu_synchronize_all_states(void)
716 CPUState *cpu;
718 CPU_FOREACH(cpu) {
719 cpu_synchronize_state(cpu);
723 void cpu_synchronize_all_post_reset(void)
725 CPUState *cpu;
727 CPU_FOREACH(cpu) {
728 cpu_synchronize_post_reset(cpu);
732 void cpu_synchronize_all_post_init(void)
734 CPUState *cpu;
736 CPU_FOREACH(cpu) {
737 cpu_synchronize_post_init(cpu);
741 static int do_vm_stop(RunState state)
743 int ret = 0;
745 if (runstate_is_running()) {
746 cpu_disable_ticks();
747 pause_all_vcpus();
748 runstate_set(state);
749 vm_state_notify(0, state);
750 qapi_event_send_stop(&error_abort);
753 bdrv_drain_all();
754 ret = blk_flush_all();
756 return ret;
759 static bool cpu_can_run(CPUState *cpu)
761 if (cpu->stop) {
762 return false;
764 if (cpu_is_stopped(cpu)) {
765 return false;
767 return true;
770 static void cpu_handle_guest_debug(CPUState *cpu)
772 gdb_set_stop_cpu(cpu);
773 qemu_system_debug_request();
774 cpu->stopped = true;
777 #ifdef CONFIG_LINUX
778 static void sigbus_reraise(void)
780 sigset_t set;
781 struct sigaction action;
783 memset(&action, 0, sizeof(action));
784 action.sa_handler = SIG_DFL;
785 if (!sigaction(SIGBUS, &action, NULL)) {
786 raise(SIGBUS);
787 sigemptyset(&set);
788 sigaddset(&set, SIGBUS);
789 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
791 perror("Failed to re-raise SIGBUS!\n");
792 abort();
795 static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo,
796 void *ctx)
798 if (kvm_on_sigbus(siginfo->ssi_code,
799 (void *)(intptr_t)siginfo->ssi_addr)) {
800 sigbus_reraise();
804 static void qemu_init_sigbus(void)
806 struct sigaction action;
808 memset(&action, 0, sizeof(action));
809 action.sa_flags = SA_SIGINFO;
810 action.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler;
811 sigaction(SIGBUS, &action, NULL);
813 prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
816 static void qemu_kvm_eat_signals(CPUState *cpu)
818 struct timespec ts = { 0, 0 };
819 siginfo_t siginfo;
820 sigset_t waitset;
821 sigset_t chkset;
822 int r;
824 sigemptyset(&waitset);
825 sigaddset(&waitset, SIG_IPI);
826 sigaddset(&waitset, SIGBUS);
828 do {
829 r = sigtimedwait(&waitset, &siginfo, &ts);
830 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
831 perror("sigtimedwait");
832 exit(1);
835 switch (r) {
836 case SIGBUS:
837 if (kvm_on_sigbus_vcpu(cpu, siginfo.si_code, siginfo.si_addr)) {
838 sigbus_reraise();
840 break;
841 default:
842 break;
845 r = sigpending(&chkset);
846 if (r == -1) {
847 perror("sigpending");
848 exit(1);
850 } while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS));
853 #else /* !CONFIG_LINUX */
855 static void qemu_init_sigbus(void)
859 static void qemu_kvm_eat_signals(CPUState *cpu)
862 #endif /* !CONFIG_LINUX */
864 #ifndef _WIN32
865 static void dummy_signal(int sig)
869 static void qemu_kvm_init_cpu_signals(CPUState *cpu)
871 int r;
