4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu-common.h"
21 #ifdef CONFIG_USER_ONLY
33 #include "qemu-char.h"
38 #define MAX_PACKET_LENGTH 4096
41 #include "qemu_socket.h"
54 GDB_SIGNAL_UNKNOWN
= 143
57 #ifdef CONFIG_USER_ONLY
59 /* Map target signal numbers to GDB protocol signal numbers and vice
60 * versa. For user emulation's currently supported systems, we can
61 * assume most signals are defined.
64 static int gdb_signal_table
[] = {
224 /* In system mode we only need SIGINT and SIGTRAP; other signals
225 are not yet supported. */
232 static int gdb_signal_table
[] = {
242 #ifdef CONFIG_USER_ONLY
243 static int target_signal_to_gdb (int sig
)
246 for (i
= 0; i
< ARRAY_SIZE (gdb_signal_table
); i
++)
247 if (gdb_signal_table
[i
] == sig
)
249 return GDB_SIGNAL_UNKNOWN
;
253 static int gdb_signal_to_target (int sig
)
255 if (sig
< ARRAY_SIZE (gdb_signal_table
))
256 return gdb_signal_table
[sig
];
263 typedef struct GDBRegisterState
{
269 struct GDBRegisterState
*next
;
280 typedef struct GDBState
{
281 CPUState
*c_cpu
; /* current CPU for step/continue ops */
282 CPUState
*g_cpu
; /* current CPU for other ops */
283 CPUState
*query_cpu
; /* for q{f|s}ThreadInfo */
284 enum RSState state
; /* parsing state */
285 char line_buf
[MAX_PACKET_LENGTH
];
288 uint8_t last_packet
[MAX_PACKET_LENGTH
+ 4];
291 #ifdef CONFIG_USER_ONLY
295 CharDriverState
*chr
;
296 CharDriverState
*mon_chr
;
300 /* By default use no IRQs and no timers while single stepping so as to
301 * make single stepping like an ICE HW step.
303 static int sstep_flags
= SSTEP_ENABLE
|SSTEP_NOIRQ
|SSTEP_NOTIMER
;
305 static GDBState
*gdbserver_state
;
307 /* This is an ugly hack to cope with both new and old gdb.
308 If gdb sends qXfer:features:read then assume we're talking to a newish
309 gdb that understands target descriptions. */
310 static int gdb_has_xml
;
312 #ifdef CONFIG_USER_ONLY
313 /* XXX: This is not thread safe. Do we care? */
314 static int gdbserver_fd
= -1;
316 static int get_char(GDBState
*s
)
322 ret
= recv(s
->fd
, &ch
, 1, 0);
324 if (errno
== ECONNRESET
)
326 if (errno
!= EINTR
&& errno
!= EAGAIN
)
328 } else if (ret
== 0) {
340 static gdb_syscall_complete_cb gdb_current_syscall_cb
;
348 /* If gdb is connected when the first semihosting syscall occurs then use
349 remote gdb syscalls. Otherwise use native file IO. */
350 int use_gdb_syscalls(void)
352 if (gdb_syscall_mode
== GDB_SYS_UNKNOWN
) {
353 gdb_syscall_mode
= (gdbserver_state
? GDB_SYS_ENABLED
356 return gdb_syscall_mode
== GDB_SYS_ENABLED
;
359 /* Resume execution. */
360 static inline void gdb_continue(GDBState
*s
)
362 #ifdef CONFIG_USER_ONLY
363 s
->running_state
= 1;
369 static void put_buffer(GDBState
*s
, const uint8_t *buf
, int len
)
371 #ifdef CONFIG_USER_ONLY
375 ret
= send(s
->fd
, buf
, len
, 0);
377 if (errno
!= EINTR
&& errno
!= EAGAIN
)
385 qemu_chr_write(s
->chr
, buf
, len
);
389 static inline int fromhex(int v
)
391 if (v
>= '0' && v
<= '9')
393 else if (v
>= 'A' && v
<= 'F')
395 else if (v
>= 'a' && v
<= 'f')
401 static inline int tohex(int v
)
409 static void memtohex(char *buf
, const uint8_t *mem
, int len
)
414 for(i
= 0; i
< len
; i
++) {
416 *q
++ = tohex(c
>> 4);
417 *q
++ = tohex(c
& 0xf);
422 static void hextomem(uint8_t *mem
, const char *buf
, int len
)
426 for(i
= 0; i
< len
; i
++) {
427 mem
[i
] = (fromhex(buf
[0]) << 4) | fromhex(buf
[1]);
432 /* return -1 if error, 0 if OK */
433 static int put_packet_binary(GDBState
*s
, const char *buf
, int len
)
444 for(i
= 0; i
< len
; i
++) {
448 *(p
++) = tohex((csum
>> 4) & 0xf);
449 *(p
++) = tohex((csum
) & 0xf);
451 s
->last_packet_len
= p
- s
->last_packet
;
452 put_buffer(s
, (uint8_t *)s
->last_packet
, s
->last_packet_len
);
454 #ifdef CONFIG_USER_ONLY
467 /* return -1 if error, 0 if OK */
468 static int put_packet(GDBState
*s
, const char *buf
)
471 printf("reply='%s'\n", buf
);
474 return put_packet_binary(s
, buf
, strlen(buf
));
477 /* The GDB remote protocol transfers values in target byte order. This means
478 we can use the raw memory access routines to access the value buffer.
479 Conveniently, these also handle the case where the buffer is mis-aligned.
481 #define GET_REG8(val) do { \
482 stb_p(mem_buf, val); \
485 #define GET_REG16(val) do { \
486 stw_p(mem_buf, val); \
489 #define GET_REG32(val) do { \
490 stl_p(mem_buf, val); \
493 #define GET_REG64(val) do { \
494 stq_p(mem_buf, val); \
498 #if TARGET_LONG_BITS == 64
499 #define GET_REGL(val) GET_REG64(val)
500 #define ldtul_p(addr) ldq_p(addr)
502 #define GET_REGL(val) GET_REG32(val)
503 #define ldtul_p(addr) ldl_p(addr)
506 #if defined(TARGET_I386)
509 static const int gpr_map
[16] = {
510 R_EAX
, R_EBX
, R_ECX
, R_EDX
, R_ESI
, R_EDI
, R_EBP
, R_ESP
,
511 8, 9, 10, 11, 12, 13, 14, 15
514 #define gpr_map gpr_map32
516 static const int gpr_map32
[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };
518 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
520 #define IDX_IP_REG CPU_NB_REGS
521 #define IDX_FLAGS_REG (IDX_IP_REG + 1)
522 #define IDX_SEG_REGS (IDX_FLAGS_REG + 1)
523 #define IDX_FP_REGS (IDX_SEG_REGS + 6)
524 #define IDX_XMM_REGS (IDX_FP_REGS + 16)
525 #define IDX_MXCSR_REG (IDX_XMM_REGS + CPU_NB_REGS)
527 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
529 if (n
< CPU_NB_REGS
) {
530 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
531 GET_REG64(env
->regs
[gpr_map
[n
]]);
532 } else if (n
< CPU_NB_REGS32
) {
533 GET_REG32(env
->regs
[gpr_map32
[n
]]);
535 } else if (n
>= IDX_FP_REGS
&& n
< IDX_FP_REGS
+ 8) {
536 #ifdef USE_X86LDOUBLE
537 /* FIXME: byteswap float values - after fixing fpregs layout. */
538 memcpy(mem_buf
, &env
->fpregs
[n
- IDX_FP_REGS
], 10);
540 memset(mem_buf
, 0, 10);
543 } else if (n
>= IDX_XMM_REGS
&& n
< IDX_XMM_REGS
+ CPU_NB_REGS
) {
545 if (n
< CPU_NB_REGS32
||
546 (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
)) {
547 stq_p(mem_buf
, env
->xmm_regs
[n
].XMM_Q(0));
548 stq_p(mem_buf
+ 8, env
->xmm_regs
[n
].XMM_Q(1));
554 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
559 case IDX_FLAGS_REG
: GET_REG32(env
->eflags
);
561 case IDX_SEG_REGS
: GET_REG32(env
->segs
[R_CS
].selector
);
