2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/visitor.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/hostmem.h"
33 #include "sysemu/numa.h"
34 #include "sysemu/qtest.h"
35 #include "sysemu/reset.h"
36 #include "sysemu/runstate.h"
38 #include "hw/fw-path-provider.h"
41 #include "sysemu/device_tree.h"
42 #include "sysemu/cpus.h"
43 #include "sysemu/hw_accel.h"
45 #include "migration/misc.h"
46 #include "migration/qemu-file-types.h"
47 #include "migration/global_state.h"
48 #include "migration/register.h"
49 #include "migration/blocker.h"
50 #include "mmu-hash64.h"
51 #include "mmu-book3s-v3.h"
52 #include "cpu-models.h"
53 #include "hw/core/cpu.h"
55 #include "hw/boards.h"
56 #include "hw/ppc/ppc.h"
57 #include "hw/loader.h"
59 #include "hw/ppc/fdt.h"
60 #include "hw/ppc/spapr.h"
61 #include "hw/ppc/spapr_vio.h"
62 #include "hw/qdev-properties.h"
63 #include "hw/pci-host/spapr.h"
64 #include "hw/pci/msi.h"
66 #include "hw/pci/pci.h"
67 #include "hw/scsi/scsi.h"
68 #include "hw/virtio/virtio-scsi.h"
69 #include "hw/virtio/vhost-scsi-common.h"
71 #include "exec/address-spaces.h"
72 #include "exec/ram_addr.h"
74 #include "qemu/config-file.h"
75 #include "qemu/error-report.h"
78 #include "hw/intc/intc.h"
80 #include "hw/ppc/spapr_cpu_core.h"
81 #include "hw/mem/memory-device.h"
82 #include "hw/ppc/spapr_tpm_proxy.h"
83 #include "hw/ppc/spapr_nvdimm.h"
85 #include "monitor/monitor.h"
89 /* SLOF memory layout:
91 * SLOF raw image loaded at 0, copies its romfs right below the flat
92 * device-tree, then position SLOF itself 31M below that
94 * So we set FW_OVERHEAD to 40MB which should account for all of that
97 * We load our kernel at 4M, leaving space for SLOF initial image
99 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
100 #define FW_MAX_SIZE 0x400000
101 #define FW_FILE_NAME "slof.bin"
102 #define FW_OVERHEAD 0x2800000
103 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
105 #define MIN_RMA_SLOF (128 * MiB)
107 #define PHANDLE_INTC 0x00001111
109 /* These two functions implement the VCPU id numbering: one to compute them
110 * all and one to identify thread 0 of a VCORE. Any change to the first one
111 * is likely to have an impact on the second one, so let's keep them close.
113 static int spapr_vcpu_id(SpaprMachineState
*spapr
, int cpu_index
)
115 MachineState
*ms
= MACHINE(spapr
);
116 unsigned int smp_threads
= ms
->smp
.threads
;
120 (cpu_index
/ smp_threads
) * spapr
->vsmt
+ cpu_index
% smp_threads
;
122 static bool spapr_is_thread0_in_vcore(SpaprMachineState
*spapr
,
126 return spapr_get_vcpu_id(cpu
) % spapr
->vsmt
== 0;
129 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque
)
131 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
132 * and newer QEMUs don't even have them. In both cases, we don't want
133 * to send anything on the wire.
138 static const VMStateDescription pre_2_10_vmstate_dummy_icp
= {
139 .name
= "icp/server",
141 .minimum_version_id
= 1,
142 .needed
= pre_2_10_vmstate_dummy_icp_needed
,
143 .fields
= (VMStateField
[]) {
144 VMSTATE_UNUSED(4), /* uint32_t xirr */
145 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
146 VMSTATE_UNUSED(1), /* uint8_t mfrr */
147 VMSTATE_END_OF_LIST()
151 static void pre_2_10_vmstate_register_dummy_icp(int i
)
153 vmstate_register(NULL
, i
, &pre_2_10_vmstate_dummy_icp
,
154 (void *)(uintptr_t) i
);
157 static void pre_2_10_vmstate_unregister_dummy_icp(int i
)
159 vmstate_unregister(NULL
, &pre_2_10_vmstate_dummy_icp
,
160 (void *)(uintptr_t) i
);
163 int spapr_max_server_number(SpaprMachineState
*spapr
)
165 MachineState
*ms
= MACHINE(spapr
);
168 return DIV_ROUND_UP(ms
->smp
.max_cpus
* spapr
->vsmt
, ms
->smp
.threads
);
171 static int spapr_fixup_cpu_smt_dt(void *fdt
, int offset
, PowerPCCPU
*cpu
,
175 uint32_t servers_prop
[smt_threads
];
176 uint32_t gservers_prop
[smt_threads
* 2];
177 int index
= spapr_get_vcpu_id(cpu
);
179 if (cpu
->compat_pvr
) {
180 ret
= fdt_setprop_cell(fdt
, offset
, "cpu-version", cpu
->compat_pvr
);
186 /* Build interrupt servers and gservers properties */
187 for (i
= 0; i
< smt_threads
; i
++) {
188 servers_prop
[i
] = cpu_to_be32(index
+ i
);
189 /* Hack, direct the group queues back to cpu 0 */
190 gservers_prop
[i
*2] = cpu_to_be32(index
+ i
);
191 gservers_prop
[i
*2 + 1] = 0;
193 ret
= fdt_setprop(fdt
, offset
, "ibm,ppc-interrupt-server#s",
194 servers_prop
, sizeof(servers_prop
));
198 ret
= fdt_setprop(fdt
, offset
, "ibm,ppc-interrupt-gserver#s",
199 gservers_prop
, sizeof(gservers_prop
));
204 static int spapr_fixup_cpu_numa_dt(void *fdt
, int offset
, PowerPCCPU
*cpu
)
206 int index
= spapr_get_vcpu_id(cpu
);
207 uint32_t associativity
[] = {cpu_to_be32(0x5),
211 cpu_to_be32(cpu
->node_id
),
214 /* Advertise NUMA via ibm,associativity */
215 return fdt_setprop(fdt
, offset
, "ibm,associativity", associativity
,
216 sizeof(associativity
));
219 static void spapr_dt_pa_features(SpaprMachineState
*spapr
,
221 void *fdt
, int offset
)
223 uint8_t pa_features_206
[] = { 6, 0,
224 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
225 uint8_t pa_features_207
[] = { 24, 0,
226 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
227 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
228 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
229 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
230 uint8_t pa_features_300
[] = { 66, 0,
231 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
232 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
233 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
235 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
237 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
238 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
239 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
240 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
241 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
242 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
243 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
244 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
245 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
246 /* 42: PM, 44: PC RA, 46: SC vec'd */
247 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
248 /* 48: SIMD, 50: QP BFP, 52: String */
249 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
250 /* 54: DecFP, 56: DecI, 58: SHA */
251 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
252 /* 60: NM atomic, 62: RNG */
253 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
255 uint8_t *pa_features
= NULL
;
258 if (ppc_check_compat(cpu
, CPU_POWERPC_LOGICAL_2_06
, 0, cpu
->compat_pvr
)) {
259 pa_features
= pa_features_206
;
260 pa_size
= sizeof(pa_features_206
);
262 if (ppc_check_compat(cpu
, CPU_POWERPC_LOGICAL_2_07
, 0, cpu
->compat_pvr
)) {
263 pa_features
= pa_features_207
;
264 pa_size
= sizeof(pa_features_207
);
266 if (ppc_check_compat(cpu
, CPU_POWERPC_LOGICAL_3_00
, 0, cpu
->compat_pvr
)) {
267 pa_features
= pa_features_300
;
268 pa_size
= sizeof(pa_features_300
);
274 if (ppc_hash64_has(cpu
, PPC_HASH64_CI_LARGEPAGE
)) {
276 * Note: we keep CI large pages off by default because a 64K capable
277 * guest provisioned with large pages might otherwise try to map a qemu
278 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
279 * even if that qemu runs on a 4k host.
280 * We dd this bit back here if we are confident this is not an issue
282 pa_features
[3] |= 0x20;
284 if ((spapr_get_cap(spapr
, SPAPR_CAP_HTM
) != 0) && pa_size
> 24) {
285 pa_features
[24] |= 0x80; /* Transactional memory support */
287 if (spapr
->cas_pre_isa3_guest
&& pa_size
> 40) {
288 /* Workaround for broken kernels that attempt (guest) radix
289 * mode when they can't handle it, if they see the radix bit set
290 * in pa-features. So hide it from them. */
291 pa_features
[40 + 2] &= ~0x80; /* Radix MMU */
294 _FDT((fdt_setprop(fdt
, offset
, "ibm,pa-features", pa_features
, pa_size
)));
297 static hwaddr
spapr_node0_size(MachineState
*machine
)
299 if (machine
->numa_state
->num_nodes
) {
301 for (i
= 0; i
< machine
->numa_state
->num_nodes
; ++i
) {
302 if (machine
->numa_state
->nodes
[i
].node_mem
) {
303 return MIN(pow2floor(machine
->numa_state
->nodes
[i
].node_mem
),
308 return machine
->ram_size
;
311 static void add_str(GString
*s
, const gchar
*s1
)
313 g_string_append_len(s
, s1
, strlen(s1
) + 1);
316 static int spapr_dt_memory_node(void *fdt
, int nodeid
, hwaddr start
,
319 uint32_t associativity
[] = {
320 cpu_to_be32(0x4), /* length */
321 cpu_to_be32(0x0), cpu_to_be32(0x0),
322 cpu_to_be32(0x0), cpu_to_be32(nodeid
)
325 uint64_t mem_reg_property
[2];
328 mem_reg_property
[0] = cpu_to_be64(start
);
329 mem_reg_property
[1] = cpu_to_be64(size
);
331 sprintf(mem_name
, "memory@%" HWADDR_PRIx
, start
);
332 off
= fdt_add_subnode(fdt
, 0, mem_name
);
334 _FDT((fdt_setprop_string(fdt
, off
, "device_type", "memory")));
335 _FDT((fdt_setprop(fdt
, off
, "reg", mem_reg_property
,
336 sizeof(mem_reg_property
))));
337 _FDT((fdt_setprop(fdt
, off
, "ibm,associativity", associativity
,
338 sizeof(associativity
))));
342 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList
*list
, ram_addr_t addr
)
344 MemoryDeviceInfoList
*info
;
346 for (info
= list
; info
; info
= info
->next
) {
347 MemoryDeviceInfo
*value
= info
->value
;
349 if (value
&& value
->type
== MEMORY_DEVICE_INFO_KIND_DIMM
) {
350 PCDIMMDeviceInfo
*pcdimm_info
= value
->u
.dimm
.data
;
352 if (addr
>= pcdimm_info
->addr
&&
353 addr
< (pcdimm_info
->addr
+ pcdimm_info
->size
)) {
354 return pcdimm_info
->node
;
362 struct sPAPRDrconfCellV2
{
370 typedef struct DrconfCellQueue
{
371 struct sPAPRDrconfCellV2 cell
;
372 QSIMPLEQ_ENTRY(DrconfCellQueue
) entry
;
375 static DrconfCellQueue
*
376 spapr_get_drconf_cell(uint32_t seq_lmbs
, uint64_t base_addr
,
377 uint32_t drc_index
, uint32_t aa_index
,
380 DrconfCellQueue
*elem
;
382 elem
= g_malloc0(sizeof(*elem
));
383 elem
->cell
.seq_lmbs
= cpu_to_be32(seq_lmbs
);
384 elem
->cell
.base_addr
= cpu_to_be64(base_addr
);
385 elem
->cell
.drc_index
= cpu_to_be32(drc_index
);
386 elem
->cell
.aa_index
= cpu_to_be32(aa_index
);
387 elem
->cell
.flags
= cpu_to_be32(flags
);
392 static int spapr_dt_dynamic_memory_v2(SpaprMachineState
*spapr
, void *fdt
,
393 int offset
, MemoryDeviceInfoList
*dimms
)
395 MachineState
*machine
= MACHINE(spapr
);
396 uint8_t *int_buf
, *cur_index
;
398 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
399 uint64_t addr
, cur_addr
, size
;
400 uint32_t nr_boot_lmbs
= (machine
->device_memory
->base
/ lmb_size
);
401 uint64_t mem_end
= machine
->device_memory
->base
+
402 memory_region_size(&machine
->device_memory
->mr
);
403 uint32_t node
, buf_len
, nr_entries
= 0;
405 DrconfCellQueue
*elem
, *next
;
406 MemoryDeviceInfoList
*info
;
407 QSIMPLEQ_HEAD(, DrconfCellQueue
) drconf_queue
408 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue
);
410 /* Entry to cover RAM and the gap area */
411 elem
= spapr_get_drconf_cell(nr_boot_lmbs
, 0, 0, -1,
412 SPAPR_LMB_FLAGS_RESERVED
|
413 SPAPR_LMB_FLAGS_DRC_INVALID
);
414 QSIMPLEQ_INSERT_TAIL(&drconf_queue
, elem
, entry
);
417 cur_addr
= machine
->device_memory
->base
;
418 for (info
= dimms
; info
; info
= info
->next
) {
419 PCDIMMDeviceInfo
*di
= info
->value
->u
.dimm
.data
;
426 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
427 * area is marked hotpluggable in the next iteration for the bigger
428 * chunk including the NVDIMM occupied area.
430 if (info
->value
->type
== MEMORY_DEVICE_INFO_KIND_NVDIMM
)
433 /* Entry for hot-pluggable area */
434 if (cur_addr
< addr
) {
435 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, cur_addr
/ lmb_size
);
437 elem
= spapr_get_drconf_cell((addr
- cur_addr
) / lmb_size
,
438 cur_addr
, spapr_drc_index(drc
), -1, 0);
439 QSIMPLEQ_INSERT_TAIL(&drconf_queue
, elem
, entry
);
444 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, addr
/ lmb_size
);
446 elem
= spapr_get_drconf_cell(size
/ lmb_size
, addr
,
447 spapr_drc_index(drc
), node
,
448 (SPAPR_LMB_FLAGS_ASSIGNED
|
449 SPAPR_LMB_FLAGS_HOTREMOVABLE
));
450 QSIMPLEQ_INSERT_TAIL(&drconf_queue
, elem
, entry
);
452 cur_addr
= addr
+ size
;
455 /* Entry for remaining hotpluggable area */
456 if (cur_addr
< mem_end
) {
457 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, cur_addr
/ lmb_size
);
459 elem
= spapr_get_drconf_cell((mem_end
- cur_addr
) / lmb_size
,
460 cur_addr
, spapr_drc_index(drc
), -1, 0);
461 QSIMPLEQ_INSERT_TAIL(&drconf_queue
, elem
, entry
);
465 buf_len
= nr_entries
* sizeof(struct sPAPRDrconfCellV2
) + sizeof(uint32_t);
466 int_buf
= cur_index
= g_malloc0(buf_len
);
467 *(uint32_t *)int_buf
= cpu_to_be32(nr_entries
);
468 cur_index
+= sizeof(nr_entries
);
470 QSIMPLEQ_FOREACH_SAFE(elem
, &drconf_queue
, entry
, next
) {
471 memcpy(cur_index
, &elem
->cell
, sizeof(elem
->cell
));
472 cur_index
+= sizeof(elem
->cell
);
473 QSIMPLEQ_REMOVE(&drconf_queue
, elem
, DrconfCellQueue
, entry
);
477 ret
= fdt_setprop(fdt
, offset
, "ibm,dynamic-memory-v2", int_buf
, buf_len
);
485 static int spapr_dt_dynamic_memory(SpaprMachineState
*spapr
, void *fdt
,
486 int offset
, MemoryDeviceInfoList
*dimms
)
488 MachineState
*machine
= MACHINE(spapr
);
490 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
491 uint32_t device_lmb_start
= machine
->device_memory
->base
/ lmb_size
;
492 uint32_t nr_lmbs
= (machine
->device_memory
->base
+
493 memory_region_size(&machine
->device_memory
->mr
)) /
495 uint32_t *int_buf
, *cur_index
, buf_len
;
498 * Allocate enough buffer size to fit in ibm,dynamic-memory
500 buf_len
= (nr_lmbs
* SPAPR_DR_LMB_LIST_ENTRY_SIZE
+ 1) * sizeof(uint32_t);
501 cur_index
= int_buf
= g_malloc0(buf_len
);
502 int_buf
[0] = cpu_to_be32(nr_lmbs
);
504 for (i
= 0; i
< nr_lmbs
; i
++) {
505 uint64_t addr
= i
* lmb_size
;
506 uint32_t *dynamic_memory
= cur_index
;
508 if (i
>= device_lmb_start
) {
511 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, i
);
514 dynamic_memory
[0] = cpu_to_be32(addr
>> 32);
515 dynamic_memory
[1] = cpu_to_be32(addr
& 0xffffffff);
516 dynamic_memory
[2] = cpu_to_be32(spapr_drc_index(drc
));
517 dynamic_memory
[3] = cpu_to_be32(0); /* reserved */
518 dynamic_memory
[4] = cpu_to_be32(spapr_pc_dimm_node(dimms
, addr
));
519 if (memory_region_present(get_system_memory(), addr
)) {
520 dynamic_memory
[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED
);
522 dynamic_memory
[5] = cpu_to_be32(0);
526 * LMB information for RMA, boot time RAM and gap b/n RAM and
527 * device memory region -- all these are marked as reserved
528 * and as having no valid DRC.
530 dynamic_memory
[0] = cpu_to_be32(addr
>> 32);
531 dynamic_memory
[1] = cpu_to_be32(addr
& 0xffffffff);
532 dynamic_memory
[2] = cpu_to_be32(0);
533 dynamic_memory
[3] = cpu_to_be32(0); /* reserved */
534 dynamic_memory
[4] = cpu_to_be32(-1);
535 dynamic_memory
[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED
|
536 SPAPR_LMB_FLAGS_DRC_INVALID
);
539 cur_index
+= SPAPR_DR_LMB_LIST_ENTRY_SIZE
;
541 ret
= fdt_setprop(fdt
, offset
, "ibm,dynamic-memory", int_buf
, buf_len
);
550 * Adds ibm,dynamic-reconfiguration-memory node.
551 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
552 * of this device tree node.
