2 * Emulation of Linux signals
4 * Copyright (c) 2003 Fabrice Bellard
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qemu/bitops.h"
21 #include "exec/gdbstub.h"
23 #include <sys/ucontext.h>
24 #include <sys/resource.h>
27 #include "user-internals.h"
31 #include "signal-common.h"
33 static struct target_sigaction sigact_table
[TARGET_NSIG
];
35 static void host_signal_handler(int host_signum
, siginfo_t
*info
,
38 /* Fallback addresses into sigtramp page. */
39 abi_ulong default_sigreturn
;
40 abi_ulong default_rt_sigreturn
;
43 * System includes define _NSIG as SIGRTMAX + 1,
44 * but qemu (like the kernel) defines TARGET_NSIG as TARGET_SIGRTMAX
45 * and the first signal is SIGHUP defined as 1
46 * Signal number 0 is reserved for use as kill(pid, 0), to test whether
47 * a process exists without sending it a signal.
50 QEMU_BUILD_BUG_ON(__SIGRTMAX
+ 1 != _NSIG
);
52 static uint8_t host_to_target_signal_table
[_NSIG
] = {
53 [SIGHUP
] = TARGET_SIGHUP
,
54 [SIGINT
] = TARGET_SIGINT
,
55 [SIGQUIT
] = TARGET_SIGQUIT
,
56 [SIGILL
] = TARGET_SIGILL
,
57 [SIGTRAP
] = TARGET_SIGTRAP
,
58 [SIGABRT
] = TARGET_SIGABRT
,
59 /* [SIGIOT] = TARGET_SIGIOT,*/
60 [SIGBUS
] = TARGET_SIGBUS
,
61 [SIGFPE
] = TARGET_SIGFPE
,
62 [SIGKILL
] = TARGET_SIGKILL
,
63 [SIGUSR1
] = TARGET_SIGUSR1
,
64 [SIGSEGV
] = TARGET_SIGSEGV
,
65 [SIGUSR2
] = TARGET_SIGUSR2
,
66 [SIGPIPE
] = TARGET_SIGPIPE
,
67 [SIGALRM
] = TARGET_SIGALRM
,
68 [SIGTERM
] = TARGET_SIGTERM
,
70 [SIGSTKFLT
] = TARGET_SIGSTKFLT
,
72 [SIGCHLD
] = TARGET_SIGCHLD
,
73 [SIGCONT
] = TARGET_SIGCONT
,
74 [SIGSTOP
] = TARGET_SIGSTOP
,
75 [SIGTSTP
] = TARGET_SIGTSTP
,
76 [SIGTTIN
] = TARGET_SIGTTIN
,
77 [SIGTTOU
] = TARGET_SIGTTOU
,
78 [SIGURG
] = TARGET_SIGURG
,
79 [SIGXCPU
] = TARGET_SIGXCPU
,
80 [SIGXFSZ
] = TARGET_SIGXFSZ
,
81 [SIGVTALRM
] = TARGET_SIGVTALRM
,
82 [SIGPROF
] = TARGET_SIGPROF
,
83 [SIGWINCH
] = TARGET_SIGWINCH
,
84 [SIGIO
] = TARGET_SIGIO
,
85 [SIGPWR
] = TARGET_SIGPWR
,
86 [SIGSYS
] = TARGET_SIGSYS
,
87 /* next signals stay the same */
90 static uint8_t target_to_host_signal_table
[TARGET_NSIG
+ 1];
92 /* valid sig is between 1 and _NSIG - 1 */
93 int host_to_target_signal(int sig
)
95 if (sig
< 1 || sig
>= _NSIG
) {
98 return host_to_target_signal_table
[sig
];
101 /* valid sig is between 1 and TARGET_NSIG */
102 int target_to_host_signal(int sig
)
104 if (sig
< 1 || sig
> TARGET_NSIG
) {
107 return target_to_host_signal_table
[sig
];
110 static inline void target_sigaddset(target_sigset_t
*set
, int signum
)
113 abi_ulong mask
= (abi_ulong
)1 << (signum
% TARGET_NSIG_BPW
);
114 set
->sig
[signum
/ TARGET_NSIG_BPW
] |= mask
;
117 static inline int target_sigismember(const target_sigset_t
*set
, int signum
)
120 abi_ulong mask
= (abi_ulong
)1 << (signum
% TARGET_NSIG_BPW
);
121 return ((set
->sig
[signum
/ TARGET_NSIG_BPW
] & mask
) != 0);
124 void host_to_target_sigset_internal(target_sigset_t
*d
,
127 int host_sig
, target_sig
;
128 target_sigemptyset(d
);
129 for (host_sig
= 1; host_sig
< _NSIG
; host_sig
++) {
130 target_sig
= host_to_target_signal(host_sig
);
131 if (target_sig
< 1 || target_sig
> TARGET_NSIG
) {
134 if (sigismember(s
, host_sig
)) {
135 target_sigaddset(d
, target_sig
);
