softfloat: Add new flag for when denormal result is flushed to zero
[qemu.git] / gdbstub.c
blobae856f91d49d347a21a7ef16fa700d8cd95dba3a
1 /*
2 * gdb server stub
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #include "qemu-common.h"
21 #ifdef CONFIG_USER_ONLY
22 #include <stdlib.h>
23 #include <stdio.h>
24 #include <stdarg.h>
25 #include <string.h>
26 #include <errno.h>
27 #include <unistd.h>
28 #include <fcntl.h>
30 #include "qemu.h"
31 #else
32 #include "monitor.h"
33 #include "qemu-char.h"
34 #include "sysemu.h"
35 #include "gdbstub.h"
36 #endif
38 #define MAX_PACKET_LENGTH 4096
40 #include "exec-all.h"
41 #include "qemu_socket.h"
42 #include "kvm.h"
45 enum {
46 GDB_SIGNAL_0 = 0,
47 GDB_SIGNAL_INT = 2,
48 GDB_SIGNAL_QUIT = 3,
49 GDB_SIGNAL_TRAP = 5,
50 GDB_SIGNAL_ABRT = 6,
51 GDB_SIGNAL_ALRM = 14,
52 GDB_SIGNAL_IO = 23,
53 GDB_SIGNAL_XCPU = 24,
54 GDB_SIGNAL_UNKNOWN = 143
57 #ifdef CONFIG_USER_ONLY
59 /* Map target signal numbers to GDB protocol signal numbers and vice
60 * versa. For user emulation's currently supported systems, we can
61 * assume most signals are defined.
64 static int gdb_signal_table[] = {
66 TARGET_SIGHUP,
67 TARGET_SIGINT,
68 TARGET_SIGQUIT,
69 TARGET_SIGILL,
70 TARGET_SIGTRAP,
71 TARGET_SIGABRT,
72 -1, /* SIGEMT */
73 TARGET_SIGFPE,
74 TARGET_SIGKILL,
75 TARGET_SIGBUS,
76 TARGET_SIGSEGV,
77 TARGET_SIGSYS,
78 TARGET_SIGPIPE,
79 TARGET_SIGALRM,
80 TARGET_SIGTERM,
81 TARGET_SIGURG,
82 TARGET_SIGSTOP,
83 TARGET_SIGTSTP,
84 TARGET_SIGCONT,
85 TARGET_SIGCHLD,
86 TARGET_SIGTTIN,
87 TARGET_SIGTTOU,
88 TARGET_SIGIO,
89 TARGET_SIGXCPU,
90 TARGET_SIGXFSZ,
91 TARGET_SIGVTALRM,
92 TARGET_SIGPROF,
93 TARGET_SIGWINCH,
94 -1, /* SIGLOST */
95 TARGET_SIGUSR1,
96 TARGET_SIGUSR2,
97 #ifdef TARGET_SIGPWR
98 TARGET_SIGPWR,
99 #else
101 #endif
102 -1, /* SIGPOLL */
114 #ifdef __SIGRTMIN
115 __SIGRTMIN + 1,
116 __SIGRTMIN + 2,
117 __SIGRTMIN + 3,
118 __SIGRTMIN + 4,
119 __SIGRTMIN + 5,
120 __SIGRTMIN + 6,
121 __SIGRTMIN + 7,
122 __SIGRTMIN + 8,
123 __SIGRTMIN + 9,
124 __SIGRTMIN + 10,
125 __SIGRTMIN + 11,
126 __SIGRTMIN + 12,
127 __SIGRTMIN + 13,
128 __SIGRTMIN + 14,
129 __SIGRTMIN + 15,
130 __SIGRTMIN + 16,
131 __SIGRTMIN + 17,
132 __SIGRTMIN + 18,
133 __SIGRTMIN + 19,
134 __SIGRTMIN + 20,
135 __SIGRTMIN + 21,
136 __SIGRTMIN + 22,
137 __SIGRTMIN + 23,
138 __SIGRTMIN + 24,
139 __SIGRTMIN + 25,
140 __SIGRTMIN + 26,
141 __SIGRTMIN + 27,
142 __SIGRTMIN + 28,
143 __SIGRTMIN + 29,
144 __SIGRTMIN + 30,
145 __SIGRTMIN + 31,
146 -1, /* SIGCANCEL */
147 __SIGRTMIN,
148 __SIGRTMIN + 32,
149 __SIGRTMIN + 33,
150 __SIGRTMIN + 34,
151 __SIGRTMIN + 35,
152 __SIGRTMIN + 36,
153 __SIGRTMIN + 37,
154 __SIGRTMIN + 38,
155 __SIGRTMIN + 39,
156 __SIGRTMIN + 40,
157 __SIGRTMIN + 41,
158 __SIGRTMIN + 42,
159 __SIGRTMIN + 43,
160 __SIGRTMIN + 44,
161 __SIGRTMIN + 45,
162 __SIGRTMIN + 46,
163 __SIGRTMIN + 47,
164 __SIGRTMIN + 48,
165 __SIGRTMIN + 49,
166 __SIGRTMIN + 50,
167 __SIGRTMIN + 51,
168 __SIGRTMIN + 52,
169 __SIGRTMIN + 53,
170 __SIGRTMIN + 54,
171 __SIGRTMIN + 55,
172 __SIGRTMIN + 56,
173 __SIGRTMIN + 57,
174 __SIGRTMIN + 58,
175 __SIGRTMIN + 59,
176 __SIGRTMIN + 60,
177 __SIGRTMIN + 61,
178 __SIGRTMIN + 62,
179 __SIGRTMIN + 63,
180 __SIGRTMIN + 64,
181 __SIGRTMIN + 65,
182 __SIGRTMIN + 66,
183 __SIGRTMIN + 67,
184 __SIGRTMIN + 68,
185 __SIGRTMIN + 69,
186 __SIGRTMIN + 70,
187 __SIGRTMIN + 71,
188 __SIGRTMIN + 72,
189 __SIGRTMIN + 73,
190 __SIGRTMIN + 74,
191 __SIGRTMIN + 75,
192 __SIGRTMIN + 76,
193 __SIGRTMIN + 77,
194 __SIGRTMIN + 78,
195 __SIGRTMIN + 79,
196 __SIGRTMIN + 80,
197 __SIGRTMIN + 81,
198 __SIGRTMIN + 82,
199 __SIGRTMIN + 83,
200 __SIGRTMIN + 84,
201 __SIGRTMIN + 85,
202 __SIGRTMIN + 86,
203 __SIGRTMIN + 87,
204 __SIGRTMIN + 88,
205 __SIGRTMIN + 89,
206 __SIGRTMIN + 90,
207 __SIGRTMIN + 91,
208 __SIGRTMIN + 92,
209 __SIGRTMIN + 93,
210 __SIGRTMIN + 94,
211 __SIGRTMIN + 95,
212 -1, /* SIGINFO */
213 -1, /* UNKNOWN */
214 -1, /* DEFAULT */
221 #endif
223 #else
224 /* In system mode we only need SIGINT and SIGTRAP; other signals
225 are not yet supported. */
227 enum {
228 TARGET_SIGINT = 2,
229 TARGET_SIGTRAP = 5
232 static int gdb_signal_table[] = {
235 TARGET_SIGINT,
238 TARGET_SIGTRAP
240 #endif
242 #ifdef CONFIG_USER_ONLY
243 static int target_signal_to_gdb (int sig)
245 int i;
246 for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++)
247 if (gdb_signal_table[i] == sig)
248 return i;
249 return GDB_SIGNAL_UNKNOWN;
251 #endif
253 static int gdb_signal_to_target (int sig)
255 if (sig < ARRAY_SIZE (gdb_signal_table))
256 return gdb_signal_table[sig];
257 else
258 return -1;
261 //#define DEBUG_GDB
263 typedef struct GDBRegisterState {
264 int base_reg;
265 int num_regs;
266 gdb_reg_cb get_reg;
267 gdb_reg_cb set_reg;
268 const char *xml;
269 struct GDBRegisterState *next;
270 } GDBRegisterState;
272 enum RSState {
273 RS_INACTIVE,
274 RS_IDLE,
275 RS_GETLINE,
276 RS_CHKSUM1,
277 RS_CHKSUM2,
278 RS_SYSCALL,
280 typedef struct GDBState {
281 CPUState *c_cpu; /* current CPU for step/continue ops */
282 CPUState *g_cpu; /* current CPU for other ops */
283 CPUState *query_cpu; /* for q{f|s}ThreadInfo */
284 enum RSState state; /* parsing state */
285 char line_buf[MAX_PACKET_LENGTH];
286 int line_buf_index;
287 int line_csum;
288 uint8_t last_packet[MAX_PACKET_LENGTH + 4];
289 int last_packet_len;
290 int signal;
291 #ifdef CONFIG_USER_ONLY
292 int fd;
293 int running_state;
294 #else
295 CharDriverState *chr;
296 CharDriverState *mon_chr;
297 #endif
298 } GDBState;
300 /* By default use no IRQs and no timers while single stepping so as to
301 * make single stepping like an ICE HW step.
303 static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
305 static GDBState *gdbserver_state;
307 /* This is an ugly hack to cope with both new and old gdb.