872 sigset_t set;
873 struct sigaction sigact;
875 memset(&sigact, 0, sizeof(sigact));
876 sigact.sa_handler = dummy_signal;
877 sigaction(SIG_IPI, &sigact, NULL);
879 pthread_sigmask(SIG_BLOCK, NULL, &set);
880 sigdelset(&set, SIG_IPI);
881 sigdelset(&set, SIGBUS);
882 r = kvm_set_signal_mask(cpu, &set);
883 if (r) {
884 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
885 exit(1);
889 #else /* _WIN32 */
890 static void qemu_kvm_init_cpu_signals(CPUState *cpu)
892 abort();
894 #endif /* _WIN32 */
896 static QemuMutex qemu_global_mutex;
897 static QemuCond qemu_io_proceeded_cond;
898 static unsigned iothread_requesting_mutex;
900 static QemuThread io_thread;
902 /* cpu creation */
903 static QemuCond qemu_cpu_cond;
904 /* system init */
905 static QemuCond qemu_pause_cond;
906 static QemuCond qemu_work_cond;
908 void qemu_init_cpu_loop(void)
910 qemu_init_sigbus();
911 qemu_cond_init(&qemu_cpu_cond);
912 qemu_cond_init(&qemu_pause_cond);
913 qemu_cond_init(&qemu_work_cond);
914 qemu_cond_init(&qemu_io_proceeded_cond);
915 qemu_mutex_init(&qemu_global_mutex);
917 qemu_thread_get_self(&io_thread);
920 void run_on_cpu(CPUState *cpu, void (*func)(void *data), void *data)
922 struct qemu_work_item wi;
924 if (qemu_cpu_is_self(cpu)) {
925 func(data);
926 return;
929 wi.func = func;
930 wi.data = data;
931 wi.free = false;
933 qemu_mutex_lock(&cpu->work_mutex);
934 if (cpu->queued_work_first == NULL) {
935 cpu->queued_work_first = &wi;
936 } else {
937 cpu->queued_work_last->next = &wi;
939 cpu->queued_work_last = &wi;
940 wi.next = NULL;
941 wi.done = false;
942 qemu_mutex_unlock(&cpu->work_mutex);
944 qemu_cpu_kick(cpu);
945 while (!atomic_mb_read(&wi.done)) {
946 CPUState *self_cpu = current_cpu;
948 qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex);
949 current_cpu = self_cpu;
953 void async_run_on_cpu(CPUState *cpu, void (*func)(void *data), void *data)
955 struct qemu_work_item *wi;
957 if (qemu_cpu_is_self(cpu)) {
958 func(data);
959 return;
962 wi = g_malloc0(sizeof(struct qemu_work_item));
963 wi->func = func;
964 wi->data = data;
965 wi->free = true;
967 qemu_mutex_lock(&cpu->work_mutex);
968 if (cpu->queued_work_first == NULL) {
969 cpu->queued_work_first = wi;
970 } else {
971 cpu->queued_work_last->next = wi;
973 cpu->queued_work_last = wi;
974 wi->next = NULL;
975 wi->done = false;
976 qemu_mutex_unlock(&cpu->work_mutex);
978 qemu_cpu_kick(cpu);
981 static void qemu_kvm_destroy_vcpu(CPUState *cpu)
983 if (kvm_destroy_vcpu(cpu) < 0) {
984 error_report("kvm_destroy_vcpu failed");
985 exit(EXIT_FAILURE);
989 static void qemu_tcg_destroy_vcpu(CPUState *cpu)
993 static void flush_queued_work(CPUState *cpu)
995 struct qemu_work_item *wi;
997 if (cpu->queued_work_first == NULL) {
998 return;
1001 qemu_mutex_lock(&cpu->work_mutex);
1002 while (cpu->queued_work_first != NULL) {
1003 wi = cpu->queued_work_first;