140 void host_to_target_sigset(target_sigset_t
*d
, const sigset_t
*s
)
145 host_to_target_sigset_internal(&d1
, s
);
146 for(i
= 0;i
< TARGET_NSIG_WORDS
; i
++)
147 d
->sig
[i
] = tswapal(d1
.sig
[i
]);
150 void target_to_host_sigset_internal(sigset_t
*d
,
151 const target_sigset_t
*s
)
153 int host_sig
, target_sig
;
155 for (target_sig
= 1; target_sig
<= TARGET_NSIG
; target_sig
++) {
156 host_sig
= target_to_host_signal(target_sig
);
157 if (host_sig
< 1 || host_sig
>= _NSIG
) {
160 if (target_sigismember(s
, target_sig
)) {
161 sigaddset(d
, host_sig
);
166 void target_to_host_sigset(sigset_t
*d
, const target_sigset_t
*s
)
171 for(i
= 0;i
< TARGET_NSIG_WORDS
; i
++)
172 s1
.sig
[i
] = tswapal(s
->sig
[i
]);
173 target_to_host_sigset_internal(d
, &s1
);
176 void host_to_target_old_sigset(abi_ulong
*old_sigset
,
177 const sigset_t
*sigset
)
180 host_to_target_sigset(&d
, sigset
);
181 *old_sigset
= d
.sig
[0];
184 void target_to_host_old_sigset(sigset_t
*sigset
,
185 const abi_ulong
*old_sigset
)
190 d
.sig
[0] = *old_sigset
;
191 for(i
= 1;i
< TARGET_NSIG_WORDS
; i
++)
193 target_to_host_sigset(sigset
, &d
);
196 int block_signals(void)
198 TaskState
*ts
= (TaskState
*)thread_cpu
->opaque
;
201 /* It's OK to block everything including SIGSEGV, because we won't
202 * run any further guest code before unblocking signals in
203 * process_pending_signals().
206 sigprocmask(SIG_SETMASK
, &set
, 0);
208 return qatomic_xchg(&ts
->signal_pending
, 1);
211 /* Wrapper for sigprocmask function
212 * Emulates a sigprocmask in a safe way for the guest. Note that set and oldset
213 * are host signal set, not guest ones. Returns -TARGET_ERESTARTSYS if
214 * a signal was already pending and the syscall must be restarted, or
216 * If set is NULL, this is guaranteed not to fail.
218 int do_sigprocmask(int how
, const sigset_t
*set
, sigset_t
*oldset
)
220 TaskState
*ts
= (TaskState
*)thread_cpu
->opaque
;
223 *oldset
= ts
->signal_mask
;
229 if (block_signals()) {
230 return -TARGET_ERESTARTSYS
;
235 sigorset(&ts
->signal_mask
, &ts
->signal_mask
, set
);
238 for (i
= 1; i
<= NSIG
; ++i
) {
239 if (sigismember(set
, i
)) {
240 sigdelset(&ts
->signal_mask
, i
);
245 ts
->signal_mask
= *set
;
248 g_assert_not_reached();
251 /* Silently ignore attempts to change blocking status of KILL or STOP */
252 sigdelset(&ts
->signal_mask
, SIGKILL
);
253 sigdelset(&ts
->signal_mask
, SIGSTOP
);
258 #if !defined(TARGET_NIOS2)
259 /* Just set the guest's signal mask to the specified value; the
260 * caller is assumed to have called block_signals() already.
262 void set_sigmask(const sigset_t
*set
)
264 TaskState
*ts
= (TaskState
*)thread_cpu
->opaque
;
266 ts
->signal_mask
= *set
;
270 /* sigaltstack management */
272 int on_sig_stack(unsigned long sp
)
274 TaskState
*ts
= (TaskState
*)thread_cpu
->opaque
;
276 return (sp
- ts
->sigaltstack_used
.ss_sp
277 < ts
->sigaltstack_used
.ss_size
);
280 int sas_ss_flags(unsigned long sp
)
282 TaskState
*ts
= (TaskState
*)thread_cpu
->opaque
;
284 return (ts
->sigaltstack_used
.ss_size
== 0 ? SS_DISABLE
285 : on_sig_stack(sp
) ? SS_ONSTACK
: 0);
288 abi_ulong
target_sigsp(abi_ulong sp
, struct target_sigaction
*ka
)
291 * This is the X/Open sanctioned signal stack switching.