308 If gdb sends qXfer:features:read then assume we're talking to a newish
309 gdb that understands target descriptions. */
310 static int gdb_has_xml;
312 #ifdef CONFIG_USER_ONLY
313 /* XXX: This is not thread safe. Do we care? */
314 static int gdbserver_fd = -1;
316 static int get_char(GDBState *s)
318 uint8_t ch;
319 int ret;
321 for(;;) {
322 ret = recv(s->fd, &ch, 1, 0);
323 if (ret < 0) {
324 if (errno == ECONNRESET)
325 s->fd = -1;
326 if (errno != EINTR && errno != EAGAIN)
327 return -1;
328 } else if (ret == 0) {
329 close(s->fd);
330 s->fd = -1;
331 return -1;
332 } else {
333 break;
336 return ch;
338 #endif
340 static gdb_syscall_complete_cb gdb_current_syscall_cb;
342 static enum {
343 GDB_SYS_UNKNOWN,
344 GDB_SYS_ENABLED,
345 GDB_SYS_DISABLED,
346 } gdb_syscall_mode;
348 /* If gdb is connected when the first semihosting syscall occurs then use
349 remote gdb syscalls. Otherwise use native file IO. */
350 int use_gdb_syscalls(void)
352 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
353 gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED
354 : GDB_SYS_DISABLED);
356 return gdb_syscall_mode == GDB_SYS_ENABLED;
359 /* Resume execution. */
360 static inline void gdb_continue(GDBState *s)
362 #ifdef CONFIG_USER_ONLY
363 s->running_state = 1;
364 #else
365 vm_start();
366 #endif
369 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
371 #ifdef CONFIG_USER_ONLY
372 int ret;
374 while (len > 0) {
375 ret = send(s->fd, buf, len, 0);
376 if (ret < 0) {
377 if (errno != EINTR && errno != EAGAIN)
378 return;
379 } else {
380 buf += ret;
381 len -= ret;
384 #else
385 qemu_chr_write(s->chr, buf, len);
386 #endif
389 static inline int fromhex(int v)
391 if (v >= '0' && v <= '9')
392 return v - '0';
393 else if (v >= 'A' && v <= 'F')
394 return v - 'A' + 10;
395 else if (v >= 'a' && v <= 'f')
396 return v - 'a' + 10;
397 else
398 return 0;
401 static inline int tohex(int v)
403 if (v < 10)
404 return v + '0';
405 else
406 return v - 10 + 'a';
409 static void memtohex(char *buf, const uint8_t *mem, int len)
411 int i, c;
412 char *q;
413 q = buf;
414 for(i = 0; i < len; i++) {
415 c = mem[i];
416 *q++ = tohex(c >> 4);
417 *q++ = tohex(c & 0xf);
419 *q = '\0';
422 static void hextomem(uint8_t *mem, const char *buf, int len)
424 int i;
426 for(i = 0; i < len; i++) {
427 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
428 buf += 2;
432 /* return -1 if error, 0 if OK */
433 static int put_packet_binary(GDBState *s, const char *buf, int len)
435 int csum, i;
436 uint8_t *p;
438 for(;;) {
439 p = s->last_packet;
440 *(p++) = '$';
441 memcpy(p, buf, len);
442 p += len;
443 csum = 0;
444 for(i = 0; i < len; i++) {
445 csum += buf[i];
447 *(p++) = '#';
448 *(p++) = tohex((csum >> 4) & 0xf);
449 *(p++) = tohex((csum) & 0xf);
451 s->last_packet_len = p - s->last_packet;
452 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
454 #ifdef CONFIG_USER_ONLY
455 i = get_char(s);
456 if (i < 0)
457 return -1;
458 if (i == '+')
459 break;
460 #else
461 break;
462 #endif
464 return 0;
467 /* return -1 if error, 0 if OK */
468 static int put_packet(GDBState *s, const char *buf)
470 #ifdef DEBUG_GDB
471 printf("reply='%s'\n", buf);
472 #endif
474 return put_packet_binary(s, buf, strlen(buf));
477 /* The GDB remote protocol transfers values in target byte order. This means
478 we can use the raw memory access routines to access the value buffer.
479 Conveniently, these also handle the case where the buffer is mis-aligned.
481 #define GET_REG8(val) do { \
482 stb_p(mem_buf, val); \
483 return 1; \
484 } while(0)
485 #define GET_REG16(val) do { \
486 stw_p(mem_buf, val); \
487 return 2; \
488 } while(0)
489 #define GET_REG32(val) do { \
490 stl_p(mem_buf, val); \
491 return 4; \
492 } while(0)
493 #define GET_REG64(val) do { \
494 stq_p(mem_buf, val); \
495 return 8; \
496 } while(0)
498 #if TARGET_LONG_BITS == 64
499 #define GET_REGL(val) GET_REG64(val)
500 #define ldtul_p(addr) ldq_p(addr)
501 #else
502 #define GET_REGL(val) GET_REG32(val)
503 #define ldtul_p(addr) ldl_p(addr)
504 #endif
506 #if defined(TARGET_I386)
508 #ifdef TARGET_X86_64
509 static const int gpr_map[16] = {
510 R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
511 8, 9, 10, 11, 12, 13, 14, 15
513 #else
514 #define gpr_map gpr_map32
515 #endif
516 static const int gpr_map32[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };
518 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
520 #define IDX_IP_REG CPU_NB_REGS
521 #define IDX_FLAGS_REG (IDX_IP_REG + 1)
522 #define IDX_SEG_REGS (IDX_FLAGS_REG + 1)
523 #define IDX_FP_REGS (IDX_SEG_REGS + 6)
524 #define IDX_XMM_REGS (IDX_FP_REGS + 16)
525 #define IDX_MXCSR_REG (IDX_XMM_REGS + CPU_NB_REGS)
527 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
529 if (n < CPU_NB_REGS) {
530 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
531 GET_REG64(env->regs[gpr_map[n]]);
532 } else if (n < CPU_NB_REGS32) {
533 GET_REG32(env->regs[gpr_map32[n]]);
535 } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
536 #ifdef USE_X86LDOUBLE
537 /* FIXME: byteswap float values - after fixing fpregs layout. */
538 memcpy(mem_buf, &env->fpregs[n - IDX_FP_REGS], 10);
539 #else
540 memset(mem_buf, 0, 10);
541 #endif
542 return 10;
543 } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
544 n -= IDX_XMM_REGS;
545 if (n < CPU_NB_REGS32 ||
546 (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK)) {
547 stq_p(mem_buf, env->xmm_regs[n].XMM_Q(0));
548 stq_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1));
549 return 16;
551 } else {
552 switch (n) {
553 case IDX_IP_REG:
554 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
555 GET_REG64(env->eip);
556 } else {
557 GET_REG32(env->eip);
559 case IDX_FLAGS_REG: GET_REG32(env->eflags);
561 case IDX_SEG_REGS: GET_REG32(env->segs[R_CS].selector);
562 case IDX_SEG_REGS + 1: GET_REG32(env->segs[R_SS].selector);
563 case IDX_SEG_REGS + 2: GET_REG32(env->segs[R_DS].selector);
564 case IDX_SEG_REGS + 3: GET_REG32(env->segs[R_ES].selector);
565 case IDX_SEG_REGS + 4: GET_REG32(env->segs[R_FS].selector);
566 case IDX_SEG_REGS + 5: GET_REG32(env->segs[R_GS].selector);
568 case IDX_FP_REGS + 8: GET_REG32(env->fpuc);
569 case IDX_FP_REGS + 9: GET_REG32((env->fpus & ~0x3800) |
570 (env->fpstt & 0x7) << 11);
571 case IDX_FP_REGS + 10: GET_REG32(0); /* ftag */
572 case IDX_FP_REGS + 11: GET_REG32(0); /* fiseg */
573 case IDX_FP_REGS + 12: GET_REG32(0); /* fioff */
574 case IDX_FP_REGS + 13: GET_REG32(0); /* foseg */
575 case IDX_FP_REGS + 14: GET_REG32(0); /* fooff */
576 case IDX_FP_REGS + 15: GET_REG32(0); /* fop */
578 case IDX_MXCSR_REG: GET_REG32(env->mxcsr);
581 return 0;
584 static int cpu_x86_gdb_load_seg(CPUState *env, int sreg, uint8_t *mem_buf)
586 uint16_t selector = ldl_p(mem_buf);
588 if (selector != env->segs[sreg].selector) {
589 #if defined(CONFIG_USER_ONLY)
590 cpu_x86_load_seg(env, sreg, selector);
591 #else
592 unsigned int limit, flags;
593 target_ulong base;
595 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
596 base = selector << 4;
597 limit = 0xffff;
598 flags = 0;
599 } else {
600 if (!cpu_x86_get_descr_debug(env, selector, &base, &limit, &flags))
601 return 4;
603 cpu_x86_load_seg_cache(env, sreg, selector, base, limit, flags);
604 #endif
606 return 4;
609 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
611 uint32_t tmp;
613 if (n < CPU_NB_REGS) {
614 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
615 env->regs[gpr_map[n]] = ldtul_p(mem_buf);
616 return sizeof(target_ulong);
617 } else if (n < CPU_NB_REGS32) {
618 n = gpr_map32[n];
619 env->regs[n] &= ~0xffffffffUL;
620 env->regs[n] |= (uint32_t)ldl_p(mem_buf);
621 return 4;
623 } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
624 #ifdef USE_X86LDOUBLE
625 /* FIXME: byteswap float values - after fixing fpregs layout. */
626 memcpy(&env->fpregs[n - IDX_FP_REGS], mem_buf, 10);
627 #endif
628 return 10;
629 } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
630 n -= IDX_XMM_REGS;
631 if (n < CPU_NB_REGS32 ||
632 (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK)) {