1004 cpu->queued_work_first = wi->next;
1005 if (!cpu->queued_work_first) {
1006 cpu->queued_work_last = NULL;
1008 qemu_mutex_unlock(&cpu->work_mutex);
1009 wi->func(wi->data);
1010 qemu_mutex_lock(&cpu->work_mutex);
1011 if (wi->free) {
1012 g_free(wi);
1013 } else {
1014 atomic_mb_set(&wi->done, true);
1017 qemu_mutex_unlock(&cpu->work_mutex);
1018 qemu_cond_broadcast(&qemu_work_cond);
1021 static void qemu_wait_io_event_common(CPUState *cpu)
1023 if (cpu->stop) {
1024 cpu->stop = false;
1025 cpu->stopped = true;
1026 qemu_cond_broadcast(&qemu_pause_cond);
1028 flush_queued_work(cpu);
1029 cpu->thread_kicked = false;
1032 static void qemu_tcg_wait_io_event(CPUState *cpu)
1034 while (all_cpu_threads_idle()) {
1035 qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
1038 while (iothread_requesting_mutex) {
1039 qemu_cond_wait(&qemu_io_proceeded_cond, &qemu_global_mutex);
1042 CPU_FOREACH(cpu) {
1043 qemu_wait_io_event_common(cpu);
1047 static void qemu_kvm_wait_io_event(CPUState *cpu)
1049 while (cpu_thread_is_idle(cpu)) {
1050 qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
1053 qemu_kvm_eat_signals(cpu);
1054 qemu_wait_io_event_common(cpu);
1057 static void *qemu_kvm_cpu_thread_fn(void *arg)
1059 CPUState *cpu = arg;
1060 int r;
1062 rcu_register_thread();
1064 qemu_mutex_lock_iothread();
1065 qemu_thread_get_self(cpu->thread);
1066 cpu->thread_id = qemu_get_thread_id();
1067 cpu->can_do_io = 1;
1068 current_cpu = cpu;
1070 r = kvm_init_vcpu(cpu);
1071 if (r < 0) {
1072 fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
1073 exit(1);
1076 qemu_kvm_init_cpu_signals(cpu);
1078 /* signal CPU creation */
1079 cpu->created = true;
1080 qemu_cond_signal(&qemu_cpu_cond);
1082 do {
1083 if (cpu_can_run(cpu)) {
1084 r = kvm_cpu_exec(cpu);
1085 if (r == EXCP_DEBUG) {
1086 cpu_handle_guest_debug(cpu);
1089 qemu_kvm_wait_io_event(cpu);
1090 } while (!cpu->unplug || cpu_can_run(cpu));
1092 qemu_kvm_destroy_vcpu(cpu);
1093 cpu->created = false;
1094 qemu_cond_signal(&qemu_cpu_cond);
1095 qemu_mutex_unlock_iothread();
1096 return NULL;
1099 static void *qemu_dummy_cpu_thread_fn(void *arg)
1101 #ifdef _WIN32
1102 fprintf(stderr, "qtest is not supported under Windows\n");
1103 exit(1);
1104 #else
1105 CPUState *cpu = arg;
1106 sigset_t waitset;
1107 int r;
1109 rcu_register_thread();
1111 qemu_mutex_lock_iothread();
1112 qemu_thread_get_self(cpu->thread);
1113 cpu->thread_id = qemu_get_thread_id();
1114 cpu->can_do_io = 1;
1116 sigemptyset(&waitset);
1117 sigaddset(&waitset, SIG_IPI);
1119 /* signal CPU creation */
1120 cpu->created = true;
1121 qemu_cond_signal(&qemu_cpu_cond);
1123 current_cpu = cpu;
1124 while (1) {
1125 current_cpu = NULL;
1126 qemu_mutex_unlock_iothread();
1127 do {
1128 int sig;
1129 r = sigwait(&waitset, &sig);
1130 } while (r == -1 && (errno == EAGAIN || errno == EINTR));