562 case IDX_SEG_REGS
+ 1: GET_REG32(env
->segs
[R_SS
].selector
);
563 case IDX_SEG_REGS
+ 2: GET_REG32(env
->segs
[R_DS
].selector
);
564 case IDX_SEG_REGS
+ 3: GET_REG32(env
->segs
[R_ES
].selector
);
565 case IDX_SEG_REGS
+ 4: GET_REG32(env
->segs
[R_FS
].selector
);
566 case IDX_SEG_REGS
+ 5: GET_REG32(env
->segs
[R_GS
].selector
);
568 case IDX_FP_REGS
+ 8: GET_REG32(env
->fpuc
);
569 case IDX_FP_REGS
+ 9: GET_REG32((env
->fpus
& ~0x3800) |
570 (env
->fpstt
& 0x7) << 11);
571 case IDX_FP_REGS
+ 10: GET_REG32(0); /* ftag */
572 case IDX_FP_REGS
+ 11: GET_REG32(0); /* fiseg */
573 case IDX_FP_REGS
+ 12: GET_REG32(0); /* fioff */
574 case IDX_FP_REGS
+ 13: GET_REG32(0); /* foseg */
575 case IDX_FP_REGS
+ 14: GET_REG32(0); /* fooff */
576 case IDX_FP_REGS
+ 15: GET_REG32(0); /* fop */
578 case IDX_MXCSR_REG
: GET_REG32(env
->mxcsr
);
584 static int cpu_x86_gdb_load_seg(CPUState
*env
, int sreg
, uint8_t *mem_buf
)
586 uint16_t selector
= ldl_p(mem_buf
);
588 if (selector
!= env
->segs
[sreg
].selector
) {
589 #if defined(CONFIG_USER_ONLY)
590 cpu_x86_load_seg(env
, sreg
, selector
);
592 unsigned int limit
, flags
;
595 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
)) {
596 base
= selector
<< 4;
600 if (!cpu_x86_get_descr_debug(env
, selector
, &base
, &limit
, &flags
))
603 cpu_x86_load_seg_cache(env
, sreg
, selector
, base
, limit
, flags
);
609 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
613 if (n
< CPU_NB_REGS
) {
614 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
615 env
->regs
[gpr_map
[n
]] = ldtul_p(mem_buf
);
616 return sizeof(target_ulong
);
617 } else if (n
< CPU_NB_REGS32
) {
619 env
->regs
[n
] &= ~0xffffffffUL
;
620 env
->regs
[n
] |= (uint32_t)ldl_p(mem_buf
);
623 } else if (n
>= IDX_FP_REGS
&& n
< IDX_FP_REGS
+ 8) {
624 #ifdef USE_X86LDOUBLE
625 /* FIXME: byteswap float values - after fixing fpregs layout. */
626 memcpy(&env
->fpregs
[n
- IDX_FP_REGS
], mem_buf
, 10);
629 } else if (n
>= IDX_XMM_REGS
&& n
< IDX_XMM_REGS
+ CPU_NB_REGS
) {
631 if (n
< CPU_NB_REGS32
||
632 (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
)) {
633 env
->xmm_regs
[n
].XMM_Q(0) = ldq_p(mem_buf
);
634 env
->xmm_regs
[n
].XMM_Q(1) = ldq_p(mem_buf
+ 8);
640 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
641 env
->eip
= ldq_p(mem_buf
);
644 env
->eip
&= ~0xffffffffUL
;
645 env
->eip
|= (uint32_t)ldl_p(mem_buf
);
649 env
->eflags
= ldl_p(mem_buf
);
652 case IDX_SEG_REGS
: return cpu_x86_gdb_load_seg(env
, R_CS
, mem_buf
);
653 case IDX_SEG_REGS
+ 1: return cpu_x86_gdb_load_seg(env
, R_SS
, mem_buf
);
654 case IDX_SEG_REGS
+ 2: return cpu_x86_gdb_load_seg(env
, R_DS
, mem_buf
);
655 case IDX_SEG_REGS
+ 3: return cpu_x86_gdb_load_seg(env
, R_ES
, mem_buf
);
656 case IDX_SEG_REGS
+ 4: return cpu_x86_gdb_load_seg(env
, R_FS
, mem_buf
);
657 case IDX_SEG_REGS
+ 5: return cpu_x86_gdb_load_seg(env
, R_GS
, mem_buf
);
659 case IDX_FP_REGS
+ 8:
660 env
->fpuc
= ldl_p(mem_buf
);
662 case IDX_FP_REGS
+ 9:
663 tmp
= ldl_p(mem_buf
);
664 env
->fpstt
= (tmp
>> 11) & 7;
665 env
->fpus
= tmp
& ~0x3800;
667 case IDX_FP_REGS
+ 10: /* ftag */ return 4;
668 case IDX_FP_REGS
+ 11: /* fiseg */ return 4;
669 case IDX_FP_REGS
+ 12: /* fioff */ return 4;
670 case IDX_FP_REGS
+ 13: /* foseg */ return 4;
671 case IDX_FP_REGS
+ 14: /* fooff */ return 4;
672 case IDX_FP_REGS
+ 15: /* fop */ return 4;
675 env
->mxcsr
= ldl_p(mem_buf
);
679 /* Unrecognised register. */
683 #elif defined (TARGET_PPC)
685 /* Old gdb always expects FP registers. Newer (xml-aware) gdb only
686 expects whatever the target description contains. Due to a
687 historical mishap the FP registers appear in between core integer
688 regs and PC, MSR, CR, and so forth. We hack round this by giving the
689 FP regs zero size when talking to a newer gdb. */
690 #define NUM_CORE_REGS 71
691 #if defined (TARGET_PPC64)
692 #define GDB_CORE_XML "power64-core.xml"
694 #define GDB_CORE_XML "power-core.xml"
697 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
701 GET_REGL(env
->gpr
[n
]);
706 stfq_p(mem_buf
, env
->fpr
[n
-32]);
710 case 64: GET_REGL(env
->nip
);
711 case 65: GET_REGL(env
->msr
);
716 for (i
= 0; i
< 8; i
++)
717 cr
|= env
->crf
[i
] << (32 - ((i
+ 1) * 4));
720 case 67: GET_REGL(env
->lr
);
721 case 68: GET_REGL(env
->ctr
);
722 case 69: GET_REGL(env
->xer
);
727 GET_REG32(0); /* fpscr */
734 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
738 env
->gpr
[n
] = ldtul_p(mem_buf
);
739 return sizeof(target_ulong
);
744 env
->fpr
[n
-32] = ldfq_p(mem_buf
);
749 env
->nip
= ldtul_p(mem_buf
);
750 return sizeof(target_ulong
);
752 ppc_store_msr(env
, ldtul_p(mem_buf
));
753 return sizeof(target_ulong
);
756 uint32_t cr
= ldl_p(mem_buf
);
758 for (i
= 0; i
< 8; i
++)
759 env
->crf
[i
] = (cr
>> (32 - ((i
+ 1) * 4))) & 0xF;
763 env
->lr
= ldtul_p(mem_buf
);
764 return sizeof(target_ulong
);
766 env
->ctr
= ldtul_p(mem_buf
);
767 return sizeof(target_ulong
);
769 env
->xer
= ldtul_p(mem_buf
);
770 return sizeof(target_ulong
);
781 #elif defined (TARGET_SPARC)
783 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
784 #define NUM_CORE_REGS 86
786 #define NUM_CORE_REGS 72
790 #define GET_REGA(val) GET_REG32(val)
792 #define GET_REGA(val) GET_REGL(val)
795 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
799 GET_REGA(env
->gregs
[n
]);
802 /* register window */
803 GET_REGA(env
->regwptr
[n
- 8]);
805 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
808 GET_REG32(*((uint32_t *)&env
->fpr
[n
- 32]));
810 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
812 case 64: GET_REGA(env
->y
);
813 case 65: GET_REGA(cpu_get_psr(env
));
814 case 66: GET_REGA(env
->wim
);
815 case 67: GET_REGA(env
->tbr
);
816 case 68: GET_REGA(env
->pc
);
817 case 69: GET_REGA(env
->npc
);
818 case 70: GET_REGA(env
->fsr
);
819 case 71: GET_REGA(0); /* csr */
820 default: GET_REGA(0);
825 GET_REG32(*((uint32_t *)&env
->fpr
[n
- 32]));
828 /* f32-f62 (double width, even numbers only) */
831 val
= (uint64_t)*((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 32]) << 32;
832 val
|= *((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 33]);
836 case 80: GET_REGL(env
->pc
);