293 TaskState
*ts
= (TaskState
*)thread_cpu
->opaque
;
295 if ((ka
->sa_flags
& TARGET_SA_ONSTACK
) && !sas_ss_flags(sp
)) {
296 return ts
->sigaltstack_used
.ss_sp
+ ts
->sigaltstack_used
.ss_size
;
301 void target_save_altstack(target_stack_t
*uss
, CPUArchState
*env
)
303 TaskState
*ts
= (TaskState
*)thread_cpu
->opaque
;
305 __put_user(ts
->sigaltstack_used
.ss_sp
, &uss
->ss_sp
);
306 __put_user(sas_ss_flags(get_sp_from_cpustate(env
)), &uss
->ss_flags
);
307 __put_user(ts
->sigaltstack_used
.ss_size
, &uss
->ss_size
);
310 abi_long
target_restore_altstack(target_stack_t
*uss
, CPUArchState
*env
)
312 TaskState
*ts
= (TaskState
*)thread_cpu
->opaque
;
313 size_t minstacksize
= TARGET_MINSIGSTKSZ
;
316 #if defined(TARGET_PPC64)
317 /* ELF V2 for PPC64 has a 4K minimum stack size for signal handlers */
318 struct image_info
*image
= ts
->info
;
319 if (get_ppc64_abi(image
) > 1) {
324 __get_user(ss
.ss_sp
, &uss
->ss_sp
);
325 __get_user(ss
.ss_size
, &uss
->ss_size
);
326 __get_user(ss
.ss_flags
, &uss
->ss_flags
);
328 if (on_sig_stack(get_sp_from_cpustate(env
))) {
329 return -TARGET_EPERM
;
332 switch (ss
.ss_flags
) {
334 return -TARGET_EINVAL
;
336 case TARGET_SS_DISABLE
:
341 case TARGET_SS_ONSTACK
:
343 if (ss
.ss_size
< minstacksize
) {
344 return -TARGET_ENOMEM
;
349 ts
->sigaltstack_used
.ss_sp
= ss
.ss_sp
;
350 ts
->sigaltstack_used
.ss_size
= ss
.ss_size
;
354 /* siginfo conversion */
356 static inline void host_to_target_siginfo_noswap(target_siginfo_t
*tinfo
,
357 const siginfo_t
*info
)
359 int sig
= host_to_target_signal(info
->si_signo
);
360 int si_code
= info
->si_code
;
362 tinfo
->si_signo
= sig
;
364 tinfo
->si_code
= info
->si_code
;
366 /* This memset serves two purposes:
367 * (1) ensure we don't leak random junk to the guest later
368 * (2) placate false positives from gcc about fields
369 * being used uninitialized if it chooses to inline both this
370 * function and tswap_siginfo() into host_to_target_siginfo().
372 memset(tinfo
->_sifields
._pad
, 0, sizeof(tinfo
->_sifields
._pad
));
374 /* This is awkward, because we have to use a combination of
375 * the si_code and si_signo to figure out which of the union's
376 * members are valid. (Within the host kernel it is always possible
377 * to tell, but the kernel carefully avoids giving userspace the
378 * high 16 bits of si_code, so we don't have the information to
379 * do this the easy way...) We therefore make our best guess,
380 * bearing in mind that a guest can spoof most of the si_codes
381 * via rt_sigqueueinfo() if it likes.
383 * Once we have made our guess, we record it in the top 16 bits of
384 * the si_code, so that tswap_siginfo() later can use it.
385 * tswap_siginfo() will strip these top bits out before writing
386 * si_code to the guest (sign-extending the lower bits).
393 /* Sent via kill(), tkill() or tgkill(), or direct from the kernel.
394 * These are the only unspoofable si_code values.
396 tinfo
->_sifields
._kill
._pid
= info
->si_pid
;
397 tinfo
->_sifields
._kill
._uid
= info
->si_uid
;
398 si_type
= QEMU_SI_KILL
;
401 /* Everything else is spoofable. Make best guess based on signal */
404 tinfo
->_sifields
._sigchld
._pid
= info
->si_pid
;
405 tinfo
->_sifields
._sigchld
._uid
= info
->si_uid
;
406 tinfo
->_sifields
._sigchld
._status
= info
->si_status
;
407 tinfo
->_sifields
._sigchld
._utime
= info
->si_utime
;
408 tinfo
->_sifields
._sigchld
._stime
= info
->si_stime
;
409 si_type
= QEMU_SI_CHLD
;
412 tinfo
->_sifields
._sigpoll
._band
= info
->si_band
;
413 tinfo
->_sifields
._sigpoll
._fd
= info
->si_fd
;
414 si_type
= QEMU_SI_POLL
;
417 /* Assume a sigqueue()/mq_notify()/rt_sigqueueinfo() source. */
418 tinfo
->_sifields
._rt
._pid
= info
->si_pid
;
419 tinfo
->_sifields
._rt
._uid
= info
->si_uid
;
420 /* XXX: potential problem if 64 bit */
421 tinfo
->_sifields
._rt
._sigval
.sival_ptr
422 = (abi_ulong
)(unsigned long)info
->si_value
.sival_ptr
;
423 si_type
= QEMU_SI_RT
;
429 tinfo
->si_code
= deposit32(si_code
, 16, 16, si_type
);
432 void tswap_siginfo(target_siginfo_t
*tinfo
,
433 const target_siginfo_t
*info
)
435 int si_type
= extract32(info
->si_code
, 16, 16);
436 int si_code
= sextract32(info
->si_code
, 0, 16);
438 __put_user(info
->si_signo
, &tinfo
->si_signo
);
439 __put_user(info
->si_errno
, &tinfo
->si_errno
);
440 __put_user(si_code
, &tinfo
->si_code
);
442 /* We can use our internal marker of which fields in the structure
443 * are valid, rather than duplicating the guesswork of
444 * host_to_target_siginfo_noswap() here.