1131 if (r == -1) {
1132 perror("sigwait");
1133 exit(1);
1135 qemu_mutex_lock_iothread();
1136 current_cpu = cpu;
1137 qemu_wait_io_event_common(cpu);
1140 return NULL;
1141 #endif
1144 static void tcg_exec_all(void);
1146 static void *qemu_tcg_cpu_thread_fn(void *arg)
1148 CPUState *cpu = arg;
1149 CPUState *remove_cpu = NULL;
1151 rcu_register_thread();
1153 qemu_mutex_lock_iothread();
1154 qemu_thread_get_self(cpu->thread);
1156 CPU_FOREACH(cpu) {
1157 cpu->thread_id = qemu_get_thread_id();
1158 cpu->created = true;
1159 cpu->can_do_io = 1;
1161 qemu_cond_signal(&qemu_cpu_cond);
1163 /* wait for initial kick-off after machine start */
1164 while (first_cpu->stopped) {
1165 qemu_cond_wait(first_cpu->halt_cond, &qemu_global_mutex);
1167 /* process any pending work */
1168 CPU_FOREACH(cpu) {
1169 qemu_wait_io_event_common(cpu);
1173 /* process any pending work */
1174 atomic_mb_set(&exit_request, 1);
1176 while (1) {
1177 tcg_exec_all();
1179 if (use_icount) {
1180 int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
1182 if (deadline == 0) {
1183 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
1186 qemu_tcg_wait_io_event(QTAILQ_FIRST(&cpus));
1187 CPU_FOREACH(cpu) {
1188 if (cpu->unplug && !cpu_can_run(cpu)) {
1189 remove_cpu = cpu;
1190 break;
1193 if (remove_cpu) {
1194 qemu_tcg_destroy_vcpu(remove_cpu);
1195 cpu->created = false;
1196 qemu_cond_signal(&qemu_cpu_cond);
1197 remove_cpu = NULL;
1201 return NULL;
1204 static void qemu_cpu_kick_thread(CPUState *cpu)
1206 #ifndef _WIN32
1207 int err;
1209 if (cpu->thread_kicked) {
1210 return;
1212 cpu->thread_kicked = true;
1213 err = pthread_kill(cpu->thread->thread, SIG_IPI);
1214 if (err) {
1215 fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
1216 exit(1);
1218 #else /* _WIN32 */
1219 abort();
1220 #endif
1223 static void qemu_cpu_kick_no_halt(void)
1225 CPUState *cpu;
1226 /* Ensure whatever caused the exit has reached the CPU threads before
1227 * writing exit_request.
1229 atomic_mb_set(&exit_request, 1);
1230 cpu = atomic_mb_read(&tcg_current_cpu);
1231 if (cpu) {
1232 cpu_exit(cpu);
1236 void qemu_cpu_kick(CPUState *cpu)
1238 qemu_cond_broadcast(cpu->halt_cond);
1239 if (tcg_enabled()) {
1240 qemu_cpu_kick_no_halt();
1241 } else {
1242 qemu_cpu_kick_thread(cpu);
1246 void qemu_cpu_kick_self(void)
1248 assert(current_cpu);
1249 qemu_cpu_kick_thread(current_cpu);
1252 bool qemu_cpu_is_self(CPUState *cpu)
1254 return qemu_thread_is_self(cpu->thread);
1257 bool qemu_in_vcpu_thread(void)
1259 return current_cpu && qemu_cpu_is_self(current_cpu);
1262 static __thread bool iothread_locked = false;
1264 bool qemu_mutex_iothread_locked(void)
1266 return iothread_locked;
1269 void qemu_mutex_lock_iothread(void)
1271 atomic_inc(&iothread_requesting_mutex);
1272 /* In the simple case there is no need to bump the VCPU thread out of
1273 * TCG code execution.