554 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState
*spapr
,
557 MachineState
*machine
= MACHINE(spapr
);
558 int nb_numa_nodes
= machine
->numa_state
->num_nodes
;
560 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
561 uint32_t prop_lmb_size
[] = {0, cpu_to_be32(lmb_size
)};
562 uint32_t *int_buf
, *cur_index
, buf_len
;
563 int nr_nodes
= nb_numa_nodes
? nb_numa_nodes
: 1;
564 MemoryDeviceInfoList
*dimms
= NULL
;
567 * Don't create the node if there is no device memory
569 if (machine
->ram_size
== machine
->maxram_size
) {
573 offset
= fdt_add_subnode(fdt
, 0, "ibm,dynamic-reconfiguration-memory");
575 ret
= fdt_setprop(fdt
, offset
, "ibm,lmb-size", prop_lmb_size
,
576 sizeof(prop_lmb_size
));
581 ret
= fdt_setprop_cell(fdt
, offset
, "ibm,memory-flags-mask", 0xff);
586 ret
= fdt_setprop_cell(fdt
, offset
, "ibm,memory-preservation-time", 0x0);
591 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
592 dimms
= qmp_memory_device_list();
593 if (spapr_ovec_test(spapr
->ov5_cas
, OV5_DRMEM_V2
)) {
594 ret
= spapr_dt_dynamic_memory_v2(spapr
, fdt
, offset
, dimms
);
596 ret
= spapr_dt_dynamic_memory(spapr
, fdt
, offset
, dimms
);
598 qapi_free_MemoryDeviceInfoList(dimms
);
604 /* ibm,associativity-lookup-arrays */
605 buf_len
= (nr_nodes
* 4 + 2) * sizeof(uint32_t);
606 cur_index
= int_buf
= g_malloc0(buf_len
);
607 int_buf
[0] = cpu_to_be32(nr_nodes
);
608 int_buf
[1] = cpu_to_be32(4); /* Number of entries per associativity list */
610 for (i
= 0; i
< nr_nodes
; i
++) {
611 uint32_t associativity
[] = {
617 memcpy(cur_index
, associativity
, sizeof(associativity
));
620 ret
= fdt_setprop(fdt
, offset
, "ibm,associativity-lookup-arrays", int_buf
,
621 (cur_index
- int_buf
) * sizeof(uint32_t));
627 static int spapr_dt_memory(SpaprMachineState
*spapr
, void *fdt
)
629 MachineState
*machine
= MACHINE(spapr
);
630 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
631 hwaddr mem_start
, node_size
;
632 int i
, nb_nodes
= machine
->numa_state
->num_nodes
;
633 NodeInfo
*nodes
= machine
->numa_state
->nodes
;
635 for (i
= 0, mem_start
= 0; i
< nb_nodes
; ++i
) {
636 if (!nodes
[i
].node_mem
) {
639 if (mem_start
>= machine
->ram_size
) {
642 node_size
= nodes
[i
].node_mem
;
643 if (node_size
> machine
->ram_size
- mem_start
) {
644 node_size
= machine
->ram_size
- mem_start
;
648 /* spapr_machine_init() checks for rma_size <= node0_size
650 spapr_dt_memory_node(fdt
, i
, 0, spapr
->rma_size
);
651 mem_start
+= spapr
->rma_size
;
652 node_size
-= spapr
->rma_size
;
654 for ( ; node_size
; ) {
655 hwaddr sizetmp
= pow2floor(node_size
);
657 /* mem_start != 0 here */
658 if (ctzl(mem_start
) < ctzl(sizetmp
)) {
659 sizetmp
= 1ULL << ctzl(mem_start
);
662 spapr_dt_memory_node(fdt
, i
, mem_start
, sizetmp
);
663 node_size
-= sizetmp
;
664 mem_start
+= sizetmp
;
668 /* Generate ibm,dynamic-reconfiguration-memory node if required */
669 if (spapr_ovec_test(spapr
->ov5_cas
, OV5_DRCONF_MEMORY
)) {
672 g_assert(smc
->dr_lmb_enabled
);
673 ret
= spapr_dt_dynamic_reconfiguration_memory(spapr
, fdt
);
682 static void spapr_dt_cpu(CPUState
*cs
, void *fdt
, int offset
,
683 SpaprMachineState
*spapr
)
685 MachineState
*ms
= MACHINE(spapr
);
686 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
687 CPUPPCState
*env
= &cpu
->env
;
688 PowerPCCPUClass
*pcc
= POWERPC_CPU_GET_CLASS(cs
);
689 int index
= spapr_get_vcpu_id(cpu
);
690 uint32_t segs
[] = {cpu_to_be32(28), cpu_to_be32(40),
691 0xffffffff, 0xffffffff};
692 uint32_t tbfreq
= kvm_enabled() ? kvmppc_get_tbfreq()
693 : SPAPR_TIMEBASE_FREQ
;
694 uint32_t cpufreq
= kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
695 uint32_t page_sizes_prop
[64];
696 size_t page_sizes_prop_size
;
697 unsigned int smp_threads
= ms
->smp
.threads
;
698 uint32_t vcpus_per_socket
= smp_threads
* ms
->smp
.cores
;
699 uint32_t pft_size_prop
[] = {0, cpu_to_be32(spapr
->htab_shift
)};
700 int compat_smt
= MIN(smp_threads
, ppc_compat_max_vthreads(cpu
));
703 uint32_t radix_AP_encodings
[PPC_PAGE_SIZES_MAX_SZ
];
706 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_CPU
, index
);
708 drc_index
= spapr_drc_index(drc
);
709 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,my-drc-index", drc_index
)));
712 _FDT((fdt_setprop_cell(fdt
, offset
, "reg", index
)));
713 _FDT((fdt_setprop_string(fdt
, offset
, "device_type", "cpu")));
715 _FDT((fdt_setprop_cell(fdt
, offset
, "cpu-version", env
->spr
[SPR_PVR
])));
716 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-block-size",
717 env
->dcache_line_size
)));
718 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-line-size",
719 env
->dcache_line_size
)));
720 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-block-size",
721 env
->icache_line_size
)));
722 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-line-size",
723 env
->icache_line_size
)));
725 if (pcc
->l1_dcache_size
) {
726 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-size",
727 pcc
->l1_dcache_size
)));
729 warn_report("Unknown L1 dcache size for cpu");
731 if (pcc
->l1_icache_size
) {
732 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-size",
733 pcc
->l1_icache_size
)));
735 warn_report("Unknown L1 icache size for cpu");
738 _FDT((fdt_setprop_cell(fdt
, offset
, "timebase-frequency", tbfreq
)));
739 _FDT((fdt_setprop_cell(fdt
, offset
, "clock-frequency", cpufreq
)));
740 _FDT((fdt_setprop_cell(fdt
, offset
, "slb-size", cpu
->hash64_opts
->slb_size
)));
741 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,slb-size", cpu
->hash64_opts
->slb_size
)));
742 _FDT((fdt_setprop_string(fdt
, offset
, "status", "okay")));
743 _FDT((fdt_setprop(fdt
, offset
, "64-bit", NULL
, 0)));
745 if (env
->spr_cb
[SPR_PURR
].oea_read
) {
746 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,purr", 1)));
748 if (env
->spr_cb
[SPR_SPURR
].oea_read
) {
749 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,spurr", 1)));
752 if (ppc_hash64_has(cpu
, PPC_HASH64_1TSEG
)) {
753 _FDT((fdt_setprop(fdt
, offset
, "ibm,processor-segment-sizes",
754 segs
, sizeof(segs
))));
757 /* Advertise VSX (vector extensions) if available
758 * 1 == VMX / Altivec available
761 * Only CPUs for which we create core types in spapr_cpu_core.c
762 * are possible, and all of those have VMX */
763 if (spapr_get_cap(spapr
, SPAPR_CAP_VSX
) != 0) {
764 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,vmx", 2)));
766 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,vmx", 1)));
769 /* Advertise DFP (Decimal Floating Point) if available
770 * 0 / no property == no DFP
771 * 1 == DFP available */
772 if (spapr_get_cap(spapr
, SPAPR_CAP_DFP
) != 0) {
773 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,dfp", 1)));
776 page_sizes_prop_size
= ppc_create_page_sizes_prop(cpu
, page_sizes_prop
,
777 sizeof(page_sizes_prop
));
778 if (page_sizes_prop_size
) {
779 _FDT((fdt_setprop(fdt
, offset
, "ibm,segment-page-sizes",
780 page_sizes_prop
, page_sizes_prop_size
)));
783 spapr_dt_pa_features(spapr
, cpu
, fdt
, offset
);
785 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,chip-id",
786 cs
->cpu_index
/ vcpus_per_socket
)));
788 _FDT((fdt_setprop(fdt
, offset
, "ibm,pft-size",
789 pft_size_prop
, sizeof(pft_size_prop
))));
791 if (ms
->numa_state
->num_nodes
> 1) {
792 _FDT(spapr_fixup_cpu_numa_dt(fdt
, offset
, cpu
));
795 _FDT(spapr_fixup_cpu_smt_dt(fdt
, offset
, cpu
, compat_smt
));
797 if (pcc
->radix_page_info
) {
798 for (i
= 0; i
< pcc
->radix_page_info
->count
; i
++) {
799 radix_AP_encodings
[i
] =
800 cpu_to_be32(pcc
->radix_page_info
->entries
[i
]);
802 _FDT((fdt_setprop(fdt
, offset
, "ibm,processor-radix-AP-encodings",
804 pcc
->radix_page_info
->count
*
805 sizeof(radix_AP_encodings
[0]))));
809 * We set this property to let the guest know that it can use the large
810 * decrementer and its width in bits.
812 if (spapr_get_cap(spapr
, SPAPR_CAP_LARGE_DECREMENTER
) != SPAPR_CAP_OFF
)
813 _FDT((fdt_setprop_u32(fdt
, offset
, "ibm,dec-bits",
814 pcc
->lrg_decr_bits
)));
817 static void spapr_dt_cpus(void *fdt
, SpaprMachineState
*spapr
)
826 cpus_offset
= fdt_add_subnode(fdt
, 0, "cpus");
828 _FDT((fdt_setprop_cell(fdt
, cpus_offset
, "#address-cells", 0x1)));
829 _FDT((fdt_setprop_cell(fdt
, cpus_offset
, "#size-cells", 0x0)));
832 * We walk the CPUs in reverse order to ensure that CPU DT nodes
833 * created by fdt_add_subnode() end up in the right order in FDT
834 * for the guest kernel the enumerate the CPUs correctly.
836 * The CPU list cannot be traversed in reverse order, so we need
842 rev
= g_renew(CPUState
*, rev
, n_cpus
+ 1);
846 for (i
= n_cpus
- 1; i
>= 0; i
--) {
847 CPUState
*cs
= rev
[i
];
848 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
849 int index
= spapr_get_vcpu_id(cpu
);
850 DeviceClass
*dc
= DEVICE_GET_CLASS(cs
);
853 if (!spapr_is_thread0_in_vcore(spapr
, cpu
)) {
857 nodename
= g_strdup_printf("%s@%x", dc
->fw_name
, index
);
858 offset
= fdt_add_subnode(fdt
, cpus_offset
, nodename
);
861 spapr_dt_cpu(cs
, fdt
, offset
, spapr
);
867 static int spapr_dt_rng(void *fdt
)
872 node
= qemu_fdt_add_subnode(fdt
, "/ibm,platform-facilities");
876 ret
= fdt_setprop_string(fdt
, node
, "device_type",
877 "ibm,platform-facilities");
878 ret
|= fdt_setprop_cell(fdt
, node
, "#address-cells", 0x1);
879 ret
|= fdt_setprop_cell(fdt
, node
, "#size-cells", 0x0);
881 node
= fdt_add_subnode(fdt
, node
, "ibm,random-v1");
885 ret
|= fdt_setprop_string(fdt
, node
, "compatible", "ibm,random");
890 static void spapr_dt_rtas(SpaprMachineState
*spapr
, void *fdt
)
892 MachineState
*ms
= MACHINE(spapr
);
894 GString
*hypertas
= g_string_sized_new(256);
895 GString
*qemu_hypertas
= g_string_sized_new(256);
896 uint32_t refpoints
[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
897 uint64_t max_device_addr
= MACHINE(spapr
)->device_memory
->base
+
898 memory_region_size(&MACHINE(spapr
)->device_memory
->mr
);
899 uint32_t lrdr_capacity
[] = {
900 cpu_to_be32(max_device_addr
>> 32),
901 cpu_to_be32(max_device_addr
& 0xffffffff),
902 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE
),
903 cpu_to_be32(ms
->smp
.max_cpus
/ ms
->smp
.threads
),
905 uint32_t maxdomain
= cpu_to_be32(spapr
->gpu_numa_id
> 1 ? 1 : 0);
906 uint32_t maxdomains
[] = {
911 cpu_to_be32(spapr
->gpu_numa_id
),
914 _FDT(rtas
= fdt_add_subnode(fdt
, 0, "rtas"));
917 add_str(hypertas
, "hcall-pft");
918 add_str(hypertas
, "hcall-term");
919 add_str(hypertas
, "hcall-dabr");
920 add_str(hypertas
, "hcall-interrupt");
921 add_str(hypertas
, "hcall-tce");
922 add_str(hypertas
, "hcall-vio");
923 add_str(hypertas
, "hcall-splpar");
924 add_str(hypertas
, "hcall-join");
925 add_str(hypertas
, "hcall-bulk");
926 add_str(hypertas
, "hcall-set-mode");
927 add_str(hypertas
, "hcall-sprg0");
928 add_str(hypertas
, "hcall-copy");
929 add_str(hypertas
, "hcall-debug");
930 add_str(hypertas
, "hcall-vphn");
931 add_str(qemu_hypertas
, "hcall-memop1");
933 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
934 add_str(hypertas
, "hcall-multi-tce");
937 if (spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DISABLED
) {
938 add_str(hypertas
, "hcall-hpt-resize");
941 _FDT(fdt_setprop(fdt
, rtas
, "ibm,hypertas-functions",
942 hypertas
->str
, hypertas
->len
));
943 g_string_free(hypertas
, TRUE
);
944 _FDT(fdt_setprop(fdt
, rtas
, "qemu,hypertas-functions",
945 qemu_hypertas
->str
, qemu_hypertas
->len
));
946 g_string_free(qemu_hypertas
, TRUE
);
948 _FDT(fdt_setprop(fdt
, rtas
, "ibm,associativity-reference-points",
949 refpoints
, sizeof(refpoints
)));
951 _FDT(fdt_setprop(fdt
, rtas
, "ibm,max-associativity-domains",
952 maxdomains
, sizeof(maxdomains
)));
955 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
956 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
958 * The system reset requirements are driven by existing Linux and PowerVM
959 * implementation which (contrary to PAPR) saves r3 in the error log
960 * structure like machine check, so Linux expects to find the saved r3
961 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
962 * does not look at the error value).
964 * System reset interrupts are not subject to interlock like machine
965 * check, so this memory area could be corrupted if the sreset is
966 * interrupted by a machine check (or vice versa) if it was shared. To
967 * prevent this, system reset uses per-CPU areas for the sreset save
968 * area. A system reset that interrupts a system reset handler could
969 * still overwrite this area, but Linux doesn't try to recover in that
972 * The extra 8 bytes is required because Linux's FWNMI error log check
975 _FDT(fdt_setprop_cell(fdt
, rtas
, "rtas-size", RTAS_ERROR_LOG_MAX
+
976 ms
->smp
.max_cpus
* sizeof(uint64_t)*2 + sizeof(uint64_t)));
977 _FDT(fdt_setprop_cell(fdt
, rtas
, "rtas-error-log-max",
978 RTAS_ERROR_LOG_MAX
));
979 _FDT(fdt_setprop_cell(fdt
, rtas
, "rtas-event-scan-rate",
980 RTAS_EVENT_SCAN_RATE
));
982 g_assert(msi_nonbroken
);
983 _FDT(fdt_setprop(fdt
, rtas
, "ibm,change-msix-capable", NULL
, 0));
986 * According to PAPR, rtas ibm,os-term does not guarantee a return
987 * back to the guest cpu.
989 * While an additional ibm,extended-os-term property indicates
990 * that rtas call return will always occur. Set this property.
992 _FDT(fdt_setprop(fdt
, rtas
, "ibm,extended-os-term", NULL
, 0));
994 _FDT(fdt_setprop(fdt
, rtas
, "ibm,lrdr-capacity",
995 lrdr_capacity
, sizeof(lrdr_capacity
)));
997 spapr_dt_rtas_tokens(fdt
, rtas
);
1001 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1002 * and the XIVE features that the guest may request and thus the valid
1003 * values for bytes 23..26 of option vector 5:
1005 static void spapr_dt_ov5_platform_support(SpaprMachineState
*spapr
, void *fdt
,
1008 PowerPCCPU
*first_ppc_cpu
= POWERPC_CPU(first_cpu
);
1011 23, 0x00, /* XICS / XIVE mode */
1012 24, 0x00, /* Hash/Radix, filled in below. */
1013 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1014 26, 0x40, /* Radix options: GTSE == yes. */
1017 if (spapr
->irq
->xics
&& spapr
->irq
->xive
) {
1018 val
[1] = SPAPR_OV5_XIVE_BOTH
;
1019 } else if (spapr
->irq
->xive
) {
1020 val
[1] = SPAPR_OV5_XIVE_EXPLOIT
;
1022 assert(spapr
->irq
->xics
);
1023 val
[1] = SPAPR_OV5_XIVE_LEGACY
;
1026 if (!ppc_check_compat(first_ppc_cpu
, CPU_POWERPC_LOGICAL_3_00
, 0,
1027 first_ppc_cpu
->compat_pvr
)) {
1029 * If we're in a pre POWER9 compat mode then the guest should
1030 * do hash and use the legacy interrupt mode
1032 val
[1] = SPAPR_OV5_XIVE_LEGACY
; /* XICS */
1033 val
[3] = 0x00; /* Hash */
1034 } else if (kvm_enabled()) {
1035 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1036 val
[3] = 0x80; /* OV5_MMU_BOTH */
1037 } else if (kvmppc_has_cap_mmu_radix()) {
1038 val
[3] = 0x40; /* OV5_MMU_RADIX_300 */
1040 val
[3] = 0x00; /* Hash */
1043 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1046 _FDT(fdt_setprop(fdt
, chosen
, "ibm,arch-vec-5-platform-support",
1050 static void spapr_dt_chosen(SpaprMachineState
*spapr
, void *fdt
, bool reset
)
1052 MachineState
*machine
= MACHINE(spapr
);
1053 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
1056 _FDT(chosen
= fdt_add_subnode(fdt
, 0, "chosen"));
1059 const char *boot_device
= machine
->boot_order
;
1060 char *stdout_path
= spapr_vio_stdout_path(spapr
->vio_bus
);
1062 char *bootlist
= get_boot_devices_list(&cb
);
1064 if (machine
->kernel_cmdline
&& machine
->kernel_cmdline
[0]) {
1065 _FDT(fdt_setprop_string(fdt
, chosen
, "bootargs",
1066 machine
->kernel_cmdline
));
1069 if (spapr
->initrd_size
) {
1070 _FDT(fdt_setprop_cell(fdt
, chosen
, "linux,initrd-start",
1071 spapr
->initrd_base
));
1072 _FDT(fdt_setprop_cell(fdt
, chosen
, "linux,initrd-end",
1073 spapr
->initrd_base
+ spapr
->initrd_size
));
1076 if (spapr
->kernel_size
) {
1077 uint64_t kprop
[2] = { cpu_to_be64(spapr
->kernel_addr
),
1078 cpu_to_be64(spapr
->kernel_size
) };
1080 _FDT(fdt_setprop(fdt
, chosen
, "qemu,boot-kernel",
1081 &kprop
, sizeof(kprop
)));
1082 if (spapr
->kernel_le
) {
1083 _FDT(fdt_setprop(fdt
, chosen
, "qemu,boot-kernel-le", NULL
, 0));
1087 _FDT((fdt_setprop_cell(fdt
, chosen
, "qemu,boot-menu", boot_menu
)));
1089 _FDT(fdt_setprop_cell(fdt
, chosen
, "qemu,graphic-width", graphic_width
));
1090 _FDT(fdt_setprop_cell(fdt
, chosen
, "qemu,graphic-height", graphic_height
));
1091 _FDT(fdt_setprop_cell(fdt
, chosen
, "qemu,graphic-depth", graphic_depth
));
1093 if (cb
&& bootlist
) {
1096 for (i
= 0; i
< cb
; i
++) {
1097 if (bootlist
[i
] == '\n') {
1101 _FDT(fdt_setprop_string(fdt
, chosen
, "qemu,boot-list", bootlist
));
1104 if (boot_device
&& strlen(boot_device
)) {
1105 _FDT(fdt_setprop_string(fdt
, chosen
, "qemu,boot-device", boot_device
));
1108 if (!spapr
->has_graphics
&& stdout_path
) {
1110 * "linux,stdout-path" and "stdout" properties are
1111 * deprecated by linux kernel. New platforms should only
1112 * use the "stdout-path" property. Set the new property
1113 * and continue using older property to remain compatible
1114 * with the existing firmware.
1116 _FDT(fdt_setprop_string(fdt
, chosen
, "linux,stdout-path", stdout_path
));
1117 _FDT(fdt_setprop_string(fdt
, chosen
, "stdout-path", stdout_path
));
1121 * We can deal with BAR reallocation just fine, advertise it
1124 if (smc
->linux_pci_probe
) {
1125 _FDT(fdt_setprop_cell(fdt
, chosen
, "linux,pci-probe-only", 0));
1128 spapr_dt_ov5_platform_support(spapr
, fdt
, chosen
);
1130 g_free(stdout_path
);
1134 _FDT(spapr_dt_ovec(fdt
, chosen
, spapr
->ov5_cas
, "ibm,architecture-vec-5"));
1137 static void spapr_dt_hypervisor(SpaprMachineState
*spapr
, void *fdt
)
1139 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1140 * KVM to work under pHyp with some guest co-operation */
1142 uint8_t hypercall
[16];
1144 _FDT(hypervisor
= fdt_add_subnode(fdt
, 0, "hypervisor"));
1145 /* indicate KVM hypercall interface */
1146 _FDT(fdt_setprop_string(fdt
, hypervisor
, "compatible", "linux,kvm"));
1147 if (kvmppc_has_cap_fixup_hcalls()) {
1149 * Older KVM versions with older guest kernels were broken
1150 * with the magic page, don't allow the guest to map it.