448 __put_user(info
->_sifields
._kill
._pid
, &tinfo
->_sifields
._kill
._pid
);
449 __put_user(info
->_sifields
._kill
._uid
, &tinfo
->_sifields
._kill
._uid
);
452 __put_user(info
->_sifields
._timer
._timer1
,
453 &tinfo
->_sifields
._timer
._timer1
);
454 __put_user(info
->_sifields
._timer
._timer2
,
455 &tinfo
->_sifields
._timer
._timer2
);
458 __put_user(info
->_sifields
._sigpoll
._band
,
459 &tinfo
->_sifields
._sigpoll
._band
);
460 __put_user(info
->_sifields
._sigpoll
._fd
,
461 &tinfo
->_sifields
._sigpoll
._fd
);
464 __put_user(info
->_sifields
._sigfault
._addr
,
465 &tinfo
->_sifields
._sigfault
._addr
);
468 __put_user(info
->_sifields
._sigchld
._pid
,
469 &tinfo
->_sifields
._sigchld
._pid
);
470 __put_user(info
->_sifields
._sigchld
._uid
,
471 &tinfo
->_sifields
._sigchld
._uid
);
472 __put_user(info
->_sifields
._sigchld
._status
,
473 &tinfo
->_sifields
._sigchld
._status
);
474 __put_user(info
->_sifields
._sigchld
._utime
,
475 &tinfo
->_sifields
._sigchld
._utime
);
476 __put_user(info
->_sifields
._sigchld
._stime
,
477 &tinfo
->_sifields
._sigchld
._stime
);
480 __put_user(info
->_sifields
._rt
._pid
, &tinfo
->_sifields
._rt
._pid
);
481 __put_user(info
->_sifields
._rt
._uid
, &tinfo
->_sifields
._rt
._uid
);
482 __put_user(info
->_sifields
._rt
._sigval
.sival_ptr
,
483 &tinfo
->_sifields
._rt
._sigval
.sival_ptr
);
486 g_assert_not_reached();
490 void host_to_target_siginfo(target_siginfo_t
*tinfo
, const siginfo_t
*info
)
492 target_siginfo_t tgt_tmp
;
493 host_to_target_siginfo_noswap(&tgt_tmp
, info
);
494 tswap_siginfo(tinfo
, &tgt_tmp
);
497 /* XXX: we support only POSIX RT signals are used. */
498 /* XXX: find a solution for 64 bit (additional malloced data is needed) */
499 void target_to_host_siginfo(siginfo_t
*info
, const target_siginfo_t
*tinfo
)
501 /* This conversion is used only for the rt_sigqueueinfo syscall,
502 * and so we know that the _rt fields are the valid ones.
506 __get_user(info
->si_signo
, &tinfo
->si_signo
);
507 __get_user(info
->si_errno
, &tinfo
->si_errno
);
508 __get_user(info
->si_code
, &tinfo
->si_code
);
509 __get_user(info
->si_pid
, &tinfo
->_sifields
._rt
._pid
);
510 __get_user(info
->si_uid
, &tinfo
->_sifields
._rt
._uid
);
511 __get_user(sival_ptr
, &tinfo
->_sifields
._rt
._sigval
.sival_ptr
);
512 info
->si_value
.sival_ptr
= (void *)(long)sival_ptr
;
515 static int fatal_signal (int sig
)
520 case TARGET_SIGWINCH
:
521 /* Ignored by default. */
528 /* Job control signals. */
535 /* returns 1 if given signal should dump core if not handled */
536 static int core_dump_signal(int sig
)
552 static void signal_table_init(void)
554 int host_sig
, target_sig
, count
;
557 * Signals are supported starting from TARGET_SIGRTMIN and going up
558 * until we run out of host realtime signals.
559 * glibc at least uses only the lower 2 rt signals and probably
560 * nobody's using the upper ones.
561 * it's why SIGRTMIN (34) is generally greater than __SIGRTMIN (32)
562 * To fix this properly we need to do manual signal delivery multiplexed
563 * over a single host signal.
