2 * QEMU MC146818 RTC emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu-timer.h"
29 #include "hpet_emul.h"
34 #define RTC_SECONDS_ALARM 1
36 #define RTC_MINUTES_ALARM 3
38 #define RTC_HOURS_ALARM 5
39 #define RTC_ALARM_DONT_CARE 0xC0
41 #define RTC_DAY_OF_WEEK 6
42 #define RTC_DAY_OF_MONTH 7
51 #define REG_A_UIP 0x80
53 #define REG_B_SET 0x80
54 #define REG_B_PIE 0x40
55 #define REG_B_AIE 0x20
56 #define REG_B_UIE 0x10
57 #define REG_B_SQWE 0x08
61 uint8_t cmos_data
[128];
69 QEMUTimer
*periodic_timer
;
70 int64_t next_periodic_time
;
72 int64_t next_second_time
;
74 uint32_t irq_coalesced
;
76 QEMUTimer
*coalesced_timer
;
78 QEMUTimer
*second_timer
;
79 QEMUTimer
*second_timer2
;
82 static void rtc_irq_raise(qemu_irq irq
) {
83 /* When HPET is operating in legacy mode, RTC interrupts are disabled
84 * We block qemu_irq_raise, but not qemu_irq_lower, in case legacy
85 * mode is established while interrupt is raised. We want it to
86 * be lowered in any case
88 #if defined TARGET_I386 || defined TARGET_X86_64
89 if (!hpet_in_legacy_mode())
94 static void rtc_set_time(RTCState
*s
);
95 static void rtc_copy_date(RTCState
*s
);
98 static void rtc_coalesced_timer_update(RTCState
*s
)
100 if (s
->irq_coalesced
== 0) {
101 qemu_del_timer(s
->coalesced_timer
);
103 /* divide each RTC interval to 2 - 8 smaller intervals */
104 int c
= MIN(s
->irq_coalesced
, 7) + 1;
105 int64_t next_clock
= qemu_get_clock(vm_clock
) +
106 muldiv64(s
->period
/ c
, ticks_per_sec
, 32768);
107 qemu_mod_timer(s
->coalesced_timer
, next_clock
);
111 static void rtc_coalesced_timer(void *opaque
)
113 RTCState
*s
= opaque
;
115 if (s
->irq_coalesced
!= 0) {
116 apic_reset_irq_delivered();
117 s
->cmos_data
[RTC_REG_C
] |= 0xc0;
118 rtc_irq_raise(s
->irq
);
119 if (apic_get_irq_delivered()) {
124 rtc_coalesced_timer_update(s
);
128 static void rtc_timer_update(RTCState
*s
, int64_t current_time
)
130 int period_code
, period
;
131 int64_t cur_clock
, next_irq_clock
;
134 period_code
= s
->cmos_data
[RTC_REG_A
] & 0x0f;
135 #if defined TARGET_I386 || defined TARGET_X86_64
136 /* disable periodic timer if hpet is in legacy mode, since interrupts are
139 enable_pie
= !hpet_in_legacy_mode();
144 && (((s
->cmos_data
[RTC_REG_B
] & REG_B_PIE
) && enable_pie
)
145 || ((s
->cmos_data
[RTC_REG_B
] & REG_B_SQWE
) && s
->sqw_irq
))) {
146 if (period_code
<= 2)
148 /* period in 32 Khz cycles */
149 period
= 1 << (period_code
- 1);
151 if(period
!= s
->period
)
152 s
->irq_coalesced
= (s
->irq_coalesced
* s
->period
) / period
;
155 /* compute 32 khz clock */
156 cur_clock
= muldiv64(current_time
, 32768, ticks_per_sec
);
157 next_irq_clock
= (cur_clock
& ~(period
- 1)) + period
;
158 s
->next_periodic_time
= muldiv64(next_irq_clock
, ticks_per_sec
, 32768) + 1;
159 qemu_mod_timer(s
->periodic_timer
, s
->next_periodic_time
);
162 s
->irq_coalesced
= 0;
164 qemu_del_timer(s
->periodic_timer
);
168 static void rtc_periodic_timer(void *opaque
)
170 RTCState
*s
= opaque
;
172 rtc_timer_update(s
, s
->next_periodic_time
);
173 if (s
->cmos_data
[RTC_REG_B
] & REG_B_PIE
) {
174 s
->cmos_data
[RTC_REG_C
] |= 0xc0;
177 apic_reset_irq_delivered();
178 rtc_irq_raise(s
->irq
);
179 if (!apic_get_irq_delivered()) {
181 rtc_coalesced_timer_update(s
);
185 rtc_irq_raise(s
->irq
);
187 if (s
->cmos_data
[RTC_REG_B
] & REG_B_SQWE
) {
188 /* Not square wave at all but we don't want 2048Hz interrupts!