1152 if (!kvmppc_get_hypercall(first_cpu
->env_ptr
, hypercall
,
1153 sizeof(hypercall
))) {
1154 _FDT(fdt_setprop(fdt
, hypervisor
, "hcall-instructions",
1155 hypercall
, sizeof(hypercall
)));
1160 void *spapr_build_fdt(SpaprMachineState
*spapr
, bool reset
, size_t space
)
1162 MachineState
*machine
= MACHINE(spapr
);
1163 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
1164 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
1170 fdt
= g_malloc0(space
);
1171 _FDT((fdt_create_empty_tree(fdt
, space
)));
1174 _FDT(fdt_setprop_string(fdt
, 0, "device_type", "chrp"));
1175 _FDT(fdt_setprop_string(fdt
, 0, "model", "IBM pSeries (emulated by qemu)"));
1176 _FDT(fdt_setprop_string(fdt
, 0, "compatible", "qemu,pseries"));
1178 /* Guest UUID & Name*/
1179 buf
= qemu_uuid_unparse_strdup(&qemu_uuid
);
1180 _FDT(fdt_setprop_string(fdt
, 0, "vm,uuid", buf
));
1181 if (qemu_uuid_set
) {
1182 _FDT(fdt_setprop_string(fdt
, 0, "system-id", buf
));
1186 if (qemu_get_vm_name()) {
1187 _FDT(fdt_setprop_string(fdt
, 0, "ibm,partition-name",
1188 qemu_get_vm_name()));
1191 /* Host Model & Serial Number */
1192 if (spapr
->host_model
) {
1193 _FDT(fdt_setprop_string(fdt
, 0, "host-model", spapr
->host_model
));
1194 } else if (smc
->broken_host_serial_model
&& kvmppc_get_host_model(&buf
)) {
1195 _FDT(fdt_setprop_string(fdt
, 0, "host-model", buf
));
1199 if (spapr
->host_serial
) {
1200 _FDT(fdt_setprop_string(fdt
, 0, "host-serial", spapr
->host_serial
));
1201 } else if (smc
->broken_host_serial_model
&& kvmppc_get_host_serial(&buf
)) {
1202 _FDT(fdt_setprop_string(fdt
, 0, "host-serial", buf
));
1206 _FDT(fdt_setprop_cell(fdt
, 0, "#address-cells", 2));
1207 _FDT(fdt_setprop_cell(fdt
, 0, "#size-cells", 2));
1209 /* /interrupt controller */
1210 spapr_irq_dt(spapr
, spapr_max_server_number(spapr
), fdt
, PHANDLE_INTC
);
1212 ret
= spapr_dt_memory(spapr
, fdt
);
1214 error_report("couldn't setup memory nodes in fdt");
1219 spapr_dt_vdevice(spapr
->vio_bus
, fdt
);
1221 if (object_resolve_path_type("", TYPE_SPAPR_RNG
, NULL
)) {
1222 ret
= spapr_dt_rng(fdt
);
1224 error_report("could not set up rng device in the fdt");
1229 QLIST_FOREACH(phb
, &spapr
->phbs
, list
) {
1230 ret
= spapr_dt_phb(spapr
, phb
, PHANDLE_INTC
, fdt
, NULL
);
1232 error_report("couldn't setup PCI devices in fdt");
1237 spapr_dt_cpus(fdt
, spapr
);
1239 if (smc
->dr_lmb_enabled
) {
1240 _FDT(spapr_dt_drc(fdt
, 0, NULL
, SPAPR_DR_CONNECTOR_TYPE_LMB
));
1243 if (mc
->has_hotpluggable_cpus
) {
1244 int offset
= fdt_path_offset(fdt
, "/cpus");
1245 ret
= spapr_dt_drc(fdt
, offset
, NULL
, SPAPR_DR_CONNECTOR_TYPE_CPU
);
1247 error_report("Couldn't set up CPU DR device tree properties");
1252 /* /event-sources */
1253 spapr_dt_events(spapr
, fdt
);
1256 spapr_dt_rtas(spapr
, fdt
);
1259 spapr_dt_chosen(spapr
, fdt
, reset
);
1262 if (kvm_enabled()) {
1263 spapr_dt_hypervisor(spapr
, fdt
);
1266 /* Build memory reserve map */
1268 if (spapr
->kernel_size
) {
1269 _FDT((fdt_add_mem_rsv(fdt
, spapr
->kernel_addr
,
1270 spapr
->kernel_size
)));
1272 if (spapr
->initrd_size
) {
1273 _FDT((fdt_add_mem_rsv(fdt
, spapr
->initrd_base
,
1274 spapr
->initrd_size
)));
1278 if (smc
->dr_phb_enabled
) {
1279 ret
= spapr_dt_drc(fdt
, 0, NULL
, SPAPR_DR_CONNECTOR_TYPE_PHB
);
1281 error_report("Couldn't set up PHB DR device tree properties");
1286 /* NVDIMM devices */
1287 if (mc
->nvdimm_supported
) {
1288 spapr_dt_persistent_memory(fdt
);
1294 static uint64_t translate_kernel_address(void *opaque
, uint64_t addr
)
1296 SpaprMachineState
*spapr
= opaque
;
1298 return (addr
& 0x0fffffff) + spapr
->kernel_addr
;
1301 static void emulate_spapr_hypercall(PPCVirtualHypervisor
*vhyp
,
1304 CPUPPCState
*env
= &cpu
->env
;
1306 /* The TCG path should also be holding the BQL at this point */
1307 g_assert(qemu_mutex_iothread_locked());
1310 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1311 env
->gpr
[3] = H_PRIVILEGE
;
1313 env
->gpr
[3] = spapr_hypercall(cpu
, env
->gpr
[3], &env
->gpr
[4]);
1317 struct LPCRSyncState
{
1322 static void do_lpcr_sync(CPUState
*cs
, run_on_cpu_data arg
)
1324 struct LPCRSyncState
*s
= arg
.host_ptr
;
1325 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
1326 CPUPPCState
*env
= &cpu
->env
;
1329 cpu_synchronize_state(cs
);
1330 lpcr
= env
->spr
[SPR_LPCR
];
1333 ppc_store_lpcr(cpu
, lpcr
);
1336 void spapr_set_all_lpcrs(target_ulong value
, target_ulong mask
)
1339 struct LPCRSyncState s
= {
1344 run_on_cpu(cs
, do_lpcr_sync
, RUN_ON_CPU_HOST_PTR(&s
));
1348 static void spapr_get_pate(PPCVirtualHypervisor
*vhyp
, ppc_v3_pate_t
*entry
)
1350 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1352 /* Copy PATE1:GR into PATE0:HR */
1353 entry
->dw0
= spapr
->patb_entry
& PATE0_HR
;
1354 entry
->dw1
= spapr
->patb_entry
;
1357 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1358 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1359 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1360 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1361 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1364 * Get the fd to access the kernel htab, re-opening it if necessary
1366 static int get_htab_fd(SpaprMachineState
*spapr
)
1368 Error
*local_err
= NULL
;
1370 if (spapr
->htab_fd
>= 0) {
1371 return spapr
->htab_fd
;
1374 spapr
->htab_fd
= kvmppc_get_htab_fd(false, 0, &local_err
);
1375 if (spapr
->htab_fd
< 0) {
1376 error_report_err(local_err
);
1379 return spapr
->htab_fd
;
1382 void close_htab_fd(SpaprMachineState
*spapr
)
1384 if (spapr
->htab_fd
>= 0) {
1385 close(spapr
->htab_fd
);
1387 spapr
->htab_fd
= -1;
1390 static hwaddr
spapr_hpt_mask(PPCVirtualHypervisor
*vhyp
)
1392 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1394 return HTAB_SIZE(spapr
) / HASH_PTEG_SIZE_64
- 1;
1397 static target_ulong
spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor
*vhyp
)
1399 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1401 assert(kvm_enabled());
1407 return (target_ulong
)(uintptr_t)spapr
->htab
| (spapr
->htab_shift
- 18);
1410 static const ppc_hash_pte64_t
*spapr_map_hptes(PPCVirtualHypervisor
*vhyp
,
1413 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1414 hwaddr pte_offset
= ptex
* HASH_PTE_SIZE_64
;
1418 * HTAB is controlled by KVM. Fetch into temporary buffer
1420 ppc_hash_pte64_t
*hptes
= g_malloc(n
* HASH_PTE_SIZE_64
);
1421 kvmppc_read_hptes(hptes
, ptex
, n
);
1426 * HTAB is controlled by QEMU. Just point to the internally
1429 return (const ppc_hash_pte64_t
*)(spapr
->htab
+ pte_offset
);
1432 static void spapr_unmap_hptes(PPCVirtualHypervisor
*vhyp
,
1433 const ppc_hash_pte64_t
*hptes
,
1436 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1439 g_free((void *)hptes
);
1442 /* Nothing to do for qemu managed HPT */
1445 void spapr_store_hpte(PowerPCCPU
*cpu
, hwaddr ptex
,
1446 uint64_t pte0
, uint64_t pte1
)
1448 SpaprMachineState
*spapr
= SPAPR_MACHINE(cpu
->vhyp
);
1449 hwaddr offset
= ptex
* HASH_PTE_SIZE_64
;
1452 kvmppc_write_hpte(ptex
, pte0
, pte1
);
1454 if (pte0
& HPTE64_V_VALID
) {
1455 stq_p(spapr
->htab
+ offset
+ HASH_PTE_SIZE_64
/ 2, pte1
);
1457 * When setting valid, we write PTE1 first. This ensures
1458 * proper synchronization with the reading code in
1459 * ppc_hash64_pteg_search()
1462 stq_p(spapr
->htab
+ offset
, pte0
);
1464 stq_p(spapr
->htab
+ offset
, pte0
);
1466 * When clearing it we set PTE0 first. This ensures proper
1467 * synchronization with the reading code in
1468 * ppc_hash64_pteg_search()
1471 stq_p(spapr
->htab
+ offset
+ HASH_PTE_SIZE_64
/ 2, pte1
);
1476 static void spapr_hpte_set_c(PPCVirtualHypervisor
*vhyp
, hwaddr ptex
,
1479 hwaddr offset
= ptex
* HASH_PTE_SIZE_64
+ 15;
1480 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1483 /* There should always be a hash table when this is called */
1484 error_report("spapr_hpte_set_c called with no hash table !");
1488 /* The HW performs a non-atomic byte update */
1489 stb_p(spapr
->htab
+ offset
, (pte1
& 0xff) | 0x80);
1492 static void spapr_hpte_set_r(PPCVirtualHypervisor
*vhyp
, hwaddr ptex
,
1495 hwaddr offset
= ptex
* HASH_PTE_SIZE_64
+ 14;
1496 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1499 /* There should always be a hash table when this is called */
1500 error_report("spapr_hpte_set_r called with no hash table !");
1504 /* The HW performs a non-atomic byte update */
1505 stb_p(spapr
->htab
+ offset
, ((pte1
>> 8) & 0xff) | 0x01);
1508 int spapr_hpt_shift_for_ramsize(uint64_t ramsize
)
1512 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1513 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1514 * that's much more than is needed for Linux guests */
1515 shift
= ctz64(pow2ceil(ramsize
)) - 7;
1516 shift
= MAX(shift
, 18); /* Minimum architected size */
1517 shift
= MIN(shift
, 46); /* Maximum architected size */
1521 void spapr_free_hpt(SpaprMachineState
*spapr
)
1523 g_free(spapr
->htab
);
1525 spapr
->htab_shift
= 0;
1526 close_htab_fd(spapr
);
1529 void spapr_reallocate_hpt(SpaprMachineState
*spapr
, int shift
,
1534 /* Clean up any HPT info from a previous boot */
1535 spapr_free_hpt(spapr
);
1537 rc
= kvmppc_reset_htab(shift
);
1539 /* kernel-side HPT needed, but couldn't allocate one */
1540 error_setg_errno(errp
, errno
,
1541 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1543 /* This is almost certainly fatal, but if the caller really
1544 * wants to carry on with shift == 0, it's welcome to try */
1545 } else if (rc
> 0) {
1546 /* kernel-side HPT allocated */
1549 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1553 spapr
->htab_shift
= shift
;
1556 /* kernel-side HPT not needed, allocate in userspace instead */
1557 size_t size
= 1ULL << shift
;
1560 spapr
->htab
= qemu_memalign(size
, size
);
1562 error_setg_errno(errp
, errno
,
1563 "Could not allocate HPT of order %d", shift
);
1567 memset(spapr
->htab
, 0, size
);
1568 spapr
->htab_shift
= shift
;
1570 for (i
= 0; i
< size
/ HASH_PTE_SIZE_64
; i
++) {
1571 DIRTY_HPTE(HPTE(spapr
->htab
, i
));
1574 /* We're setting up a hash table, so that means we're not radix */
1575 spapr
->patb_entry
= 0;
1576 spapr_set_all_lpcrs(0, LPCR_HR
| LPCR_UPRT
);
1579 void spapr_setup_hpt(SpaprMachineState
*spapr
)
1583 if (spapr
->resize_hpt
== SPAPR_RESIZE_HPT_DISABLED
) {
1584 hpt_shift
= spapr_hpt_shift_for_ramsize(MACHINE(spapr
)->maxram_size
);
1586 uint64_t current_ram_size
;
1588 current_ram_size
= MACHINE(spapr
)->ram_size
+ get_plugged_memory_size();
1589 hpt_shift
= spapr_hpt_shift_for_ramsize(current_ram_size
);
1591 spapr_reallocate_hpt(spapr
, hpt_shift
, &error_fatal
);
1593 if (kvm_enabled()) {
1594 hwaddr vrma_limit
= kvmppc_vrma_limit(spapr
->htab_shift
);
1596 /* Check our RMA fits in the possible VRMA */
1597 if (vrma_limit
< spapr
->rma_size
) {
1598 error_report("Unable to create %" HWADDR_PRIu
1599 "MiB RMA (VRMA only allows %" HWADDR_PRIu
"MiB",
1600 spapr
->rma_size
/ MiB
, vrma_limit
/ MiB
);
1606 static int spapr_reset_drcs(Object
*child
, void *opaque
)
1609 (SpaprDrc
*) object_dynamic_cast(child
,
1610 TYPE_SPAPR_DR_CONNECTOR
);
1613 spapr_drc_reset(drc
);
1619 static void spapr_machine_reset(MachineState
*machine
)
1621 SpaprMachineState
*spapr
= SPAPR_MACHINE(machine
);
1622 PowerPCCPU
*first_ppc_cpu
;
1627 kvmppc_svm_off(&error_fatal
);
1628 spapr_caps_apply(spapr
);
1630 first_ppc_cpu
= POWERPC_CPU(first_cpu
);
1631 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1632 ppc_type_check_compat(machine
->cpu_type
, CPU_POWERPC_LOGICAL_3_00
, 0,
1633 spapr
->max_compat_pvr
)) {
1635 * If using KVM with radix mode available, VCPUs can be started
1636 * without a HPT because KVM will start them in radix mode.
1637 * Set the GR bit in PATE so that we know there is no HPT.
1639 spapr
->patb_entry
= PATE1_GR
;
1640 spapr_set_all_lpcrs(LPCR_HR
| LPCR_UPRT
, LPCR_HR
| LPCR_UPRT
);
1642 spapr_setup_hpt(spapr
);
1645 qemu_devices_reset();
1647 spapr_ovec_cleanup(spapr
->ov5_cas
);
1648 spapr
->ov5_cas
= spapr_ovec_new();
1650 ppc_set_compat_all(spapr
->max_compat_pvr
, &error_fatal
);
1653 * This is fixing some of the default configuration of the XIVE
1654 * devices. To be called after the reset of the machine devices.
1656 spapr_irq_reset(spapr
, &error_fatal
);
1659 * There is no CAS under qtest. Simulate one to please the code that
1660 * depends on spapr->ov5_cas. This is especially needed to test device
1661 * unplug, so we do that before resetting the DRCs.
1663 if (qtest_enabled()) {
1664 spapr_ovec_cleanup(spapr
->ov5_cas
);
1665 spapr
->ov5_cas
= spapr_ovec_clone(spapr
->ov5
);
1668 /* DRC reset may cause a device to be unplugged. This will cause troubles
1669 * if this device is used by another device (eg, a running vhost backend
1670 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1671 * situations, we reset DRCs after all devices have been reset.
1673 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs
, NULL
);
1675 spapr_clear_pending_events(spapr
);
1678 * We place the device tree and RTAS just below either the top of the RMA,
1679 * or just below 2GB, whichever is lower, so that it can be
1680 * processed with 32-bit real mode code if necessary
1682 fdt_addr
= MIN(spapr
->rma_size
, RTAS_MAX_ADDR
) - FDT_MAX_SIZE
;
1684 fdt
= spapr_build_fdt(spapr
, true, FDT_MAX_SIZE
);
1688 /* Should only fail if we've built a corrupted tree */
1692 qemu_fdt_dumpdtb(fdt
, fdt_totalsize(fdt
));
1693 cpu_physical_memory_write(fdt_addr
, fdt
, fdt_totalsize(fdt
));
1694 g_free(spapr
->fdt_blob
);
1695 spapr
->fdt_size
= fdt_totalsize(fdt
);
1696 spapr
->fdt_initial_size
= spapr
->fdt_size
;
1697 spapr
->fdt_blob
= fdt
;
1699 /* Set up the entry state */
1700 spapr_cpu_set_entry_state(first_ppc_cpu
, SPAPR_ENTRY_POINT
, 0, fdt_addr
, 0);
1701 first_ppc_cpu
->env
.gpr
[5] = 0;
1703 spapr
->fwnmi_system_reset_addr
= -1;
1704 spapr
->fwnmi_machine_check_addr
= -1;
1705 spapr
->fwnmi_machine_check_interlock
= -1;
1707 /* Signal all vCPUs waiting on this condition */
1708 qemu_cond_broadcast(&spapr
->fwnmi_machine_check_interlock_cond
);
1710 migrate_del_blocker(spapr
->fwnmi_migration_blocker
);
1713 static void spapr_create_nvram(SpaprMachineState
*spapr
)
1715 DeviceState
*dev
= qdev_create(&spapr
->vio_bus
->bus
, "spapr-nvram");
1716 DriveInfo
*dinfo
= drive_get(IF_PFLASH
, 0, 0);
1719 qdev_prop_set_drive(dev
, "drive", blk_by_legacy_dinfo(dinfo
),
1723 qdev_init_nofail(dev
);
1725 spapr
->nvram
= (struct SpaprNvram
*)dev
;
1728 static void spapr_rtc_create(SpaprMachineState
*spapr
)
1730 object_initialize_child(OBJECT(spapr
), "rtc",
1731 &spapr
->rtc
, sizeof(spapr
->rtc
), TYPE_SPAPR_RTC
,
1732 &error_fatal
, NULL
);
1733 object_property_set_bool(OBJECT(&spapr
->rtc
), true, "realized",
1735 object_property_add_alias(OBJECT(spapr
), "rtc-time", OBJECT(&spapr
->rtc
),
1739 /* Returns whether we want to use VGA or not */
1740 static bool spapr_vga_init(PCIBus
*pci_bus
, Error
**errp
)
1742 switch (vga_interface_type
) {
1750 return pci_vga_init(pci_bus
) != NULL
;
1753 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1758 static int spapr_pre_load(void *opaque
)
1762 rc
= spapr_caps_pre_load(opaque
);
1770 static int spapr_post_load(void *opaque
, int version_id
)
1772 SpaprMachineState
*spapr
= (SpaprMachineState
*)opaque
;
1775 err
= spapr_caps_post_migration(spapr
);
1781 * In earlier versions, there was no separate qdev for the PAPR
1782 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1783 * So when migrating from those versions, poke the incoming offset
1784 * value into the RTC device
1786 if (version_id
< 3) {
1787 err
= spapr_rtc_import_offset(&spapr
->rtc
, spapr
->rtc_offset
);
1793 if (kvm_enabled() && spapr
->patb_entry
) {
1794 PowerPCCPU
*cpu
= POWERPC_CPU(first_cpu
);
1795 bool radix
= !!(spapr
->patb_entry
& PATE1_GR
);
1796 bool gtse
= !!(cpu
->env
.spr
[SPR_LPCR
] & LPCR_GTSE
);
1799 * Update LPCR:HR and UPRT as they may not be set properly in
1802 spapr_set_all_lpcrs(radix
? (LPCR_HR
| LPCR_UPRT
) : 0,
1803 LPCR_HR
| LPCR_UPRT
);
1805 err
= kvmppc_configure_v3_mmu(cpu
, radix
, gtse
, spapr
->patb_entry
);
1807 error_report("Process table config unsupported by the host");
1812 err
= spapr_irq_post_load(spapr
, version_id
);
1820 static int spapr_pre_save(void *opaque
)
1824 rc
= spapr_caps_pre_save(opaque
);
1832 static bool version_before_3(void *opaque
, int version_id
)
1834 return version_id
< 3;
1837 static bool spapr_pending_events_needed(void *opaque
)
1839 SpaprMachineState
*spapr
= (SpaprMachineState
*)opaque
;
1840 return !QTAILQ_EMPTY(&spapr
->pending_events
);
1843 static const VMStateDescription vmstate_spapr_event_entry
= {
1844 .name
= "spapr_event_log_entry",
1846 .minimum_version_id
= 1,
1847 .fields
= (VMStateField
[]) {
1848 VMSTATE_UINT32(summary
, SpaprEventLogEntry
),
1849 VMSTATE_UINT32(extended_length
, SpaprEventLogEntry
),
1850 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log
, SpaprEventLogEntry
, 0,
1851 NULL
, extended_length
),
1852 VMSTATE_END_OF_LIST()
1856 static const VMStateDescription vmstate_spapr_pending_events
= {
1857 .name
= "spapr_pending_events",
1859 .minimum_version_id
= 1,
1860 .needed
= spapr_pending_events_needed
,
1861 .fields
= (VMStateField
[]) {
1862 VMSTATE_QTAILQ_V(pending_events
, SpaprMachineState
, 1,
1863 vmstate_spapr_event_entry
, SpaprEventLogEntry
, next
),
1864 VMSTATE_END_OF_LIST()
1868 static bool spapr_ov5_cas_needed(void *opaque
)
1870 SpaprMachineState
*spapr
= opaque
;
1871 SpaprOptionVector
*ov5_mask
= spapr_ovec_new();
1874 /* Prior to the introduction of SpaprOptionVector, we had two option
1875 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1876 * Both of these options encode machine topology into the device-tree
1877 * in such a way that the now-booted OS should still be able to interact
1878 * appropriately with QEMU regardless of what options were actually
1879 * negotiatied on the source side.