1275 if (!tcg_enabled() || qemu_in_vcpu_thread() ||
1276 !first_cpu || !first_cpu->created) {
1277 qemu_mutex_lock(&qemu_global_mutex);
1278 atomic_dec(&iothread_requesting_mutex);
1279 } else {
1280 if (qemu_mutex_trylock(&qemu_global_mutex)) {
1281 qemu_cpu_kick_no_halt();
1282 qemu_mutex_lock(&qemu_global_mutex);
1284 atomic_dec(&iothread_requesting_mutex);
1285 qemu_cond_broadcast(&qemu_io_proceeded_cond);
1287 iothread_locked = true;
1290 void qemu_mutex_unlock_iothread(void)
1292 iothread_locked = false;
1293 qemu_mutex_unlock(&qemu_global_mutex);
1296 static int all_vcpus_paused(void)
1298 CPUState *cpu;
1300 CPU_FOREACH(cpu) {
1301 if (!cpu->stopped) {
1302 return 0;
1306 return 1;
1309 void pause_all_vcpus(void)
1311 CPUState *cpu;
1313 qemu_clock_enable(QEMU_CLOCK_VIRTUAL, false);
1314 CPU_FOREACH(cpu) {
1315 cpu->stop = true;
1316 qemu_cpu_kick(cpu);
1319 if (qemu_in_vcpu_thread()) {
1320 cpu_stop_current();
1321 if (!kvm_enabled()) {
1322 CPU_FOREACH(cpu) {
1323 cpu->stop = false;
1324 cpu->stopped = true;
1326 return;
1330 while (!all_vcpus_paused()) {
1331 qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
1332 CPU_FOREACH(cpu) {
1333 qemu_cpu_kick(cpu);
1338 void cpu_resume(CPUState *cpu)
1340 cpu->stop = false;
1341 cpu->stopped = false;
1342 qemu_cpu_kick(cpu);
1345 void resume_all_vcpus(void)
1347 CPUState *cpu;
1349 qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true);
1350 CPU_FOREACH(cpu) {
1351 cpu_resume(cpu);
1355 void cpu_remove(CPUState *cpu)
1357 cpu->stop = true;
1358 cpu->unplug = true;
1359 qemu_cpu_kick(cpu);
1362 void cpu_remove_sync(CPUState *cpu)
1364 cpu_remove(cpu);
1365 while (cpu->created) {
1366 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1370 /* For temporary buffers for forming a name */
1371 #define VCPU_THREAD_NAME_SIZE 16
1373 static void qemu_tcg_init_vcpu(CPUState *cpu)
1375 char thread_name[VCPU_THREAD_NAME_SIZE];
1376 static QemuCond *tcg_halt_cond;
1377 static QemuThread *tcg_cpu_thread;
1379 /* share a single thread for all cpus with TCG */
1380 if (!tcg_cpu_thread) {
1381 cpu->thread = g_malloc0(sizeof(QemuThread));
1382 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1383 qemu_cond_init(cpu->halt_cond);
1384 tcg_halt_cond = cpu->halt_cond;
1385 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/TCG",
1386 cpu->cpu_index);
1387 qemu_thread_create(cpu->thread, thread_name, qemu_tcg_cpu_thread_fn,
1388 cpu, QEMU_THREAD_JOINABLE);
1389 #ifdef _WIN32
1390 cpu->hThread = qemu_thread_get_handle(cpu->thread);
1391 #endif
1392 while (!cpu->created) {
1393 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1395 tcg_cpu_thread = cpu->thread;
1396 } else {
1397 cpu->thread = tcg_cpu_thread;
1398 cpu->halt_cond = tcg_halt_cond;
1402 static void qemu_kvm_start_vcpu(CPUState *cpu)
1404 char thread_name[VCPU_THREAD_NAME_SIZE];
1406 cpu->thread = g_malloc0(sizeof(QemuThread));
1407 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1408 qemu_cond_init(cpu->halt_cond);
1409 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/KVM",
1410 cpu->cpu_index);
1411 qemu_thread_create(cpu->thread, thread_name, qemu_kvm_cpu_thread_fn,
1412 cpu, QEMU_THREAD_JOINABLE);
1413 while (!cpu->created) {
1414 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1418 static void qemu_dummy_start_vcpu(CPUState *cpu)
1420 char thread_name[VCPU_THREAD_NAME_SIZE];
1422 cpu->thread = g_malloc0(sizeof(QemuThread));
1423 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1424 qemu_cond_init(cpu->halt_cond);
1425 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/DUMMY",
1426 cpu->cpu_index);
1427 qemu_thread_create(cpu->thread, thread_name, qemu_dummy_cpu_thread_fn, cpu,
1428 QEMU_THREAD_JOINABLE);
1429 while (!cpu->created) {
1430 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1434 void qemu_init_vcpu(CPUState *cpu)
1436 cpu->nr_cores = smp_cores;
1437 cpu->nr_threads = smp_threads;
1438 cpu->stopped = true;
1440 if (!cpu->as) {
1441 /* If the target cpu hasn't set up any address spaces itself,
1442 * give it the default one.