633 env->xmm_regs[n].XMM_Q(0) = ldq_p(mem_buf);
634 env->xmm_regs[n].XMM_Q(1) = ldq_p(mem_buf + 8);
635 return 16;
637 } else {
638 switch (n) {
639 case IDX_IP_REG:
640 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
641 env->eip = ldq_p(mem_buf);
642 return 8;
643 } else {
644 env->eip &= ~0xffffffffUL;
645 env->eip |= (uint32_t)ldl_p(mem_buf);
646 return 4;
648 case IDX_FLAGS_REG:
649 env->eflags = ldl_p(mem_buf);
650 return 4;
652 case IDX_SEG_REGS: return cpu_x86_gdb_load_seg(env, R_CS, mem_buf);
653 case IDX_SEG_REGS + 1: return cpu_x86_gdb_load_seg(env, R_SS, mem_buf);
654 case IDX_SEG_REGS + 2: return cpu_x86_gdb_load_seg(env, R_DS, mem_buf);
655 case IDX_SEG_REGS + 3: return cpu_x86_gdb_load_seg(env, R_ES, mem_buf);
656 case IDX_SEG_REGS + 4: return cpu_x86_gdb_load_seg(env, R_FS, mem_buf);
657 case IDX_SEG_REGS + 5: return cpu_x86_gdb_load_seg(env, R_GS, mem_buf);
659 case IDX_FP_REGS + 8:
660 env->fpuc = ldl_p(mem_buf);
661 return 4;
662 case IDX_FP_REGS + 9:
663 tmp = ldl_p(mem_buf);
664 env->fpstt = (tmp >> 11) & 7;
665 env->fpus = tmp & ~0x3800;
666 return 4;
667 case IDX_FP_REGS + 10: /* ftag */ return 4;
668 case IDX_FP_REGS + 11: /* fiseg */ return 4;
669 case IDX_FP_REGS + 12: /* fioff */ return 4;
670 case IDX_FP_REGS + 13: /* foseg */ return 4;
671 case IDX_FP_REGS + 14: /* fooff */ return 4;
672 case IDX_FP_REGS + 15: /* fop */ return 4;
674 case IDX_MXCSR_REG:
675 env->mxcsr = ldl_p(mem_buf);
676 return 4;
679 /* Unrecognised register. */
680 return 0;
683 #elif defined (TARGET_PPC)
685 /* Old gdb always expects FP registers. Newer (xml-aware) gdb only
686 expects whatever the target description contains. Due to a
687 historical mishap the FP registers appear in between core integer
688 regs and PC, MSR, CR, and so forth. We hack round this by giving the
689 FP regs zero size when talking to a newer gdb. */
690 #define NUM_CORE_REGS 71
691 #if defined (TARGET_PPC64)
692 #define GDB_CORE_XML "power64-core.xml"
693 #else
694 #define GDB_CORE_XML "power-core.xml"
695 #endif
697 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
699 if (n < 32) {
700 /* gprs */
701 GET_REGL(env->gpr[n]);
702 } else if (n < 64) {
703 /* fprs */
704 if (gdb_has_xml)
705 return 0;
706 stfq_p(mem_buf, env->fpr[n-32]);
707 return 8;
708 } else {
709 switch (n) {
710 case 64: GET_REGL(env->nip);
711 case 65: GET_REGL(env->msr);
712 case 66:
714 uint32_t cr = 0;
715 int i;
716 for (i = 0; i < 8; i++)
717 cr |= env->crf[i] << (32 - ((i + 1) * 4));
718 GET_REG32(cr);
720 case 67: GET_REGL(env->lr);
721 case 68: GET_REGL(env->ctr);
722 case 69: GET_REGL(env->xer);
723 case 70:
725 if (gdb_has_xml)
726 return 0;
727 GET_REG32(0); /* fpscr */
731 return 0;
734 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
736 if (n < 32) {
737 /* gprs */
738 env->gpr[n] = ldtul_p(mem_buf);
739 return sizeof(target_ulong);
740 } else if (n < 64) {
741 /* fprs */
742 if (gdb_has_xml)
743 return 0;
744 env->fpr[n-32] = ldfq_p(mem_buf);
745 return 8;
746 } else {
747 switch (n) {
748 case 64:
749 env->nip = ldtul_p(mem_buf);
750 return sizeof(target_ulong);
751 case 65:
752 ppc_store_msr(env, ldtul_p(mem_buf));
753 return sizeof(target_ulong);
754 case 66:
756 uint32_t cr = ldl_p(mem_buf);
757 int i;
758 for (i = 0; i < 8; i++)
759 env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF;
760 return 4;
762 case 67:
763 env->lr = ldtul_p(mem_buf);
764 return sizeof(target_ulong);
765 case 68:
766 env->ctr = ldtul_p(mem_buf);
767 return sizeof(target_ulong);
768 case 69:
769 env->xer = ldtul_p(mem_buf);
770 return sizeof(target_ulong);
771 case 70:
772 /* fpscr */
773 if (gdb_has_xml)
774 return 0;
775 return 4;
778 return 0;
781 #elif defined (TARGET_SPARC)
783 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
784 #define NUM_CORE_REGS 86
785 #else
786 #define NUM_CORE_REGS 72
787 #endif
789 #ifdef TARGET_ABI32
790 #define GET_REGA(val) GET_REG32(val)
791 #else
792 #define GET_REGA(val) GET_REGL(val)
793 #endif
795 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
797 if (n < 8) {
798 /* g0..g7 */
799 GET_REGA(env->gregs[n]);
801 if (n < 32) {
802 /* register window */
803 GET_REGA(env->regwptr[n - 8]);
805 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
806 if (n < 64) {
807 /* fprs */
808 GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
810 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
811 switch (n) {
812 case 64: GET_REGA(env->y);
813 case 65: GET_REGA(cpu_get_psr(env));
814 case 66: GET_REGA(env->wim);
815 case 67: GET_REGA(env->tbr);
816 case 68: GET_REGA(env->pc);
817 case 69: GET_REGA(env->npc);
818 case 70: GET_REGA(env->fsr);
819 case 71: GET_REGA(0); /* csr */
820 default: GET_REGA(0);
822 #else
823 if (n < 64) {
824 /* f0-f31 */
825 GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
827 if (n < 80) {
828 /* f32-f62 (double width, even numbers only) */
829 uint64_t val;
831 val = (uint64_t)*((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) << 32;
832 val |= *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]);
833 GET_REG64(val);
835 switch (n) {
836 case 80: GET_REGL(env->pc);
837 case 81: GET_REGL(env->npc);
838 case 82: GET_REGL((cpu_get_ccr(env) << 32) |
839 ((env->asi & 0xff) << 24) |
840 ((env->pstate & 0xfff) << 8) |
841 cpu_get_cwp64(env));
842 case 83: GET_REGL(env->fsr);
843 case 84: GET_REGL(env->fprs);
844 case 85: GET_REGL(env->y);
846 #endif
847 return 0;
850 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
852 #if defined(TARGET_ABI32)
853 abi_ulong tmp;
855 tmp = ldl_p(mem_buf);
856 #else
857 target_ulong tmp;
859 tmp = ldtul_p(mem_buf);
860 #endif
862 if (n < 8) {
863 /* g0..g7 */
864 env->gregs[n] = tmp;
865 } else if (n < 32) {
866 /* register window */
867 env->regwptr[n - 8] = tmp;
869 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
870 else if (n < 64) {
871 /* fprs */
872 *((uint32_t *)&env->fpr[n - 32]) = tmp;
873 } else {
874 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
875 switch (n) {
876 case 64: env->y = tmp; break;
877 case 65: cpu_put_psr(env, tmp); break;
878 case 66: env->wim = tmp; break;
879 case 67: env->tbr = tmp; break;
880 case 68: env->pc = tmp; break;
881 case 69: env->npc = tmp; break;
882 case 70: env->fsr = tmp; break;
883 default: return 0;
886 return 4;
887 #else
888 else if (n < 64) {
889 /* f0-f31 */
890 env->fpr[n] = ldfl_p(mem_buf);
891 return 4;
892 } else if (n < 80) {
893 /* f32-f62 (double width, even numbers only) */
894 *((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) = tmp >> 32;
895 *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]) = tmp;
896 } else {
897 switch (n) {
898 case 80: env->pc = tmp; break;
899 case 81: env->npc = tmp; break;
900 case 82:
901 cpu_put_ccr(env, tmp >> 32);
902 env->asi = (tmp >> 24) & 0xff;
903 env->pstate = (tmp >> 8) & 0xfff;
904 cpu_put_cwp64(env, tmp & 0xff);
905 break;
906 case 83: env->fsr = tmp; break;
907 case 84: env->fprs = tmp; break;
908 case 85: env->y = tmp; break;
909 default: return 0;
912 return 8;
913 #endif
915 #elif defined (TARGET_ARM)
917 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
918 whatever the target description contains. Due to a historical mishap
919 the FPA registers appear in between core integer regs and the CPSR.
920 We hack round this by giving the FPA regs zero size when talking to a
921 newer gdb. */
922 #define NUM_CORE_REGS 26
923 #define GDB_CORE_XML "arm-core.xml"
925 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
927 if (n < 16) {
928 /* Core integer register. */
929 GET_REG32(env->regs[n]);
931 if (n < 24) {
932 /* FPA registers. */
933 if (gdb_has_xml)
934 return 0;
935 memset(mem_buf, 0, 12);
936 return 12;
938 switch (n) {
939 case 24:
940 /* FPA status register. */
941 if (gdb_has_xml)
942 return 0;
943 GET_REG32(0);
944 case 25:
945 /* CPSR */
946 GET_REG32(cpsr_read(env));
948 /* Unknown register. */
949 return 0;
952 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
954 uint32_t tmp;
956 tmp = ldl_p(mem_buf);
958 /* Mask out low bit of PC to workaround gdb bugs. This will probably