1881 * As such, we can avoid migrating the CAS-negotiated options if these
1882 * are the only options available on the current machine/platform.
1883 * Since these are the only options available for pseries-2.7 and
1884 * earlier, this allows us to maintain old->new/new->old migration
1887 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1888 * via default pseries-2.8 machines and explicit command-line parameters.
1889 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1890 * of the actual CAS-negotiated values to continue working properly. For
1891 * example, availability of memory unplug depends on knowing whether
1892 * OV5_HP_EVT was negotiated via CAS.
1894 * Thus, for any cases where the set of available CAS-negotiatable
1895 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1896 * include the CAS-negotiated options in the migration stream, unless
1897 * if they affect boot time behaviour only.
1899 spapr_ovec_set(ov5_mask
, OV5_FORM1_AFFINITY
);
1900 spapr_ovec_set(ov5_mask
, OV5_DRCONF_MEMORY
);
1901 spapr_ovec_set(ov5_mask
, OV5_DRMEM_V2
);
1903 /* We need extra information if we have any bits outside the mask
1905 cas_needed
= !spapr_ovec_subset(spapr
->ov5
, ov5_mask
);
1907 spapr_ovec_cleanup(ov5_mask
);
1912 static const VMStateDescription vmstate_spapr_ov5_cas
= {
1913 .name
= "spapr_option_vector_ov5_cas",
1915 .minimum_version_id
= 1,
1916 .needed
= spapr_ov5_cas_needed
,
1917 .fields
= (VMStateField
[]) {
1918 VMSTATE_STRUCT_POINTER_V(ov5_cas
, SpaprMachineState
, 1,
1919 vmstate_spapr_ovec
, SpaprOptionVector
),
1920 VMSTATE_END_OF_LIST()
1924 static bool spapr_patb_entry_needed(void *opaque
)
1926 SpaprMachineState
*spapr
= opaque
;
1928 return !!spapr
->patb_entry
;
1931 static const VMStateDescription vmstate_spapr_patb_entry
= {
1932 .name
= "spapr_patb_entry",
1934 .minimum_version_id
= 1,
1935 .needed
= spapr_patb_entry_needed
,
1936 .fields
= (VMStateField
[]) {
1937 VMSTATE_UINT64(patb_entry
, SpaprMachineState
),
1938 VMSTATE_END_OF_LIST()
1942 static bool spapr_irq_map_needed(void *opaque
)
1944 SpaprMachineState
*spapr
= opaque
;
1946 return spapr
->irq_map
&& !bitmap_empty(spapr
->irq_map
, spapr
->irq_map_nr
);
1949 static const VMStateDescription vmstate_spapr_irq_map
= {
1950 .name
= "spapr_irq_map",
1952 .minimum_version_id
= 1,
1953 .needed
= spapr_irq_map_needed
,
1954 .fields
= (VMStateField
[]) {
1955 VMSTATE_BITMAP(irq_map
, SpaprMachineState
, 0, irq_map_nr
),
1956 VMSTATE_END_OF_LIST()
1960 static bool spapr_dtb_needed(void *opaque
)
1962 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(opaque
);
1964 return smc
->update_dt_enabled
;
1967 static int spapr_dtb_pre_load(void *opaque
)
1969 SpaprMachineState
*spapr
= (SpaprMachineState
*)opaque
;
1971 g_free(spapr
->fdt_blob
);
1972 spapr
->fdt_blob
= NULL
;
1973 spapr
->fdt_size
= 0;
1978 static const VMStateDescription vmstate_spapr_dtb
= {
1979 .name
= "spapr_dtb",
1981 .minimum_version_id
= 1,
1982 .needed
= spapr_dtb_needed
,
1983 .pre_load
= spapr_dtb_pre_load
,
1984 .fields
= (VMStateField
[]) {
1985 VMSTATE_UINT32(fdt_initial_size
, SpaprMachineState
),
1986 VMSTATE_UINT32(fdt_size
, SpaprMachineState
),
1987 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob
, SpaprMachineState
, 0, NULL
,
1989 VMSTATE_END_OF_LIST()
1993 static bool spapr_fwnmi_needed(void *opaque
)
1995 SpaprMachineState
*spapr
= (SpaprMachineState
*)opaque
;
1997 return spapr
->fwnmi_machine_check_addr
!= -1;
2000 static int spapr_fwnmi_pre_save(void *opaque
)
2002 SpaprMachineState
*spapr
= (SpaprMachineState
*)opaque
;
2005 * Check if machine check handling is in progress and print a
2008 if (spapr
->fwnmi_machine_check_interlock
!= -1) {
2009 warn_report("A machine check is being handled during migration. The"
2010 "handler may run and log hardware error on the destination");
2016 static const VMStateDescription vmstate_spapr_fwnmi
= {
2017 .name
= "spapr_fwnmi",
2019 .minimum_version_id
= 1,
2020 .needed
= spapr_fwnmi_needed
,
2021 .pre_save
= spapr_fwnmi_pre_save
,
2022 .fields
= (VMStateField
[]) {
2023 VMSTATE_UINT64(fwnmi_system_reset_addr
, SpaprMachineState
),
2024 VMSTATE_UINT64(fwnmi_machine_check_addr
, SpaprMachineState
),
2025 VMSTATE_INT32(fwnmi_machine_check_interlock
, SpaprMachineState
),
2026 VMSTATE_END_OF_LIST()
2030 static const VMStateDescription vmstate_spapr
= {
2033 .minimum_version_id
= 1,
2034 .pre_load
= spapr_pre_load
,
2035 .post_load
= spapr_post_load
,
2036 .pre_save
= spapr_pre_save
,
2037 .fields
= (VMStateField
[]) {
2038 /* used to be @next_irq */
2039 VMSTATE_UNUSED_BUFFER(version_before_3
, 0, 4),
2042 VMSTATE_UINT64_TEST(rtc_offset
, SpaprMachineState
, version_before_3
),
2044 VMSTATE_PPC_TIMEBASE_V(tb
, SpaprMachineState
, 2),
2045 VMSTATE_END_OF_LIST()
2047 .subsections
= (const VMStateDescription
*[]) {
2048 &vmstate_spapr_ov5_cas
,
2049 &vmstate_spapr_patb_entry
,
2050 &vmstate_spapr_pending_events
,
2051 &vmstate_spapr_cap_htm
,
2052 &vmstate_spapr_cap_vsx
,
2053 &vmstate_spapr_cap_dfp
,
2054 &vmstate_spapr_cap_cfpc
,
2055 &vmstate_spapr_cap_sbbc
,
2056 &vmstate_spapr_cap_ibs
,
2057 &vmstate_spapr_cap_hpt_maxpagesize
,
2058 &vmstate_spapr_irq_map
,
2059 &vmstate_spapr_cap_nested_kvm_hv
,
2061 &vmstate_spapr_cap_large_decr
,
2062 &vmstate_spapr_cap_ccf_assist
,
2063 &vmstate_spapr_cap_fwnmi
,
2064 &vmstate_spapr_fwnmi
,
2069 static int htab_save_setup(QEMUFile
*f
, void *opaque
)
2071 SpaprMachineState
*spapr
= opaque
;
2073 /* "Iteration" header */
2074 if (!spapr
->htab_shift
) {
2075 qemu_put_be32(f
, -1);
2077 qemu_put_be32(f
, spapr
->htab_shift
);
2081 spapr
->htab_save_index
= 0;
2082 spapr
->htab_first_pass
= true;
2084 if (spapr
->htab_shift
) {
2085 assert(kvm_enabled());
2093 static void htab_save_chunk(QEMUFile
*f
, SpaprMachineState
*spapr
,
2094 int chunkstart
, int n_valid
, int n_invalid
)
2096 qemu_put_be32(f
, chunkstart
);
2097 qemu_put_be16(f
, n_valid
);
2098 qemu_put_be16(f
, n_invalid
);
2099 qemu_put_buffer(f
, HPTE(spapr
->htab
, chunkstart
),
2100 HASH_PTE_SIZE_64
* n_valid
);
2103 static void htab_save_end_marker(QEMUFile
*f
)
2105 qemu_put_be32(f
, 0);
2106 qemu_put_be16(f
, 0);
2107 qemu_put_be16(f
, 0);
2110 static void htab_save_first_pass(QEMUFile
*f
, SpaprMachineState
*spapr
,
2113 bool has_timeout
= max_ns
!= -1;
2114 int htabslots
= HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
;
2115 int index
= spapr
->htab_save_index
;
2116 int64_t starttime
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
2118 assert(spapr
->htab_first_pass
);
2123 /* Consume invalid HPTEs */
2124 while ((index
< htabslots
)
2125 && !HPTE_VALID(HPTE(spapr
->htab
, index
))) {
2126 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
2130 /* Consume valid HPTEs */
2132 while ((index
< htabslots
) && (index
- chunkstart
< USHRT_MAX
)
2133 && HPTE_VALID(HPTE(spapr
->htab
, index
))) {
2134 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
2138 if (index
> chunkstart
) {
2139 int n_valid
= index
- chunkstart
;
2141 htab_save_chunk(f
, spapr
, chunkstart
, n_valid
, 0);
2144 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) - starttime
) > max_ns
) {
2148 } while ((index
< htabslots
) && !qemu_file_rate_limit(f
));
2150 if (index
>= htabslots
) {
2151 assert(index
== htabslots
);
2153 spapr
->htab_first_pass
= false;
2155 spapr
->htab_save_index
= index
;
2158 static int htab_save_later_pass(QEMUFile
*f
, SpaprMachineState
*spapr
,
2161 bool final
= max_ns
< 0;
2162 int htabslots
= HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
;
2163 int examined
= 0, sent
= 0;
2164 int index
= spapr
->htab_save_index
;
2165 int64_t starttime
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
2167 assert(!spapr
->htab_first_pass
);
2170 int chunkstart
, invalidstart
;
2172 /* Consume non-dirty HPTEs */
2173 while ((index
< htabslots
)
2174 && !HPTE_DIRTY(HPTE(spapr
->htab
, index
))) {
2180 /* Consume valid dirty HPTEs */
2181 while ((index
< htabslots
) && (index
- chunkstart
< USHRT_MAX
)
2182 && HPTE_DIRTY(HPTE(spapr
->htab
, index
))
2183 && HPTE_VALID(HPTE(spapr
->htab
, index
))) {
2184 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
2189 invalidstart
= index
;
2190 /* Consume invalid dirty HPTEs */
2191 while ((index
< htabslots
) && (index
- invalidstart
< USHRT_MAX
)
2192 && HPTE_DIRTY(HPTE(spapr
->htab
, index
))
2193 && !HPTE_VALID(HPTE(spapr
->htab
, index
))) {
2194 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
2199 if (index
> chunkstart
) {
2200 int n_valid
= invalidstart
- chunkstart
;
2201 int n_invalid
= index
- invalidstart
;
2203 htab_save_chunk(f
, spapr
, chunkstart
, n_valid
, n_invalid
);
2204 sent
+= index
- chunkstart
;
2206 if (!final
&& (qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) - starttime
) > max_ns
) {
2211 if (examined
>= htabslots
) {
2215 if (index
>= htabslots
) {
2216 assert(index
== htabslots
);
2219 } while ((examined
< htabslots
) && (!qemu_file_rate_limit(f
) || final
));
2221 if (index
>= htabslots
) {
2222 assert(index
== htabslots
);
2226 spapr
->htab_save_index
= index
;
2228 return (examined
>= htabslots
) && (sent
== 0) ? 1 : 0;
2231 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2232 #define MAX_KVM_BUF_SIZE 2048
2234 static int htab_save_iterate(QEMUFile
*f
, void *opaque
)
2236 SpaprMachineState
*spapr
= opaque
;
2240 /* Iteration header */
2241 if (!spapr
->htab_shift
) {
2242 qemu_put_be32(f
, -1);
2245 qemu_put_be32(f
, 0);
2249 assert(kvm_enabled());
2251 fd
= get_htab_fd(spapr
);
2256 rc
= kvmppc_save_htab(f
, fd
, MAX_KVM_BUF_SIZE
, MAX_ITERATION_NS
);
2260 } else if (spapr
->htab_first_pass
) {
2261 htab_save_first_pass(f
, spapr
, MAX_ITERATION_NS
);
2263 rc
= htab_save_later_pass(f
, spapr
, MAX_ITERATION_NS
);
2266 htab_save_end_marker(f
);
2271 static int htab_save_complete(QEMUFile
*f
, void *opaque
)
2273 SpaprMachineState
*spapr
= opaque
;
2276 /* Iteration header */
2277 if (!spapr
->htab_shift
) {
2278 qemu_put_be32(f
, -1);
2281 qemu_put_be32(f
, 0);
2287 assert(kvm_enabled());
2289 fd
= get_htab_fd(spapr
);
2294 rc
= kvmppc_save_htab(f
, fd
, MAX_KVM_BUF_SIZE
, -1);
2299 if (spapr
->htab_first_pass
) {
2300 htab_save_first_pass(f
, spapr
, -1);
2302 htab_save_later_pass(f
, spapr
, -1);
2306 htab_save_end_marker(f
);
2311 static int htab_load(QEMUFile
*f
, void *opaque
, int version_id
)
2313 SpaprMachineState
*spapr
= opaque
;
2314 uint32_t section_hdr
;
2316 Error
*local_err
= NULL
;
2318 if (version_id
< 1 || version_id
> 1) {
2319 error_report("htab_load() bad version");
2323 section_hdr
= qemu_get_be32(f
);
2325 if (section_hdr
== -1) {
2326 spapr_free_hpt(spapr
);
2331 /* First section gives the htab size */
2332 spapr_reallocate_hpt(spapr
, section_hdr
, &local_err
);
2334 error_report_err(local_err
);
2341 assert(kvm_enabled());
2343 fd
= kvmppc_get_htab_fd(true, 0, &local_err
);
2345 error_report_err(local_err
);
2352 uint16_t n_valid
, n_invalid
;
2354 index
= qemu_get_be32(f
);
2355 n_valid
= qemu_get_be16(f
);
2356 n_invalid
= qemu_get_be16(f
);
2358 if ((index
== 0) && (n_valid
== 0) && (n_invalid
== 0)) {
2363 if ((index
+ n_valid
+ n_invalid
) >
2364 (HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
)) {
2365 /* Bad index in stream */
2367 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2368 index
, n_valid
, n_invalid
, spapr
->htab_shift
);
2374 qemu_get_buffer(f
, HPTE(spapr
->htab
, index
),
2375 HASH_PTE_SIZE_64
* n_valid
);
2378 memset(HPTE(spapr
->htab
, index
+ n_valid
), 0,
2379 HASH_PTE_SIZE_64
* n_invalid
);
2386 rc
= kvmppc_load_htab_chunk(f
, fd
, index
, n_valid
, n_invalid
);
2401 static void htab_save_cleanup(void *opaque
)
2403 SpaprMachineState
*spapr
= opaque
;
2405 close_htab_fd(spapr
);
2408 static SaveVMHandlers savevm_htab_handlers
= {
2409 .save_setup
= htab_save_setup
,
2410 .save_live_iterate
= htab_save_iterate
,
2411 .save_live_complete_precopy
= htab_save_complete
,
2412 .save_cleanup
= htab_save_cleanup
,
2413 .load_state
= htab_load
,
2416 static void spapr_boot_set(void *opaque
, const char *boot_device
,
2419 MachineState
*machine
= MACHINE(opaque
);
2420 machine
->boot_order
= g_strdup(boot_device
);
2423 static void spapr_create_lmb_dr_connectors(SpaprMachineState
*spapr
)
2425 MachineState
*machine
= MACHINE(spapr
);
2426 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
2427 uint32_t nr_lmbs
= (machine
->maxram_size
- machine
->ram_size
)/lmb_size
;
2430 for (i
= 0; i
< nr_lmbs
; i
++) {
2433 addr
= i
* lmb_size
+ machine
->device_memory
->base
;
2434 spapr_dr_connector_new(OBJECT(spapr
), TYPE_SPAPR_DRC_LMB
,
2440 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2441 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2442 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2444 static void spapr_validate_node_memory(MachineState
*machine
, Error
**errp
)
2448 if (machine
->ram_size
% SPAPR_MEMORY_BLOCK_SIZE
) {
2449 error_setg(errp
, "Memory size 0x" RAM_ADDR_FMT
2450 " is not aligned to %" PRIu64
" MiB",
2452 SPAPR_MEMORY_BLOCK_SIZE
/ MiB
);
2456 if (machine
->maxram_size
% SPAPR_MEMORY_BLOCK_SIZE
) {
2457 error_setg(errp
, "Maximum memory size 0x" RAM_ADDR_FMT
2458 " is not aligned to %" PRIu64
" MiB",
2460 SPAPR_MEMORY_BLOCK_SIZE
/ MiB
);
2464 for (i
= 0; i
< machine
->numa_state
->num_nodes
; i
++) {
2465 if (machine
->numa_state
->nodes
[i
].node_mem
% SPAPR_MEMORY_BLOCK_SIZE
) {
2467 "Node %d memory size 0x%" PRIx64
2468 " is not aligned to %" PRIu64
" MiB",
2469 i
, machine
->numa_state
->nodes
[i
].node_mem
,
2470 SPAPR_MEMORY_BLOCK_SIZE
/ MiB
);
2476 /* find cpu slot in machine->possible_cpus by core_id */
2477 static CPUArchId
*spapr_find_cpu_slot(MachineState
*ms
, uint32_t id
, int *idx
)
2479 int index
= id
/ ms
->smp
.threads
;
2481 if (index
>= ms
->possible_cpus
->len
) {
2487 return &ms
->possible_cpus
->cpus
[index
];
2490 static void spapr_set_vsmt_mode(SpaprMachineState
*spapr
, Error
**errp
)
2492 MachineState
*ms
= MACHINE(spapr
);
2493 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
2494 Error
*local_err
= NULL
;
2495 bool vsmt_user
= !!spapr
->vsmt
;
2496 int kvm_smt
= kvmppc_smt_threads();
2498 unsigned int smp_threads
= ms
->smp
.threads
;
2500 if (!kvm_enabled() && (smp_threads
> 1)) {
2501 error_setg(&local_err
, "TCG cannot support more than 1 thread/core "
2502 "on a pseries machine");
2505 if (!is_power_of_2(smp_threads
)) {
2506 error_setg(&local_err
, "Cannot support %d threads/core on a pseries "
2507 "machine because it must be a power of 2", smp_threads
);
2511 /* Detemine the VSMT mode to use: */
2513 if (spapr
->vsmt
< smp_threads
) {
2514 error_setg(&local_err
, "Cannot support VSMT mode %d"
2515 " because it must be >= threads/core (%d)",
2516 spapr
->vsmt
, smp_threads
);
2519 /* In this case, spapr->vsmt has been set by the command line */
2520 } else if (!smc
->smp_threads_vsmt
) {
2522 * Default VSMT value is tricky, because we need it to be as
2523 * consistent as possible (for migration), but this requires
2524 * changing it for at least some existing cases. We pick 8 as
2525 * the value that we'd get with KVM on POWER8, the
2526 * overwhelmingly common case in production systems.
2528 spapr
->vsmt
= MAX(8, smp_threads
);
2530 spapr
->vsmt
= smp_threads
;
2533 /* KVM: If necessary, set the SMT mode: */
2534 if (kvm_enabled() && (spapr
->vsmt
!= kvm_smt
)) {
2535 ret
= kvmppc_set_smt_threads(spapr
->vsmt
);
2537 /* Looks like KVM isn't able to change VSMT mode */
2538 error_setg(&local_err
,
2539 "Failed to set KVM's VSMT mode to %d (errno %d)",
2541 /* We can live with that if the default one is big enough
2542 * for the number of threads, and a submultiple of the one
2543 * we want. In this case we'll waste some vcpu ids, but
2544 * behaviour will be correct */
2545 if ((kvm_smt
>= smp_threads
) && ((spapr
->vsmt
% kvm_smt
) == 0)) {
2546 warn_report_err(local_err
);
2551 error_append_hint(&local_err
,
2552 "On PPC, a VM with %d threads/core"
2553 " on a host with %d threads/core"
2554 " requires the use of VSMT mode %d.\n",
2555 smp_threads
, kvm_smt
, spapr
->vsmt
);
2557 kvmppc_error_append_smt_possible_hint(&local_err
);
2562 /* else TCG: nothing to do currently */
2564 error_propagate(errp
, local_err
);
2567 static void spapr_init_cpus(SpaprMachineState
*spapr
)
2569 MachineState
*machine
= MACHINE(spapr
);
2570 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
2571 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
2572 const char *type
= spapr_get_cpu_core_type(machine
->cpu_type
);
2573 const CPUArchIdList
*possible_cpus
;
2574 unsigned int smp_cpus
= machine
->smp
.cpus
;
2575 unsigned int smp_threads
= machine
->smp
.threads
;
2576 unsigned int max_cpus
= machine
->smp
.max_cpus
;
2577 int boot_cores_nr
= smp_cpus
/ smp_threads
;
2580 possible_cpus
= mc
->possible_cpu_arch_ids(machine
);
2581 if (mc
->has_hotpluggable_cpus
) {
2582 if (smp_cpus
% smp_threads
) {
2583 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2584 smp_cpus
, smp_threads
);
2587 if (max_cpus
% smp_threads
) {
2588 error_report("max_cpus (%u) must be multiple of threads (%u)",
2589 max_cpus
, smp_threads
);
2593 if (max_cpus
!= smp_cpus
) {
2594 error_report("This machine version does not support CPU hotplug");
2597 boot_cores_nr
= possible_cpus
->len
;
2600 if (smc
->pre_2_10_has_unused_icps
) {
2603 for (i
= 0; i
< spapr_max_server_number(spapr
); i
++) {
2604 /* Dummy entries get deregistered when real ICPState objects
2605 * are registered during CPU core hotplug.