1444 AddressSpace *as = address_space_init_shareable(cpu->memory,
1445 "cpu-memory");
1446 cpu->num_ases = 1;
1447 cpu_address_space_init(cpu, as, 0);
1450 if (kvm_enabled()) {
1451 qemu_kvm_start_vcpu(cpu);
1452 } else if (tcg_enabled()) {
1453 qemu_tcg_init_vcpu(cpu);
1454 } else {
1455 qemu_dummy_start_vcpu(cpu);
1459 void cpu_stop_current(void)
1461 if (current_cpu) {
1462 current_cpu->stop = false;
1463 current_cpu->stopped = true;
1464 cpu_exit(current_cpu);
1465 qemu_cond_broadcast(&qemu_pause_cond);
1469 int vm_stop(RunState state)
1471 if (qemu_in_vcpu_thread()) {
1472 qemu_system_vmstop_request_prepare();
1473 qemu_system_vmstop_request(state);
1475 * FIXME: should not return to device code in case
1476 * vm_stop() has been requested.
1478 cpu_stop_current();
1479 return 0;
1482 return do_vm_stop(state);
1485 /* does a state transition even if the VM is already stopped,
1486 current state is forgotten forever */
1487 int vm_stop_force_state(RunState state)
1489 if (runstate_is_running()) {
1490 return vm_stop(state);
1491 } else {
1492 runstate_set(state);
1494 bdrv_drain_all();
1495 /* Make sure to return an error if the flush in a previous vm_stop()
1496 * failed. */
1497 return blk_flush_all();
1501 static int64_t tcg_get_icount_limit(void)
1503 int64_t deadline;
1505 if (replay_mode != REPLAY_MODE_PLAY) {
1506 deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
1508 /* Maintain prior (possibly buggy) behaviour where if no deadline
1509 * was set (as there is no QEMU_CLOCK_VIRTUAL timer) or it is more than
1510 * INT32_MAX nanoseconds ahead, we still use INT32_MAX
1511 * nanoseconds.