959 cause problems if we ever implement the Jazelle DBX extensions. */
960 if (n == 15)
961 tmp &= ~1;
963 if (n < 16) {
964 /* Core integer register. */
965 env->regs[n] = tmp;
966 return 4;
968 if (n < 24) { /* 16-23 */
969 /* FPA registers (ignored). */
970 if (gdb_has_xml)
971 return 0;
972 return 12;
974 switch (n) {
975 case 24:
976 /* FPA status register (ignored). */
977 if (gdb_has_xml)
978 return 0;
979 return 4;
980 case 25:
981 /* CPSR */
982 cpsr_write (env, tmp, 0xffffffff);
983 return 4;
985 /* Unknown register. */
986 return 0;
989 #elif defined (TARGET_M68K)
991 #define NUM_CORE_REGS 18
993 #define GDB_CORE_XML "cf-core.xml"
995 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
997 if (n < 8) {
998 /* D0-D7 */
999 GET_REG32(env->dregs[n]);
1000 } else if (n < 16) {
1001 /* A0-A7 */
1002 GET_REG32(env->aregs[n - 8]);
1003 } else {
1004 switch (n) {
1005 case 16: GET_REG32(env->sr);
1006 case 17: GET_REG32(env->pc);
1009 /* FP registers not included here because they vary between
1010 ColdFire and m68k. Use XML bits for these. */
1011 return 0;
1014 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1016 uint32_t tmp;
1018 tmp = ldl_p(mem_buf);
1020 if (n < 8) {
1021 /* D0-D7 */
1022 env->dregs[n] = tmp;
1023 } else if (n < 16) {
1024 /* A0-A7 */
1025 env->aregs[n - 8] = tmp;
1026 } else {
1027 switch (n) {
1028 case 16: env->sr = tmp; break;
1029 case 17: env->pc = tmp; break;
1030 default: return 0;
1033 return 4;
1035 #elif defined (TARGET_MIPS)
1037 #define NUM_CORE_REGS 73
1039 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1041 if (n < 32) {
1042 GET_REGL(env->active_tc.gpr[n]);
1044 if (env->CP0_Config1 & (1 << CP0C1_FP)) {
1045 if (n >= 38 && n < 70) {
1046 if (env->CP0_Status & (1 << CP0St_FR))
1047 GET_REGL(env->active_fpu.fpr[n - 38].d);
1048 else
1049 GET_REGL(env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX]);
1051 switch (n) {
1052 case 70: GET_REGL((int32_t)env->active_fpu.fcr31);
1053 case 71: GET_REGL((int32_t)env->active_fpu.fcr0);
1056 switch (n) {
1057 case 32: GET_REGL((int32_t)env->CP0_Status);
1058 case 33: GET_REGL(env->active_tc.LO[0]);
1059 case 34: GET_REGL(env->active_tc.HI[0]);
1060 case 35: GET_REGL(env->CP0_BadVAddr);
1061 case 36: GET_REGL((int32_t)env->CP0_Cause);
1062 case 37: GET_REGL(env->active_tc.PC | !!(env->hflags & MIPS_HFLAG_M16));
1063 case 72: GET_REGL(0); /* fp */
1064 case 89: GET_REGL((int32_t)env->CP0_PRid);
1066 if (n >= 73 && n <= 88) {
1067 /* 16 embedded regs. */
1068 GET_REGL(0);
1071 return 0;
1074 /* convert MIPS rounding mode in FCR31 to IEEE library */
1075 static unsigned int ieee_rm[] =
1077 float_round_nearest_even,
1078 float_round_to_zero,
1079 float_round_up,
1080 float_round_down
1082 #define RESTORE_ROUNDING_MODE \
1083 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1085 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1087 target_ulong tmp;
1089 tmp = ldtul_p(mem_buf);
1091 if (n < 32) {
1092 env->active_tc.gpr[n] = tmp;
1093 return sizeof(target_ulong);
1095 if (env->CP0_Config1 & (1 << CP0C1_FP)
1096 && n >= 38 && n < 73) {
1097 if (n < 70) {
1098 if (env->CP0_Status & (1 << CP0St_FR))
1099 env->active_fpu.fpr[n - 38].d = tmp;
1100 else
1101 env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX] = tmp;
1103 switch (n) {
1104 case 70:
1105 env->active_fpu.fcr31 = tmp & 0xFF83FFFF;
1106 /* set rounding mode */
1107 RESTORE_ROUNDING_MODE;
1108 #ifndef CONFIG_SOFTFLOAT
1109 /* no floating point exception for native float */
1110 SET_FP_ENABLE(env->active_fpu.fcr31, 0);
1111 #endif
1112 break;
1113 case 71: env->active_fpu.fcr0 = tmp; break;
1115 return sizeof(target_ulong);
1117 switch (n) {
1118 case 32: env->CP0_Status = tmp; break;
1119 case 33: env->active_tc.LO[0] = tmp; break;
1120 case 34: env->active_tc.HI[0] = tmp; break;
1121 case 35: env->CP0_BadVAddr = tmp; break;
1122 case 36: env->CP0_Cause = tmp; break;
1123 case 37:
1124 env->active_tc.PC = tmp & ~(target_ulong)1;
1125 if (tmp & 1) {
1126 env->hflags |= MIPS_HFLAG_M16;
1127 } else {
1128 env->hflags &= ~(MIPS_HFLAG_M16);
1130 break;
1131 case 72: /* fp, ignored */ break;
1132 default:
1133 if (n > 89)
1134 return 0;
1135 /* Other registers are readonly. Ignore writes. */
1136 break;
1139 return sizeof(target_ulong);
1141 #elif defined (TARGET_SH4)
1143 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
1144 /* FIXME: We should use XML for this. */
1146 #define NUM_CORE_REGS 59
1148 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1150 if (n < 8) {
1151 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1152 GET_REGL(env->gregs[n + 16]);
1153 } else {
1154 GET_REGL(env->gregs[n]);
1156 } else if (n < 16) {
1157 GET_REGL(env->gregs[n]);
1158 } else if (n >= 25 && n < 41) {
1159 GET_REGL(env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
1160 } else if (n >= 43 && n < 51) {
1161 GET_REGL(env->gregs[n - 43]);
1162 } else if (n >= 51 && n < 59) {
1163 GET_REGL(env->gregs[n - (51 - 16)]);
1165 switch (n) {
1166 case 16: GET_REGL(env->pc);
1167 case 17: GET_REGL(env->pr);
1168 case 18: GET_REGL(env->gbr);
1169 case 19: GET_REGL(env->vbr);
1170 case 20: GET_REGL(env->mach);
1171 case 21: GET_REGL(env->macl);
1172 case 22: GET_REGL(env->sr);
1173 case 23: GET_REGL(env->fpul);
1174 case 24: GET_REGL(env->fpscr);
1175 case 41: GET_REGL(env->ssr);
1176 case 42: GET_REGL(env->spc);
1179 return 0;
1182 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1184 uint32_t tmp;
1186 tmp = ldl_p(mem_buf);
1188 if (n < 8) {
1189 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1190 env->gregs[n + 16] = tmp;
1191 } else {
1192 env->gregs[n] = tmp;
1194 return 4;
1195 } else if (n < 16) {
1196 env->gregs[n] = tmp;
1197 return 4;
1198 } else if (n >= 25 && n < 41) {
1199 env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)] = tmp;
1200 return 4;
1201 } else if (n >= 43 && n < 51) {
1202 env->gregs[n - 43] = tmp;
1203 return 4;
1204 } else if (n >= 51 && n < 59) {
1205 env->gregs[n - (51 - 16)] = tmp;
1206 return 4;
1208 switch (n) {
1209 case 16: env->pc = tmp; break;
1210 case 17: env->pr = tmp; break;
1211 case 18: env->gbr = tmp; break;
1212 case 19: env->vbr = tmp; break;
1213 case 20: env->mach = tmp; break;
1214 case 21: env->macl = tmp; break;
1215 case 22: env->sr = tmp; break;
1216 case 23: env->fpul = tmp; break;
1217 case 24: env->fpscr = tmp; break;
1218 case 41: env->ssr = tmp; break;
1219 case 42: env->spc = tmp; break;
1220 default: return 0;
1223 return 4;
1225 #elif defined (TARGET_MICROBLAZE)
1227 #define NUM_CORE_REGS (32 + 5)
1229 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1231 if (n < 32) {
1232 GET_REG32(env->regs[n]);
1233 } else {
1234 GET_REG32(env->sregs[n - 32]);
1236 return 0;
1239 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1241 uint32_t tmp;
1243 if (n > NUM_CORE_REGS)
1244 return 0;
1246 tmp = ldl_p(mem_buf);
1248 if (n < 32) {
1249 env->regs[n] = tmp;
1250 } else {
1251 env->sregs[n - 32] = tmp;
1253 return 4;
1255 #elif defined (TARGET_CRIS)
1257 #define NUM_CORE_REGS 49
1259 static int
1260 read_register_crisv10(CPUState *env, uint8_t *mem_buf, int n)
1262 if (n < 15) {
1263 GET_REG32(env->regs[n]);
1266 if (n == 15) {
1267 GET_REG32(env->pc);
1270 if (n < 32) {
1271 switch (n) {
1272 case 16:
1273 GET_REG8(env->pregs[n - 16]);
1274 break;
1275 case 17:
1276 GET_REG8(env->pregs[n - 16]);
1277 break;
1278 case 20:
1279 case 21:
1280 GET_REG16(env->pregs[n - 16]);
1281 break;
1282 default:
1283 if (n >= 23) {
1284 GET_REG32(env->pregs[n - 16]);
1286 break;
1289 return 0;
1292 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1294 uint8_t srs;
1296 if (env->pregs[PR_VR] < 32)
1297 return read_register_crisv10(env, mem_buf, n);
1299 srs = env->pregs[PR_SRS];
1300 if (n < 16) {
1301 GET_REG32(env->regs[n]);
1304 if (n >= 21 && n < 32) {
1305 GET_REG32(env->pregs[n - 16]);
1307 if (n >= 33 && n < 49) {
1308 GET_REG32(env->sregs[srs][n - 33]);
1310 switch (n) {
1311 case 16: GET_REG8(env->pregs[0]);
1312 case 17: GET_REG8(env->pregs[1]);
1313 case 18: GET_REG32(env->pregs[2]);
