posix-aio-compat: fix latency issues
[qemu.git] / cpus.c
blobb163efe4a88f6eb56fc9aeb4511a272449475e6b
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 /* Needed early for CONFIG_BSD etc. */
26 #include "config-host.h"
28 #include "monitor.h"
29 #include "sysemu.h"
30 #include "gdbstub.h"
31 #include "dma.h"
32 #include "kvm.h"
34 #include "qemu-thread.h"
35 #include "cpus.h"
37 #ifndef _WIN32
38 #include "compatfd.h"
39 #endif
41 #ifdef SIGRTMIN
42 #define SIG_IPI (SIGRTMIN+4)
43 #else
44 #define SIG_IPI SIGUSR1
45 #endif
47 #ifdef CONFIG_LINUX
49 #include <sys/prctl.h>
51 #ifndef PR_MCE_KILL
52 #define PR_MCE_KILL 33
53 #endif
55 #ifndef PR_MCE_KILL_SET
56 #define PR_MCE_KILL_SET 1
57 #endif
59 #ifndef PR_MCE_KILL_EARLY
60 #define PR_MCE_KILL_EARLY 1
61 #endif
63 #endif /* CONFIG_LINUX */
65 static CPUState *next_cpu;
67 /***********************************************************/
68 void hw_error(const char *fmt, ...)
70 va_list ap;
71 CPUState *env;
73 va_start(ap, fmt);
74 fprintf(stderr, "qemu: hardware error: ");
75 vfprintf(stderr, fmt, ap);
76 fprintf(stderr, "\n");
77 for(env = first_cpu; env != NULL; env = env->next_cpu) {
78 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
79 #ifdef TARGET_I386
80 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
81 #else
82 cpu_dump_state(env, stderr, fprintf, 0);
83 #endif
85 va_end(ap);
86 abort();
89 void cpu_synchronize_all_states(void)
91 CPUState *cpu;
93 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
94 cpu_synchronize_state(cpu);
98 void cpu_synchronize_all_post_reset(void)
100 CPUState *cpu;
102 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
103 cpu_synchronize_post_reset(cpu);
107 void cpu_synchronize_all_post_init(void)
109 CPUState *cpu;
111 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
112 cpu_synchronize_post_init(cpu);
116 int cpu_is_stopped(CPUState *env)
118 return !vm_running || env->stopped;
121 static void do_vm_stop(int reason)
123 if (vm_running) {
124 cpu_disable_ticks();
125 vm_running = 0;
126 pause_all_vcpus();
127 vm_state_notify(0, reason);
128 qemu_aio_flush();
129 bdrv_flush_all();
130 monitor_protocol_event(QEVENT_STOP, NULL);
134 static int cpu_can_run(CPUState *env)
136 if (env->stop) {
137 return 0;
139 if (env->stopped || !vm_running) {
140 return 0;
142 return 1;
145 static bool cpu_thread_is_idle(CPUState *env)
147 if (env->stop || env->queued_work_first) {
148 return false;
150 if (env->stopped || !vm_running) {
151 return true;
153 if (!env->halted || qemu_cpu_has_work(env) ||
154 (kvm_enabled() && kvm_irqchip_in_kernel())) {
155 return false;
157 return true;
160 bool all_cpu_threads_idle(void)
162 CPUState *env;
164 for (env = first_cpu; env != NULL; env = env->next_cpu) {
165 if (!cpu_thread_is_idle(env)) {
166 return false;
169 return true;
172 static void cpu_handle_guest_debug(CPUState *env)
174 gdb_set_stop_cpu(env);
175 qemu_system_debug_request();
176 #ifdef CONFIG_IOTHREAD
177 env->stopped = 1;
178 #endif
181 #ifdef CONFIG_IOTHREAD
182 static void cpu_signal(int sig)
184 if (cpu_single_env) {
185 cpu_exit(cpu_single_env);
187 exit_request = 1;
189 #endif
191 #ifdef CONFIG_LINUX
192 static void sigbus_reraise(void)
194 sigset_t set;
195 struct sigaction action;
197 memset(&action, 0, sizeof(action));
198 action.sa_handler = SIG_DFL;