837 case 81: GET_REGL(env
->npc
);
838 case 82: GET_REGL((cpu_get_ccr(env
) << 32) |
839 ((env
->asi
& 0xff) << 24) |
840 ((env
->pstate
& 0xfff) << 8) |
842 case 83: GET_REGL(env
->fsr
);
843 case 84: GET_REGL(env
->fprs
);
844 case 85: GET_REGL(env
->y
);
850 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
852 #if defined(TARGET_ABI32)
855 tmp
= ldl_p(mem_buf
);
859 tmp
= ldtul_p(mem_buf
);
866 /* register window */
867 env
->regwptr
[n
- 8] = tmp
;
869 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
872 *((uint32_t *)&env
->fpr
[n
- 32]) = tmp
;
874 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
876 case 64: env
->y
= tmp
; break;
877 case 65: cpu_put_psr(env
, tmp
); break;
878 case 66: env
->wim
= tmp
; break;
879 case 67: env
->tbr
= tmp
; break;
880 case 68: env
->pc
= tmp
; break;
881 case 69: env
->npc
= tmp
; break;
882 case 70: env
->fsr
= tmp
; break;
890 env
->fpr
[n
] = ldfl_p(mem_buf
);
893 /* f32-f62 (double width, even numbers only) */
894 *((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 32]) = tmp
>> 32;
895 *((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 33]) = tmp
;
898 case 80: env
->pc
= tmp
; break;
899 case 81: env
->npc
= tmp
; break;
901 cpu_put_ccr(env
, tmp
>> 32);
902 env
->asi
= (tmp
>> 24) & 0xff;
903 env
->pstate
= (tmp
>> 8) & 0xfff;
904 cpu_put_cwp64(env
, tmp
& 0xff);
906 case 83: env
->fsr
= tmp
; break;
907 case 84: env
->fprs
= tmp
; break;
908 case 85: env
->y
= tmp
; break;
915 #elif defined (TARGET_ARM)
917 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
918 whatever the target description contains. Due to a historical mishap
919 the FPA registers appear in between core integer regs and the CPSR.
920 We hack round this by giving the FPA regs zero size when talking to a
922 #define NUM_CORE_REGS 26
923 #define GDB_CORE_XML "arm-core.xml"
925 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
928 /* Core integer register. */
929 GET_REG32(env
->regs
[n
]);
935 memset(mem_buf
, 0, 12);
940 /* FPA status register. */
946 GET_REG32(cpsr_read(env
));
948 /* Unknown register. */
952 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
956 tmp
= ldl_p(mem_buf
);
958 /* Mask out low bit of PC to workaround gdb bugs. This will probably
959 cause problems if we ever implement the Jazelle DBX extensions. */
964 /* Core integer register. */
968 if (n
< 24) { /* 16-23 */
969 /* FPA registers (ignored). */
976 /* FPA status register (ignored). */
982 cpsr_write (env
, tmp
, 0xffffffff);
985 /* Unknown register. */
989 #elif defined (TARGET_M68K)
991 #define NUM_CORE_REGS 18
993 #define GDB_CORE_XML "cf-core.xml"
995 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
999 GET_REG32(env
->dregs
[n
]);
1000 } else if (n
< 16) {
1002 GET_REG32(env
->aregs
[n
- 8]);
1005 case 16: GET_REG32(env
->sr
);
1006 case 17: GET_REG32(env
->pc
);
1009 /* FP registers not included here because they vary between
1010 ColdFire and m68k. Use XML bits for these. */
1014 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1018 tmp
= ldl_p(mem_buf
);
1022 env
->dregs
[n
] = tmp
;
1023 } else if (n
< 16) {
1025 env
->aregs
[n
- 8] = tmp
;
1028 case 16: env
->sr
= tmp
; break;
1029 case 17: env
->pc
= tmp
; break;
1035 #elif defined (TARGET_MIPS)
1037 #define NUM_CORE_REGS 73
1039 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1042 GET_REGL(env
->active_tc
.gpr
[n
]);
1044 if (env
->CP0_Config1
& (1 << CP0C1_FP
)) {
1045 if (n
>= 38 && n
< 70) {
1046 if (env
->CP0_Status
& (1 << CP0St_FR
))
1047 GET_REGL(env
->active_fpu
.fpr
[n
- 38].d
);
1049 GET_REGL(env
->active_fpu
.fpr
[n
- 38].w
[FP_ENDIAN_IDX
]);
1052 case 70: GET_REGL((int32_t)env
->active_fpu
.fcr31
);
1053 case 71: GET_REGL((int32_t)env
->active_fpu
.fcr0
);
1057 case 32: GET_REGL((int32_t)env
->CP0_Status
);
1058 case 33: GET_REGL(env
->active_tc
.LO
[0]);
1059 case 34: GET_REGL(env
->active_tc
.HI
[0]);
1060 case 35: GET_REGL(env
->CP0_BadVAddr
);
1061 case 36: GET_REGL((int32_t)env
->CP0_Cause
);
1062 case 37: GET_REGL(env
->active_tc
.PC
| !!(env
->hflags
& MIPS_HFLAG_M16
));
1063 case 72: GET_REGL(0); /* fp */
1064 case 89: GET_REGL((int32_t)env
->CP0_PRid
);
1066 if (n
>= 73 && n
<= 88) {
1067 /* 16 embedded regs. */
1074 /* convert MIPS rounding mode in FCR31 to IEEE library */
1075 static unsigned int ieee_rm
[] =
1077 float_round_nearest_even
,
1078 float_round_to_zero
,
1082 #define RESTORE_ROUNDING_MODE \
1083 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1085 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1089 tmp
= ldtul_p(mem_buf
);
1092 env
->active_tc
.gpr
[n
] = tmp
;
1093 return sizeof(target_ulong
);
1095 if (env
->CP0_Config1
& (1 << CP0C1_FP
)
1096 && n
>= 38 && n
< 73) {
1098 if (env
->CP0_Status
& (1 << CP0St_FR
))
1099 env
->active_fpu
.fpr
[n
- 38].d
= tmp
;
1101 env
->active_fpu
.fpr
[n
- 38].w
[FP_ENDIAN_IDX
] = tmp
;
1105 env
->active_fpu
.fcr31
= tmp
& 0xFF83FFFF;
1106 /* set rounding mode */
1107 RESTORE_ROUNDING_MODE
;
1108 #ifndef CONFIG_SOFTFLOAT
1109 /* no floating point exception for native float */
1110 SET_FP_ENABLE(env
->active_fpu
.fcr31
, 0);
1113 case 71: env
->active_fpu
.fcr0
= tmp
; break;
1115 return sizeof(target_ulong
);
1118 case 32: env
->CP0_Status
= tmp
; break;
1119 case 33: env
->active_tc
.LO
[0] = tmp
; break;
1120 case 34: env
->active_tc
.HI
[0] = tmp
; break;
1121 case 35: env
->CP0_BadVAddr
= tmp
; break;
1122 case 36: env
->CP0_Cause
= tmp
; break;
1124 env
->active_tc
.PC
= tmp
& ~(target_ulong
)1;
1126 env
->hflags
|= MIPS_HFLAG_M16
;
1128 env
->hflags
&= ~(MIPS_HFLAG_M16
);
1131 case 72: /* fp, ignored */ break;
1135 /* Other registers are readonly. Ignore writes. */
1139 return sizeof(target_ulong
);
1141 #elif defined (TARGET_SH4)
1143 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
1144 /* FIXME: We should use XML for this. */
1146 #define NUM_CORE_REGS 59
1148 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1151 if ((env
->sr
& (SR_MD
| SR_RB
)) == (SR_MD
| SR_RB
)) {
1152 GET_REGL(env
->gregs
[n
+ 16]);
1154 GET_REGL(env
->gregs
[n
]);
1156 } else if (n
< 16) {
1157 GET_REGL(env
->gregs
[n
]);
1158 } else if (n
>= 25 && n
< 41) {
1159 GET_REGL(env
->fregs