1513 if ((deadline < 0) || (deadline > INT32_MAX)) {
1514 deadline = INT32_MAX;
1517 return qemu_icount_round(deadline);
1518 } else {
1519 return replay_get_instructions();
1523 static int tcg_cpu_exec(CPUState *cpu)
1525 int ret;
1526 #ifdef CONFIG_PROFILER
1527 int64_t ti;
1528 #endif
1530 #ifdef CONFIG_PROFILER
1531 ti = profile_getclock();
1532 #endif
1533 if (use_icount) {
1534 int64_t count;
1535 int decr;
1536 timers_state.qemu_icount -= (cpu->icount_decr.u16.low
1537 + cpu->icount_extra);
1538 cpu->icount_decr.u16.low = 0;
1539 cpu->icount_extra = 0;
1540 count = tcg_get_icount_limit();
1541 timers_state.qemu_icount += count;
1542 decr = (count > 0xffff) ? 0xffff : count;
1543 count -= decr;
1544 cpu->icount_decr.u16.low = decr;
1545 cpu->icount_extra = count;
1547 ret = cpu_exec(cpu);
1548 #ifdef CONFIG_PROFILER
1549 tcg_time += profile_getclock() - ti;
1550 #endif
1551 if (use_icount) {
1552 /* Fold pending instructions back into the
1553 instruction counter, and clear the interrupt flag. */
1554 timers_state.qemu_icount -= (cpu->icount_decr.u16.low
1555 + cpu->icount_extra);
1556 cpu->icount_decr.u32 = 0;
1557 cpu->icount_extra = 0;
1558 replay_account_executed_instructions();
1560 return ret;
1563 static void tcg_exec_all(void)
1565 int r;
1567 /* Account partial waits to QEMU_CLOCK_VIRTUAL. */
1568 qemu_account_warp_timer();
1570 if (next_cpu == NULL) {
1571 next_cpu = first_cpu;
1573 for (; next_cpu != NULL && !exit_request; next_cpu = CPU_NEXT(next_cpu)) {
1574 CPUState *cpu = next_cpu;
1576 qemu_clock_enable(QEMU_CLOCK_VIRTUAL,
1577 (cpu->singlestep_enabled & SSTEP_NOTIMER) == 0);
1579 if (cpu_can_run(cpu)) {
1580 r = tcg_cpu_exec(cpu);
1581 if (r == EXCP_DEBUG) {
1582 cpu_handle_guest_debug(cpu);
1583 break;
1585 } else if (cpu->stop || cpu->stopped) {
1586 if (cpu->unplug) {
1587 next_cpu = CPU_NEXT(cpu);
1589 break;
1593 /* Pairs with smp_wmb in qemu_cpu_kick. */
1594 atomic_mb_set(&exit_request, 0);
1597 void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
1599 /* XXX: implement xxx_cpu_list for targets that still miss it */
1600 #if defined(cpu_list)
1601 cpu_list(f, cpu_fprintf);
1602 #endif
1605 CpuInfoList *qmp_query_cpus(Error **errp)
1607 CpuInfoList *head = NULL, *cur_item = NULL;
1608 CPUState *cpu;
1610 CPU_FOREACH(cpu) {
1611 CpuInfoList *info;
1612 #if defined(TARGET_I386)
1613 X86CPU *x86_cpu = X86_CPU(cpu);
1614 CPUX86State *env = &x86_cpu->env;
1615 #elif defined(TARGET_PPC)
1616 PowerPCCPU *ppc_cpu = POWERPC_CPU(cpu);
1617 CPUPPCState *env = &ppc_cpu->env;
1618 #elif defined(TARGET_SPARC)
1619 SPARCCPU *sparc_cpu = SPARC_CPU(cpu);
1620 CPUSPARCState *env = &sparc_cpu->env;
1621 #elif defined(TARGET_MIPS)
1622 MIPSCPU *mips_cpu = MIPS_CPU(cpu);
1623 CPUMIPSState *env = &mips_cpu->env;
1624 #elif defined(TARGET_TRICORE)
1625 TriCoreCPU *tricore_cpu = TRICORE_CPU(cpu);
1626 CPUTriCoreState *env = &tricore_cpu->env;
1627 #endif
1629 cpu_synchronize_state(cpu);
1631 info = g_malloc0(sizeof(*info));
1632 info->value = g_malloc0(sizeof(*info->value));
1633 info->value->CPU = cpu->cpu_index;
1634 info->value->current = (cpu == first_cpu);
1635 info->value->halted = cpu->halted;