199 if (!sigaction(SIGBUS, &action, NULL)) {
200 raise(SIGBUS);
201 sigemptyset(&set);
202 sigaddset(&set, SIGBUS);
203 sigprocmask(SIG_UNBLOCK, &set, NULL);
205 perror("Failed to re-raise SIGBUS!\n");
206 abort();
209 static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo,
210 void *ctx)
212 if (kvm_on_sigbus(siginfo->ssi_code,
213 (void *)(intptr_t)siginfo->ssi_addr)) {
214 sigbus_reraise();
218 static void qemu_init_sigbus(void)
220 struct sigaction action;
222 memset(&action, 0, sizeof(action));
223 action.sa_flags = SA_SIGINFO;
224 action.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler;
225 sigaction(SIGBUS, &action, NULL);
227 prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
230 static void qemu_kvm_eat_signals(CPUState *env)
232 struct timespec ts = { 0, 0 };
233 siginfo_t siginfo;
234 sigset_t waitset;
235 sigset_t chkset;
236 int r;
238 sigemptyset(&waitset);
239 sigaddset(&waitset, SIG_IPI);
240 sigaddset(&waitset, SIGBUS);
242 do {
243 r = sigtimedwait(&waitset, &siginfo, &ts);
244 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
245 perror("sigtimedwait");
246 exit(1);
249 switch (r) {
250 case SIGBUS:
251 if (kvm_on_sigbus_vcpu(env, siginfo.si_code, siginfo.si_addr)) {
252 sigbus_reraise();
254 break;
255 default:
256 break;
259 r = sigpending(&chkset);
260 if (r == -1) {
261 perror("sigpending");
262 exit(1);
264 } while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS));
266 #ifndef CONFIG_IOTHREAD
267 if (sigismember(&chkset, SIGIO) || sigismember(&chkset, SIGALRM)) {
268 qemu_notify_event();
270 #endif
273 #else /* !CONFIG_LINUX */
275 static void qemu_init_sigbus(void)
279 static void qemu_kvm_eat_signals(CPUState *env)
282 #endif /* !CONFIG_LINUX */
284 #ifndef _WIN32
285 static int io_thread_fd = -1;
287 static void qemu_event_increment(void)
289 /* Write 8 bytes to be compatible with eventfd. */
290 static const uint64_t val = 1;
291 ssize_t ret;
293 if (io_thread_fd == -1) {
294 return;
296 do {
297 ret = write(io_thread_fd, &val, sizeof(val));
298 } while (ret < 0 && errno == EINTR);
300 /* EAGAIN is fine, a read must be pending. */
301 if (ret < 0 && errno != EAGAIN) {
302 fprintf(stderr, "qemu_event_increment: write() failed: %s\n",
303 strerror(errno));
304 exit (1);
308 static void qemu_event_read(void *opaque)
310 int fd = (intptr_t)opaque;
311 ssize_t len;
312 char buffer[512];
314 /* Drain the notify pipe. For eventfd, only 8 bytes will be read. */
315 do {
316 len = read(fd, buffer, sizeof(buffer));
317 } while ((len == -1 && errno == EINTR) || len == sizeof(buffer));
320 static int qemu_event_init(void)
322 int err;
323 int fds[2];
325 err = qemu_eventfd(fds);
326 if (err == -1) {
327 return -errno;
329 err = fcntl_setfl(fds[0], O_NONBLOCK);
330 if (err < 0) {
331 goto fail;
333 err = fcntl_setfl(fds[1], O_NONBLOCK);
334 if (err < 0) {
335 goto fail;
337 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
338 (void *)(intptr_t)fds[0]);
340 io_thread_fd = fds[1];
341 return 0;
343 fail:
344 close(fds[0]);
345 close(fds[1]);
346 return err;
349 static void dummy_signal(int sig)
353 /* If we have signalfd, we mask out the signals we want to handle and then
354 * use signalfd to listen for them. We rely on whatever the current signal
355 * handler is to dispatch the signals when we receive them.