2607 pre_2_10_vmstate_register_dummy_icp(i
);
2611 for (i
= 0; i
< possible_cpus
->len
; i
++) {
2612 int core_id
= i
* smp_threads
;
2614 if (mc
->has_hotpluggable_cpus
) {
2615 spapr_dr_connector_new(OBJECT(spapr
), TYPE_SPAPR_DRC_CPU
,
2616 spapr_vcpu_id(spapr
, core_id
));
2619 if (i
< boot_cores_nr
) {
2620 Object
*core
= object_new(type
);
2621 int nr_threads
= smp_threads
;
2623 /* Handle the partially filled core for older machine types */
2624 if ((i
+ 1) * smp_threads
>= smp_cpus
) {
2625 nr_threads
= smp_cpus
- i
* smp_threads
;
2628 object_property_set_int(core
, nr_threads
, "nr-threads",
2630 object_property_set_int(core
, core_id
, CPU_CORE_PROP_CORE_ID
,
2632 object_property_set_bool(core
, true, "realized", &error_fatal
);
2639 static PCIHostState
*spapr_create_default_phb(void)
2643 dev
= qdev_create(NULL
, TYPE_SPAPR_PCI_HOST_BRIDGE
);
2644 qdev_prop_set_uint32(dev
, "index", 0);
2645 qdev_init_nofail(dev
);
2647 return PCI_HOST_BRIDGE(dev
);
2650 static hwaddr
spapr_rma_size(SpaprMachineState
*spapr
, Error
**errp
)
2652 MachineState
*machine
= MACHINE(spapr
);
2653 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
2654 hwaddr rma_size
= machine
->ram_size
;
2655 hwaddr node0_size
= spapr_node0_size(machine
);
2657 /* RMA has to fit in the first NUMA node */
2658 rma_size
= MIN(rma_size
, node0_size
);
2661 * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2664 rma_size
= MIN(rma_size
, 1 * TiB
);
2667 * Clamp the RMA size based on machine type. This is for
2668 * migration compatibility with older qemu versions, which limited
2669 * the RMA size for complicated and mostly bad reasons.
2671 if (smc
->rma_limit
) {
2672 rma_size
= MIN(rma_size
, smc
->rma_limit
);
2675 if (rma_size
< MIN_RMA_SLOF
) {
2677 "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2678 "ldMiB guest RMA (Real Mode Area memory)",
2679 MIN_RMA_SLOF
/ MiB
);
2686 /* pSeries LPAR / sPAPR hardware init */
2687 static void spapr_machine_init(MachineState
*machine
)
2689 SpaprMachineState
*spapr
= SPAPR_MACHINE(machine
);
2690 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
2691 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
2692 const char *kernel_filename
= machine
->kernel_filename
;
2693 const char *initrd_filename
= machine
->initrd_filename
;
2696 MemoryRegion
*sysmem
= get_system_memory();
2697 long load_limit
, fw_size
;
2699 Error
*resize_hpt_err
= NULL
;
2701 msi_nonbroken
= true;
2703 QLIST_INIT(&spapr
->phbs
);
2704 QTAILQ_INIT(&spapr
->pending_dimm_unplugs
);
2706 /* Determine capabilities to run with */
2707 spapr_caps_init(spapr
);
2709 kvmppc_check_papr_resize_hpt(&resize_hpt_err
);
2710 if (spapr
->resize_hpt
== SPAPR_RESIZE_HPT_DEFAULT
) {
2712 * If the user explicitly requested a mode we should either
2713 * supply it, or fail completely (which we do below). But if
2714 * it's not set explicitly, we reset our mode to something
2717 if (resize_hpt_err
) {
2718 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_DISABLED
;
2719 error_free(resize_hpt_err
);
2720 resize_hpt_err
= NULL
;
2722 spapr
->resize_hpt
= smc
->resize_hpt_default
;
2726 assert(spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DEFAULT
);
2728 if ((spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DISABLED
) && resize_hpt_err
) {
2730 * User requested HPT resize, but this host can't supply it. Bail out
2732 error_report_err(resize_hpt_err
);
2736 spapr
->rma_size
= spapr_rma_size(spapr
, &error_fatal
);
2738 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2739 load_limit
= MIN(spapr
->rma_size
, RTAS_MAX_ADDR
) - FW_OVERHEAD
;
2742 * VSMT must be set in order to be able to compute VCPU ids, ie to
2743 * call spapr_max_server_number() or spapr_vcpu_id().
2745 spapr_set_vsmt_mode(spapr
, &error_fatal
);
2747 /* Set up Interrupt Controller before we create the VCPUs */
2748 spapr_irq_init(spapr
, &error_fatal
);
2750 /* Set up containers for ibm,client-architecture-support negotiated options
2752 spapr
->ov5
= spapr_ovec_new();
2753 spapr
->ov5_cas
= spapr_ovec_new();
2755 if (smc
->dr_lmb_enabled
) {
2756 spapr_ovec_set(spapr
->ov5
, OV5_DRCONF_MEMORY
);
2757 spapr_validate_node_memory(machine
, &error_fatal
);
2760 spapr_ovec_set(spapr
->ov5
, OV5_FORM1_AFFINITY
);
2762 /* advertise support for dedicated HP event source to guests */
2763 if (spapr
->use_hotplug_event_source
) {
2764 spapr_ovec_set(spapr
->ov5
, OV5_HP_EVT
);
2767 /* advertise support for HPT resizing */
2768 if (spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DISABLED
) {
2769 spapr_ovec_set(spapr
->ov5
, OV5_HPT_RESIZE
);
2772 /* advertise support for ibm,dyamic-memory-v2 */
2773 spapr_ovec_set(spapr
->ov5
, OV5_DRMEM_V2
);
2775 /* advertise XIVE on POWER9 machines */
2776 if (spapr
->irq
->xive
) {
2777 spapr_ovec_set(spapr
->ov5
, OV5_XIVE_EXPLOIT
);
2781 spapr_init_cpus(spapr
);
2784 * check we don't have a memory-less/cpu-less NUMA node
2785 * Firmware relies on the existing memory/cpu topology to provide the
2786 * NUMA topology to the kernel.
2787 * And the linux kernel needs to know the NUMA topology at start
2788 * to be able to hotplug CPUs later.
2790 if (machine
->numa_state
->num_nodes
) {
2791 for (i
= 0; i
< machine
->numa_state
->num_nodes
; ++i
) {
2792 /* check for memory-less node */
2793 if (machine
->numa_state
->nodes
[i
].node_mem
== 0) {
2796 /* check for cpu-less node */
2798 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
2799 if (cpu
->node_id
== i
) {
2804 /* memory-less and cpu-less node */
2807 "Memory-less/cpu-less nodes are not supported (node %d)",
2817 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
2818 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
2819 * called from vPHB reset handler so we initialize the counter here.
2820 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
2821 * must be equally distant from any other node.
2822 * The final value of spapr->gpu_numa_id is going to be written to
2823 * max-associativity-domains in spapr_build_fdt().
2825 spapr
->gpu_numa_id
= MAX(1, machine
->numa_state
->num_nodes
);
2827 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2828 ppc_type_check_compat(machine
->cpu_type
, CPU_POWERPC_LOGICAL_3_00
, 0,
2829 spapr
->max_compat_pvr
)) {
2830 spapr_ovec_set(spapr
->ov5
, OV5_MMU_RADIX_300
);
2831 /* KVM and TCG always allow GTSE with radix... */
2832 spapr_ovec_set(spapr
->ov5
, OV5_MMU_RADIX_GTSE
);
2834 /* ... but not with hash (currently). */
2836 if (kvm_enabled()) {
2837 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2838 kvmppc_enable_logical_ci_hcalls();
2839 kvmppc_enable_set_mode_hcall();
2841 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2842 kvmppc_enable_clear_ref_mod_hcalls();
2844 /* Enable H_PAGE_INIT */
2845 kvmppc_enable_h_page_init();
2849 memory_region_add_subregion(sysmem
, 0, machine
->ram
);
2851 /* always allocate the device memory information */
2852 machine
->device_memory
= g_malloc0(sizeof(*machine
->device_memory
));
2854 /* initialize hotplug memory address space */
2855 if (machine
->ram_size
< machine
->maxram_size
) {
2856 ram_addr_t device_mem_size
= machine
->maxram_size
- machine
->ram_size
;
2858 * Limit the number of hotpluggable memory slots to half the number
2859 * slots that KVM supports, leaving the other half for PCI and other
2860 * devices. However ensure that number of slots doesn't drop below 32.
2862 int max_memslots
= kvm_enabled() ? kvm_get_max_memslots() / 2 :
2863 SPAPR_MAX_RAM_SLOTS
;
2865 if (max_memslots
< SPAPR_MAX_RAM_SLOTS
) {
2866 max_memslots
= SPAPR_MAX_RAM_SLOTS
;
2868 if (machine
->ram_slots
> max_memslots
) {
2869 error_report("Specified number of memory slots %"
2870 PRIu64
" exceeds max supported %d",
2871 machine
->ram_slots
, max_memslots
);
2875 machine
->device_memory
->base
= ROUND_UP(machine
->ram_size
,
2876 SPAPR_DEVICE_MEM_ALIGN
);
2877 memory_region_init(&machine
->device_memory
->mr
, OBJECT(spapr
),
2878 "device-memory", device_mem_size
);
2879 memory_region_add_subregion(sysmem
, machine
->device_memory
->base
,
2880 &machine
->device_memory
->mr
);
2883 if (smc
->dr_lmb_enabled
) {
2884 spapr_create_lmb_dr_connectors(spapr
);
2887 if (spapr_get_cap(spapr
, SPAPR_CAP_FWNMI
) == SPAPR_CAP_ON
) {
2888 /* Create the error string for live migration blocker */
2889 error_setg(&spapr
->fwnmi_migration_blocker
,
2890 "A machine check is being handled during migration. The handler"
2891 "may run and log hardware error on the destination");
2894 if (mc
->nvdimm_supported
) {
2895 spapr_create_nvdimm_dr_connectors(spapr
);
2898 /* Set up RTAS event infrastructure */
2899 spapr_events_init(spapr
);
2901 /* Set up the RTC RTAS interfaces */
2902 spapr_rtc_create(spapr
);
2904 /* Set up VIO bus */
2905 spapr
->vio_bus
= spapr_vio_bus_init();
2907 for (i
= 0; i
< serial_max_hds(); i
++) {
2909 spapr_vty_create(spapr
->vio_bus
, serial_hd(i
));
2913 /* We always have at least the nvram device on VIO */
2914 spapr_create_nvram(spapr
);
2917 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2918 * connectors (described in root DT node's "ibm,drc-types" property)
2919 * are pre-initialized here. additional child connectors (such as
2920 * connectors for a PHBs PCI slots) are added as needed during their
2921 * parent's realization.
2923 if (smc
->dr_phb_enabled
) {
2924 for (i
= 0; i
< SPAPR_MAX_PHBS
; i
++) {
2925 spapr_dr_connector_new(OBJECT(machine
), TYPE_SPAPR_DRC_PHB
, i
);
2930 spapr_pci_rtas_init();
2932 phb
= spapr_create_default_phb();
2934 for (i
= 0; i
< nb_nics
; i
++) {
2935 NICInfo
*nd
= &nd_table
[i
];
2938 nd
->model
= g_strdup("spapr-vlan");
2941 if (g_str_equal(nd
->model
, "spapr-vlan") ||
2942 g_str_equal(nd
->model
, "ibmveth")) {
2943 spapr_vlan_create(spapr
->vio_bus
, nd
);
2945 pci_nic_init_nofail(&nd_table
[i
], phb
->bus
, nd
->model
, NULL
);
2949 for (i
= 0; i
<= drive_get_max_bus(IF_SCSI
); i
++) {
2950 spapr_vscsi_create(spapr
->vio_bus
);
2954 if (spapr_vga_init(phb
->bus
, &error_fatal
)) {
2955 spapr
->has_graphics
= true;
2956 machine
->usb
|= defaults_enabled() && !machine
->usb_disabled
;
2960 if (smc
->use_ohci_by_default
) {
2961 pci_create_simple(phb
->bus
, -1, "pci-ohci");
2963 pci_create_simple(phb
->bus
, -1, "nec-usb-xhci");
2966 if (spapr
->has_graphics
) {
2967 USBBus
*usb_bus
= usb_bus_find(-1);
2969 usb_create_simple(usb_bus
, "usb-kbd");
2970 usb_create_simple(usb_bus
, "usb-mouse");
2974 if (kernel_filename
) {
2975 uint64_t lowaddr
= 0;
2977 spapr
->kernel_size
= load_elf(kernel_filename
, NULL
,
2978 translate_kernel_address
, spapr
,
2979 NULL
, &lowaddr
, NULL
, NULL
, 1,
2980 PPC_ELF_MACHINE
, 0, 0);
2981 if (spapr
->kernel_size
== ELF_LOAD_WRONG_ENDIAN
) {
2982 spapr
->kernel_size
= load_elf(kernel_filename
, NULL
,
2983 translate_kernel_address
, spapr
, NULL
,
2984 &lowaddr
, NULL
, NULL
, 0,
2987 spapr
->kernel_le
= spapr
->kernel_size
> 0;
2989 if (spapr
->kernel_size
< 0) {
2990 error_report("error loading %s: %s", kernel_filename
,
2991 load_elf_strerror(spapr
->kernel_size
));
2996 if (initrd_filename
) {
2997 /* Try to locate the initrd in the gap between the kernel
2998 * and the firmware. Add a bit of space just in case
3000 spapr
->initrd_base
= (spapr
->kernel_addr
+ spapr
->kernel_size
3001 + 0x1ffff) & ~0xffff;
3002 spapr
->initrd_size
= load_image_targphys(initrd_filename
,
3005 - spapr
->initrd_base
);
3006 if (spapr
->initrd_size
< 0) {
3007 error_report("could not load initial ram disk '%s'",
3014 if (bios_name
== NULL
) {
3015 bios_name
= FW_FILE_NAME
;
3017 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, bios_name
);
3019 error_report("Could not find LPAR firmware '%s'", bios_name
);
3022 fw_size
= load_image_targphys(filename
, 0, FW_MAX_SIZE
);
3024 error_report("Could not load LPAR firmware '%s'", filename
);
3029 /* FIXME: Should register things through the MachineState's qdev
3030 * interface, this is a legacy from the sPAPREnvironment structure
3031 * which predated MachineState but had a similar function */
3032 vmstate_register(NULL
, 0, &vmstate_spapr
, spapr
);
3033 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY
, 1,
3034 &savevm_htab_handlers
, spapr
);
3036 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine
),
3039 qemu_register_boot_set(spapr_boot_set
, spapr
);
3042 * Nothing needs to be done to resume a suspended guest because
3043 * suspending does not change the machine state, so no need for
3044 * a ->wakeup method.
3046 qemu_register_wakeup_support();
3048 if (kvm_enabled()) {
3049 /* to stop and start vmclock */
3050 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change
,
3053 kvmppc_spapr_enable_inkernel_multitce();
3056 qemu_cond_init(&spapr
->fwnmi_machine_check_interlock_cond
);
3059 static int spapr_kvm_type(MachineState
*machine
, const char *vm_type
)
3065 if (!strcmp(vm_type
, "HV")) {
3069 if (!strcmp(vm_type
, "PR")) {
3073 error_report("Unknown kvm-type specified '%s'", vm_type
);
3078 * Implementation of an interface to adjust firmware path
3079 * for the bootindex property handling.