1314 case 19: GET_REG8(srs);
1315 case 20: GET_REG16(env->pregs[4]);
1316 case 32: GET_REG32(env->pc);
1319 return 0;
1322 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1324 uint32_t tmp;
1326 if (n > 49)
1327 return 0;
1329 tmp = ldl_p(mem_buf);
1331 if (n < 16) {
1332 env->regs[n] = tmp;
1335 if (n >= 21 && n < 32) {
1336 env->pregs[n - 16] = tmp;
1339 /* FIXME: Should support function regs be writable? */
1340 switch (n) {
1341 case 16: return 1;
1342 case 17: return 1;
1343 case 18: env->pregs[PR_PID] = tmp; break;
1344 case 19: return 1;
1345 case 20: return 2;
1346 case 32: env->pc = tmp; break;
1349 return 4;
1351 #elif defined (TARGET_ALPHA)
1353 #define NUM_CORE_REGS 67
1355 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1357 uint64_t val;
1358 CPU_DoubleU d;
1360 switch (n) {
1361 case 0 ... 30:
1362 val = env->ir[n];
1363 break;
1364 case 32 ... 62:
1365 d.d = env->fir[n - 32];
1366 val = d.ll;
1367 break;
1368 case 63:
1369 val = cpu_alpha_load_fpcr(env);
1370 break;
1371 case 64:
1372 val = env->pc;
1373 break;
1374 case 66:
1375 val = env->unique;
1376 break;
1377 case 31:
1378 case 65:
1379 /* 31 really is the zero register; 65 is unassigned in the
1380 gdb protocol, but is still required to occupy 8 bytes. */
1381 val = 0;
1382 break;
1383 default:
1384 return 0;
1386 GET_REGL(val);
1389 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1391 target_ulong tmp = ldtul_p(mem_buf);
1392 CPU_DoubleU d;
1394 switch (n) {
1395 case 0 ... 30:
1396 env->ir[n] = tmp;
1397 break;
1398 case 32 ... 62:
1399 d.ll = tmp;
1400 env->fir[n - 32] = d.d;
1401 break;
1402 case 63:
1403 cpu_alpha_store_fpcr(env, tmp);
1404 break;
1405 case 64:
1406 env->pc = tmp;
1407 break;
1408 case 66:
1409 env->unique = tmp;
1410 break;
1411 case 31:
1412 case 65:
1413 /* 31 really is the zero register; 65 is unassigned in the
1414 gdb protocol, but is still required to occupy 8 bytes. */
1415 break;
1416 default:
1417 return 0;
1419 return 8;
1421 #elif defined (TARGET_S390X)
1423 #define NUM_CORE_REGS S390_NUM_TOTAL_REGS
1425 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1427 switch (n) {
1428 case S390_PSWM_REGNUM: GET_REGL(env->psw.mask); break;
1429 case S390_PSWA_REGNUM: GET_REGL(env->psw.addr); break;
1430 case S390_R0_REGNUM ... S390_R15_REGNUM:
1431 GET_REGL(env->regs[n-S390_R0_REGNUM]); break;
1432 case S390_A0_REGNUM ... S390_A15_REGNUM:
1433 GET_REG32(env->aregs[n-S390_A0_REGNUM]); break;
1434 case S390_FPC_REGNUM: GET_REG32(env->fpc); break;
1435 case S390_F0_REGNUM ... S390_F15_REGNUM:
1436 /* XXX */
1437 break;
1438 case S390_PC_REGNUM: GET_REGL(env->psw.addr); break;
1439 case S390_CC_REGNUM:
1440 env->cc_op = calc_cc(env, env->cc_op, env->cc_src, env->cc_dst,
1441 env->cc_vr);
1442 GET_REG32(env->cc_op);
1443 break;
1446 return 0;
1449 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1451 target_ulong tmpl;
1452 uint32_t tmp32;
1453 int r = 8;
1454 tmpl = ldtul_p(mem_buf);
1455 tmp32 = ldl_p(mem_buf);
1457 switch (n) {
1458 case S390_PSWM_REGNUM: env->psw.mask = tmpl; break;
1459 case S390_PSWA_REGNUM: env->psw.addr = tmpl; break;
1460 case S390_R0_REGNUM ... S390_R15_REGNUM:
1461 env->regs[n-S390_R0_REGNUM] = tmpl; break;
1462 case S390_A0_REGNUM ... S390_A15_REGNUM:
1463 env->aregs[n-S390_A0_REGNUM] = tmp32; r=4; break;
1464 case S390_FPC_REGNUM: env->fpc = tmp32; r=4; break;
1465 case S390_F0_REGNUM ... S390_F15_REGNUM:
1466 /* XXX */
1467 break;
1468 case S390_PC_REGNUM: env->psw.addr = tmpl; break;
1469 case S390_CC_REGNUM: env->cc_op = tmp32; r=4; break;
1472 return r;
1474 #elif defined (TARGET_LM32)
1476 #include "hw/lm32_pic.h"
1477 #define NUM_CORE_REGS (32 + 7)
1479 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1481 if (n < 32) {
1482 GET_REG32(env->regs[n]);
1483 } else {
1484 switch (n) {
1485 case 32:
1486 GET_REG32(env->pc);
1487 break;
1488 /* FIXME: put in right exception ID */
1489 case 33:
1490 GET_REG32(0);
1491 break;
1492 case 34:
1493 GET_REG32(env->eba);
1494 break;
1495 case 35:
1496 GET_REG32(env->deba);
1497 break;
1498 case 36:
1499 GET_REG32(env->ie);
1500 break;
1501 case 37:
1502 GET_REG32(lm32_pic_get_im(env->pic_state));
1503 break;
1504 case 38:
1505 GET_REG32(lm32_pic_get_ip(env->pic_state));
1506 break;
1509 return 0;
1512 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1514 uint32_t tmp;
1516 if (n > NUM_CORE_REGS) {
1517 return 0;
1520 tmp = ldl_p(mem_buf);
1522 if (n < 32) {
1523 env->regs[n] = tmp;
1524 } else {
1525 switch (n) {
1526 case 32:
1527 env->pc = tmp;
1528 break;
1529 case 34:
1530 env->eba = tmp;
1531 break;
1532 case 35:
1533 env->deba = tmp;
1534 break;
1535 case 36:
1536 env->ie = tmp;
1537 break;
1538 case 37:
1539 lm32_pic_set_im(env->pic_state, tmp);
1540 break;
1541 case 38:
1542 lm32_pic_set_ip(env->pic_state, tmp);
1543 break;
1546 return 4;
1548 #else
1550 #define NUM_CORE_REGS 0
1552 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1554 return 0;
1557 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1559 return 0;
1562 #endif
1564 static int num_g_regs = NUM_CORE_REGS;
1566 #ifdef GDB_CORE_XML
1567 /* Encode data using the encoding for 'x' packets. */
1568 static int memtox(char *buf, const char *mem, int len)
1570 char *p = buf;
1571 char c;
1573 while (len--) {
1574 c = *(mem++);
1575 switch (c) {
1576 case '#': case '$': case '*': case '}':
1577 *(p++) = '}';
1578 *(p++) = c ^ 0x20;
1579 break;
1580 default:
1581 *(p++) = c;
1582 break;
1585 return p - buf;
1588 static const char *get_feature_xml(const char *p, const char **newp)
1590 size_t len;
1591 int i;
1592 const char *name;
1593 static char target_xml[1024];
1595 len = 0;
1596 while (p[len] && p[len] != ':')
1597 len++;
1598 *newp = p + len;
1600 name = NULL;
1601 if (strncmp(p, "target.xml", len) == 0) {
1602 /* Generate the XML description for this CPU. */
1603 if (!target_xml[0]) {
1604 GDBRegisterState *r;
1606 snprintf(target_xml, sizeof(target_xml),
1607 "<?xml version=\"1.0\"?>"
1608 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1609 "<target>"
1610 "<xi:include href=\"%s\"/>",
1611 GDB_CORE_XML);
1613 for (r = first_cpu->gdb_regs; r; r = r->next) {
1614 pstrcat(target_xml, sizeof(target_xml), "<xi:include href=\"");
1615 pstrcat(target_xml, sizeof(target_xml), r->xml);
1616 pstrcat(target_xml, sizeof(target_xml), "\"/>");
1618 pstrcat(target_xml, sizeof(target_xml), "</target>");
1620 return target_xml;
1622 for (i = 0; ; i++) {
1623 name = xml_builtin[i][0];
1624 if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
1625 break;
1627 return name ? xml_builtin[i][1] : NULL;
1629 #endif
1631 static int gdb_read_register(CPUState *env, uint8_t *mem_buf, int reg)
1633 GDBRegisterState *r;
1635 if (reg < NUM_CORE_REGS)
1636 return cpu_gdb_read_register(env, mem_buf, reg);
1638 for (r = env->gdb_regs; r; r = r->next) {
1639 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1640 return r->get_reg(env, mem_buf, reg - r->base_reg);
1643 return 0;
1646 static int gdb_write_register(CPUState *env, uint8_t *mem_buf, int reg)
1648 GDBRegisterState *r;
1650 if (reg < NUM_CORE_REGS)
1651 return cpu_gdb_write_register(env, mem_buf, reg);
1653 for (r = env->gdb_regs; r; r = r->next) {
1654 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1655 return r->set_reg(env, mem_buf, reg - r->base_reg);
1658 return 0;
1661 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1662 specifies the first register number and these registers are included in
1663 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1664 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1667 void gdb_register_coprocessor(CPUState * env,
1668 gdb_reg_cb get_reg, gdb_reg_cb set_reg,
1669 int num_regs, const char *xml, int g_pos)
1671 GDBRegisterState *s;
1672 GDBRegisterState **p;
1673 static int last_reg = NUM_CORE_REGS;
1675 s = (GDBRegisterState *)qemu_mallocz(sizeof(GDBRegisterState));
1676 s->base_reg = last_reg;
1677 s->num_regs = num_regs;
1678 s->get_reg = get_reg;
1679 s->set_reg = set_reg;
1680 s->xml = xml;
1681 p = &env->gdb_regs;
1682 while (*p) {