564 * Attempts for configure "missing" signals via sigaction will be
567 for (host_sig
= SIGRTMIN
; host_sig
<= SIGRTMAX
; host_sig
++) {
568 target_sig
= host_sig
- SIGRTMIN
+ TARGET_SIGRTMIN
;
569 if (target_sig
<= TARGET_NSIG
) {
570 host_to_target_signal_table
[host_sig
] = target_sig
;
574 /* generate signal conversion tables */
575 for (target_sig
= 1; target_sig
<= TARGET_NSIG
; target_sig
++) {
576 target_to_host_signal_table
[target_sig
] = _NSIG
; /* poison */
578 for (host_sig
= 1; host_sig
< _NSIG
; host_sig
++) {
579 if (host_to_target_signal_table
[host_sig
] == 0) {
580 host_to_target_signal_table
[host_sig
] = host_sig
;
582 target_sig
= host_to_target_signal_table
[host_sig
];
583 if (target_sig
<= TARGET_NSIG
) {
584 target_to_host_signal_table
[target_sig
] = host_sig
;
588 if (trace_event_get_state_backends(TRACE_SIGNAL_TABLE_INIT
)) {
589 for (target_sig
= 1, count
= 0; target_sig
<= TARGET_NSIG
; target_sig
++) {
590 if (target_to_host_signal_table
[target_sig
] == _NSIG
) {
594 trace_signal_table_init(count
);
598 void signal_init(void)
600 TaskState
*ts
= (TaskState
*)thread_cpu
->opaque
;
601 struct sigaction act
;
602 struct sigaction oact
;
606 /* initialize signal conversion tables */
609 /* Set the signal mask from the host mask. */
610 sigprocmask(0, 0, &ts
->signal_mask
);
612 sigfillset(&act
.sa_mask
);
613 act
.sa_flags
= SA_SIGINFO
;
614 act
.sa_sigaction
= host_signal_handler
;
615 for(i
= 1; i
<= TARGET_NSIG
; i
++) {
617 if (i
== TARGET_SIGPROF
) {
621 host_sig
= target_to_host_signal(i
);
622 sigaction(host_sig
, NULL
, &oact
);
623 if (oact
.sa_sigaction
== (void *)SIG_IGN
) {
624 sigact_table
[i
- 1]._sa_handler
= TARGET_SIG_IGN
;
625 } else if (oact
.sa_sigaction
== (void *)SIG_DFL
) {
626 sigact_table
[i
- 1]._sa_handler
= TARGET_SIG_DFL
;
628 /* If there's already a handler installed then something has
629 gone horribly wrong, so don't even try to handle that case. */
630 /* Install some handlers for our own use. We need at least
631 SIGSEGV and SIGBUS, to detect exceptions. We can not just
632 trap all signals because it affects syscall interrupt
633 behavior. But do trap all default-fatal signals. */
634 if (fatal_signal (i
))
635 sigaction(host_sig
, &act
, NULL
);
639 /* Force a synchronously taken signal. The kernel force_sig() function
640 * also forces the signal to "not blocked, not ignored", but for QEMU
641 * that work is done in process_pending_signals().
643 void force_sig(int sig
)
645 CPUState
*cpu
= thread_cpu
;
646 CPUArchState
*env
= cpu
->env_ptr
;
647 target_siginfo_t info
= {};
651 info
.si_code
= TARGET_SI_KERNEL
;
652 info
._sifields
._kill
._pid
= 0;
653 info
._sifields
._kill
._uid
= 0;
654 queue_signal(env
, info
.si_signo
, QEMU_SI_KILL
, &info
);
658 * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the
659 * 'force' part is handled in process_pending_signals().
661 void force_sig_fault(int sig
, int code
, abi_ulong addr
)
663 CPUState
*cpu
= thread_cpu
;
664 CPUArchState
*env
= cpu
->env_ptr
;
665 target_siginfo_t info
= {};
670 info
._sifields
._sigfault
._addr
= addr
;
671 queue_signal(env
, sig
, QEMU_SI_FAULT
, &info
);
674 /* Force a SIGSEGV if we couldn't write to memory trying to set
675 * up the signal frame. oldsig is the signal we were trying to handle
676 * at the point of failure.
678 #if !defined(TARGET_RISCV)
679 void force_sigsegv(int oldsig
)
681 if (oldsig
== SIGSEGV
) {
682 /* Make sure we don't try to deliver the signal again; this will
683 * end up with handle_pending_signal() calling dump_core_and_abort().