3081 static char *spapr_get_fw_dev_path(FWPathProvider
*p
, BusState
*bus
,
3084 #define CAST(type, obj, name) \
3085 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3086 SCSIDevice
*d
= CAST(SCSIDevice
, dev
, TYPE_SCSI_DEVICE
);
3087 SpaprPhbState
*phb
= CAST(SpaprPhbState
, dev
, TYPE_SPAPR_PCI_HOST_BRIDGE
);
3088 VHostSCSICommon
*vsc
= CAST(VHostSCSICommon
, dev
, TYPE_VHOST_SCSI_COMMON
);
3091 void *spapr
= CAST(void, bus
->parent
, "spapr-vscsi");
3092 VirtIOSCSI
*virtio
= CAST(VirtIOSCSI
, bus
->parent
, TYPE_VIRTIO_SCSI
);
3093 USBDevice
*usb
= CAST(USBDevice
, bus
->parent
, TYPE_USB_DEVICE
);
3097 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3098 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3099 * 0x8000 | (target << 8) | (bus << 5) | lun
3100 * (see the "Logical unit addressing format" table in SAM5)
3102 unsigned id
= 0x8000 | (d
->id
<< 8) | (d
->channel
<< 5) | d
->lun
;
3103 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
3104 (uint64_t)id
<< 48);
3105 } else if (virtio
) {
3107 * We use SRP luns of the form 01000000 | (target << 8) | lun
3108 * in the top 32 bits of the 64-bit LUN
3109 * Note: the quote above is from SLOF and it is wrong,
3110 * the actual binding is:
3111 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3113 unsigned id
= 0x1000000 | (d
->id
<< 16) | d
->lun
;
3114 if (d
->lun
>= 256) {
3115 /* Use the LUN "flat space addressing method" */
3118 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
3119 (uint64_t)id
<< 32);
3122 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3123 * in the top 32 bits of the 64-bit LUN
3125 unsigned usb_port
= atoi(usb
->port
->path
);
3126 unsigned id
= 0x1000000 | (usb_port
<< 16) | d
->lun
;
3127 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
3128 (uint64_t)id
<< 32);
3133 * SLOF probes the USB devices, and if it recognizes that the device is a
3134 * storage device, it changes its name to "storage" instead of "usb-host",
3135 * and additionally adds a child node for the SCSI LUN, so the correct
3136 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3138 if (strcmp("usb-host", qdev_fw_name(dev
)) == 0) {
3139 USBDevice
*usbdev
= CAST(USBDevice
, dev
, TYPE_USB_DEVICE
);
3140 if (usb_host_dev_is_scsi_storage(usbdev
)) {
3141 return g_strdup_printf("storage@%s/disk", usbdev
->port
->path
);
3146 /* Replace "pci" with "pci@800000020000000" */
3147 return g_strdup_printf("pci@%"PRIX64
, phb
->buid
);
3151 /* Same logic as virtio above */
3152 unsigned id
= 0x1000000 | (vsc
->target
<< 16) | vsc
->lun
;
3153 return g_strdup_printf("disk@%"PRIX64
, (uint64_t)id
<< 32);
3156 if (g_str_equal("pci-bridge", qdev_fw_name(dev
))) {
3157 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3158 PCIDevice
*pcidev
= CAST(PCIDevice
, dev
, TYPE_PCI_DEVICE
);
3159 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev
->devfn
));
3165 static char *spapr_get_kvm_type(Object
*obj
, Error
**errp
)
3167 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3169 return g_strdup(spapr
->kvm_type
);
3172 static void spapr_set_kvm_type(Object
*obj
, const char *value
, Error
**errp
)
3174 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3176 g_free(spapr
->kvm_type
);
3177 spapr
->kvm_type
= g_strdup(value
);
3180 static bool spapr_get_modern_hotplug_events(Object
*obj
, Error
**errp
)
3182 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3184 return spapr
->use_hotplug_event_source
;
3187 static void spapr_set_modern_hotplug_events(Object
*obj
, bool value
,
3190 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3192 spapr
->use_hotplug_event_source
= value
;
3195 static bool spapr_get_msix_emulation(Object
*obj
, Error
**errp
)
3200 static char *spapr_get_resize_hpt(Object
*obj
, Error
**errp
)
3202 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3204 switch (spapr
->resize_hpt
) {
3205 case SPAPR_RESIZE_HPT_DEFAULT
:
3206 return g_strdup("default");
3207 case SPAPR_RESIZE_HPT_DISABLED
:
3208 return g_strdup("disabled");
3209 case SPAPR_RESIZE_HPT_ENABLED
:
3210 return g_strdup("enabled");
3211 case SPAPR_RESIZE_HPT_REQUIRED
:
3212 return g_strdup("required");
3214 g_assert_not_reached();
3217 static void spapr_set_resize_hpt(Object
*obj
, const char *value
, Error
**errp
)
3219 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3221 if (strcmp(value
, "default") == 0) {
3222 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_DEFAULT
;
3223 } else if (strcmp(value
, "disabled") == 0) {
3224 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_DISABLED
;
3225 } else if (strcmp(value
, "enabled") == 0) {
3226 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_ENABLED
;
3227 } else if (strcmp(value
, "required") == 0) {
3228 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_REQUIRED
;
3230 error_setg(errp
, "Bad value for \"resize-hpt\" property");
3234 static char *spapr_get_ic_mode(Object
*obj
, Error
**errp
)
3236 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3238 if (spapr
->irq
== &spapr_irq_xics_legacy
) {
3239 return g_strdup("legacy");
3240 } else if (spapr
->irq
== &spapr_irq_xics
) {
3241 return g_strdup("xics");
3242 } else if (spapr
->irq
== &spapr_irq_xive
) {
3243 return g_strdup("xive");
3244 } else if (spapr
->irq
== &spapr_irq_dual
) {
3245 return g_strdup("dual");
3247 g_assert_not_reached();
3250 static void spapr_set_ic_mode(Object
*obj
, const char *value
, Error
**errp
)
3252 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3254 if (SPAPR_MACHINE_GET_CLASS(spapr
)->legacy_irq_allocation
) {
3255 error_setg(errp
, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3259 /* The legacy IRQ backend can not be set */
3260 if (strcmp(value
, "xics") == 0) {
3261 spapr
->irq
= &spapr_irq_xics
;
3262 } else if (strcmp(value
, "xive") == 0) {
3263 spapr
->irq
= &spapr_irq_xive
;
3264 } else if (strcmp(value
, "dual") == 0) {
3265 spapr
->irq
= &spapr_irq_dual
;
3267 error_setg(errp
, "Bad value for \"ic-mode\" property");
3271 static char *spapr_get_host_model(Object
*obj
, Error
**errp
)
3273 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3275 return g_strdup(spapr
->host_model
);
3278 static void spapr_set_host_model(Object
*obj
, const char *value
, Error
**errp
)
3280 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3282 g_free(spapr
->host_model
);
3283 spapr
->host_model
= g_strdup(value
);
3286 static char *spapr_get_host_serial(Object
*obj
, Error
**errp
)
3288 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3290 return g_strdup(spapr
->host_serial
);
3293 static void spapr_set_host_serial(Object
*obj
, const char *value
, Error
**errp
)
3295 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3297 g_free(spapr
->host_serial
);
3298 spapr
->host_serial
= g_strdup(value
);
3301 static void spapr_instance_init(Object
*obj
)
3303 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3304 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
3306 spapr
->htab_fd
= -1;
3307 spapr
->use_hotplug_event_source
= true;
3308 object_property_add_str(obj
, "kvm-type",
3309 spapr_get_kvm_type
, spapr_set_kvm_type
);
3310 object_property_set_description(obj
, "kvm-type",
3311 "Specifies the KVM virtualization mode (HV, PR)");
3312 object_property_add_bool(obj
, "modern-hotplug-events",
3313 spapr_get_modern_hotplug_events
,
3314 spapr_set_modern_hotplug_events
);
3315 object_property_set_description(obj
, "modern-hotplug-events",
3316 "Use dedicated hotplug event mechanism in"
3317 " place of standard EPOW events when possible"
3318 " (required for memory hot-unplug support)");
3319 ppc_compat_add_property(obj
, "max-cpu-compat", &spapr
->max_compat_pvr
,
3320 "Maximum permitted CPU compatibility mode");
3322 object_property_add_str(obj
, "resize-hpt",
3323 spapr_get_resize_hpt
, spapr_set_resize_hpt
);
3324 object_property_set_description(obj
, "resize-hpt",
3325 "Resizing of the Hash Page Table (enabled, disabled, required)");
3326 object_property_add_uint32_ptr(obj
, "vsmt",
3327 &spapr
->vsmt
, OBJ_PROP_FLAG_READWRITE
);
3328 object_property_set_description(obj
, "vsmt",
3329 "Virtual SMT: KVM behaves as if this were"
3330 " the host's SMT mode");
3332 object_property_add_bool(obj
, "vfio-no-msix-emulation",
3333 spapr_get_msix_emulation
, NULL
);
3335 object_property_add_uint64_ptr(obj
, "kernel-addr",
3336 &spapr
->kernel_addr
, OBJ_PROP_FLAG_READWRITE
);
3337 object_property_set_description(obj
, "kernel-addr",
3338 stringify(KERNEL_LOAD_ADDR
)
3339 " for -kernel is the default");
3340 spapr
->kernel_addr
= KERNEL_LOAD_ADDR
;
3341 /* The machine class defines the default interrupt controller mode */
3342 spapr
->irq
= smc
->irq
;
3343 object_property_add_str(obj
, "ic-mode", spapr_get_ic_mode
,
3345 object_property_set_description(obj
, "ic-mode",
3346 "Specifies the interrupt controller mode (xics, xive, dual)");
3348 object_property_add_str(obj
, "host-model",
3349 spapr_get_host_model
, spapr_set_host_model
);
3350 object_property_set_description(obj
, "host-model",
3351 "Host model to advertise in guest device tree");
3352 object_property_add_str(obj
, "host-serial",
3353 spapr_get_host_serial
, spapr_set_host_serial
);
3354 object_property_set_description(obj
, "host-serial",
3355 "Host serial number to advertise in guest device tree");
3358 static void spapr_machine_finalizefn(Object
*obj
)
3360 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3362 g_free(spapr
->kvm_type
);
3365 void spapr_do_system_reset_on_cpu(CPUState
*cs
, run_on_cpu_data arg
)
3367 SpaprMachineState
*spapr
= SPAPR_MACHINE(qdev_get_machine());
3368 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
3369 CPUPPCState
*env
= &cpu
->env
;
3371 cpu_synchronize_state(cs
);
3372 /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3373 if (spapr
->fwnmi_system_reset_addr
!= -1) {
3374 uint64_t rtas_addr
, addr
;
3376 /* get rtas addr from fdt */
3377 rtas_addr
= spapr_get_rtas_addr();
3379 qemu_system_guest_panicked(NULL
);
3383 addr
= rtas_addr
+ RTAS_ERROR_LOG_MAX
+ cs
->cpu_index
* sizeof(uint64_t)*2;
3384 stq_be_phys(&address_space_memory
, addr
, env
->gpr
[3]);
3385 stq_be_phys(&address_space_memory
, addr
+ sizeof(uint64_t), 0);
3388 ppc_cpu_do_system_reset(cs
);
3389 if (spapr
->fwnmi_system_reset_addr
!= -1) {
3390 env
->nip
= spapr
->fwnmi_system_reset_addr
;
3394 static void spapr_nmi(NMIState
*n
, int cpu_index
, Error
**errp
)
3399 async_run_on_cpu(cs
, spapr_do_system_reset_on_cpu
, RUN_ON_CPU_NULL
);
3403 int spapr_lmb_dt_populate(SpaprDrc
*drc
, SpaprMachineState
*spapr
,
3404 void *fdt
, int *fdt_start_offset
, Error
**errp
)
3409 addr
= spapr_drc_index(drc
) * SPAPR_MEMORY_BLOCK_SIZE
;
3410 node
= object_property_get_uint(OBJECT(drc
->dev
), PC_DIMM_NODE_PROP
,
3412 *fdt_start_offset
= spapr_dt_memory_node(fdt
, node
, addr
,
3413 SPAPR_MEMORY_BLOCK_SIZE
);
3417 static void spapr_add_lmbs(DeviceState
*dev
, uint64_t addr_start
, uint64_t size
,
3418 bool dedicated_hp_event_source
, Error
**errp
)
3421 uint32_t nr_lmbs
= size
/SPAPR_MEMORY_BLOCK_SIZE
;
3423 uint64_t addr
= addr_start
;
3424 bool hotplugged
= spapr_drc_hotplugged(dev
);
3425 Error
*local_err
= NULL
;
3427 for (i
= 0; i
< nr_lmbs
; i
++) {
3428 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3429 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
3432 spapr_drc_attach(drc
, dev
, &local_err
);
3434 while (addr
> addr_start
) {
3435 addr
-= SPAPR_MEMORY_BLOCK_SIZE
;
3436 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3437 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
3438 spapr_drc_detach(drc
);
3440 error_propagate(errp
, local_err
);
3444 spapr_drc_reset(drc
);
3446 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
3448 /* send hotplug notification to the
3449 * guest only in case of hotplugged memory
3452 if (dedicated_hp_event_source
) {
3453 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3454 addr_start
/ SPAPR_MEMORY_BLOCK_SIZE
);
3455 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB
,
3457 spapr_drc_index(drc
));
3459 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB
,
3465 static void spapr_memory_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3468 Error
*local_err
= NULL
;
3469 SpaprMachineState
*ms
= SPAPR_MACHINE(hotplug_dev
);
3470 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
3471 uint64_t size
, addr
, slot
;
3472 bool is_nvdimm
= object_dynamic_cast(OBJECT(dev
), TYPE_NVDIMM
);
3474 size
= memory_device_get_region_size(MEMORY_DEVICE(dev
), &error_abort
);
3476 pc_dimm_plug(dimm
, MACHINE(ms
), &local_err
);
3482 addr
= object_property_get_uint(OBJECT(dimm
),
3483 PC_DIMM_ADDR_PROP
, &local_err
);
3487 spapr_add_lmbs(dev
, addr
, size
,
3488 spapr_ovec_test(ms
->ov5_cas
, OV5_HP_EVT
),
3491 slot
= object_property_get_uint(OBJECT(dimm
),
3492 PC_DIMM_SLOT_PROP
, &local_err
);
3496 spapr_add_nvdimm(dev
, slot
, &local_err
);
3506 pc_dimm_unplug(dimm
, MACHINE(ms
));
3508 error_propagate(errp
, local_err
);
3511 static void spapr_memory_pre_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3514 const SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(hotplug_dev
);
3515 SpaprMachineState
*spapr
= SPAPR_MACHINE(hotplug_dev
);
3516 const MachineClass
*mc
= MACHINE_CLASS(smc
);
3517 bool is_nvdimm
= object_dynamic_cast(OBJECT(dev
), TYPE_NVDIMM
);
3518 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
3519 Error
*local_err
= NULL
;
3524 if (!smc
->dr_lmb_enabled
) {
3525 error_setg(errp
, "Memory hotplug not supported for this machine");
3529 if (is_nvdimm
&& !mc
->nvdimm_supported
) {
3530 error_setg(errp
, "NVDIMM hotplug not supported for this machine");
3534 size
= memory_device_get_region_size(MEMORY_DEVICE(dimm
), &local_err
);
3536 error_propagate(errp
, local_err
);
3540 if (!is_nvdimm
&& size
% SPAPR_MEMORY_BLOCK_SIZE
) {
3541 error_setg(errp
, "Hotplugged memory size must be a multiple of "
3542 "%" PRIu64
" MB", SPAPR_MEMORY_BLOCK_SIZE
/ MiB
);
3544 } else if (is_nvdimm
) {
3545 spapr_nvdimm_validate_opts(NVDIMM(dev
), size
, &local_err
);
3547 error_propagate(errp
, local_err
);
3552 memdev
= object_property_get_link(OBJECT(dimm
), PC_DIMM_MEMDEV_PROP
,
3554 pagesize
= host_memory_backend_pagesize(MEMORY_BACKEND(memdev
));
3555 spapr_check_pagesize(spapr
, pagesize
, &local_err
);
3557 error_propagate(errp
, local_err
);
3561 pc_dimm_pre_plug(dimm
, MACHINE(hotplug_dev
), NULL
, errp
);
3564 struct SpaprDimmState
{
3567 QTAILQ_ENTRY(SpaprDimmState
) next
;
3570 static SpaprDimmState
*spapr_pending_dimm_unplugs_find(SpaprMachineState
*s
,
3573 SpaprDimmState
*dimm_state
= NULL
;
3575 QTAILQ_FOREACH(dimm_state
, &s
->pending_dimm_unplugs
, next
) {
3576 if (dimm_state
->dimm
== dimm
) {
3583 static SpaprDimmState
*spapr_pending_dimm_unplugs_add(SpaprMachineState
*spapr
,
3587 SpaprDimmState
*ds
= NULL
;
3590 * If this request is for a DIMM whose removal had failed earlier
3591 * (due to guest's refusal to remove the LMBs), we would have this
3592 * dimm already in the pending_dimm_unplugs list. In that
3593 * case don't add again.
3595 ds
= spapr_pending_dimm_unplugs_find(spapr
, dimm
);
3597 ds
= g_malloc0(sizeof(SpaprDimmState
));
3598 ds
->nr_lmbs
= nr_lmbs
;
3600 QTAILQ_INSERT_HEAD(&spapr
->pending_dimm_unplugs
, ds
, next
);
3605 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState
*spapr
,
3606 SpaprDimmState
*dimm_state
)
3608 QTAILQ_REMOVE(&spapr
->pending_dimm_unplugs
, dimm_state
, next
);
3612 static SpaprDimmState
*spapr_recover_pending_dimm_state(SpaprMachineState
*ms
,
3616 uint64_t size
= memory_device_get_region_size(MEMORY_DEVICE(dimm
),
3618 uint32_t nr_lmbs
= size
/ SPAPR_MEMORY_BLOCK_SIZE
;
3619 uint32_t avail_lmbs
= 0;
3620 uint64_t addr_start
, addr
;
3623 addr_start
= object_property_get_int(OBJECT(dimm
), PC_DIMM_ADDR_PROP
,
3627 for (i
= 0; i
< nr_lmbs
; i
++) {
3628 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3629 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
3634 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
3637 return spapr_pending_dimm_unplugs_add(ms
, avail_lmbs
, dimm
);
3640 /* Callback to be called during DRC release. */
3641 void spapr_lmb_release(DeviceState
*dev
)
3643 HotplugHandler
*hotplug_ctrl
= qdev_get_hotplug_handler(dev
);
3644 SpaprMachineState
*spapr
= SPAPR_MACHINE(hotplug_ctrl
);
3645 SpaprDimmState
*ds
= spapr_pending_dimm_unplugs_find(spapr
, PC_DIMM(dev
));
3647 /* This information will get lost if a migration occurs
3648 * during the unplug process. In this case recover it. */
3650 ds
= spapr_recover_pending_dimm_state(spapr
, PC_DIMM(dev
));
3652 /* The DRC being examined by the caller at least must be counted */
3653 g_assert(ds
->nr_lmbs
);
3656 if (--ds
->nr_lmbs
) {
3661 * Now that all the LMBs have been removed by the guest, call the
3662 * unplug handler chain. This can never fail.
3664 hotplug_handler_unplug(hotplug_ctrl
, dev
, &error_abort
);
3665 object_unparent(OBJECT(dev
));
3668 static void spapr_memory_unplug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
3670 SpaprMachineState
*spapr
= SPAPR_MACHINE(hotplug_dev
);
3671 SpaprDimmState
*ds
= spapr_pending_dimm_unplugs_find(spapr
, PC_DIMM(dev
));
3673 pc_dimm_unplug(PC_DIMM(dev
), MACHINE(hotplug_dev
));
3674 object_property_set_bool(OBJECT(dev
), false, "realized", &error_abort
);
3675 spapr_pending_dimm_unplugs_remove(spapr
, ds
);
3678 static void spapr_memory_unplug_request(HotplugHandler
*hotplug_dev
,
3679 DeviceState
*dev
, Error
**errp
)
3681 SpaprMachineState
*spapr
= SPAPR_MACHINE(hotplug_dev
);
3682 Error
*local_err
= NULL
;
3683 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
3685 uint64_t size
, addr_start
, addr
;
3689 if (object_dynamic_cast(OBJECT(dev
), TYPE_NVDIMM
)) {
3690 error_setg(&local_err
,
3691 "nvdimm device hot unplug is not supported yet.");
3695 size
= memory_device_get_region_size(MEMORY_DEVICE(dimm
), &error_abort
);
3696 nr_lmbs
= size
/ SPAPR_MEMORY_BLOCK_SIZE
;
3698 addr_start
= object_property_get_uint(OBJECT(dimm
), PC_DIMM_ADDR_PROP
,
3705 * An existing pending dimm state for this DIMM means that there is an
3706 * unplug operation in progress, waiting for the spapr_lmb_release
3707 * callback to complete the job (BQL can't cover that far). In this case,
3708 * bail out to avoid detaching DRCs that were already released.
3710 if (spapr_pending_dimm_unplugs_find(spapr
, dimm
)) {
3711 error_setg(&local_err
,
3712 "Memory unplug already in progress for device %s",
3717 spapr_pending_dimm_unplugs_add(spapr
, nr_lmbs
, dimm
);
3720 for (i
= 0; i
< nr_lmbs
; i
++) {
3721 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3722 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
3725 spapr_drc_detach(drc
);
3726 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
3729 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3730 addr_start
/ SPAPR_MEMORY_BLOCK_SIZE
);
3731 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB
,
3732 nr_lmbs
, spapr_drc_index(drc
));
3734 error_propagate(errp
, local_err
);
3737 /* Callback to be called during DRC release. */
3738 void spapr_core_release(DeviceState
*dev
)
3740 HotplugHandler
*hotplug_ctrl
= qdev_get_hotplug_handler(dev
);
3742 /* Call the unplug handler chain. This can never fail. */
3743 hotplug_handler_unplug(hotplug_ctrl
, dev
, &error_abort
);
3744 object_unparent(OBJECT(dev
));
3747 static void spapr_core_unplug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
3749 MachineState
*ms
= MACHINE(hotplug_dev
);
3750 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(ms
);
3751 CPUCore
*cc
= CPU_CORE(dev
);
3752 CPUArchId
*core_slot
= spapr_find_cpu_slot(ms
, cc
->core_id
, NULL
);
3754 if (smc
->pre_2_10_has_unused_icps
) {
3755 SpaprCpuCore
*sc
= SPAPR_CPU_CORE(OBJECT(dev
));
3758 for (i
= 0; i
< cc
->nr_threads
; i
++) {
3759 CPUState
*cs
= CPU(sc
->threads
[i
]);
3761 pre_2_10_vmstate_register_dummy_icp(cs
->cpu_index
);
3766 core_slot
->cpu
= NULL
;
3767 object_property_set_bool(OBJECT(dev
), false, "realized", &error_abort
);
3771 void spapr_core_unplug_request(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3774 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
3777 CPUCore
*cc
= CPU_CORE(dev
);
3779 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev
), cc
->core_id
, &index
)) {
3780 error_setg(errp
, "Unable to find CPU core with core-id: %d",
3785 error_setg(errp
, "Boot CPU core may not be unplugged");
3789 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_CPU
,
3790 spapr_vcpu_id(spapr
, cc
->core_id
));
3793 if (!spapr_drc_unplug_requested(drc
)) {
3794 spapr_drc_detach(drc
);
3795 spapr_hotplug_req_remove_by_index(drc
);
3799 int spapr_core_dt_populate(SpaprDrc
*drc
, SpaprMachineState
*spapr
,
3800 void *fdt
, int *fdt_start_offset
, Error
**errp
)
3802 SpaprCpuCore
*core
= SPAPR_CPU_CORE(drc
->dev
);
3803 CPUState
*cs
= CPU(core
->threads
[0]);
3804 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
3805 DeviceClass
*dc
= DEVICE_GET_CLASS(cs
);
3806 int id
= spapr_get_vcpu_id(cpu
);
3810 nodename
= g_strdup_printf("%s@%x", dc
->fw_name
, id
);
3811 offset
= fdt_add_subnode(fdt
, 0, nodename
);
3814 spapr_dt_cpu(cs
, fdt
, offset
, spapr
);
3816 *fdt_start_offset
= offset
;
3820 static void spapr_core_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3823 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
3824 MachineClass
*mc
= MACHINE_GET_CLASS(spapr
);
3825 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
3826 SpaprCpuCore
*core
= SPAPR_CPU_CORE(OBJECT(dev
));
3827 CPUCore
*cc
= CPU_CORE(dev
);
3830 Error
*local_err
= NULL
;
3831 CPUArchId
*core_slot
;
3833 bool hotplugged
= spapr_drc_hotplugged(dev
);
3836 core_slot
= spapr_find_cpu_slot(MACHINE(hotplug_dev
), cc
->core_id
, &index
);
3838 error_setg(errp
, "Unable to find CPU core with core-id: %d",
3842 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_CPU
,
3843 spapr_vcpu_id(spapr
, cc
->core_id
));
3845 g_assert(drc
|| !mc
->has_hotpluggable_cpus
);
3848 spapr_drc_attach(drc
, dev
, &local_err
);
3850 error_propagate(errp
, local_err
);
3856 * Send hotplug notification interrupt to the guest only
3857 * in case of hotplugged CPUs.
3859 spapr_hotplug_req_add_by_index(drc
);
3861 spapr_drc_reset(drc
);
3865 core_slot
->cpu
= OBJECT(dev
);
3867 if (smc
->pre_2_10_has_unused_icps
) {
3868 for (i
= 0; i
< cc
->nr_threads
; i
++) {
3869 cs
= CPU(core
->threads
[i
]);
3870 pre_2_10_vmstate_unregister_dummy_icp(cs
->cpu_index
);
3875 * Set compatibility mode to match the boot CPU, which was either set
3876 * by the machine reset code or by CAS.