1636 info->value->qom_path = object_get_canonical_path(OBJECT(cpu));
1637 info->value->thread_id = cpu->thread_id;
1638 #if defined(TARGET_I386)
1639 info->value->arch = CPU_INFO_ARCH_X86;
1640 info->value->u.x86.pc = env->eip + env->segs[R_CS].base;
1641 #elif defined(TARGET_PPC)
1642 info->value->arch = CPU_INFO_ARCH_PPC;
1643 info->value->u.ppc.nip = env->nip;
1644 #elif defined(TARGET_SPARC)
1645 info->value->arch = CPU_INFO_ARCH_SPARC;
1646 info->value->u.q_sparc.pc = env->pc;
1647 info->value->u.q_sparc.npc = env->npc;
1648 #elif defined(TARGET_MIPS)
1649 info->value->arch = CPU_INFO_ARCH_MIPS;
1650 info->value->u.q_mips.PC = env->active_tc.PC;
1651 #elif defined(TARGET_TRICORE)
1652 info->value->arch = CPU_INFO_ARCH_TRICORE;
1653 info->value->u.tricore.PC = env->PC;
1654 #else
1655 info->value->arch = CPU_INFO_ARCH_OTHER;
1656 #endif
1658 /* XXX: waiting for the qapi to support GSList */
1659 if (!cur_item) {
1660 head = cur_item = info;
1661 } else {
1662 cur_item->next = info;
1663 cur_item = info;
1667 return head;
1670 void qmp_memsave(int64_t addr, int64_t size, const char *filename,
1671 bool has_cpu, int64_t cpu_index, Error **errp)
1673 FILE *f;
1674 uint32_t l;
1675 CPUState *cpu;
1676 uint8_t buf[1024];
1677 int64_t orig_addr = addr, orig_size = size;
1679 if (!has_cpu) {
1680 cpu_index = 0;
1683 cpu = qemu_get_cpu(cpu_index);
1684 if (cpu == NULL) {
1685 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index",
1686 "a CPU number");
1687 return;
1690 f = fopen(filename, "wb");
1691 if (!f) {
1692 error_setg_file_open(errp, errno, filename);
1693 return;
1696 while (size != 0) {
1697 l = sizeof(buf);
1698 if (l > size)
1699 l = size;
1700 if (cpu_memory_rw_debug(cpu, addr, buf, l, 0) != 0) {
1701 error_setg(errp, "Invalid addr 0x%016" PRIx64 "/size %" PRId64
1702 " specified", orig_addr, orig_size);
1703 goto exit;
1705 if (fwrite(buf, 1, l, f) != l) {
1706 error_setg(errp, QERR_IO_ERROR);
1707 goto exit;
1709 addr += l;
1710 size -= l;
1713 exit:
1714 fclose(f);
1717 void qmp_pmemsave(int64_t addr, int64_t size, const char *filename,
1718 Error **errp)
1720 FILE *f;
1721 uint32_t l;
1722 uint8_t buf[1024];
1724 f = fopen(filename, "wb");
1725 if (!f) {
1726 error_setg_file_open(errp, errno, filename);
1727 return;
1730 while (size != 0) {
1731 l = sizeof(buf);
1732 if (l > size)
1733 l = size;
1734 cpu_physical_memory_read(addr, buf, l);
1735 if (fwrite(buf, 1, l, f) != l) {
1736 error_setg(errp, QERR_IO_ERROR);
1737 goto exit;
1739 addr += l;
1740 size -= l;
1743 exit:
1744 fclose(f);
1747 void qmp_inject_nmi(Error **errp)
1749 nmi_monitor_handle(monitor_get_cpu_index(), errp);
1752 void dump_drift_info(FILE *f, fprintf_function cpu_fprintf)
1754 if (!use_icount) {
1755 return;
1758 cpu_fprintf(f, "Host - Guest clock %"PRIi64" ms\n",
1759 (cpu_get_clock() - cpu_get_icount())/SCALE_MS);
1760 if (icount_align_option) {
1761 cpu_fprintf(f, "Max guest delay %"PRIi64" ms\n", -max_delay/SCALE_MS);
1762 cpu_fprintf(f, "Max guest advance %"PRIi64" ms\n", max_advance/SCALE_MS);
1763 } else {
1764 cpu_fprintf(f, "Max guest delay NA\n");
1765 cpu_fprintf(f, "Max guest advance NA\n");