1683 /* Check for duplicates. */
1684 if (strcmp((*p)->xml, xml) == 0)
1685 return;
1686 p = &(*p)->next;
1688 /* Add to end of list. */
1689 last_reg += num_regs;
1690 *p = s;
1691 if (g_pos) {
1692 if (g_pos != s->base_reg) {
1693 fprintf(stderr, "Error: Bad gdb register numbering for '%s'\n"
1694 "Expected %d got %d\n", xml, g_pos, s->base_reg);
1695 } else {
1696 num_g_regs = last_reg;
1701 #ifndef CONFIG_USER_ONLY
1702 static const int xlat_gdb_type[] = {
1703 [GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE,
1704 [GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ,
1705 [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
1707 #endif
1709 static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type)
1711 CPUState *env;
1712 int err = 0;
1714 if (kvm_enabled())
1715 return kvm_insert_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1717 switch (type) {
1718 case GDB_BREAKPOINT_SW:
1719 case GDB_BREAKPOINT_HW:
1720 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1721 err = cpu_breakpoint_insert(env, addr, BP_GDB, NULL);
1722 if (err)
1723 break;
1725 return err;
1726 #ifndef CONFIG_USER_ONLY
1727 case GDB_WATCHPOINT_WRITE:
1728 case GDB_WATCHPOINT_READ:
1729 case GDB_WATCHPOINT_ACCESS:
1730 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1731 err = cpu_watchpoint_insert(env, addr, len, xlat_gdb_type[type],
1732 NULL);
1733 if (err)
1734 break;
1736 return err;
1737 #endif
1738 default:
1739 return -ENOSYS;
1743 static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type)
1745 CPUState *env;
1746 int err = 0;
1748 if (kvm_enabled())
1749 return kvm_remove_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1751 switch (type) {
1752 case GDB_BREAKPOINT_SW:
1753 case GDB_BREAKPOINT_HW:
1754 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1755 err = cpu_breakpoint_remove(env, addr, BP_GDB);
1756 if (err)
1757 break;
1759 return err;
1760 #ifndef CONFIG_USER_ONLY
1761 case GDB_WATCHPOINT_WRITE:
1762 case GDB_WATCHPOINT_READ:
1763 case GDB_WATCHPOINT_ACCESS:
1764 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1765 err = cpu_watchpoint_remove(env, addr, len, xlat_gdb_type[type]);
1766 if (err)
1767 break;
1769 return err;
1770 #endif
1771 default:
1772 return -ENOSYS;
1776 static void gdb_breakpoint_remove_all(void)
1778 CPUState *env;
1780 if (kvm_enabled()) {
1781 kvm_remove_all_breakpoints(gdbserver_state->c_cpu);
1782 return;
1785 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1786 cpu_breakpoint_remove_all(env, BP_GDB);
1787 #ifndef CONFIG_USER_ONLY
1788 cpu_watchpoint_remove_all(env, BP_GDB);
1789 #endif
1793 static void gdb_set_cpu_pc(GDBState *s, target_ulong pc)
1795 #if defined(TARGET_I386)
1796 cpu_synchronize_state(s->c_cpu);
1797 s->c_cpu->eip = pc;
1798 #elif defined (TARGET_PPC)
1799 s->c_cpu->nip = pc;
1800 #elif defined (TARGET_SPARC)
1801 s->c_cpu->pc = pc;
1802 s->c_cpu->npc = pc + 4;
1803 #elif defined (TARGET_ARM)
1804 s->c_cpu->regs[15] = pc;
1805 #elif defined (TARGET_SH4)
1806 s->c_cpu->pc = pc;
1807 #elif defined (TARGET_MIPS)
1808 s->c_cpu->active_tc.PC = pc & ~(target_ulong)1;
1809 if (pc & 1) {
1810 s->c_cpu->hflags |= MIPS_HFLAG_M16;
1811 } else {
1812 s->c_cpu->hflags &= ~(MIPS_HFLAG_M16);
1814 #elif defined (TARGET_MICROBLAZE)
1815 s->c_cpu->sregs[SR_PC] = pc;
1816 #elif defined (TARGET_CRIS)
1817 s->c_cpu->pc = pc;
1818 #elif defined (TARGET_ALPHA)
1819 s->c_cpu->pc = pc;
1820 #elif defined (TARGET_S390X)
1821 cpu_synchronize_state(s->c_cpu);
1822 s->c_cpu->psw.addr = pc;
1823 #elif defined (TARGET_LM32)
1824 s->c_cpu->pc = pc;
1825 #endif
1828 static inline int gdb_id(CPUState *env)
1830 #if defined(CONFIG_USER_ONLY) && defined(CONFIG_USE_NPTL)
1831 return env->host_tid;
1832 #else
1833 return env->cpu_index + 1;
1834 #endif
1837 static CPUState *find_cpu(uint32_t thread_id)
1839 CPUState *env;
1841 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1842 if (gdb_id(env) == thread_id) {
1843 return env;
1847 return NULL;
1850 static int gdb_handle_packet(GDBState *s, const char *line_buf)
1852 CPUState *env;
1853 const char *p;
1854 uint32_t thread;
1855 int ch, reg_size, type, res;
1856 char buf[MAX_PACKET_LENGTH];
1857 uint8_t mem_buf[MAX_PACKET_LENGTH];
1858 uint8_t *registers;
1859 target_ulong addr, len;
1861 #ifdef DEBUG_GDB
1862 printf("command='%s'\n", line_buf);
1863 #endif
1864 p = line_buf;
1865 ch = *p++;
1866 switch(ch) {
1867 case '?':
1868 /* TODO: Make this return the correct value for user-mode. */
1869 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", GDB_SIGNAL_TRAP,
1870 gdb_id(s->c_cpu));
1871 put_packet(s, buf);
1872 /* Remove all the breakpoints when this query is issued,
1873 * because gdb is doing and initial connect and the state
1874 * should be cleaned up.
1876 gdb_breakpoint_remove_all();
1877 break;
1878 case 'c':
1879 if (*p != '\0') {
1880 addr = strtoull(p, (char **)&p, 16);
1881 gdb_set_cpu_pc(s, addr);
1883 s->signal = 0;
1884 gdb_continue(s);
1885 return RS_IDLE;
1886 case 'C':
1887 s->signal = gdb_signal_to_target (strtoul(p, (char **)&p, 16));
1888 if (s->signal == -1)
1889 s->signal = 0;
1890 gdb_continue(s);
1891 return RS_IDLE;
1892 case 'v':
1893 if (strncmp(p, "Cont", 4) == 0) {
1894 int res_signal, res_thread;
1896 p += 4;
1897 if (*p == '?') {
1898 put_packet(s, "vCont;c;C;s;S");
1899 break;
1901 res = 0;
1902 res_signal = 0;
1903 res_thread = 0;
1904 while (*p) {
1905 int action, signal;
1907 if (*p++ != ';') {
1908 res = 0;
1909 break;
1911 action = *p++;
1912 signal = 0;
1913 if (action == 'C' || action == 'S') {
1914 signal = strtoul(p, (char **)&p, 16);
1915 } else if (action != 'c' && action != 's') {
1916 res = 0;
1917 break;
1919 thread = 0;
1920 if (*p == ':') {
1921 thread = strtoull(p+1, (char **)&p, 16);
1923 action = tolower(action);
1924 if (res == 0 || (res == 'c' && action == 's')) {
1925 res = action;
1926 res_signal = signal;
1927 res_thread = thread;
1930 if (res) {
1931 if (res_thread != -1 && res_thread != 0) {
1932 env = find_cpu(res_thread);
1933 if (env == NULL) {
1934 put_packet(s, "E22");
1935 break;
1937 s->c_cpu = env;
1939 if (res == 's') {
1940 cpu_single_step(s->c_cpu, sstep_flags);
1942 s->signal = res_signal;
1943 gdb_continue(s);
1944 return RS_IDLE;
1946 break;
1947 } else {
1948 goto unknown_command;
1950 case 'k':
1951 /* Kill the target */
1952 fprintf(stderr, "\nQEMU: Terminated via GDBstub\n");
1953 exit(0);
1954 case 'D':
1955 /* Detach packet */
1956 gdb_breakpoint_remove_all();
1957 gdb_syscall_mode = GDB_SYS_DISABLED;
1958 gdb_continue(s);
1959 put_packet(s, "OK");
1960 break;
1961 case 's':
1962 if (*p != '\0') {
1963 addr = strtoull(p, (char **)&p, 16);
1964 gdb_set_cpu_pc(s, addr);
1966 cpu_single_step(s->c_cpu, sstep_flags);
1967 gdb_continue(s);
1968 return RS_IDLE;
1969 case 'F':
1971 target_ulong ret;
1972 target_ulong err;
1974 ret = strtoull(p, (char **)&p, 16);
1975 if (*p == ',') {
1976 p++;
1977 err = strtoull(p, (char **)&p, 16);
1978 } else {
1979 err = 0;
1981 if (*p == ',')
1982 p++;
1983 type = *p;
1984 if (gdb_current_syscall_cb)
1985 gdb_current_syscall_cb(s->c_cpu, ret, err);
1986 if (type == 'C') {
1987 put_packet(s, "T02");
1988 } else {
1989 gdb_continue(s);
1992 break;
1993 case 'g':
1994 cpu_synchronize_state(s->g_cpu);
1995 len = 0;
1996 for (addr = 0; addr < num_g_regs; addr++) {
1997 reg_size = gdb_read_register(s->g_cpu, mem_buf + len, addr);
1998 len += reg_size;
2000 memtohex(buf, mem_buf, len);
2001 put_packet(s, buf);
2002 break;
2003 case 'G':
2004 cpu_synchronize_state(s->g_cpu);
2005 registers = mem_buf;
2006 len = strlen(p) / 2;
2007 hextomem((uint8_t *)registers, p, len);
2008 for (addr = 0; addr < num_g_regs && len > 0; addr++) {
2009 reg_size = gdb_write_register(s->g_cpu, registers, addr);
2010 len -= reg_size;
2011 registers += reg_size;
2013 put_packet(s, "OK");
2014 break;
2015 case 'm':
2016 addr = strtoull(p, (char **)&p, 16);
2017 if (*p == ',')
2018 p++;
2019 len = strtoull(p, NULL, 16);
2020 if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 0) != 0) {
2021 put_packet (s, "E14");