[(n
- 25) + ((env
->fpscr
& FPSCR_FR
) ? 16 : 0)]);
1160 } else if (n
>= 43 && n
< 51) {
1161 GET_REGL(env
->gregs
[n
- 43]);
1162 } else if (n
>= 51 && n
< 59) {
1163 GET_REGL(env
->gregs
[n
- (51 - 16)]);
1166 case 16: GET_REGL(env
->pc
);
1167 case 17: GET_REGL(env
->pr
);
1168 case 18: GET_REGL(env
->gbr
);
1169 case 19: GET_REGL(env
->vbr
);
1170 case 20: GET_REGL(env
->mach
);
1171 case 21: GET_REGL(env
->macl
);
1172 case 22: GET_REGL(env
->sr
);
1173 case 23: GET_REGL(env
->fpul
);
1174 case 24: GET_REGL(env
->fpscr
);
1175 case 41: GET_REGL(env
->ssr
);
1176 case 42: GET_REGL(env
->spc
);
1182 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1186 tmp
= ldl_p(mem_buf
);
1189 if ((env
->sr
& (SR_MD
| SR_RB
)) == (SR_MD
| SR_RB
)) {
1190 env
->gregs
[n
+ 16] = tmp
;
1192 env
->gregs
[n
] = tmp
;
1195 } else if (n
< 16) {
1196 env
->gregs
[n
] = tmp
;
1198 } else if (n
>= 25 && n
< 41) {
1199 env
->fregs
[(n
- 25) + ((env
->fpscr
& FPSCR_FR
) ? 16 : 0)] = tmp
;
1201 } else if (n
>= 43 && n
< 51) {
1202 env
->gregs
[n
- 43] = tmp
;
1204 } else if (n
>= 51 && n
< 59) {
1205 env
->gregs
[n
- (51 - 16)] = tmp
;
1209 case 16: env
->pc
= tmp
; break;
1210 case 17: env
->pr
= tmp
; break;
1211 case 18: env
->gbr
= tmp
; break;
1212 case 19: env
->vbr
= tmp
; break;
1213 case 20: env
->mach
= tmp
; break;
1214 case 21: env
->macl
= tmp
; break;
1215 case 22: env
->sr
= tmp
; break;
1216 case 23: env
->fpul
= tmp
; break;
1217 case 24: env
->fpscr
= tmp
; break;
1218 case 41: env
->ssr
= tmp
; break;
1219 case 42: env
->spc
= tmp
; break;
1225 #elif defined (TARGET_MICROBLAZE)
1227 #define NUM_CORE_REGS (32 + 5)
1229 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1232 GET_REG32(env
->regs
[n
]);
1234 GET_REG32(env
->sregs
[n
- 32]);
1239 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1243 if (n
> NUM_CORE_REGS
)
1246 tmp
= ldl_p(mem_buf
);
1251 env
->sregs
[n
- 32] = tmp
;
1255 #elif defined (TARGET_CRIS)
1257 #define NUM_CORE_REGS 49
1260 read_register_crisv10(CPUState
*env
, uint8_t *mem_buf
, int n
)
1263 GET_REG32(env
->regs
[n
]);
1273 GET_REG8(env
->pregs
[n
- 16]);
1276 GET_REG8(env
->pregs
[n
- 16]);
1280 GET_REG16(env
->pregs
[n
- 16]);
1284 GET_REG32(env
->pregs
[n
- 16]);
1292 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1296 if (env
->pregs
[PR_VR
] < 32)
1297 return read_register_crisv10(env
, mem_buf
, n
);
1299 srs
= env
->pregs
[PR_SRS
];
1301 GET_REG32(env
->regs
[n
]);
1304 if (n
>= 21 && n
< 32) {
1305 GET_REG32(env
->pregs
[n
- 16]);
1307 if (n
>= 33 && n
< 49) {
1308 GET_REG32(env
->sregs
[srs
][n
- 33]);
1311 case 16: GET_REG8(env
->pregs
[0]);
1312 case 17: GET_REG8(env
->pregs
[1]);
1313 case 18: GET_REG32(env
->pregs
[2]);
1314 case 19: GET_REG8(srs
);
1315 case 20: GET_REG16(env
->pregs
[4]);
1316 case 32: GET_REG32(env
->pc
);
1322 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1329 tmp
= ldl_p(mem_buf
);
1335 if (n
>= 21 && n
< 32) {
1336 env
->pregs
[n
- 16] = tmp
;
1339 /* FIXME: Should support function regs be writable? */
1343 case 18: env
->pregs
[PR_PID
] = tmp
; break;
1346 case 32: env
->pc
= tmp
; break;
1351 #elif defined (TARGET_ALPHA)
1353 #define NUM_CORE_REGS 67
1355 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1365 d
.d
= env
->fir
[n
- 32];
1369 val
= cpu_alpha_load_fpcr(env
);
1379 /* 31 really is the zero register; 65 is unassigned in the
1380 gdb protocol, but is still required to occupy 8 bytes. */
1389 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1391 target_ulong tmp
= ldtul_p(mem_buf
);
1400 env
->fir
[n
- 32] = d
.d
;
1403 cpu_alpha_store_fpcr(env
, tmp
);
1413 /* 31 really is the zero register; 65 is unassigned in the
1414 gdb protocol, but is still required to occupy 8 bytes. */
1421 #elif defined (TARGET_S390X)
1423 #define NUM_CORE_REGS S390_NUM_TOTAL_REGS
1425 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1428 case S390_PSWM_REGNUM
: GET_REGL(env
->psw
.mask
); break;
1429 case S390_PSWA_REGNUM
: GET_REGL(env
->psw
.addr
); break;
1430 case S390_R0_REGNUM
... S390_R15_REGNUM
:
1431 GET_REGL(env
->regs
[n
-S390_R0_REGNUM
]); break;
1432 case S390_A0_REGNUM
... S390_A15_REGNUM
:
1433 GET_REG32(env
->aregs
[n
-S390_A0_REGNUM
]); break;
1434 case S390_FPC_REGNUM
: GET_REG32(env
->fpc
); break;
1435 case S390_F0_REGNUM
... S390_F15_REGNUM
:
1438 case S390_PC_REGNUM
: GET_REGL(env
->psw
.addr
); break;
1439 case S390_CC_REGNUM
:
1440 env
->cc_op
= calc_cc(env
, env
->cc_op
, env
->cc_src
, env
->cc_dst
,
1442 GET_REG32(env
->cc_op
);
1449 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1454 tmpl
= ldtul_p(mem_buf
);
1455 tmp32
= ldl_p(mem_buf
);
1458 case S390_PSWM_REGNUM
: env
->psw
.mask
= tmpl
; break;
1459 case S390_PSWA_REGNUM
: env
->psw
.addr
= tmpl
; break;
1460 case S390_R0_REGNUM
... S390_R15_REGNUM
:
1461 env
->regs
[n
-S390_R0_REGNUM
] = tmpl
; break;
1462 case S390_A0_REGNUM
... S390_A15_REGNUM
:
1463 env
->aregs
[n
-S390_A0_REGNUM
] = tmp32
; r
=4; break;
1464 case S390_FPC_REGNUM
: env
->fpc
= tmp32
; r
=4; break;
1465 case S390_F0_REGNUM
... S390_F15_REGNUM
:
1468 case S390_PC_REGNUM
: env
->psw
.addr
= tmpl
; break;
1469 case S390_CC_REGNUM
: env
->cc_op
= tmp32
; r
=4; break;
1474 #elif defined (TARGET_LM32)
1476 #include "hw/lm32_pic.h"
1477 #define NUM_CORE_REGS (32 + 7)
1479 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1482 GET_REG32(env
->regs
[n
]);
1488 /* FIXME: put in right exception ID */
1493 GET_REG32(env
->eba
);
1496 GET_REG32(env
->deba
);
1502 GET_REG32(lm32_pic_get_im(env
->pic_state
));
1505 GET_REG32(lm32_pic_get_ip(env
->pic_state
));
1512 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1516 if (n
> NUM_CORE_REGS
) {
1520 tmp
= ldl_p(mem_buf
);
1539 lm32_pic_set_im(env
->pic_state
, tmp
);
1542 lm32_pic_set_ip(env
->pic_state
, tmp
);
1550 #define NUM_CORE_REGS 0
1552 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1557 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1564 static int num_g_regs
= NUM_CORE_REGS
;
1567 /* Encode data using the encoding for 'x' packets. */
1568 static int memtox(char *buf
, const char *mem
, int len
)
1576 case '#': case '$': case '*': case '}':