685 sigact_table
[oldsig
- 1]._sa_handler
= TARGET_SIG_DFL
;
687 force_sig(TARGET_SIGSEGV
);
692 /* abort execution with signal */
693 static void QEMU_NORETURN
dump_core_and_abort(int target_sig
)
695 CPUState
*cpu
= thread_cpu
;
696 CPUArchState
*env
= cpu
->env_ptr
;
697 TaskState
*ts
= (TaskState
*)cpu
->opaque
;
698 int host_sig
, core_dumped
= 0;
699 struct sigaction act
;
701 host_sig
= target_to_host_signal(target_sig
);
702 trace_user_force_sig(env
, target_sig
, host_sig
);
703 gdb_signalled(env
, target_sig
);
705 /* dump core if supported by target binary format */
706 if (core_dump_signal(target_sig
) && (ts
->bprm
->core_dump
!= NULL
)) {
709 ((*ts
->bprm
->core_dump
)(target_sig
, env
) == 0);
712 /* we already dumped the core of target process, we don't want
713 * a coredump of qemu itself */
714 struct rlimit nodump
;
715 getrlimit(RLIMIT_CORE
, &nodump
);
717 setrlimit(RLIMIT_CORE
, &nodump
);
718 (void) fprintf(stderr
, "qemu: uncaught target signal %d (%s) - %s\n",
719 target_sig
, strsignal(host_sig
), "core dumped" );
722 /* The proper exit code for dying from an uncaught signal is
723 * -<signal>. The kernel doesn't allow exit() or _exit() to pass
724 * a negative value. To get the proper exit code we need to
725 * actually die from an uncaught signal. Here the default signal
726 * handler is installed, we send ourself a signal and we wait for
728 sigfillset(&act
.sa_mask
);
729 act
.sa_handler
= SIG_DFL
;
731 sigaction(host_sig
, &act
, NULL
);
733 /* For some reason raise(host_sig) doesn't send the signal when
734 * statically linked on x86-64. */
735 kill(getpid(), host_sig
);
737 /* Make sure the signal isn't masked (just reuse the mask inside
739 sigdelset(&act
.sa_mask
, host_sig
);
740 sigsuspend(&act
.sa_mask
);
746 /* queue a signal so that it will be send to the virtual CPU as soon
748 int queue_signal(CPUArchState
*env
, int sig
, int si_type
,
749 target_siginfo_t
*info
)
751 CPUState
*cpu
= env_cpu(env
);
752 TaskState
*ts
= cpu
->opaque
;
754 trace_user_queue_signal(env
, sig
);
756 info
->si_code
= deposit32(info
->si_code
, 16, 16, si_type
);
758 ts
->sync_signal
.info
= *info
;
759 ts
->sync_signal
.pending
= sig
;
760 /* signal that a new signal is pending */
761 qatomic_set(&ts
->signal_pending
, 1);
762 return 1; /* indicates that the signal was queued */
765 #ifndef HAVE_SAFE_SYSCALL
766 static inline void rewind_if_in_safe_syscall(void *puc
)
768 /* Default version: never rewind */
772 static void host_signal_handler(int host_signum
, siginfo_t
*info
,
775 CPUArchState
*env
= thread_cpu
->env_ptr
;
776 CPUState
*cpu
= env_cpu(env
);
777 TaskState
*ts
= cpu
->opaque
;
780 target_siginfo_t tinfo
;
781 ucontext_t
*uc
= puc
;
782 struct emulated_sigtable
*k
;
784 /* the CPU emulator uses some host signals to detect exceptions,
785 we forward to it some signals */
786 if ((host_signum
== SIGSEGV
|| host_signum
== SIGBUS
)
787 && info
->si_code
> 0) {
788 if (cpu_signal_handler(host_signum
, info
, puc
))
792 /* get target signal number */
793 sig
= host_to_target_signal(host_signum
);
794 if (sig
< 1 || sig
> TARGET_NSIG
)
796 trace_user_host_signal(env
, host_signum
, sig
);
798 rewind_if_in_safe_syscall(puc
);
800 host_to_target_siginfo_noswap(&tinfo
, info
);
801 k
= &ts
->sigtab
[sig
- 1];
804 ts
->signal_pending
= 1;
806 /* Block host signals until target signal handler entered. We
807 * can't block SIGSEGV or SIGBUS while we're executing guest
808 * code in case the guest code provokes one in the window between
809 * now and it getting out to the main loop. Signals will be
810 * unblocked again in process_pending_signals().
812 * WARNING: we cannot use sigfillset() here because the uc_sigmask
813 * field is a kernel sigset_t, which is much smaller than the
814 * libc sigset_t which sigfillset() operates on. Using sigfillset()
815 * would write 0xff bytes off the end of the structure and trash
816 * data on the struct.
817 * We can't use sizeof(uc->uc_sigmask) either, because the libc
818 * headers define the struct field with the wrong (too large) type.