3879 for (i
= 0; i
< cc
->nr_threads
; i
++) {
3880 ppc_set_compat(core
->threads
[i
], POWERPC_CPU(first_cpu
)->compat_pvr
,
3883 error_propagate(errp
, local_err
);
3890 static void spapr_core_pre_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3893 MachineState
*machine
= MACHINE(OBJECT(hotplug_dev
));
3894 MachineClass
*mc
= MACHINE_GET_CLASS(hotplug_dev
);
3895 Error
*local_err
= NULL
;
3896 CPUCore
*cc
= CPU_CORE(dev
);
3897 const char *base_core_type
= spapr_get_cpu_core_type(machine
->cpu_type
);
3898 const char *type
= object_get_typename(OBJECT(dev
));
3899 CPUArchId
*core_slot
;
3901 unsigned int smp_threads
= machine
->smp
.threads
;
3903 if (dev
->hotplugged
&& !mc
->has_hotpluggable_cpus
) {
3904 error_setg(&local_err
, "CPU hotplug not supported for this machine");
3908 if (strcmp(base_core_type
, type
)) {
3909 error_setg(&local_err
, "CPU core type should be %s", base_core_type
);
3913 if (cc
->core_id
% smp_threads
) {
3914 error_setg(&local_err
, "invalid core id %d", cc
->core_id
);
3919 * In general we should have homogeneous threads-per-core, but old
3920 * (pre hotplug support) machine types allow the last core to have
3921 * reduced threads as a compatibility hack for when we allowed
3922 * total vcpus not a multiple of threads-per-core.
3924 if (mc
->has_hotpluggable_cpus
&& (cc
->nr_threads
!= smp_threads
)) {
3925 error_setg(&local_err
, "invalid nr-threads %d, must be %d",
3926 cc
->nr_threads
, smp_threads
);
3930 core_slot
= spapr_find_cpu_slot(MACHINE(hotplug_dev
), cc
->core_id
, &index
);
3932 error_setg(&local_err
, "core id %d out of range", cc
->core_id
);
3936 if (core_slot
->cpu
) {
3937 error_setg(&local_err
, "core %d already populated", cc
->core_id
);
3941 numa_cpu_pre_plug(core_slot
, dev
, &local_err
);
3944 error_propagate(errp
, local_err
);
3947 int spapr_phb_dt_populate(SpaprDrc
*drc
, SpaprMachineState
*spapr
,
3948 void *fdt
, int *fdt_start_offset
, Error
**errp
)
3950 SpaprPhbState
*sphb
= SPAPR_PCI_HOST_BRIDGE(drc
->dev
);
3953 intc_phandle
= spapr_irq_get_phandle(spapr
, spapr
->fdt_blob
, errp
);
3954 if (intc_phandle
<= 0) {
3958 if (spapr_dt_phb(spapr
, sphb
, intc_phandle
, fdt
, fdt_start_offset
)) {
3959 error_setg(errp
, "unable to create FDT node for PHB %d", sphb
->index
);
3963 /* generally SLOF creates these, for hotplug it's up to QEMU */
3964 _FDT(fdt_setprop_string(fdt
, *fdt_start_offset
, "name", "pci"));
3969 static void spapr_phb_pre_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3972 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
3973 SpaprPhbState
*sphb
= SPAPR_PCI_HOST_BRIDGE(dev
);
3974 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
3975 const unsigned windows_supported
= spapr_phb_windows_supported(sphb
);
3977 if (dev
->hotplugged
&& !smc
->dr_phb_enabled
) {
3978 error_setg(errp
, "PHB hotplug not supported for this machine");
3982 if (sphb
->index
== (uint32_t)-1) {
3983 error_setg(errp
, "\"index\" for PAPR PHB is mandatory");
3988 * This will check that sphb->index doesn't exceed the maximum number of
3989 * PHBs for the current machine type.
3991 smc
->phb_placement(spapr
, sphb
->index
,
3992 &sphb
->buid
, &sphb
->io_win_addr
,
3993 &sphb
->mem_win_addr
, &sphb
->mem64_win_addr
,
3994 windows_supported
, sphb
->dma_liobn
,
3995 &sphb
->nv2_gpa_win_addr
, &sphb
->nv2_atsd_win_addr
,
3999 static void spapr_phb_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
4002 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
4003 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
4004 SpaprPhbState
*sphb
= SPAPR_PCI_HOST_BRIDGE(dev
);
4006 bool hotplugged
= spapr_drc_hotplugged(dev
);
4007 Error
*local_err
= NULL
;
4009 if (!smc
->dr_phb_enabled
) {
4013 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_PHB
, sphb
->index
);
4014 /* hotplug hooks should check it's enabled before getting this far */
4017 spapr_drc_attach(drc
, dev
, &local_err
);
4019 error_propagate(errp
, local_err
);
4024 spapr_hotplug_req_add_by_index(drc
);
4026 spapr_drc_reset(drc
);
4030 void spapr_phb_release(DeviceState
*dev
)
4032 HotplugHandler
*hotplug_ctrl
= qdev_get_hotplug_handler(dev
);
4034 hotplug_handler_unplug(hotplug_ctrl
, dev
, &error_abort
);
4035 object_unparent(OBJECT(dev
));
4038 static void spapr_phb_unplug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
4040 object_property_set_bool(OBJECT(dev
), false, "realized", &error_abort
);
4043 static void spapr_phb_unplug_request(HotplugHandler
*hotplug_dev
,
4044 DeviceState
*dev
, Error
**errp
)
4046 SpaprPhbState
*sphb
= SPAPR_PCI_HOST_BRIDGE(dev
);
4049 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_PHB
, sphb
->index
);
4052 if (!spapr_drc_unplug_requested(drc
)) {
4053 spapr_drc_detach(drc
);
4054 spapr_hotplug_req_remove_by_index(drc
);
4058 static void spapr_tpm_proxy_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
4061 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
4062 SpaprTpmProxy
*tpm_proxy
= SPAPR_TPM_PROXY(dev
);
4064 if (spapr
->tpm_proxy
!= NULL
) {
4065 error_setg(errp
, "Only one TPM proxy can be specified for this machine");
4069 spapr
->tpm_proxy
= tpm_proxy
;
4072 static void spapr_tpm_proxy_unplug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
4074 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
4076 object_property_set_bool(OBJECT(dev
), false, "realized", &error_abort
);
4077 object_unparent(OBJECT(dev
));
4078 spapr
->tpm_proxy
= NULL
;
4081 static void spapr_machine_device_plug(HotplugHandler
*hotplug_dev
,
4082 DeviceState
*dev
, Error
**errp
)
4084 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
4085 spapr_memory_plug(hotplug_dev
, dev
, errp
);
4086 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
4087 spapr_core_plug(hotplug_dev
, dev
, errp
);
4088 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_PCI_HOST_BRIDGE
)) {
4089 spapr_phb_plug(hotplug_dev
, dev
, errp
);
4090 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_TPM_PROXY
)) {
4091 spapr_tpm_proxy_plug(hotplug_dev
, dev
, errp
);
4095 static void spapr_machine_device_unplug(HotplugHandler
*hotplug_dev
,
4096 DeviceState
*dev
, Error
**errp
)
4098 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
4099 spapr_memory_unplug(hotplug_dev
, dev
);
4100 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
4101 spapr_core_unplug(hotplug_dev
, dev
);
4102 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_PCI_HOST_BRIDGE
)) {
4103 spapr_phb_unplug(hotplug_dev
, dev
);
4104 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_TPM_PROXY
)) {
4105 spapr_tpm_proxy_unplug(hotplug_dev
, dev
);
4109 static void spapr_machine_device_unplug_request(HotplugHandler
*hotplug_dev
,
4110 DeviceState
*dev
, Error
**errp
)
4112 SpaprMachineState
*sms
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
4113 MachineClass
*mc
= MACHINE_GET_CLASS(sms
);
4114 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4116 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
4117 if (spapr_ovec_test(sms
->ov5_cas
, OV5_HP_EVT
)) {
4118 spapr_memory_unplug_request(hotplug_dev
, dev
, errp
);
4120 /* NOTE: this means there is a window after guest reset, prior to
4121 * CAS negotiation, where unplug requests will fail due to the
4122 * capability not being detected yet. This is a bit different than
4123 * the case with PCI unplug, where the events will be queued and
4124 * eventually handled by the guest after boot
4126 error_setg(errp
, "Memory hot unplug not supported for this guest");
4128 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
4129 if (!mc
->has_hotpluggable_cpus
) {
4130 error_setg(errp
, "CPU hot unplug not supported on this machine");
4133 spapr_core_unplug_request(hotplug_dev
, dev
, errp
);
4134 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_PCI_HOST_BRIDGE
)) {
4135 if (!smc
->dr_phb_enabled
) {
4136 error_setg(errp
, "PHB hot unplug not supported on this machine");
4139 spapr_phb_unplug_request(hotplug_dev
, dev
, errp
);
4140 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_TPM_PROXY
)) {
4141 spapr_tpm_proxy_unplug(hotplug_dev
, dev
);
4145 static void spapr_machine_device_pre_plug(HotplugHandler
*hotplug_dev
,
4146 DeviceState
*dev
, Error
**errp
)
4148 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
4149 spapr_memory_pre_plug(hotplug_dev
, dev
, errp
);
4150 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
4151 spapr_core_pre_plug(hotplug_dev
, dev
, errp
);
4152 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_PCI_HOST_BRIDGE
)) {
4153 spapr_phb_pre_plug(hotplug_dev
, dev
, errp
);
4157 static HotplugHandler
*spapr_get_hotplug_handler(MachineState
*machine
,
4160 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
) ||
4161 object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
) ||
4162 object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_PCI_HOST_BRIDGE
) ||
4163 object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_TPM_PROXY
)) {
4164 return HOTPLUG_HANDLER(machine
);
4166 if (object_dynamic_cast(OBJECT(dev
), TYPE_PCI_DEVICE
)) {
4167 PCIDevice
*pcidev
= PCI_DEVICE(dev
);
4168 PCIBus
*root
= pci_device_root_bus(pcidev
);
4169 SpaprPhbState
*phb
=
4170 (SpaprPhbState
*)object_dynamic_cast(OBJECT(BUS(root
)->parent
),
4171 TYPE_SPAPR_PCI_HOST_BRIDGE
);
4174 return HOTPLUG_HANDLER(phb
);
4180 static CpuInstanceProperties
4181 spapr_cpu_index_to_props(MachineState
*machine
, unsigned cpu_index
)
4183 CPUArchId
*core_slot
;
4184 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
4186 /* make sure possible_cpu are intialized */
4187 mc
->possible_cpu_arch_ids(machine
);
4188 /* get CPU core slot containing thread that matches cpu_index */
4189 core_slot
= spapr_find_cpu_slot(machine
, cpu_index
, NULL
);
4191 return core_slot
->props
;
4194 static int64_t spapr_get_default_cpu_node_id(const MachineState
*ms
, int idx
)
4196 return idx
/ ms
->smp
.cores
% ms
->numa_state
->num_nodes
;
4199 static const CPUArchIdList
*spapr_possible_cpu_arch_ids(MachineState
*machine
)
4202 unsigned int smp_threads
= machine
->smp
.threads
;
4203 unsigned int smp_cpus
= machine
->smp
.cpus
;
4204 const char *core_type
;
4205 int spapr_max_cores
= machine
->smp
.max_cpus
/ smp_threads
;
4206 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
4208 if (!mc
->has_hotpluggable_cpus
) {
4209 spapr_max_cores
= QEMU_ALIGN_UP(smp_cpus
, smp_threads
) / smp_threads
;
4211 if (machine
->possible_cpus
) {
4212 assert(machine
->possible_cpus
->len
== spapr_max_cores
);
4213 return machine
->possible_cpus
;
4216 core_type
= spapr_get_cpu_core_type(machine
->cpu_type
);
4218 error_report("Unable to find sPAPR CPU Core definition");
4222 machine
->possible_cpus
= g_malloc0(sizeof(CPUArchIdList
) +
4223 sizeof(CPUArchId
) * spapr_max_cores
);
4224 machine
->possible_cpus
->len
= spapr_max_cores
;
4225 for (i
= 0; i
< machine
->possible_cpus
->len
; i
++) {
4226 int core_id
= i
* smp_threads
;
4228 machine
->possible_cpus
->cpus
[i
].type
= core_type
;
4229 machine
->possible_cpus
->cpus
[i
].vcpus_count
= smp_threads
;
4230 machine
->possible_cpus
->cpus
[i
].arch_id
= core_id
;
4231 machine
->possible_cpus
->cpus
[i
].props
.has_core_id
= true;
4232 machine
->possible_cpus
->cpus
[i
].props
.core_id
= core_id
;
4234 return machine
->possible_cpus
;
4237 static void spapr_phb_placement(SpaprMachineState
*spapr
, uint32_t index
,
4238 uint64_t *buid
, hwaddr
*pio
,
4239 hwaddr
*mmio32
, hwaddr
*mmio64
,
4240 unsigned n_dma
, uint32_t *liobns
,
4241 hwaddr
*nv2gpa
, hwaddr
*nv2atsd
, Error
**errp
)
4244 * New-style PHB window placement.
4246 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4247 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4250 * Some guest kernels can't work with MMIO windows above 1<<46
4251 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4253 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4254 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4255 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4256 * 1TiB 64-bit MMIO windows for each PHB.
4258 const uint64_t base_buid
= 0x800000020000000ULL
;
4261 /* Sanity check natural alignments */
4262 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE
% SPAPR_PCI_MEM64_WIN_SIZE
) != 0);
4263 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT
% SPAPR_PCI_MEM64_WIN_SIZE
) != 0);
4264 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE
% SPAPR_PCI_MEM32_WIN_SIZE
) != 0);
4265 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE
% SPAPR_PCI_IO_WIN_SIZE
) != 0);
4266 /* Sanity check bounds */
4267 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS
* SPAPR_PCI_IO_WIN_SIZE
) >
4268 SPAPR_PCI_MEM32_WIN_SIZE
);
4269 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS
* SPAPR_PCI_MEM32_WIN_SIZE
) >
4270 SPAPR_PCI_MEM64_WIN_SIZE
);
4272 if (index
>= SPAPR_MAX_PHBS
) {
4273 error_setg(errp
, "\"index\" for PAPR PHB is too large (max %llu)",
4274 SPAPR_MAX_PHBS
- 1);
4278 *buid
= base_buid
+ index
;
4279 for (i
= 0; i
< n_dma
; ++i
) {
4280 liobns
[i
] = SPAPR_PCI_LIOBN(index
, i
);
4283 *pio
= SPAPR_PCI_BASE
+ index
* SPAPR_PCI_IO_WIN_SIZE
;
4284 *mmio32
= SPAPR_PCI_BASE
+ (index
+ 1) * SPAPR_PCI_MEM32_WIN_SIZE
;
4285 *mmio64
= SPAPR_PCI_BASE
+ (index
+ 1) * SPAPR_PCI_MEM64_WIN_SIZE
;
4287 *nv2gpa
= SPAPR_PCI_NV2RAM64_WIN_BASE
+ index
* SPAPR_PCI_NV2RAM64_WIN_SIZE
;
4288 *nv2atsd
= SPAPR_PCI_NV2ATSD_WIN_BASE
+ index
* SPAPR_PCI_NV2ATSD_WIN_SIZE
;
4291 static ICSState
*spapr_ics_get(XICSFabric
*dev
, int irq
)
4293 SpaprMachineState
*spapr
= SPAPR_MACHINE(dev
);
4295 return ics_valid_irq(spapr
->ics
, irq
) ? spapr
->ics
: NULL
;
4298 static void spapr_ics_resend(XICSFabric
*dev
)
4300 SpaprMachineState
*spapr
= SPAPR_MACHINE(dev
);
4302 ics_resend(spapr
->ics
);
4305 static ICPState
*spapr_icp_get(XICSFabric
*xi
, int vcpu_id
)
4307 PowerPCCPU
*cpu
= spapr_find_cpu(vcpu_id
);
4309 return cpu
? spapr_cpu_state(cpu
)->icp
: NULL
;
4312 static void spapr_pic_print_info(InterruptStatsProvider
*obj
,
4315 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
4317 spapr_irq_print_info(spapr
, mon
);
4318 monitor_printf(mon
, "irqchip: %s\n",
4319 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4323 * This is a XIVE only operation
4325 static int spapr_match_nvt(XiveFabric
*xfb
, uint8_t format
,
4326 uint8_t nvt_blk
, uint32_t nvt_idx
,
4327 bool cam_ignore
, uint8_t priority
,
4328 uint32_t logic_serv
, XiveTCTXMatch
*match
)
4330 SpaprMachineState
*spapr
= SPAPR_MACHINE(xfb
);
4331 XivePresenter
*xptr
= XIVE_PRESENTER(spapr
->active_intc
);
4332 XivePresenterClass
*xpc
= XIVE_PRESENTER_GET_CLASS(xptr
);
4335 count
= xpc
->match_nvt(xptr
, format
, nvt_blk
, nvt_idx
, cam_ignore
,
4336 priority
, logic_serv
, match
);
4342 * When we implement the save and restore of the thread interrupt
4343 * contexts in the enter/exit CPU handlers of the machine and the
4344 * escalations in QEMU, we should be able to handle non dispatched
4347 * Until this is done, the sPAPR machine should find at least one
4348 * matching context always.