2022 } else {
2023 memtohex(buf, mem_buf, len);
2024 put_packet(s, buf);
2026 break;
2027 case 'M':
2028 addr = strtoull(p, (char **)&p, 16);
2029 if (*p == ',')
2030 p++;
2031 len = strtoull(p, (char **)&p, 16);
2032 if (*p == ':')
2033 p++;
2034 hextomem(mem_buf, p, len);
2035 if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 1) != 0)
2036 put_packet(s, "E14");
2037 else
2038 put_packet(s, "OK");
2039 break;
2040 case 'p':
2041 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
2042 This works, but can be very slow. Anything new enough to
2043 understand XML also knows how to use this properly. */
2044 if (!gdb_has_xml)
2045 goto unknown_command;
2046 addr = strtoull(p, (char **)&p, 16);
2047 reg_size = gdb_read_register(s->g_cpu, mem_buf, addr);
2048 if (reg_size) {
2049 memtohex(buf, mem_buf, reg_size);
2050 put_packet(s, buf);
2051 } else {
2052 put_packet(s, "E14");
2054 break;
2055 case 'P':
2056 if (!gdb_has_xml)
2057 goto unknown_command;
2058 addr = strtoull(p, (char **)&p, 16);
2059 if (*p == '=')
2060 p++;
2061 reg_size = strlen(p) / 2;
2062 hextomem(mem_buf, p, reg_size);
2063 gdb_write_register(s->g_cpu, mem_buf, addr);
2064 put_packet(s, "OK");
2065 break;
2066 case 'Z':
2067 case 'z':
2068 type = strtoul(p, (char **)&p, 16);
2069 if (*p == ',')
2070 p++;
2071 addr = strtoull(p, (char **)&p, 16);
2072 if (*p == ',')
2073 p++;
2074 len = strtoull(p, (char **)&p, 16);
2075 if (ch == 'Z')
2076 res = gdb_breakpoint_insert(addr, len, type);
2077 else
2078 res = gdb_breakpoint_remove(addr, len, type);
2079 if (res >= 0)
2080 put_packet(s, "OK");
2081 else if (res == -ENOSYS)
2082 put_packet(s, "");
2083 else
2084 put_packet(s, "E22");
2085 break;
2086 case 'H':
2087 type = *p++;
2088 thread = strtoull(p, (char **)&p, 16);
2089 if (thread == -1 || thread == 0) {
2090 put_packet(s, "OK");
2091 break;
2093 env = find_cpu(thread);
2094 if (env == NULL) {
2095 put_packet(s, "E22");
2096 break;
2098 switch (type) {
2099 case 'c':
2100 s->c_cpu = env;
2101 put_packet(s, "OK");
2102 break;
2103 case 'g':
2104 s->g_cpu = env;
2105 put_packet(s, "OK");
2106 break;
2107 default:
2108 put_packet(s, "E22");
2109 break;
2111 break;
2112 case 'T':
2113 thread = strtoull(p, (char **)&p, 16);
2114 env = find_cpu(thread);
2116 if (env != NULL) {
2117 put_packet(s, "OK");
2118 } else {
2119 put_packet(s, "E22");
2121 break;
2122 case 'q':
2123 case 'Q':
2124 /* parse any 'q' packets here */
2125 if (!strcmp(p,"qemu.sstepbits")) {
2126 /* Query Breakpoint bit definitions */
2127 snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
2128 SSTEP_ENABLE,
2129 SSTEP_NOIRQ,
2130 SSTEP_NOTIMER);
2131 put_packet(s, buf);
2132 break;
2133 } else if (strncmp(p,"qemu.sstep",10) == 0) {
2134 /* Display or change the sstep_flags */
2135 p += 10;
2136 if (*p != '=') {
2137 /* Display current setting */
2138 snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
2139 put_packet(s, buf);
2140 break;
2142 p++;
2143 type = strtoul(p, (char **)&p, 16);
2144 sstep_flags = type;
2145 put_packet(s, "OK");
2146 break;
2147 } else if (strcmp(p,"C") == 0) {
2148 /* "Current thread" remains vague in the spec, so always return
2149 * the first CPU (gdb returns the first thread). */
2150 put_packet(s, "QC1");
2151 break;
2152 } else if (strcmp(p,"fThreadInfo") == 0) {
2153 s->query_cpu = first_cpu;
2154 goto report_cpuinfo;
2155 } else if (strcmp(p,"sThreadInfo") == 0) {
2156 report_cpuinfo:
2157 if (s->query_cpu) {
2158 snprintf(buf, sizeof(buf), "m%x", gdb_id(s->query_cpu));
2159 put_packet(s, buf);
2160 s->query_cpu = s->query_cpu->next_cpu;
2161 } else
2162 put_packet(s, "l");
2163 break;
2164 } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) {
2165 thread = strtoull(p+16, (char **)&p, 16);
2166 env = find_cpu(thread);
2167 if (env != NULL) {
2168 cpu_synchronize_state(env);
2169 len = snprintf((char *)mem_buf, sizeof(mem_buf),
2170 "CPU#%d [%s]", env->cpu_index,
2171 env->halted ? "halted " : "running");
2172 memtohex(buf, mem_buf, len);
2173 put_packet(s, buf);
2175 break;
2177 #ifdef CONFIG_USER_ONLY
2178 else if (strncmp(p, "Offsets", 7) == 0) {
2179 TaskState *ts = s->c_cpu->opaque;
2181 snprintf(buf, sizeof(buf),
2182 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
2183 ";Bss=" TARGET_ABI_FMT_lx,
2184 ts->info->code_offset,
2185 ts->info->data_offset,
2186 ts->info->data_offset);
2187 put_packet(s, buf);
2188 break;
2190 #else /* !CONFIG_USER_ONLY */
2191 else if (strncmp(p, "Rcmd,", 5) == 0) {
2192 int len = strlen(p + 5);
2194 if ((len % 2) != 0) {
2195 put_packet(s, "E01");
2196 break;
2198 hextomem(mem_buf, p + 5, len);
2199 len = len / 2;
2200 mem_buf[len++] = 0;
2201 qemu_chr_read(s->mon_chr, mem_buf, len);
2202 put_packet(s, "OK");
2203 break;
2205 #endif /* !CONFIG_USER_ONLY */
2206 if (strncmp(p, "Supported", 9) == 0) {
2207 snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH);
2208 #ifdef GDB_CORE_XML
2209 pstrcat(buf, sizeof(buf), ";qXfer:features:read+");
2210 #endif
2211 put_packet(s, buf);
2212 break;
2214 #ifdef GDB_CORE_XML
2215 if (strncmp(p, "Xfer:features:read:", 19) == 0) {
2216 const char *xml;
2217 target_ulong total_len;
2219 gdb_has_xml = 1;
2220 p += 19;
2221 xml = get_feature_xml(p, &p);
2222 if (!xml) {
2223 snprintf(buf, sizeof(buf), "E00");
2224 put_packet(s, buf);
2225 break;
2228 if (*p == ':')
2229 p++;
2230 addr = strtoul(p, (char **)&p, 16);
2231 if (*p == ',')
2232 p++;
2233 len = strtoul(p, (char **)&p, 16);
2235 total_len = strlen(xml);
2236 if (addr > total_len) {
2237 snprintf(buf, sizeof(buf), "E00");
2238 put_packet(s, buf);
2239 break;
2241 if (len > (MAX_PACKET_LENGTH - 5) / 2)
2242 len = (MAX_PACKET_LENGTH - 5) / 2;
2243 if (len < total_len - addr) {
2244 buf[0] = 'm';
2245 len = memtox(buf + 1, xml + addr, len);
2246 } else {
2247 buf[0] = 'l';
2248 len = memtox(buf + 1, xml + addr, total_len - addr);
2250 put_packet_binary(s, buf, len + 1);
2251 break;
2253 #endif
2254 /* Unrecognised 'q' command. */
2255 goto unknown_command;
2257 default:
2258 unknown_command:
2259 /* put empty packet */
2260 buf[0] = '\0';
2261 put_packet(s, buf);
2262 break;
2264 return RS_IDLE;
2267 void gdb_set_stop_cpu(CPUState *env)
2269 gdbserver_state->c_cpu = env;
2270 gdbserver_state->g_cpu = env;
2273 #ifndef CONFIG_USER_ONLY
2274 static void gdb_vm_state_change(void *opaque, int running, int reason)
2276 GDBState *s = gdbserver_state;
2277 CPUState *env = s->c_cpu;
2278 char buf[256];
2279 const char *type;
2280 int ret;
2282 if (running || s->state == RS_INACTIVE || s->state == RS_SYSCALL) {
2283 return;
2285 switch (reason) {
2286 case VMSTOP_DEBUG:
2287 if (env->watchpoint_hit) {
2288 switch (env->watchpoint_hit->flags & BP_MEM_ACCESS) {
2289 case BP_MEM_READ:
2290 type = "r";
2291 break;
2292 case BP_MEM_ACCESS:
2293 type = "a";
2294 break;
2295 default:
2296 type = "";
2297 break;
2299 snprintf(buf, sizeof(buf),
2300 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx ";",
2301 GDB_SIGNAL_TRAP, gdb_id(env), type,
2302 env->watchpoint_hit->vaddr);
2303 env->watchpoint_hit = NULL;
2304 goto send_packet;
2306 tb_flush(env);
2307 ret = GDB_SIGNAL_TRAP;
2308 break;
2309 case VMSTOP_USER:
2310 ret = GDB_SIGNAL_INT;
2311 break;
2312 case VMSTOP_SHUTDOWN:
2313 ret = GDB_SIGNAL_QUIT;
2314 break;
2315 case VMSTOP_DISKFULL:
2316 ret = GDB_SIGNAL_IO;
2317 break;
2318 case VMSTOP_WATCHDOG:
2319 ret = GDB_SIGNAL_ALRM;
2320 break;
2321 case VMSTOP_PANIC:
2322 ret = GDB_SIGNAL_ABRT;
2323 break;
2324 case VMSTOP_SAVEVM:
2325 case VMSTOP_LOADVM:
2326 return;
2327 case VMSTOP_MIGRATE:
2328 ret = GDB_SIGNAL_XCPU;
2329 break;
2330 default:
2331 ret = GDB_SIGNAL_UNKNOWN;
2332 break;
2334 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", ret, gdb_id(env));
2336 send_packet:
2337 put_packet(s, buf);
2339 /* disable single step if it was enabled */
2340 cpu_single_step(env, 0);
2342 #endif
2344 /* Send a gdb syscall request.
2345 This accepts limited printf-style format specifiers, specifically:
2346 %x - target_ulong argument printed in hex.
2347 %lx - 64-bit argument printed in hex.