189 Must be seen as a pulse. */
190 qemu_irq_raise(s
->sqw_irq
);
194 static void cmos_ioport_write(void *opaque
, uint32_t addr
, uint32_t data
)
196 RTCState
*s
= opaque
;
198 if ((addr
& 1) == 0) {
199 s
->cmos_index
= data
& 0x7f;
202 printf("cmos: write index=0x%02x val=0x%02x\n",
203 s
->cmos_index
, data
);
205 switch(s
->cmos_index
) {
206 case RTC_SECONDS_ALARM
:
207 case RTC_MINUTES_ALARM
:
208 case RTC_HOURS_ALARM
:
209 /* XXX: not supported */
210 s
->cmos_data
[s
->cmos_index
] = data
;
215 case RTC_DAY_OF_WEEK
:
216 case RTC_DAY_OF_MONTH
:
219 s
->cmos_data
[s
->cmos_index
] = data
;
220 /* if in set mode, do not update the time */
221 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_SET
)) {
226 /* UIP bit is read only */
227 s
->cmos_data
[RTC_REG_A
] = (data
& ~REG_A_UIP
) |
228 (s
->cmos_data
[RTC_REG_A
] & REG_A_UIP
);
229 rtc_timer_update(s
, qemu_get_clock(vm_clock
));
232 if (data
& REG_B_SET
) {
233 /* set mode: reset UIP mode */
234 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
237 /* if disabling set mode, update the time */
238 if (s
->cmos_data
[RTC_REG_B
] & REG_B_SET
) {
242 s
->cmos_data
[RTC_REG_B
] = data
;
243 rtc_timer_update(s
, qemu_get_clock(vm_clock
));
247 /* cannot write to them */
250 s
->cmos_data
[s
->cmos_index
] = data
;
256 static inline int to_bcd(RTCState
*s
, int a
)
258 if (s
->cmos_data
[RTC_REG_B
] & REG_B_DM
) {
261 return ((a
/ 10) << 4) | (a
% 10);
265 static inline int from_bcd(RTCState
*s
, int a
)
267 if (s
->cmos_data
[RTC_REG_B
] & REG_B_DM
) {
270 return ((a
>> 4) * 10) + (a
& 0x0f);
274 static void rtc_set_time(RTCState
*s
)
276 struct tm
*tm
= &s
->current_tm
;
278 tm
->tm_sec
= from_bcd(s
, s
->cmos_data
[RTC_SECONDS
]);
279 tm
->tm_min
= from_bcd(s
, s
->cmos_data
[RTC_MINUTES
]);
280 tm
->tm_hour
= from_bcd(s
, s
->cmos_data
[RTC_HOURS
] & 0x7f);
281 if (!(s
->cmos_data
[RTC_REG_B
] & 0x02) &&
282 (s
->cmos_data
[RTC_HOURS
] & 0x80)) {
285 tm
->tm_wday
= from_bcd(s
, s
->cmos_data
[RTC_DAY_OF_WEEK
]) - 1;
286 tm
->tm_mday
= from_bcd(s
, s
->cmos_data
[RTC_DAY_OF_MONTH
]);
287 tm
->tm_mon
= from_bcd(s
, s
->cmos_data
[RTC_MONTH
]) - 1;
288 tm
->tm_year
= from_bcd(s
, s
->cmos_data
[RTC_YEAR
]) + s
->base_year
- 1900;
291 static void rtc_copy_date(RTCState
*s
)
293 const struct tm
*tm
= &s
->current_tm
;
296 s
->cmos_data
[RTC_SECONDS
] = to_bcd(s
, tm
->tm_sec
);
297 s
->cmos_data
[RTC_MINUTES
] = to_bcd(s
, tm
->tm_min
);
298 if (s
->cmos_data
[RTC_REG_B
] & 0x02) {
300 s
->cmos_data
[RTC_HOURS
] = to_bcd(s
, tm
->tm_hour
);
303 s
->cmos_data
[RTC_HOURS
] = to_bcd(s
, tm
->tm_hour
% 12);
304 if (tm
->tm_hour
>= 12)
305 s
->cmos_data
[RTC_HOURS
] |= 0x80;
307 s
->cmos_data
[RTC_DAY_OF_WEEK
] = to_bcd(s
, tm
->tm_wday
+ 1);
308 s
->cmos_data
[RTC_DAY_OF_MONTH
] = to_bcd(s
, tm
->tm_mday
);
309 s
->cmos_data
[RTC_MONTH
] = to_bcd(s
, tm
->tm_mon
+ 1);
310 year
= (tm
->tm_year
- s
->base_year
) % 100;
313 s
->cmos_data
[RTC_YEAR
] = to_bcd(s
, year
);