4351 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: NVT %x/%x is not dispatched\n",
4358 int spapr_get_vcpu_id(PowerPCCPU
*cpu
)
4360 return cpu
->vcpu_id
;
4363 void spapr_set_vcpu_id(PowerPCCPU
*cpu
, int cpu_index
, Error
**errp
)
4365 SpaprMachineState
*spapr
= SPAPR_MACHINE(qdev_get_machine());
4366 MachineState
*ms
= MACHINE(spapr
);
4369 vcpu_id
= spapr_vcpu_id(spapr
, cpu_index
);
4371 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id
)) {
4372 error_setg(errp
, "Can't create CPU with id %d in KVM", vcpu_id
);
4373 error_append_hint(errp
, "Adjust the number of cpus to %d "
4374 "or try to raise the number of threads per core\n",
4375 vcpu_id
* ms
->smp
.threads
/ spapr
->vsmt
);
4379 cpu
->vcpu_id
= vcpu_id
;
4382 PowerPCCPU
*spapr_find_cpu(int vcpu_id
)
4387 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
4389 if (spapr_get_vcpu_id(cpu
) == vcpu_id
) {
4397 static void spapr_cpu_exec_enter(PPCVirtualHypervisor
*vhyp
, PowerPCCPU
*cpu
)
4399 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
4401 /* These are only called by TCG, KVM maintains dispatch state */
4403 spapr_cpu
->prod
= false;
4404 if (spapr_cpu
->vpa_addr
) {
4405 CPUState
*cs
= CPU(cpu
);
4408 dispatch
= ldl_be_phys(cs
->as
,
4409 spapr_cpu
->vpa_addr
+ VPA_DISPATCH_COUNTER
);
4411 if ((dispatch
& 1) != 0) {
4412 qemu_log_mask(LOG_GUEST_ERROR
,
4413 "VPA: incorrect dispatch counter value for "
4414 "dispatched partition %u, correcting.\n", dispatch
);
4418 spapr_cpu
->vpa_addr
+ VPA_DISPATCH_COUNTER
, dispatch
);
4422 static void spapr_cpu_exec_exit(PPCVirtualHypervisor
*vhyp
, PowerPCCPU
*cpu
)
4424 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
4426 if (spapr_cpu
->vpa_addr
) {
4427 CPUState
*cs
= CPU(cpu
);
4430 dispatch
= ldl_be_phys(cs
->as
,
4431 spapr_cpu
->vpa_addr
+ VPA_DISPATCH_COUNTER
);
4433 if ((dispatch
& 1) != 1) {
4434 qemu_log_mask(LOG_GUEST_ERROR
,
4435 "VPA: incorrect dispatch counter value for "
4436 "preempted partition %u, correcting.\n", dispatch
);
4440 spapr_cpu
->vpa_addr
+ VPA_DISPATCH_COUNTER
, dispatch
);
4444 static void spapr_machine_class_init(ObjectClass
*oc
, void *data
)
4446 MachineClass
*mc
= MACHINE_CLASS(oc
);
4447 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(oc
);
4448 FWPathProviderClass
*fwc
= FW_PATH_PROVIDER_CLASS(oc
);
4449 NMIClass
*nc
= NMI_CLASS(oc
);
4450 HotplugHandlerClass
*hc
= HOTPLUG_HANDLER_CLASS(oc
);
4451 PPCVirtualHypervisorClass
*vhc
= PPC_VIRTUAL_HYPERVISOR_CLASS(oc
);
4452 XICSFabricClass
*xic
= XICS_FABRIC_CLASS(oc
);
4453 InterruptStatsProviderClass
*ispc
= INTERRUPT_STATS_PROVIDER_CLASS(oc
);
4454 XiveFabricClass
*xfc
= XIVE_FABRIC_CLASS(oc
);
4456 mc
->desc
= "pSeries Logical Partition (PAPR compliant)";
4457 mc
->ignore_boot_device_suffixes
= true;
4460 * We set up the default / latest behaviour here. The class_init
4461 * functions for the specific versioned machine types can override
4462 * these details for backwards compatibility
4464 mc
->init
= spapr_machine_init
;
4465 mc
->reset
= spapr_machine_reset
;
4466 mc
->block_default_type
= IF_SCSI
;
4467 mc
->max_cpus
= 1024;
4468 mc
->no_parallel
= 1;
4469 mc
->default_boot_order
= "";
4470 mc
->default_ram_size
= 512 * MiB
;
4471 mc
->default_ram_id
= "ppc_spapr.ram";
4472 mc
->default_display
= "std";
4473 mc
->kvm_type
= spapr_kvm_type
;
4474 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_SPAPR_PCI_HOST_BRIDGE
);
4475 mc
->pci_allow_0_address
= true;
4476 assert(!mc
->get_hotplug_handler
);
4477 mc
->get_hotplug_handler
= spapr_get_hotplug_handler
;
4478 hc
->pre_plug
= spapr_machine_device_pre_plug
;
4479 hc
->plug
= spapr_machine_device_plug
;
4480 mc
->cpu_index_to_instance_props
= spapr_cpu_index_to_props
;
4481 mc
->get_default_cpu_node_id
= spapr_get_default_cpu_node_id
;
4482 mc
->possible_cpu_arch_ids
= spapr_possible_cpu_arch_ids
;
4483 hc
->unplug_request
= spapr_machine_device_unplug_request
;
4484 hc
->unplug
= spapr_machine_device_unplug
;
4486 smc
->dr_lmb_enabled
= true;
4487 smc
->update_dt_enabled
= true;
4488 mc
->default_cpu_type
= POWERPC_CPU_TYPE_NAME("power9_v2.0");
4489 mc
->has_hotpluggable_cpus
= true;
4490 mc
->nvdimm_supported
= true;
4491 smc
->resize_hpt_default
= SPAPR_RESIZE_HPT_ENABLED
;
4492 fwc
->get_dev_path
= spapr_get_fw_dev_path
;
4493 nc
->nmi_monitor_handler
= spapr_nmi
;
4494 smc
->phb_placement
= spapr_phb_placement
;
4495 vhc
->hypercall
= emulate_spapr_hypercall
;
4496 vhc
->hpt_mask
= spapr_hpt_mask
;
4497 vhc
->map_hptes
= spapr_map_hptes
;
4498 vhc
->unmap_hptes
= spapr_unmap_hptes
;
4499 vhc
->hpte_set_c
= spapr_hpte_set_c
;
4500 vhc
->hpte_set_r
= spapr_hpte_set_r
;
4501 vhc
->get_pate
= spapr_get_pate
;
4502 vhc
->encode_hpt_for_kvm_pr
= spapr_encode_hpt_for_kvm_pr
;
4503 vhc
->cpu_exec_enter
= spapr_cpu_exec_enter
;
4504 vhc
->cpu_exec_exit
= spapr_cpu_exec_exit
;
4505 xic
->ics_get
= spapr_ics_get
;
4506 xic
->ics_resend
= spapr_ics_resend
;
4507 xic
->icp_get
= spapr_icp_get
;
4508 ispc
->print_info
= spapr_pic_print_info
;
4509 /* Force NUMA node memory size to be a multiple of
4510 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4511 * in which LMBs are represented and hot-added
4513 mc
->numa_mem_align_shift
= 28;
4514 mc
->numa_mem_supported
= true;
4515 mc
->auto_enable_numa
= true;
4517 smc
->default_caps
.caps
[SPAPR_CAP_HTM
] = SPAPR_CAP_OFF
;
4518 smc
->default_caps
.caps
[SPAPR_CAP_VSX
] = SPAPR_CAP_ON
;
4519 smc
->default_caps
.caps
[SPAPR_CAP_DFP
] = SPAPR_CAP_ON
;
4520 smc
->default_caps
.caps
[SPAPR_CAP_CFPC
] = SPAPR_CAP_WORKAROUND
;
4521 smc
->default_caps
.caps
[SPAPR_CAP_SBBC
] = SPAPR_CAP_WORKAROUND
;
4522 smc
->default_caps
.caps
[SPAPR_CAP_IBS
] = SPAPR_CAP_WORKAROUND
;
4523 smc
->default_caps
.caps
[SPAPR_CAP_HPT_MAXPAGESIZE
] = 16; /* 64kiB */
4524 smc
->default_caps
.caps
[SPAPR_CAP_NESTED_KVM_HV
] = SPAPR_CAP_OFF
;
4525 smc
->default_caps
.caps
[SPAPR_CAP_LARGE_DECREMENTER
] = SPAPR_CAP_ON
;
4526 smc
->default_caps
.caps
[SPAPR_CAP_CCF_ASSIST
] = SPAPR_CAP_ON
;
4527 smc
->default_caps
.caps
[SPAPR_CAP_FWNMI
] = SPAPR_CAP_ON
;
4528 spapr_caps_add_properties(smc
);
4529 smc
->irq
= &spapr_irq_dual
;
4530 smc
->dr_phb_enabled
= true;
4531 smc
->linux_pci_probe
= true;
4532 smc
->smp_threads_vsmt
= true;
4533 smc
->nr_xirqs
= SPAPR_NR_XIRQS
;
4534 xfc
->match_nvt
= spapr_match_nvt
;
4537 static const TypeInfo spapr_machine_info
= {
4538 .name
= TYPE_SPAPR_MACHINE
,
4539 .parent
= TYPE_MACHINE
,
4541 .instance_size
= sizeof(SpaprMachineState
),
4542 .instance_init
= spapr_instance_init
,
4543 .instance_finalize
= spapr_machine_finalizefn
,
4544 .class_size
= sizeof(SpaprMachineClass
),
4545 .class_init
= spapr_machine_class_init
,
4546 .interfaces
= (InterfaceInfo
[]) {
4547 { TYPE_FW_PATH_PROVIDER
},
4549 { TYPE_HOTPLUG_HANDLER
},
4550 { TYPE_PPC_VIRTUAL_HYPERVISOR
},
4551 { TYPE_XICS_FABRIC
},
4552 { TYPE_INTERRUPT_STATS_PROVIDER
},
4553 { TYPE_XIVE_FABRIC
},
4558 static void spapr_machine_latest_class_options(MachineClass
*mc
)
4560 mc
->alias
= "pseries";
4561 mc
->is_default
= true;
4564 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4565 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4568 MachineClass *mc = MACHINE_CLASS(oc); \
4569 spapr_machine_##suffix##_class_options(mc); \
4571 spapr_machine_latest_class_options(mc); \
4574 static const TypeInfo spapr_machine_##suffix##_info = { \
4575 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4576 .parent = TYPE_SPAPR_MACHINE, \
4577 .class_init = spapr_machine_##suffix##_class_init, \
4579 static void spapr_machine_register_##suffix(void) \
4581 type_register(&spapr_machine_##suffix##_info); \
4583 type_init(spapr_machine_register_##suffix)
4588 static void spapr_machine_5_1_class_options(MachineClass
*mc
)
4590 /* Defaults for the latest behaviour inherited from the base class */
4593 DEFINE_SPAPR_MACHINE(5_1
, "5.1", true);
4598 static void spapr_machine_5_0_class_options(MachineClass
*mc
)
4600 spapr_machine_5_1_class_options(mc
);
4601 compat_props_add(mc
->compat_props
, hw_compat_5_0
, hw_compat_5_0_len
);
4604 DEFINE_SPAPR_MACHINE(5_0
, "5.0", false);
4609 static void spapr_machine_4_2_class_options(MachineClass
*mc
)
4611 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4613 spapr_machine_5_0_class_options(mc
);
4614 compat_props_add(mc
->compat_props
, hw_compat_4_2
, hw_compat_4_2_len
);
4615 smc
->default_caps
.caps
[SPAPR_CAP_CCF_ASSIST
] = SPAPR_CAP_OFF
;
4616 smc
->default_caps
.caps
[SPAPR_CAP_FWNMI
] = SPAPR_CAP_OFF
;
4617 smc
->rma_limit
= 16 * GiB
;
4618 mc
->nvdimm_supported
= false;
4621 DEFINE_SPAPR_MACHINE(4_2
, "4.2", false);
4626 static void spapr_machine_4_1_class_options(MachineClass
*mc
)
4628 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4629 static GlobalProperty compat
[] = {
4630 /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4631 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "pgsz", "0x11000" },
4634 spapr_machine_4_2_class_options(mc
);
4635 smc
->linux_pci_probe
= false;
4636 smc
->smp_threads_vsmt
= false;
4637 compat_props_add(mc
->compat_props
, hw_compat_4_1
, hw_compat_4_1_len
);
4638 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4641 DEFINE_SPAPR_MACHINE(4_1
, "4.1", false);
4646 static void phb_placement_4_0(SpaprMachineState
*spapr
, uint32_t index
,
4647 uint64_t *buid
, hwaddr
*pio
,
4648 hwaddr
*mmio32
, hwaddr
*mmio64
,
4649 unsigned n_dma
, uint32_t *liobns
,
4650 hwaddr
*nv2gpa
, hwaddr
*nv2atsd
, Error
**errp
)
4652 spapr_phb_placement(spapr
, index
, buid
, pio
, mmio32
, mmio64
, n_dma
, liobns
,
4653 nv2gpa
, nv2atsd
, errp
);
4658 static void spapr_machine_4_0_class_options(MachineClass
*mc
)
4660 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4662 spapr_machine_4_1_class_options(mc
);
4663 compat_props_add(mc
->compat_props
, hw_compat_4_0
, hw_compat_4_0_len
);
4664 smc
->phb_placement
= phb_placement_4_0
;
4665 smc
->irq
= &spapr_irq_xics
;
4666 smc
->pre_4_1_migration
= true;
4669 DEFINE_SPAPR_MACHINE(4_0
, "4.0", false);
4674 static void spapr_machine_3_1_class_options(MachineClass
*mc
)
4676 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4678 spapr_machine_4_0_class_options(mc
);
4679 compat_props_add(mc
->compat_props
, hw_compat_3_1
, hw_compat_3_1_len
);
4681 mc
->default_cpu_type
= POWERPC_CPU_TYPE_NAME("power8_v2.0");
4682 smc
->update_dt_enabled
= false;
4683 smc
->dr_phb_enabled
= false;
4684 smc
->broken_host_serial_model
= true;
4685 smc
->default_caps
.caps
[SPAPR_CAP_CFPC
] = SPAPR_CAP_BROKEN
;
4686 smc
->default_caps
.caps
[SPAPR_CAP_SBBC
] = SPAPR_CAP_BROKEN
;
4687 smc
->default_caps
.caps
[SPAPR_CAP_IBS
] = SPAPR_CAP_BROKEN
;
4688 smc
->default_caps
.caps
[SPAPR_CAP_LARGE_DECREMENTER
] = SPAPR_CAP_OFF
;
4691 DEFINE_SPAPR_MACHINE(3_1
, "3.1", false);
4697 static void spapr_machine_3_0_class_options(MachineClass
*mc
)
4699 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4701 spapr_machine_3_1_class_options(mc
);
4702 compat_props_add(mc
->compat_props
, hw_compat_3_0
, hw_compat_3_0_len
);
4704 smc
->legacy_irq_allocation
= true;
4705 smc
->nr_xirqs
= 0x400;
4706 smc
->irq
= &spapr_irq_xics_legacy
;
4709 DEFINE_SPAPR_MACHINE(3_0
, "3.0", false);
4714 static void spapr_machine_2_12_class_options(MachineClass
*mc
)
4716 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4717 static GlobalProperty compat
[] = {
4718 { TYPE_POWERPC_CPU
, "pre-3.0-migration", "on" },
4719 { TYPE_SPAPR_CPU_CORE
, "pre-3.0-migration", "on" },
4722 spapr_machine_3_0_class_options(mc
);
4723 compat_props_add(mc
->compat_props
, hw_compat_2_12
, hw_compat_2_12_len
);
4724 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4726 /* We depend on kvm_enabled() to choose a default value for the
4727 * hpt-max-page-size capability. Of course we can't do it here
4728 * because this is too early and the HW accelerator isn't initialzed
4729 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4731 smc
->default_caps
.caps
[SPAPR_CAP_HPT_MAXPAGESIZE
] = 0;
4734 DEFINE_SPAPR_MACHINE(2_12
, "2.12", false);
4736 static void spapr_machine_2_12_sxxm_class_options(MachineClass
*mc
)
4738 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4740 spapr_machine_2_12_class_options(mc
);
4741 smc
->default_caps
.caps
[SPAPR_CAP_CFPC
] = SPAPR_CAP_WORKAROUND
;
4742 smc
->default_caps
.caps
[SPAPR_CAP_SBBC
] = SPAPR_CAP_WORKAROUND
;
4743 smc
->default_caps
.caps
[SPAPR_CAP_IBS
] = SPAPR_CAP_FIXED_CCD
;
4746 DEFINE_SPAPR_MACHINE(2_12_sxxm
, "2.12-sxxm", false);
4752 static void spapr_machine_2_11_class_options(MachineClass
*mc
)
4754 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4756 spapr_machine_2_12_class_options(mc
);
4757 smc
->default_caps
.caps
[SPAPR_CAP_HTM
] = SPAPR_CAP_ON
;
4758 compat_props_add(mc
->compat_props
, hw_compat_2_11
, hw_compat_2_11_len
);
4761 DEFINE_SPAPR_MACHINE(2_11
, "2.11", false);
4767 static void spapr_machine_2_10_class_options(MachineClass
*mc
)
4769 spapr_machine_2_11_class_options(mc
);
4770 compat_props_add(mc
->compat_props
, hw_compat_2_10
, hw_compat_2_10_len
);
4773 DEFINE_SPAPR_MACHINE(2_10
, "2.10", false);
4779 static void spapr_machine_2_9_class_options(MachineClass
*mc
)
4781 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4782 static GlobalProperty compat
[] = {
4783 { TYPE_POWERPC_CPU
, "pre-2.10-migration", "on" },
4786 spapr_machine_2_10_class_options(mc
);
4787 compat_props_add(mc
->compat_props
, hw_compat_2_9
, hw_compat_2_9_len
);
4788 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4789 mc
->numa_auto_assign_ram
= numa_legacy_auto_assign_ram
;
4790 smc
->pre_2_10_has_unused_icps
= true;
4791 smc
->resize_hpt_default
= SPAPR_RESIZE_HPT_DISABLED
;
4794 DEFINE_SPAPR_MACHINE(2_9
, "2.9", false);
4800 static void spapr_machine_2_8_class_options(MachineClass
*mc
)
4802 static GlobalProperty compat
[] = {
4803 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "pcie-extended-configuration-space", "off" },
4806 spapr_machine_2_9_class_options(mc
);
4807 compat_props_add(mc
->compat_props
, hw_compat_2_8
, hw_compat_2_8_len
);
4808 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4809 mc
->numa_mem_align_shift
= 23;
4812 DEFINE_SPAPR_MACHINE(2_8
, "2.8", false);
4818 static void phb_placement_2_7(SpaprMachineState
*spapr
, uint32_t index
,
4819 uint64_t *buid
, hwaddr
*pio
,
4820 hwaddr
*mmio32
, hwaddr
*mmio64
,
4821 unsigned n_dma
, uint32_t *liobns
,
4822 hwaddr
*nv2gpa
, hwaddr
*nv2atsd
, Error
**errp
)
4824 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4825 const uint64_t base_buid
= 0x800000020000000ULL
;
4826 const hwaddr phb_spacing
= 0x1000000000ULL
; /* 64 GiB */
4827 const hwaddr mmio_offset
= 0xa0000000; /* 2 GiB + 512 MiB */
4828 const hwaddr pio_offset
= 0x80000000; /* 2 GiB */
4829 const uint32_t max_index
= 255;
4830 const hwaddr phb0_alignment
= 0x10000000000ULL
; /* 1 TiB */
4832 uint64_t ram_top
= MACHINE(spapr
)->ram_size
;
4833 hwaddr phb0_base
, phb_base
;
4836 /* Do we have device memory? */
4837 if (MACHINE(spapr
)->maxram_size
> ram_top
) {
4838 /* Can't just use maxram_size, because there may be an
4839 * alignment gap between normal and device memory regions
4841 ram_top
= MACHINE(spapr
)->device_memory
->base
+
4842 memory_region_size(&MACHINE(spapr
)->device_memory
->mr
);
4845 phb0_base
= QEMU_ALIGN_UP(ram_top
, phb0_alignment
);
4847 if (index
> max_index
) {
4848 error_setg(errp
, "\"index\" for PAPR PHB is too large (max %u)",
4853 *buid
= base_buid
+ index
;
4854 for (i
= 0; i
< n_dma
; ++i
) {
4855 liobns
[i
] = SPAPR_PCI_LIOBN(index
, i
);
4858 phb_base
= phb0_base
+ index
* phb_spacing
;
4859 *pio
= phb_base
+ pio_offset
;
4860 *mmio32
= phb_base
+ mmio_offset
;
4862 * We don't set the 64-bit MMIO window, relying on the PHB's
4863 * fallback behaviour of automatically splitting a large "32-bit"
4864 * window into contiguous 32-bit and 64-bit windows
4871 static void spapr_machine_2_7_class_options(MachineClass
*mc
)
4873 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4874 static GlobalProperty compat
[] = {
4875 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "mem_win_size", "0xf80000000", },
4876 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "mem64_win_size", "0", },
4877 { TYPE_POWERPC_CPU
, "pre-2.8-migration", "on", },
4878 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "pre-2.8-migration", "on", },
4881 spapr_machine_2_8_class_options(mc
);
4882 mc
->default_cpu_type
= POWERPC_CPU_TYPE_NAME("power7_v2.3");
4883 mc
->default_machine_opts
= "modern-hotplug-events=off";
4884 compat_props_add(mc
->compat_props
, hw_compat_2_7
, hw_compat_2_7_len
);
4885 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4886 smc
->phb_placement
= phb_placement_2_7
;
4889 DEFINE_SPAPR_MACHINE(2_7
, "2.7", false);
4895 static void spapr_machine_2_6_class_options(MachineClass
*mc
)
4897 static GlobalProperty compat
[] = {
4898 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "ddw", "off" },
4901 spapr_machine_2_7_class_options(mc
);
4902 mc
->has_hotpluggable_cpus
= false;
4903 compat_props_add(mc
->compat_props
, hw_compat_2_6
, hw_compat_2_6_len
);
4904 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4907 DEFINE_SPAPR_MACHINE(2_6
, "2.6", false);
4913 static void spapr_machine_2_5_class_options(MachineClass
*mc
)
4915 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4916 static GlobalProperty compat
[] = {
4917 { "spapr-vlan", "use-rx-buffer-pools", "off" },
4920 spapr_machine_2_6_class_options(mc
);
4921 smc
->use_ohci_by_default
= true;
4922 compat_props_add(mc
->compat_props
, hw_compat_2_5
, hw_compat_2_5_len
);
4923 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4926 DEFINE_SPAPR_MACHINE(2_5
, "2.5", false);
4932 static void spapr_machine_2_4_class_options(MachineClass
*mc
)
4934 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4936 spapr_machine_2_5_class_options(mc
);
4937 smc
->dr_lmb_enabled
= false;
4938 compat_props_add(mc
->compat_props
, hw_compat_2_4
, hw_compat_2_4_len
);
4941 DEFINE_SPAPR_MACHINE(2_4
, "2.4", false);
4947 static void spapr_machine_2_3_class_options(MachineClass
*mc
)
4949 static GlobalProperty compat
[] = {
4950 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4952 spapr_machine_2_4_class_options(mc
);
4953 compat_props_add(mc
->compat_props
, hw_compat_2_3
, hw_compat_2_3_len
);
4954 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4956 DEFINE_SPAPR_MACHINE(2_3
, "2.3", false);
4962 static void spapr_machine_2_2_class_options(MachineClass
*mc
)
4964 static GlobalProperty compat
[] = {
4965 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "mem_win_size", "0x20000000" },
4968 spapr_machine_2_3_class_options(mc
);
4969 compat_props_add(mc
->compat_props
, hw_compat_2_2
, hw_compat_2_2_len
);
4970 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4971 mc
->default_machine_opts
= "modern-hotplug-events=off,suppress-vmdesc=on";
4973 DEFINE_SPAPR_MACHINE(2_2
, "2.2", false);
4979 static void spapr_machine_2_1_class_options(MachineClass
*mc
)
4981 spapr_machine_2_2_class_options(mc
);
4982 compat_props_add(mc
->compat_props
, hw_compat_2_1
, hw_compat_2_1_len
);
4984 DEFINE_SPAPR_MACHINE(2_1
, "2.1", false);
4986 static void spapr_machine_register_types(void)
4988 type_register_static(&spapr_machine_info
);
4991 type_init(spapr_machine_register_types
)