1588 static const char *get_feature_xml(const char *p
, const char **newp
)
1593 static char target_xml
[1024];
1596 while (p
[len
] && p
[len
] != ':')
1601 if (strncmp(p
, "target.xml", len
) == 0) {
1602 /* Generate the XML description for this CPU. */
1603 if (!target_xml
[0]) {
1604 GDBRegisterState
*r
;
1606 snprintf(target_xml
, sizeof(target_xml
),
1607 "<?xml version=\"1.0\"?>"
1608 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1610 "<xi:include href=\"%s\"/>",
1613 for (r
= first_cpu
->gdb_regs
; r
; r
= r
->next
) {
1614 pstrcat(target_xml
, sizeof(target_xml
), "<xi:include href=\"");
1615 pstrcat(target_xml
, sizeof(target_xml
), r
->xml
);
1616 pstrcat(target_xml
, sizeof(target_xml
), "\"/>");
1618 pstrcat(target_xml
, sizeof(target_xml
), "</target>");
1622 for (i
= 0; ; i
++) {
1623 name
= xml_builtin
[i
][0];
1624 if (!name
|| (strncmp(name
, p
, len
) == 0 && strlen(name
) == len
))
1627 return name
? xml_builtin
[i
][1] : NULL
;
1631 static int gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int reg
)
1633 GDBRegisterState
*r
;
1635 if (reg
< NUM_CORE_REGS
)
1636 return cpu_gdb_read_register(env
, mem_buf
, reg
);
1638 for (r
= env
->gdb_regs
; r
; r
= r
->next
) {
1639 if (r
->base_reg
<= reg
&& reg
< r
->base_reg
+ r
->num_regs
) {
1640 return r
->get_reg(env
, mem_buf
, reg
- r
->base_reg
);
1646 static int gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int reg
)
1648 GDBRegisterState
*r
;
1650 if (reg
< NUM_CORE_REGS
)
1651 return cpu_gdb_write_register(env
, mem_buf
, reg
);
1653 for (r
= env
->gdb_regs
; r
; r
= r
->next
) {
1654 if (r
->base_reg
<= reg
&& reg
< r
->base_reg
+ r
->num_regs
) {
1655 return r
->set_reg(env
, mem_buf
, reg
- r
->base_reg
);
1661 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1662 specifies the first register number and these registers are included in
1663 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1664 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1667 void gdb_register_coprocessor(CPUState
* env
,
1668 gdb_reg_cb get_reg
, gdb_reg_cb set_reg
,
1669 int num_regs
, const char *xml
, int g_pos
)
1671 GDBRegisterState
*s
;
1672 GDBRegisterState
**p
;
1673 static int last_reg
= NUM_CORE_REGS
;
1675 s
= (GDBRegisterState
*)qemu_mallocz(sizeof(GDBRegisterState
));
1676 s
->base_reg
= last_reg
;
1677 s
->num_regs
= num_regs
;
1678 s
->get_reg
= get_reg
;
1679 s
->set_reg
= set_reg
;
1683 /* Check for duplicates. */
1684 if (strcmp((*p
)->xml
, xml
) == 0)
1688 /* Add to end of list. */
1689 last_reg
+= num_regs
;
1692 if (g_pos
!= s
->base_reg
) {
1693 fprintf(stderr
, "Error: Bad gdb register numbering for '%s'\n"
1694 "Expected %d got %d\n", xml
, g_pos
, s
->base_reg
);
1696 num_g_regs
= last_reg
;
1701 #ifndef CONFIG_USER_ONLY
1702 static const int xlat_gdb_type
[] = {
1703 [GDB_WATCHPOINT_WRITE
] = BP_GDB
| BP_MEM_WRITE
,
1704 [GDB_WATCHPOINT_READ
] = BP_GDB
| BP_MEM_READ
,
1705 [GDB_WATCHPOINT_ACCESS
] = BP_GDB
| BP_MEM_ACCESS
,
1709 static int gdb_breakpoint_insert(target_ulong addr
, target_ulong len
, int type
)
1715 return kvm_insert_breakpoint(gdbserver_state
->c_cpu
, addr
, len
, type
);
1718 case GDB_BREAKPOINT_SW
:
1719 case GDB_BREAKPOINT_HW
:
1720 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1721 err
= cpu_breakpoint_insert(env
, addr
, BP_GDB
, NULL
);
1726 #ifndef CONFIG_USER_ONLY
1727 case GDB_WATCHPOINT_WRITE
:
1728 case GDB_WATCHPOINT_READ
:
1729 case GDB_WATCHPOINT_ACCESS
:
1730 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1731 err
= cpu_watchpoint_insert(env
, addr
, len
, xlat_gdb_type
[type
],
1743 static int gdb_breakpoint_remove(target_ulong addr
, target_ulong len
, int type
)
1749 return kvm_remove_breakpoint(gdbserver_state
->c_cpu
, addr
, len
, type
);
1752 case GDB_BREAKPOINT_SW
:
1753 case GDB_BREAKPOINT_HW
:
1754 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1755 err
= cpu_breakpoint_remove(env
, addr
, BP_GDB
);
1760 #ifndef CONFIG_USER_ONLY
1761 case GDB_WATCHPOINT_WRITE
:
1762 case GDB_WATCHPOINT_READ
:
1763 case GDB_WATCHPOINT_ACCESS
:
1764 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1765 err
= cpu_watchpoint_remove(env
, addr
, len
, xlat_gdb_type
[type
]);
1776 static void gdb_breakpoint_remove_all(void)
1780 if (kvm_enabled()) {
1781 kvm_remove_all_breakpoints(gdbserver_state
->c_cpu
);
1785 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1786 cpu_breakpoint_remove_all(env
, BP_GDB
);
1787 #ifndef CONFIG_USER_ONLY
1788 cpu_watchpoint_remove_all(env
, BP_GDB
);
1793 static void gdb_set_cpu_pc(GDBState
*s
, target_ulong pc
)
1795 #if defined(TARGET_I386)
1796 cpu_synchronize_state(s
->c_cpu
);
1798 #elif defined (TARGET_PPC)
1800 #elif defined (TARGET_SPARC)
1802 s
->c_cpu
->npc
= pc
+ 4;
1803 #elif defined (TARGET_ARM)
1804 s
->c_cpu
->regs
[15] = pc
;
1805 #elif defined (TARGET_SH4)
1807 #elif defined (TARGET_MIPS)
1808 s
->c_cpu
->active_tc
.PC
= pc
& ~(target_ulong
)1;
1810 s
->c_cpu
->hflags
|= MIPS_HFLAG_M16
;
1812 s
->c_cpu
->hflags
&= ~(MIPS_HFLAG_M16
);
1814 #elif defined (TARGET_MICROBLAZE)
1815 s
->c_cpu
->sregs
[SR_PC
] = pc
;
1816 #elif defined (TARGET_CRIS)
1818 #elif defined (TARGET_ALPHA)
1820 #elif defined (TARGET_S390X)
1821 cpu_synchronize_state(s
->c_cpu
);
1822 s
->c_cpu
->psw
.addr
= pc
;
1823 #elif defined (TARGET_LM32)
1828 static inline int gdb_id(CPUState
*env
)
1830 #if defined(CONFIG_USER_ONLY) && defined(CONFIG_USE_NPTL)
1831 return env
->host_tid
;
1833 return env
->cpu_index
+ 1;
1837 static CPUState
*find_cpu(uint32_t thread_id
)
1841 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1842 if (gdb_id(env
) == thread_id
) {
1850 static int gdb_handle_packet(GDBState
*s
, const char *line_buf
)
1855 int ch
, reg_size
, type
, res
;
1856 char buf
[MAX_PACKET_LENGTH
];
1857 uint8_t mem_buf
[MAX_PACKET_LENGTH
];
1859 target_ulong addr
, len
;
1862 printf("command='%s'\n", line_buf
);
1868 /* TODO: Make this return the correct value for user-mode. */
1869 snprintf(buf
, sizeof(buf
), "T%02xthread:%02x;", GDB_SIGNAL_TRAP
,
1872 /* Remove all the breakpoints when this query is issued,
1873 * because gdb is doing and initial connect and the state
1874 * should be cleaned up.