316 /* month is between 0 and 11. */
317 static int get_days_in_month(int month
, int year
)
319 static const int days_tab
[12] = {
320 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
323 if ((unsigned )month
>= 12)
327 if ((year
% 4) == 0 && ((year
% 100) != 0 || (year
% 400) == 0))
333 /* update 'tm' to the next second */
334 static void rtc_next_second(struct tm
*tm
)
339 if ((unsigned)tm
->tm_sec
>= 60) {
342 if ((unsigned)tm
->tm_min
>= 60) {
345 if ((unsigned)tm
->tm_hour
>= 24) {
349 if ((unsigned)tm
->tm_wday
>= 7)
351 days_in_month
= get_days_in_month(tm
->tm_mon
,
354 if (tm
->tm_mday
< 1) {
356 } else if (tm
->tm_mday
> days_in_month
) {
359 if (tm
->tm_mon
>= 12) {
370 static void rtc_update_second(void *opaque
)
372 RTCState
*s
= opaque
;
375 /* if the oscillator is not in normal operation, we do not update */
376 if ((s
->cmos_data
[RTC_REG_A
] & 0x70) != 0x20) {
377 s
->next_second_time
+= ticks_per_sec
;
378 qemu_mod_timer(s
->second_timer
, s
->next_second_time
);
380 rtc_next_second(&s
->current_tm
);
382 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_SET
)) {
383 /* update in progress bit */
384 s
->cmos_data
[RTC_REG_A
] |= REG_A_UIP
;
386 /* should be 244 us = 8 / 32768 seconds, but currently the
387 timers do not have the necessary resolution. */
388 delay
= (ticks_per_sec
* 1) / 100;
391 qemu_mod_timer(s
->second_timer2
,
392 s
->next_second_time
+ delay
);
396 static void rtc_update_second2(void *opaque
)
398 RTCState
*s
= opaque
;
400 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_SET
)) {
405 if (s
->cmos_data
[RTC_REG_B
] & REG_B_AIE
) {
406 if (((s
->cmos_data
[RTC_SECONDS_ALARM
] & 0xc0) == 0xc0 ||
407 s
->cmos_data
[RTC_SECONDS_ALARM
] == s
->current_tm
.tm_sec
) &&
408 ((s
->cmos_data
[RTC_MINUTES_ALARM
] & 0xc0) == 0xc0 ||
409 s
->cmos_data
[RTC_MINUTES_ALARM
] == s
->current_tm
.tm_mon
) &&
410 ((s
->cmos_data
[RTC_HOURS_ALARM
] & 0xc0) == 0xc0 ||
411 s
->cmos_data
[RTC_HOURS_ALARM
] == s
->current_tm
.tm_hour
)) {
413 s
->cmos_data
[RTC_REG_C
] |= 0xa0;
414 rtc_irq_raise(s
->irq
);
418 /* update ended interrupt */
419 if (s
->cmos_data
[RTC_REG_B
] & REG_B_UIE
) {
420 s
->cmos_data
[RTC_REG_C
] |= 0x90;
421 rtc_irq_raise(s
->irq
);
424 /* clear update in progress bit */
425 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
427 s
->next_second_time
+= ticks_per_sec
;
428 qemu_mod_timer(s
->second_timer
, s
->next_second_time
);
431 static uint32_t cmos_ioport_read(void *opaque
, uint32_t addr
)
433 RTCState
*s
= opaque
;
435 if ((addr
& 1) == 0) {
438 switch(s
->cmos_index
) {
442 case RTC_DAY_OF_WEEK
:
443 case RTC_DAY_OF_MONTH
:
446 ret
= s
->cmos_data
[s
->cmos_index
];
449 ret
= s
->cmos_data
[s
->cmos_index
];
452 ret
= s
->cmos_data
[s
->cmos_index
];
453 qemu_irq_lower(s
->irq
);
454 s
->cmos_data
[RTC_REG_C
] = 0x00;
457 ret
= s
->cmos_data
[s
->cmos_index
];
461 printf("cmos: read index=0x%02x val=0x%02x\n",
468 void rtc_set_memory(RTCState
*s
, int addr
, int val
)
470 if (addr
>= 0 && addr