2348 %s - string pointer (target_ulong) and length (int) pair. */
2349 void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
2351 va_list va;
2352 char buf[256];
2353 char *p;
2354 target_ulong addr;
2355 uint64_t i64;
2356 GDBState *s;
2358 s = gdbserver_state;
2359 if (!s)
2360 return;
2361 gdb_current_syscall_cb = cb;
2362 s->state = RS_SYSCALL;
2363 #ifndef CONFIG_USER_ONLY
2364 vm_stop(VMSTOP_DEBUG);
2365 #endif
2366 s->state = RS_IDLE;
2367 va_start(va, fmt);
2368 p = buf;
2369 *(p++) = 'F';
2370 while (*fmt) {
2371 if (*fmt == '%') {
2372 fmt++;
2373 switch (*fmt++) {
2374 case 'x':
2375 addr = va_arg(va, target_ulong);
2376 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx, addr);
2377 break;
2378 case 'l':
2379 if (*(fmt++) != 'x')
2380 goto bad_format;
2381 i64 = va_arg(va, uint64_t);
2382 p += snprintf(p, &buf[sizeof(buf)] - p, "%" PRIx64, i64);
2383 break;
2384 case 's':
2385 addr = va_arg(va, target_ulong);
2386 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx "/%x",
2387 addr, va_arg(va, int));
2388 break;
2389 default:
2390 bad_format:
2391 fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
2392 fmt - 1);
2393 break;
2395 } else {
2396 *(p++) = *(fmt++);
2399 *p = 0;
2400 va_end(va);
2401 put_packet(s, buf);
2402 #ifdef CONFIG_USER_ONLY
2403 gdb_handlesig(s->c_cpu, 0);
2404 #else
2405 cpu_exit(s->c_cpu);
2406 #endif
2409 static void gdb_read_byte(GDBState *s, int ch)
2411 int i, csum;
2412 uint8_t reply;
2414 #ifndef CONFIG_USER_ONLY
2415 if (s->last_packet_len) {
2416 /* Waiting for a response to the last packet. If we see the start
2417 of a new command then abandon the previous response. */
2418 if (ch == '-') {
2419 #ifdef DEBUG_GDB
2420 printf("Got NACK, retransmitting\n");
2421 #endif
2422 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
2424 #ifdef DEBUG_GDB
2425 else if (ch == '+')
2426 printf("Got ACK\n");
2427 else
2428 printf("Got '%c' when expecting ACK/NACK\n", ch);
2429 #endif
2430 if (ch == '+' || ch == '$')
2431 s->last_packet_len = 0;
2432 if (ch != '$')
2433 return;
2435 if (vm_running) {
2436 /* when the CPU is running, we cannot do anything except stop
2437 it when receiving a char */
2438 vm_stop(VMSTOP_USER);
2439 } else
2440 #endif
2442 switch(s->state) {
2443 case RS_IDLE:
2444 if (ch == '$') {
2445 s->line_buf_index = 0;
2446 s->state = RS_GETLINE;
2448 break;
2449 case RS_GETLINE:
2450 if (ch == '#') {
2451 s->state = RS_CHKSUM1;
2452 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
2453 s->state = RS_IDLE;
2454 } else {
2455 s->line_buf[s->line_buf_index++] = ch;
2457 break;
2458 case RS_CHKSUM1:
2459 s->line_buf[s->line_buf_index] = '\0';
2460 s->line_csum = fromhex(ch) << 4;
2461 s->state = RS_CHKSUM2;
2462 break;
2463 case RS_CHKSUM2:
2464 s->line_csum |= fromhex(ch);
2465 csum = 0;
2466 for(i = 0; i < s->line_buf_index; i++) {
2467 csum += s->line_buf[i];
2469 if (s->line_csum != (csum & 0xff)) {
2470 reply = '-';
2471 put_buffer(s, &reply, 1);
2472 s->state = RS_IDLE;
2473 } else {
2474 reply = '+';
2475 put_buffer(s, &reply, 1);
2476 s->state = gdb_handle_packet(s, s->line_buf);
2478 break;
2479 default:
2480 abort();
2485 /* Tell the remote gdb that the process has exited. */
2486 void gdb_exit(CPUState *env, int code)
2488 GDBState *s;
2489 char buf[4];
2491 s = gdbserver_state;
2492 if (!s) {
2493 return;
2495 #ifdef CONFIG_USER_ONLY
2496 if (gdbserver_fd < 0 || s->fd < 0) {
2497 return;
2499 #endif
2501 snprintf(buf, sizeof(buf), "W%02x", (uint8_t)code);
2502 put_packet(s, buf);
2504 #ifndef CONFIG_USER_ONLY
2505 if (s->chr) {
2506 qemu_chr_close(s->chr);
2508 #endif
2511 #ifdef CONFIG_USER_ONLY
2513 gdb_queuesig (void)
2515 GDBState *s;
2517 s = gdbserver_state;
2519 if (gdbserver_fd < 0 || s->fd < 0)
2520 return 0;
2521 else
2522 return 1;
2526 gdb_handlesig (CPUState *env, int sig)
2528 GDBState *s;
2529 char buf[256];
2530 int n;
2532 s = gdbserver_state;
2533 if (gdbserver_fd < 0 || s->fd < 0)
2534 return sig;
2536 /* disable single step if it was enabled */
2537 cpu_single_step(env, 0);
2538 tb_flush(env);
2540 if (sig != 0)
2542 snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb (sig));
2543 put_packet(s, buf);
2545 /* put_packet() might have detected that the peer terminated the
2546 connection. */
2547 if (s->fd < 0)
2548 return sig;
2550 sig = 0;
2551 s->state = RS_IDLE;
2552 s->running_state = 0;
2553 while (s->running_state == 0) {
2554 n = read (s->fd, buf, 256);
2555 if (n > 0)
2557 int i;
2559 for (i = 0; i < n; i++)
2560 gdb_read_byte (s, buf[i]);
2562 else if (n == 0 || errno != EAGAIN)
2564 /* XXX: Connection closed. Should probably wait for annother
2565 connection before continuing. */
2566 return sig;
2569 sig = s->signal;
2570 s->signal = 0;
2571 return sig;
2574 /* Tell the remote gdb that the process has exited due to SIG. */
2575 void gdb_signalled(CPUState *env, int sig)
2577 GDBState *s;
2578 char buf[4];
2580 s = gdbserver_state;
2581 if (gdbserver_fd < 0 || s->fd < 0)
2582 return;
2584 snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb (sig));
2585 put_packet(s, buf);
2588 static void gdb_accept(void)
2590 GDBState *s;
2591 struct sockaddr_in sockaddr;
2592 socklen_t len;
2593 int val, fd;
2595 for(;;) {
2596 len = sizeof(sockaddr);
2597 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
2598 if (fd < 0 && errno != EINTR) {
2599 perror("accept");
2600 return;
2601 } else if (fd >= 0) {
2602 #ifndef _WIN32
2603 fcntl(fd, F_SETFD, FD_CLOEXEC);
2604 #endif
2605 break;
2609 /* set short latency */
2610 val = 1;
2611 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
2613 s = qemu_mallocz(sizeof(GDBState));
2614 s->c_cpu = first_cpu;
2615 s->g_cpu = first_cpu;
2616 s->fd = fd;
2617 gdb_has_xml = 0;
2619 gdbserver_state = s;
2621 fcntl(fd, F_SETFL, O_NONBLOCK);
2624 static int gdbserver_open(int port)
2626 struct sockaddr_in sockaddr;
2627 int fd, val, ret;
2629 fd = socket(PF_INET, SOCK_STREAM, 0);
2630 if (fd < 0) {
2631 perror("socket");
2632 return -1;
2634 #ifndef _WIN32
2635 fcntl(fd, F_SETFD, FD_CLOEXEC);
2636 #endif
2638 /* allow fast reuse */
2639 val = 1;
2640 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
2642 sockaddr.sin_family = AF_INET;
2643 sockaddr.sin_port = htons(port);
2644 sockaddr.sin_addr.s_addr = 0;
2645 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
2646 if (ret < 0) {
2647 perror("bind");
2648 return -1;
2650 ret = listen(fd, 0);
2651 if (ret < 0) {
2652 perror("listen");
2653 return -1;
2655 return fd;
2658 int gdbserver_start(int port)
2660 gdbserver_fd = gdbserver_open(port);
2661 if (gdbserver_fd < 0)
2662 return -1;
2663 /* accept connections */
2664 gdb_accept();
2665 return 0;
2668 /* Disable gdb stub for child processes. */
2669 void gdbserver_fork(CPUState *env)
2671 GDBState *s = gdbserver_state;
2672 if (gdbserver_fd < 0 || s->fd < 0)
2673 return;
2674 close(s->fd);
2675 s->fd = -1;
2676 cpu_breakpoint_remove_all(env, BP_GDB);
2677 cpu_watchpoint_remove_all(env, BP_GDB);
2679 #else
2680 static int gdb_chr_can_receive(void *opaque)
2682 /* We can handle an arbitrarily large amount of data.
2683 Pick the maximum packet size, which is as good as anything. */
2684 return MAX_PACKET_LENGTH;
2687 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
2689 int i;
2691 for (i = 0; i < size; i++) {
2692 gdb_read_byte(gdbserver_state, buf[i]);
2696 static void gdb_chr_event(void *opaque, int event)
2698 switch (event) {
2699 case CHR_EVENT_OPENED:
2700 vm_stop(VMSTOP_USER);
2701 gdb_has_xml = 0;
2702 break;
2703 default:
2704 break;
2708 static void gdb_monitor_output(GDBState *s, const char *msg, int len)
2710 char buf[MAX_PACKET_LENGTH];
2712 buf[0] = 'O';
2713 if (len > (MAX_PACKET_LENGTH/2) - 1)
2714 len = (MAX_PACKET_LENGTH/2) - 1;
2715 memtohex(buf + 1, (uint8_t *)msg, len);
2716 put_packet(s, buf);
2719 static int gdb_monitor_write(CharDriverState *chr, const uint8_t *buf, int len)
2721 const char *p = (const char *)buf;
2722 int max_sz;
2724 max_sz = (sizeof(gdbserver_state->last_packet) - 2) / 2;
2725 for (;;) {
2726 if (len <= max_sz) {
2727 gdb_monitor_output(gdbserver_state, p, len);
2728 break;
2730 gdb_monitor_output(gdbserver_state, p, max_sz);
2731 p += max_sz;
2732 len -= max_sz;
2734 return len;
2737 #ifndef _WIN32
2738 static void gdb_sigterm_handler(int signal)
2740 if (vm_running) {
2741 vm_stop(VMSTOP_USER);
2744 #endif
2746 int gdbserver_start(const char *device)
2748 GDBState *s;
2749 char gdbstub_device_name[128];
2750 CharDriverState *chr = NULL;
2751 CharDriverState *mon_chr;
2753 if (!device)
2754 return -1;
2755 if (strcmp(device, "none") != 0) {
2756 if (strstart(device, "tcp:", NULL)) {
2757 /* enforce required TCP attributes */
2758 snprintf(gdbstub_device_name, sizeof(gdbstub_device_name),
2759 "%s,nowait,nodelay,server", device);
2760 device = gdbstub_device_name;
2762 #ifndef _WIN32
2763 else if (strcmp(device, "stdio") == 0) {
2764 struct sigaction act;
2766 memset(&act, 0, sizeof(act));
2767 act.sa_handler = gdb_sigterm_handler;
2768 sigaction(SIGINT, &act, NULL);
2770 #endif
2771 chr = qemu_chr_open("gdb", device, NULL);
2772 if (!chr)
2773 return -1;
2775 qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
2776 gdb_chr_event, NULL);
2779 s = gdbserver_state;
2780 if (!s) {
2781 s = qemu_mallocz(sizeof(GDBState));
2782 gdbserver_state = s;
2784 qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);
2786 /* Initialize a monitor terminal for gdb */
2787 mon_chr = qemu_mallocz(sizeof(*mon_chr));
2788 mon_chr->chr_write = gdb_monitor_write;
2789 monitor_init(mon_chr, 0);
2790 } else {
2791 if (s->chr)
2792 qemu_chr_close(s->chr);
2793 mon_chr = s->mon_chr;
2794 memset(s, 0, sizeof(GDBState));
2796 s->c_cpu = first_cpu;
2797 s->g_cpu = first_cpu;
2798 s->chr = chr;
2799 s->state = chr ? RS_IDLE : RS_INACTIVE;
2800 s->mon_chr = mon_chr;
2802 return 0;
2804 #endif