1876 gdb_breakpoint_remove_all();
1880 addr
= strtoull(p
, (char **)&p
, 16);
1881 gdb_set_cpu_pc(s
, addr
);
1887 s
->signal
= gdb_signal_to_target (strtoul(p
, (char **)&p
, 16));
1888 if (s
->signal
== -1)
1893 if (strncmp(p
, "Cont", 4) == 0) {
1894 int res_signal
, res_thread
;
1898 put_packet(s
, "vCont;c;C;s;S");
1913 if (action
== 'C' || action
== 'S') {
1914 signal
= strtoul(p
, (char **)&p
, 16);
1915 } else if (action
!= 'c' && action
!= 's') {
1921 thread
= strtoull(p
+1, (char **)&p
, 16);
1923 action
= tolower(action
);
1924 if (res
== 0 || (res
== 'c' && action
== 's')) {
1926 res_signal
= signal
;
1927 res_thread
= thread
;
1931 if (res_thread
!= -1 && res_thread
!= 0) {
1932 env
= find_cpu(res_thread
);
1934 put_packet(s
, "E22");
1940 cpu_single_step(s
->c_cpu
, sstep_flags
);
1942 s
->signal
= res_signal
;
1948 goto unknown_command
;
1951 /* Kill the target */
1952 fprintf(stderr
, "\nQEMU: Terminated via GDBstub\n");
1956 gdb_breakpoint_remove_all();
1957 gdb_syscall_mode
= GDB_SYS_DISABLED
;
1959 put_packet(s
, "OK");
1963 addr
= strtoull(p
, (char **)&p
, 16);
1964 gdb_set_cpu_pc(s
, addr
);
1966 cpu_single_step(s
->c_cpu
, sstep_flags
);
1974 ret
= strtoull(p
, (char **)&p
, 16);
1977 err
= strtoull(p
, (char **)&p
, 16);
1984 if (gdb_current_syscall_cb
)
1985 gdb_current_syscall_cb(s
->c_cpu
, ret
, err
);
1987 put_packet(s
, "T02");
1994 cpu_synchronize_state(s
->g_cpu
);
1996 for (addr
= 0; addr
< num_g_regs
; addr
++) {
1997 reg_size
= gdb_read_register(s
->g_cpu
, mem_buf
+ len
, addr
);
2000 memtohex(buf
, mem_buf
, len
);
2004 cpu_synchronize_state(s
->g_cpu
);
2005 registers
= mem_buf
;
2006 len
= strlen(p
) / 2;
2007 hextomem((uint8_t *)registers
, p
, len
);
2008 for (addr
= 0; addr
< num_g_regs
&& len
> 0; addr
++) {
2009 reg_size
= gdb_write_register(s
->g_cpu
, registers
, addr
);
2011 registers
+= reg_size
;
2013 put_packet(s
, "OK");
2016 addr
= strtoull(p
, (char **)&p
, 16);
2019 len
= strtoull(p
, NULL
, 16);
2020 if (cpu_memory_rw_debug(s
->g_cpu
, addr
, mem_buf
, len
, 0) != 0) {
2021 put_packet (s
, "E14");
2023 memtohex(buf
, mem_buf
, len
);
2028 addr
= strtoull(p
, (char **)&p
, 16);
2031 len
= strtoull(p
, (char **)&p
, 16);
2034 hextomem(mem_buf
, p
, len
);
2035 if (cpu_memory_rw_debug(s
->g_cpu
, addr
, mem_buf
, len
, 1) != 0)
2036 put_packet(s
, "E14");
2038 put_packet(s
, "OK");
2041 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
2042 This works, but can be very slow. Anything new enough to
2043 understand XML also knows how to use this properly. */
2045 goto unknown_command
;
2046 addr
= strtoull(p
, (char **)&p
, 16);
2047 reg_size
= gdb_read_register(s
->g_cpu
, mem_buf
, addr
);
2049 memtohex(buf
, mem_buf
, reg_size
);
2052 put_packet(s
, "E14");
2057 goto unknown_command
;
2058 addr
= strtoull(p
, (char **)&p
, 16);
2061 reg_size
= strlen(p
) / 2;
2062 hextomem(mem_buf
, p
, reg_size
);
2063 gdb_write_register(s
->g_cpu
, mem_buf
, addr
);
2064 put_packet(s
, "OK");
2068 type
= strtoul(p
, (char **)&p
, 16);
2071 addr
= strtoull(p
, (char **)&p
, 16);
2074 len
= strtoull(p
, (char **)&p
, 16);
2076 res
= gdb_breakpoint_insert(addr
, len
, type
);
2078 res
= gdb_breakpoint_remove(addr
, len
, type
);
2080 put_packet(s
, "OK");
2081 else if (res
== -ENOSYS
)
2084 put_packet(s
, "E22");
2088 thread
= strtoull(p
, (char **)&p
, 16);
2089 if (thread
== -1 || thread
== 0) {
2090 put_packet(s
, "OK");
2093 env
= find_cpu(thread
);
2095 put_packet(s
, "E22");
2101 put_packet(s
, "OK");
2105 put_packet(s
, "OK");
2108 put_packet(s
, "E22");
2113 thread
= strtoull(p
, (char **)&p
, 16);
2114 env
= find_cpu(thread
);
2117 put_packet(s
, "OK");
2119 put_packet(s
, "E22");
2124 /* parse any 'q' packets here */
2125 if (!strcmp(p
,"qemu.sstepbits")) {
2126 /* Query Breakpoint bit definitions */
2127 snprintf(buf
, sizeof(buf
), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
2133 } else if (strncmp(p
,"qemu.sstep",10) == 0) {
2134 /* Display or change the sstep_flags */
2137 /* Display current setting */