<= 127)
471 s
->cmos_data
[addr
] = val
;
474 void rtc_set_date(RTCState
*s
, const struct tm
*tm
)
480 /* PC cmos mappings */
481 #define REG_IBM_CENTURY_BYTE 0x32
482 #define REG_IBM_PS2_CENTURY_BYTE 0x37
484 static void rtc_set_date_from_host(RTCState
*s
)
489 /* set the CMOS date */
490 qemu_get_timedate(&tm
, 0);
491 rtc_set_date(s
, &tm
);
493 val
= to_bcd(s
, (tm
.tm_year
/ 100) + 19);
494 rtc_set_memory(s
, REG_IBM_CENTURY_BYTE
, val
);
495 rtc_set_memory(s
, REG_IBM_PS2_CENTURY_BYTE
, val
);
498 static void rtc_save(QEMUFile
*f
, void *opaque
)
500 RTCState
*s
= opaque
;
502 qemu_put_buffer(f
, s
->cmos_data
, 128);
503 qemu_put_8s(f
, &s
->cmos_index
);
505 qemu_put_be32(f
, s
->current_tm
.tm_sec
);
506 qemu_put_be32(f
, s
->current_tm
.tm_min
);
507 qemu_put_be32(f
, s
->current_tm
.tm_hour
);
508 qemu_put_be32(f
, s
->current_tm
.tm_wday
);
509 qemu_put_be32(f
, s
->current_tm
.tm_mday
);
510 qemu_put_be32(f
, s
->current_tm
.tm_mon
);
511 qemu_put_be32(f
, s
->current_tm
.tm_year
);
513 qemu_put_timer(f
, s
->periodic_timer
);
514 qemu_put_be64(f
, s
->next_periodic_time
);
516 qemu_put_be64(f
, s
->next_second_time
);
517 qemu_put_timer(f
, s
->second_timer
);
518 qemu_put_timer(f
, s
->second_timer2
);
521 static int rtc_load(QEMUFile
*f
, void *opaque
, int version_id
)
523 RTCState
*s
= opaque
;
528 qemu_get_buffer(f
, s
->cmos_data
, 128);
529 qemu_get_8s(f
, &s
->cmos_index
);
531 s
->current_tm
.tm_sec
=qemu_get_be32(f
);
532 s
->current_tm
.tm_min
=qemu_get_be32(f
);
533 s
->current_tm
.tm_hour
=qemu_get_be32(f
);
534 s
->current_tm
.tm_wday
=qemu_get_be32(f
);
535 s
->current_tm
.tm_mday
=qemu_get_be32(f
);
536 s
->current_tm
.tm_mon
=qemu_get_be32(f
);
537 s
->current_tm
.tm_year
=qemu_get_be32(f
);
539 qemu_get_timer(f
, s
->periodic_timer
);
540 s
->next_periodic_time
=qemu_get_be64(f
);
542 s
->next_second_time
=qemu_get_be64(f
);
543 qemu_get_timer(f
, s
->second_timer
);
544 qemu_get_timer(f
, s
->second_timer2
);
549 static void rtc_save_td(QEMUFile
*f
, void *opaque
)
551 RTCState
*s
= opaque
;
553 qemu_put_be32(f
, s
->irq_coalesced
);
554 qemu_put_be32(f
, s
->period
);
557 static int rtc_load_td(QEMUFile
*f
, void *opaque
, int version_id
)
559 RTCState
*s
= opaque
;
564 s
->irq_coalesced
= qemu_get_be32(f
);
565 s
->period
= qemu_get_be32(f
);
566 rtc_coalesced_timer_update(s
);
571 RTCState
*rtc_init_sqw(int base
, qemu_irq irq
, qemu_irq sqw_irq
, int base_year
)
575 s
= qemu_mallocz(sizeof(RTCState
));
578 s
->sqw_irq
= sqw_irq
;
579 s
->cmos_data
[RTC_REG_A
] = 0x26;
580 s
->cmos_data
[RTC_REG_B
] = 0x02;
581 s
->cmos_data
[RTC_REG_C
] = 0x00;
582 s
->cmos_data
[RTC_REG_D
] = 0x80;
584 s
->base_year
= base_year
;
585 rtc_set_date_from_host(s
);
587 s
->periodic_timer
= qemu_new_timer(vm_clock
,
588 rtc_periodic_timer
, s
);
591 s
->coalesced_timer
= qemu_new_timer(vm_clock
, rtc_coalesced_timer
, s
);
593 s
->second_timer
= qemu_new_timer(vm_clock
,
594 rtc_update_second
, s
);
595 s
->second_timer2