820 memset(&uc
->uc_sigmask
, 0xff, SIGSET_T_SIZE
);
821 sigdelset(&uc
->uc_sigmask
, SIGSEGV
);
822 sigdelset(&uc
->uc_sigmask
, SIGBUS
);
824 /* interrupt the virtual CPU as soon as possible */
825 cpu_exit(thread_cpu
);
828 /* do_sigaltstack() returns target values and errnos. */
829 /* compare linux/kernel/signal.c:do_sigaltstack() */
830 abi_long
do_sigaltstack(abi_ulong uss_addr
, abi_ulong uoss_addr
,
833 target_stack_t oss
, *uoss
= NULL
;
834 abi_long ret
= -TARGET_EFAULT
;
837 /* Verify writability now, but do not alter user memory yet. */
838 if (!lock_user_struct(VERIFY_WRITE
, uoss
, uoss_addr
, 0)) {
841 target_save_altstack(&oss
, env
);
847 if (!lock_user_struct(VERIFY_READ
, uss
, uss_addr
, 1)) {
850 ret
= target_restore_altstack(uss
, env
);
857 memcpy(uoss
, &oss
, sizeof(oss
));
858 unlock_user_struct(uoss
, uoss_addr
, 1);
865 unlock_user_struct(uoss
, uoss_addr
, 0);
870 /* do_sigaction() return target values and host errnos */
871 int do_sigaction(int sig
, const struct target_sigaction
*act
,
872 struct target_sigaction
*oact
, abi_ulong ka_restorer
)
874 struct target_sigaction
*k
;
875 struct sigaction act1
;
879 trace_signal_do_sigaction_guest(sig
, TARGET_NSIG
);
881 if (sig
< 1 || sig
> TARGET_NSIG
) {
882 return -TARGET_EINVAL
;
885 if (act
&& (sig
== TARGET_SIGKILL
|| sig
== TARGET_SIGSTOP
)) {
886 return -TARGET_EINVAL
;
889 if (block_signals()) {
890 return -TARGET_ERESTARTSYS
;
893 k
= &sigact_table
[sig
- 1];
895 __put_user(k
->_sa_handler
, &oact
->_sa_handler
);
896 __put_user(k
->sa_flags
, &oact
->sa_flags
);
897 #ifdef TARGET_ARCH_HAS_SA_RESTORER
898 __put_user(k
->sa_restorer
, &oact
->sa_restorer
);
901 oact
->sa_mask
= k
->sa_mask
;
904 /* FIXME: This is not threadsafe. */
905 __get_user(k
->_sa_handler
, &act
->_sa_handler
);
906 __get_user(k
->sa_flags
, &act
->sa_flags
);
907 #ifdef TARGET_ARCH_HAS_SA_RESTORER
908 __get_user(k
->sa_restorer
, &act
->sa_restorer
);
910 #ifdef TARGET_ARCH_HAS_KA_RESTORER
911 k
->ka_restorer
= ka_restorer
;
913 /* To be swapped in target_to_host_sigset. */
914 k
->sa_mask
= act
->sa_mask
;
916 /* we update the host linux signal state */
917 host_sig
= target_to_host_signal(sig
);
918 trace_signal_do_sigaction_host(host_sig
, TARGET_NSIG
);
919 if (host_sig
> SIGRTMAX
) {
920 /* we don't have enough host signals to map all target signals */
921 qemu_log_mask(LOG_UNIMP
, "Unsupported target signal #%d, ignored\n",
924 * we don't return an error here because some programs try to
925 * register an handler for all possible rt signals even if they
927 * An error here can abort them whereas there can be no problem
928 * to not have the signal available later.
929 * This is the case for golang,
930 * See https://github.com/golang/go/issues/33746
931 * So we silently ignore the error.
935 if (host_sig
!= SIGSEGV
&& host_sig
!= SIGBUS
) {
936 sigfillset(&act1
.sa_mask
);
937 act1
.sa_flags
= SA_SIGINFO
;
938 if (k
->sa_flags
& TARGET_SA_RESTART
)
939 act1
.sa_flags
|= SA_RESTART
;
940 /* NOTE: it is important to update the host kernel signal
941 ignore state to avoid getting unexpected interrupted
943 if (k
->_sa_handler
== TARGET_SIG_IGN
) {
944 act1
.sa_sigaction
= (void *)SIG_IGN
;
945 } else if (k
->_sa_handler
== TARGET_SIG_DFL
) {
946 if (fatal_signal (sig
))
947 act1
.sa_sigaction
= host_signal_handler
;
949 act1
.sa_sigaction
= (void *)SIG_DFL
;
951 act1
.sa_sigaction
= host_signal_handler
;
953 ret
= sigaction(host_sig
, &act1
, NULL
);
959 static void handle_pending_signal(CPUArchState
*cpu_env
, int sig
,
960 struct emulated_sigtable
*k
)
962 CPUState
*cpu
= env_cpu(cpu_env
);
965 target_sigset_t target_old_set
;
966 struct target_sigaction
*sa
;
967 TaskState
*ts
= cpu
->opaque
;
969 trace_user_handle_signal(cpu_env
, sig
);
973 sig
= gdb_handlesig(cpu
, sig
);
976 handler
= TARGET_SIG_IGN
;
978 sa
= &sigact_table
[sig
- 1];
979 handler
= sa
->_sa_handler
;
982 if (unlikely(qemu_loglevel_mask(LOG_STRACE
))) {
983 print_taken_signal(sig
, &k
->info
);
986 if (handler
== TARGET_SIG_DFL
) {
987 /* default handler : ignore some signal. The other are job control or fatal */
988 if (sig
== TARGET_SIGTSTP
|| sig
== TARGET_SIGTTIN
|| sig
== TARGET_SIGTTOU
) {
989 kill(getpid(),SIGSTOP
);
990 } else if (sig
!= TARGET_SIGCHLD
&&
991 sig
!= TARGET_SIGURG
&&
992 sig
!= TARGET_SIGWINCH
&&
993 sig
!= TARGET_SIGCONT
) {
994 dump_core_and_abort(sig
);
996 } else if (handler
== TARGET_SIG_IGN
) {
998 } else if (handler
== TARGET_SIG_ERR
) {
999 dump_core_and_abort(sig
);
1001 /* compute the blocked signals during the handler execution */
1002 sigset_t
*blocked_set
;
1004 target_to_host_sigset(&set
, &sa
->sa_mask
);
1005 /* SA_NODEFER indicates that the current signal should not be
1006 blocked during the handler */
1007 if (!(sa
->sa_flags
& TARGET_SA_NODEFER
))
1008 sigaddset(&set
, target_to_host_signal(sig
));
1010 /* save the previous blocked signal state to restore it at the
1011 end of the signal execution (see do_sigreturn) */
1012 host_to_target_sigset_internal(&target_old_set
, &ts
->signal_mask
);
1014 /* block signals in the handler */
1015 blocked_set
= ts
->in_sigsuspend
?