2138 snprintf(buf
, sizeof(buf
), "0x%x", sstep_flags
);
2143 type
= strtoul(p
, (char **)&p
, 16);
2145 put_packet(s
, "OK");
2147 } else if (strcmp(p
,"C") == 0) {
2148 /* "Current thread" remains vague in the spec, so always return
2149 * the first CPU (gdb returns the first thread). */
2150 put_packet(s
, "QC1");
2152 } else if (strcmp(p
,"fThreadInfo") == 0) {
2153 s
->query_cpu
= first_cpu
;
2154 goto report_cpuinfo
;
2155 } else if (strcmp(p
,"sThreadInfo") == 0) {
2158 snprintf(buf
, sizeof(buf
), "m%x", gdb_id(s
->query_cpu
));
2160 s
->query_cpu
= s
->query_cpu
->next_cpu
;
2164 } else if (strncmp(p
,"ThreadExtraInfo,", 16) == 0) {
2165 thread
= strtoull(p
+16, (char **)&p
, 16);
2166 env
= find_cpu(thread
);
2168 cpu_synchronize_state(env
);
2169 len
= snprintf((char *)mem_buf
, sizeof(mem_buf
),
2170 "CPU#%d [%s]", env
->cpu_index
,
2171 env
->halted
? "halted " : "running");
2172 memtohex(buf
, mem_buf
, len
);
2177 #ifdef CONFIG_USER_ONLY
2178 else if (strncmp(p
, "Offsets", 7) == 0) {
2179 TaskState
*ts
= s
->c_cpu
->opaque
;
2181 snprintf(buf
, sizeof(buf
),
2182 "Text=" TARGET_ABI_FMT_lx
";Data=" TARGET_ABI_FMT_lx
2183 ";Bss=" TARGET_ABI_FMT_lx
,
2184 ts
->info
->code_offset
,
2185 ts
->info
->data_offset
,
2186 ts
->info
->data_offset
);
2190 #else /* !CONFIG_USER_ONLY */
2191 else if (strncmp(p
, "Rcmd,", 5) == 0) {
2192 int len
= strlen(p
+ 5);
2194 if ((len
% 2) != 0) {
2195 put_packet(s
, "E01");
2198 hextomem(mem_buf
, p
+ 5, len
);
2201 qemu_chr_read(s
->mon_chr
, mem_buf
, len
);
2202 put_packet(s
, "OK");
2205 #endif /* !CONFIG_USER_ONLY */
2206 if (strncmp(p
, "Supported", 9) == 0) {
2207 snprintf(buf
, sizeof(buf
), "PacketSize=%x", MAX_PACKET_LENGTH
);
2209 pstrcat(buf
, sizeof(buf
), ";qXfer:features:read+");
2215 if (strncmp(p
, "Xfer:features:read:", 19) == 0) {
2217 target_ulong total_len
;
2221 xml
= get_feature_xml(p
, &p
);
2223 snprintf(buf
, sizeof(buf
), "E00");
2230 addr
= strtoul(p
, (char **)&p
, 16);
2233 len
= strtoul(p
, (char **)&p
, 16);
2235 total_len
= strlen(xml
);
2236 if (addr
> total_len
) {
2237 snprintf(buf
, sizeof(buf
), "E00");
2241 if (len
> (MAX_PACKET_LENGTH
- 5) / 2)
2242 len
= (MAX_PACKET_LENGTH
- 5) / 2;
2243 if (len
< total_len
- addr
) {
2245 len
= memtox(buf
+ 1, xml
+ addr
, len
);
2248 len
= memtox(buf
+ 1, xml
+ addr
, total_len
- addr
);
2250 put_packet_binary(s
, buf
, len
+ 1);
2254 /* Unrecognised 'q' command. */
2255 goto unknown_command
;
2259 /* put empty packet */
2267 void gdb_set_stop_cpu(CPUState
*env
)
2269 gdbserver_state
->c_cpu
= env
;
2270 gdbserver_state
->g_cpu
= env
;
2273 #ifndef CONFIG_USER_ONLY
2274 static void gdb_vm_state_change(void *opaque
, int running
, int reason
)
2276 GDBState
*s
= gdbserver_state
;
2277 CPUState
*env
= s
->c_cpu
;
2282 if (running
|| s
->state
== RS_INACTIVE
|| s
->state
== RS_SYSCALL
) {
2287 if (env
->watchpoint_hit
) {
2288 switch (env
->watchpoint_hit
->flags
& BP_MEM_ACCESS
) {
2299 snprintf(buf
, sizeof(buf
),
2300 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx
";",
2301 GDB_SIGNAL_TRAP
, gdb_id(env
), type
,
2302 env
->watchpoint_hit
->vaddr
);
2303 env
->watchpoint_hit
= NULL
;
2307 ret
= GDB_SIGNAL_TRAP
;
2310 ret
= GDB_SIGNAL_INT
;
2312 case VMSTOP_SHUTDOWN
:
2313 ret
= GDB_SIGNAL_QUIT
;
2315 case VMSTOP_DISKFULL
:
2316 ret
= GDB_SIGNAL_IO
;
2318 case VMSTOP_WATCHDOG
:
2319 ret
= GDB_SIGNAL_ALRM
;
2322 ret
= GDB_SIGNAL_ABRT
;
2327 case VMSTOP_MIGRATE
:
2328 ret
= GDB_SIGNAL_XCPU
;
2331 ret
= GDB_SIGNAL_UNKNOWN
;
2334 snprintf(buf
, sizeof(buf
), "T%02xthread:%02x;", ret
, gdb_id(env
));
2339 /* disable single step if it was enabled */
2340 cpu_single_step(env
, 0);
2344 /* Send a gdb syscall request.
2345 This accepts limited printf-style format specifiers, specifically:
2346 %x - target_ulong argument printed in hex.
2347 %lx - 64-bit argument printed in hex.
2348 %s - string pointer (target_ulong) and length (int) pair. */
2349 void gdb_do_syscall(gdb_syscall_complete_cb cb
, const char *fmt
, ...)