= qemu_new_timer(vm_clock
,
596 rtc_update_second2
, s
);
598 s
->next_second_time
= qemu_get_clock(vm_clock
) + (ticks_per_sec
* 99) / 100;
599 qemu_mod_timer(s
->second_timer2
, s
->next_second_time
);
601 register_ioport_write(base
, 2, 1, cmos_ioport_write
, s
);
602 register_ioport_read(base
, 2, 1, cmos_ioport_read
, s
);
604 register_savevm("mc146818rtc", base
, 1, rtc_save
, rtc_load
, s
);
607 register_savevm("mc146818rtc-td", base
, 1, rtc_save_td
, rtc_load_td
, s
);
612 RTCState
*rtc_init(int base
, qemu_irq irq
, int base_year
)
614 return rtc_init_sqw(base
, irq
, NULL
, base_year
);
617 /* Memory mapped interface */
618 static uint32_t cmos_mm_readb (void *opaque
, target_phys_addr_t addr
)
620 RTCState
*s
= opaque
;
622 return cmos_ioport_read(s
, addr
>> s
->it_shift
) & 0xFF;
625 static void cmos_mm_writeb (void *opaque
,
626 target_phys_addr_t addr
, uint32_t value
)
628 RTCState
*s
= opaque
;
630 cmos_ioport_write(s
, addr
>> s
->it_shift
, value
& 0xFF);
633 static uint32_t cmos_mm_readw (void *opaque
, target_phys_addr_t addr
)
635 RTCState
*s
= opaque
;
638 val
= cmos_ioport_read(s
, addr
>> s
->it_shift
) & 0xFFFF;
639 #ifdef TARGET_WORDS_BIGENDIAN
645 static void cmos_mm_writew (void *opaque
,
646 target_phys_addr_t addr
, uint32_t value
)
648 RTCState
*s
= opaque
;
649 #ifdef TARGET_WORDS_BIGENDIAN
650 value
= bswap16(value
);
652 cmos_ioport_write(s
, addr
>> s
->it_shift
, value
& 0xFFFF);
655 static uint32_t cmos_mm_readl (void *opaque
, target_phys_addr_t addr
)
657 RTCState
*s
= opaque
;
660 val
= cmos_ioport_read(s
, addr
>> s
->it_shift
);
661 #ifdef TARGET_WORDS_BIGENDIAN
667 static void cmos_mm_writel (void *opaque
,
668 target_phys_addr_t addr
, uint32_t value
)
670 RTCState
*s
= opaque
;
671 #ifdef TARGET_WORDS_BIGENDIAN
672 value
= bswap32(value
);
674 cmos_ioport_write(s
, addr
>> s
->it_shift
, value
);
677 static CPUReadMemoryFunc
*rtc_mm_read
[] = {
683 static CPUWriteMemoryFunc
*rtc_mm_write
[] = {
689 RTCState
*rtc_mm_init(target_phys_addr_t base
, int it_shift
, qemu_irq irq
,
695 s
= qemu_mallocz(sizeof(RTCState
));
698 s
->cmos_data
[RTC_REG_A
] = 0x26;
699 s
->cmos_data
[RTC_REG_B
] = 0x02;
700 s
->cmos_data
[RTC_REG_C
] = 0x00;
701 s
->cmos_data
[RTC_REG_D
] = 0x80;
703 s
->base_year
= base_year
;
704 rtc_set_date_from_host(s
);
706 s
->periodic_timer
= qemu_new_timer(vm_clock
,
707 rtc_periodic_timer
, s
);
708 s
->second_timer
= qemu_new_timer(vm_clock
,
709 rtc_update_second
, s
);
710 s
->second_timer2
= qemu_new_timer(vm_clock
,
711 rtc_update_second2
, s
);
713 s
->next_second_time
= qemu_get_clock(vm_clock
) + (ticks_per_sec
* 99) / 100;
714 qemu_mod_timer(s
->second_timer2
, s
->next_second_time
);
716 io_memory
= cpu_register_io_memory(0, rtc_mm_read
, rtc_mm_write
, s
);
717 cpu_register_physical_memory(base
, 2 << it_shift
, io_memory
);
719 register_savevm("mc146818rtc", base
, 1, rtc_save
, rtc_load
, s
);
722 register_savevm("mc146818rtc-td", base
, 1, rtc_save_td
, rtc_load_td
, s
);