1016 &ts
->sigsuspend_mask
: &ts
->signal_mask
;
1017 sigorset(&ts
->signal_mask
, blocked_set
, &set
);
1018 ts
->in_sigsuspend
= 0;
1020 /* if the CPU is in VM86 mode, we restore the 32 bit values */
1021 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
1023 CPUX86State
*env
= cpu_env
;
1024 if (env
->eflags
& VM_MASK
)
1025 save_v86_state(env
);
1028 /* prepare the stack frame of the virtual CPU */
1029 #if defined(TARGET_ARCH_HAS_SETUP_FRAME)
1030 if (sa
->sa_flags
& TARGET_SA_SIGINFO
) {
1031 setup_rt_frame(sig
, sa
, &k
->info
, &target_old_set
, cpu_env
);
1033 setup_frame(sig
, sa
, &target_old_set
, cpu_env
);
1036 /* These targets do not have traditional signals. */
1037 setup_rt_frame(sig
, sa
, &k
->info
, &target_old_set
, cpu_env
);
1039 if (sa
->sa_flags
& TARGET_SA_RESETHAND
) {
1040 sa
->_sa_handler
= TARGET_SIG_DFL
;
1045 void process_pending_signals(CPUArchState
*cpu_env
)
1047 CPUState
*cpu
= env_cpu(cpu_env
);
1049 TaskState
*ts
= cpu
->opaque
;
1051 sigset_t
*blocked_set
;
1053 while (qatomic_read(&ts
->signal_pending
)) {
1054 /* FIXME: This is not threadsafe. */
1056 sigprocmask(SIG_SETMASK
, &set
, 0);
1059 sig
= ts
->sync_signal
.pending
;
1061 /* Synchronous signals are forced,
1062 * see force_sig_info() and callers in Linux
1063 * Note that not all of our queue_signal() calls in QEMU correspond
1064 * to force_sig_info() calls in Linux (some are send_sig_info()).
1065 * However it seems like a kernel bug to me to allow the process
1066 * to block a synchronous signal since it could then just end up
1067 * looping round and round indefinitely.
1069 if (sigismember(&ts
->signal_mask
, target_to_host_signal_table
[sig
])
1070 || sigact_table
[sig
- 1]._sa_handler
== TARGET_SIG_IGN
) {
1071 sigdelset(&ts
->signal_mask
, target_to_host_signal_table
[sig
]);
1072 sigact_table
[sig
- 1]._sa_handler
= TARGET_SIG_DFL
;
1075 handle_pending_signal(cpu_env
, sig
, &ts
->sync_signal
);
1078 for (sig
= 1; sig
<= TARGET_NSIG
; sig
++) {
1079 blocked_set
= ts
->in_sigsuspend
?
1080 &ts
->sigsuspend_mask
: &ts
->signal_mask
;
1082 if (ts
->sigtab
[sig
- 1].pending
&&
1083 (!sigismember(blocked_set
,
1084 target_to_host_signal_table
[sig
]))) {
1085 handle_pending_signal(cpu_env
, sig
, &ts
->sigtab
[sig
- 1]);
1086 /* Restart scan from the beginning, as handle_pending_signal
1087 * might have resulted in a new synchronous signal (eg SIGSEGV).
1093 /* if no signal is pending, unblock signals and recheck (the act
1094 * of unblocking might cause us to take another host signal which
1095 * will set signal_pending again).
1097 qatomic_set(&ts
->signal_pending
, 0);
1098 ts
->in_sigsuspend
= 0;
1099 set
= ts
->signal_mask
;
1100 sigdelset(&set
, SIGSEGV
);
1101 sigdelset(&set
, SIGBUS
);
1102 sigprocmask(SIG_SETMASK
, &set
, 0);
1104 ts
->in_sigsuspend
= 0;