2358 s
= gdbserver_state
;
2361 gdb_current_syscall_cb
= cb
;
2362 s
->state
= RS_SYSCALL
;
2363 #ifndef CONFIG_USER_ONLY
2364 vm_stop(VMSTOP_DEBUG
);
2375 addr
= va_arg(va
, target_ulong
);
2376 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, TARGET_FMT_lx
, addr
);
2379 if (*(fmt
++) != 'x')
2381 i64
= va_arg(va
, uint64_t);
2382 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, "%" PRIx64
, i64
);
2385 addr
= va_arg(va
, target_ulong
);
2386 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, TARGET_FMT_lx
"/%x",
2387 addr
, va_arg(va
, int));
2391 fprintf(stderr
, "gdbstub: Bad syscall format string '%s'\n",
2402 #ifdef CONFIG_USER_ONLY
2403 gdb_handlesig(s
->c_cpu
, 0);
2409 static void gdb_read_byte(GDBState
*s
, int ch
)
2414 #ifndef CONFIG_USER_ONLY
2415 if (s
->last_packet_len
) {
2416 /* Waiting for a response to the last packet. If we see the start
2417 of a new command then abandon the previous response. */
2420 printf("Got NACK, retransmitting\n");
2422 put_buffer(s
, (uint8_t *)s
->last_packet
, s
->last_packet_len
);
2426 printf("Got ACK\n");
2428 printf("Got '%c' when expecting ACK/NACK\n", ch
);
2430 if (ch
== '+' || ch
== '$')
2431 s
->last_packet_len
= 0;
2436 /* when the CPU is running, we cannot do anything except stop
2437 it when receiving a char */
2438 vm_stop(VMSTOP_USER
);
2445 s
->line_buf_index
= 0;
2446 s
->state
= RS_GETLINE
;
2451 s
->state
= RS_CHKSUM1
;
2452 } else if (s
->line_buf_index
>= sizeof(s
->line_buf
) - 1) {
2455 s
->line_buf
[s
->line_buf_index
++] = ch
;
2459 s
->line_buf
[s
->line_buf_index
] = '\0';
2460 s
->line_csum
= fromhex(ch
) << 4;
2461 s
->state
= RS_CHKSUM2
;
2464 s
->line_csum
|= fromhex(ch
);
2466 for(i
= 0; i
< s
->line_buf_index
; i
++) {
2467 csum
+= s
->line_buf
[i
];
2469 if (s
->line_csum
!= (csum
& 0xff)) {
2471 put_buffer(s
, &reply
, 1);
2475 put_buffer(s
, &reply
, 1);
2476 s
->state
= gdb_handle_packet(s
, s
->line_buf
);
2485 /* Tell the remote gdb that the process has exited. */
2486 void gdb_exit(CPUState
*env
, int code
)
2491 s
= gdbserver_state
;
2495 #ifdef CONFIG_USER_ONLY
2496 if (gdbserver_fd
< 0 || s
->fd
< 0) {
2501 snprintf(buf
, sizeof(buf
), "W%02x", (uint8_t)code
);
2504 #ifndef CONFIG_USER_ONLY
2506 qemu_chr_close(s
->chr
);
2511 #ifdef CONFIG_USER_ONLY
2517 s
= gdbserver_state
;
2519 if (gdbserver_fd
< 0 || s
->fd
< 0)
2526 gdb_handlesig (CPUState
*env
, int sig
)
2532 s
= gdbserver_state
;
2533 if (gdbserver_fd
< 0 || s
->fd
< 0)
2536 /* disable single step if it was enabled */
2537 cpu_single_step(env
, 0);
2542 snprintf(buf
, sizeof(buf
), "S%02x", target_signal_to_gdb (sig
));
2545 /* put_packet() might have detected that the peer terminated the
2552 s
->running_state
= 0;
2553 while (s
->running_state
== 0) {
2554 n
= read (s
->fd
, buf
, 256);
2559 for (i
= 0; i
< n
; i
++)
2560 gdb_read_byte (s
, buf
[i
]);
2562 else if (n
== 0 || errno
!= EAGAIN
)
2564 /* XXX: Connection closed. Should probably wait for annother
2565 connection before continuing. */
2574 /* Tell the remote gdb that the process has exited due to SIG. */
2575 void gdb_signalled(CPUState
*env
, int sig
)
2580 s
= gdbserver_state
;
2581 if (gdbserver_fd
< 0 || s
->fd
< 0)
2584 snprintf(buf
, sizeof(buf
), "X%02x", target_signal_to_gdb (sig
));
2588 static void gdb_accept(void)
2591 struct sockaddr_in sockaddr
;
2596 len
= sizeof(sockaddr
);
2597 fd
= accept(gdbserver_fd
, (struct sockaddr
*)&sockaddr
, &len
);
2598 if (fd
< 0 && errno
!= EINTR
) {
2601 } else if (fd
>= 0) {
2603 fcntl(fd
, F_SETFD
, FD_CLOEXEC
);
2609 /* set short latency */
2611 setsockopt(fd
, IPPROTO_TCP
, TCP_NODELAY
, (char *)&val
, sizeof(val
));
2613 s
= qemu_mallocz(sizeof(GDBState
));
2614 s
->c_cpu
= first_cpu
;
2615 s
->g_cpu
= first_cpu
;
2619 gdbserver_state
= s
;
2621 fcntl(fd
, F_SETFL
, O_NONBLOCK
);
2624 static int gdbserver_open(int port
)
2626 struct sockaddr_in sockaddr
;
2629 fd
= socket(PF_INET
, SOCK_STREAM
, 0);
2635 fcntl(fd
, F_SETFD
, FD_CLOEXEC
);
2638 /* allow fast reuse */
2640 setsockopt(fd
, SOL_SOCKET
, SO_REUSEADDR
, (char *)&val
, sizeof(val
));
2642 sockaddr
.sin_family
= AF_INET
;
2643 sockaddr
.sin_port
= htons(port
);
2644 sockaddr
.sin_addr
.s_addr
= 0;
2645 ret
= bind(fd
, (struct sockaddr
*)&sockaddr
, sizeof(sockaddr
));
2650 ret
= listen(fd
, 0);
2658 int gdbserver_start(int port
)
2660 gdbserver_fd
= gdbserver_open(port
);
2661 if (gdbserver_fd
< 0)
2663 /* accept connections */
2668 /* Disable gdb stub for child processes. */
2669 void gdbserver_fork(CPUState
*env
)
2671 GDBState
*s
= gdbserver_state
;
2672 if (gdbserver_fd
< 0 || s
->fd
< 0)
2676 cpu_breakpoint_remove_all(env
, BP_GDB
);
2677 cpu_watchpoint_remove_all(env
, BP_GDB
);
2680 static int gdb_chr_can_receive(void *opaque
)
2682 /* We can handle an arbitrarily large amount of data.
2683 Pick the maximum packet size, which is as good as anything. */
2684 return MAX_PACKET_LENGTH
;
2687 static void gdb_chr_receive(void *opaque
, const uint8_t *buf
, int size
)
2691 for (i
= 0; i
< size
; i
++) {
2692 gdb_read_byte(gdbserver_state
, buf
[i
]);
2696 static void gdb_chr_event(void *opaque
, int event
)
2699 case CHR_EVENT_OPENED
:
2700 vm_stop(VMSTOP_USER
);
2708 static void gdb_monitor_output(GDBState
*s
, const char *msg
, int len
)
2710 char buf
[MAX_PACKET_LENGTH
];
2713 if (len
> (MAX_PACKET_LENGTH
/2) - 1)
2714 len
= (MAX_PACKET_LENGTH
/2) - 1;
2715 memtohex(buf
+ 1, (uint8_t *)msg
, len
);
2719 static int gdb_monitor_write(CharDriverState
*chr
, const uint8_t *buf
, int len
)
2721 const char *p
= (const char *)buf
;
2724 max_sz
= (sizeof(gdbserver_state
->last_packet
) - 2) / 2;
2726 if (len
<= max_sz
) {
2727 gdb_monitor_output(gdbserver_state
, p
, len
);
2730 gdb_monitor_output(gdbserver_state
, p
, max_sz
);
2738 static void gdb_sigterm_handler(int signal
)
2741 vm_stop(VMSTOP_USER
);
2746 int gdbserver_start(const char *device
)
2749 char gdbstub_device_name
[128];
2750 CharDriverState
*chr
= NULL
;
2751 CharDriverState
*mon_chr
;
2755 if (strcmp(device
, "none") != 0) {
2756 if (strstart(device
, "tcp:", NULL
)) {
2757 /* enforce required TCP attributes */
2758 snprintf(gdbstub_device_name
, sizeof(gdbstub_device_name
),
2759 "%s,nowait,nodelay,server", device
);
2760 device
= gdbstub_device_name
;
2763 else if (strcmp(device
, "stdio") == 0) {
2764 struct sigaction act
;
2766 memset(&act
, 0, sizeof(act
));
2767 act
.sa_handler
= gdb_sigterm_handler
;
2768 sigaction(SIGINT
, &act
, NULL
);
2771 chr
= qemu_chr_open("gdb", device
, NULL
);
2775 qemu_chr_add_handlers(chr
, gdb_chr_can_receive
, gdb_chr_receive
,
2776 gdb_chr_event
, NULL
);
2779 s
= gdbserver_state
;
2781 s
= qemu_mallocz(sizeof(GDBState
));
2782 gdbserver_state
= s
;
2784 qemu_add_vm_change_state_handler(gdb_vm_state_change
, NULL
);
2786 /* Initialize a monitor terminal for gdb */
2787 mon_chr
= qemu_mallocz(sizeof(*mon_chr
));
2788 mon_chr
->chr_write
= gdb_monitor_write
;
2789 monitor_init(mon_chr
, 0);
2792 qemu_chr_close(s
->chr
);
2793 mon_chr
= s
->mon_chr
;
2794 memset(s
, 0, sizeof(GDBState
));
2796 s
->c_cpu
= first_cpu
;
2797 s
->g_cpu
= first_cpu
;
2799 s
->state
= chr
? RS_IDLE
: RS_INACTIVE
;
2800 s
->mon_chr
= mon_chr
;