357 static void sigfd_handler(void *opaque)
359 int fd = (intptr_t)opaque;
360 struct qemu_signalfd_siginfo info;
361 struct sigaction action;
362 ssize_t len;
364 while (1) {
365 do {
366 len = read(fd, &info, sizeof(info));
367 } while (len == -1 && errno == EINTR);
369 if (len == -1 && errno == EAGAIN) {
370 break;
373 if (len != sizeof(info)) {
374 printf("read from sigfd returned %zd: %m\n", len);
375 return;
378 sigaction(info.ssi_signo, NULL, &action);
379 if ((action.sa_flags & SA_SIGINFO) && action.sa_sigaction) {
380 action.sa_sigaction(info.ssi_signo,
381 (siginfo_t *)&info, NULL);
382 } else if (action.sa_handler) {
383 action.sa_handler(info.ssi_signo);
388 static int qemu_signal_init(void)
390 int sigfd;
391 sigset_t set;
393 #ifdef CONFIG_IOTHREAD
394 /* SIGUSR2 used by posix-aio-compat.c */
395 sigemptyset(&set);
396 sigaddset(&set, SIGUSR2);
397 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
400 * SIG_IPI must be blocked in the main thread and must not be caught
401 * by sigwait() in the signal thread. Otherwise, the cpu thread will
402 * not catch it reliably.
404 sigemptyset(&set);
405 sigaddset(&set, SIG_IPI);
406 pthread_sigmask(SIG_BLOCK, &set, NULL);
408 sigemptyset(&set);
409 sigaddset(&set, SIGIO);
410 sigaddset(&set, SIGALRM);
411 sigaddset(&set, SIGBUS);
412 #else
413 sigemptyset(&set);
414 sigaddset(&set, SIGBUS);
415 if (kvm_enabled()) {
417 * We need to process timer signals synchronously to avoid a race
418 * between exit_request check and KVM vcpu entry.
420 sigaddset(&set, SIGIO);
421 sigaddset(&set, SIGALRM);
423 #endif
424 pthread_sigmask(SIG_BLOCK, &set, NULL);
426 sigfd = qemu_signalfd(&set);
427 if (sigfd == -1) {
428 fprintf(stderr, "failed to create signalfd\n");
429 return -errno;
432 fcntl_setfl(sigfd, O_NONBLOCK);
434 qemu_set_fd_handler2(sigfd, NULL, sigfd_handler, NULL,
435 (void *)(intptr_t)sigfd);
437 return 0;
440 static void qemu_kvm_init_cpu_signals(CPUState *env)
442 int r;
443 sigset_t set;
444 struct sigaction sigact;
446 memset(&sigact, 0, sizeof(sigact));
447 sigact.sa_handler = dummy_signal;
448 sigaction(SIG_IPI, &sigact, NULL);
450 #ifdef CONFIG_IOTHREAD
451 pthread_sigmask(SIG_BLOCK, NULL, &set);
452 sigdelset(&set, SIG_IPI);
453 sigdelset(&set, SIGBUS);
454 r = kvm_set_signal_mask(env, &set);
455 if (r) {
456 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
457 exit(1);
459 #else
460 sigemptyset(&set);
461 sigaddset(&set, SIG_IPI);
462 sigaddset(&set, SIGIO);
463 sigaddset(&set, SIGALRM);
464 pthread_sigmask(SIG_BLOCK, &set, NULL);
466 pthread_sigmask(SIG_BLOCK, NULL, &set);
467 sigdelset(&set, SIGIO);
468 sigdelset(&set, SIGALRM);
469 #endif
470 sigdelset(&set, SIG_IPI);
471 sigdelset(&set, SIGBUS);
472 r = kvm_set_signal_mask(env, &set);
473 if (r) {
474 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
475 exit(1);
479 static void qemu_tcg_init_cpu_signals(void)
481 #ifdef CONFIG_IOTHREAD
482 sigset_t set;
483 struct sigaction sigact;
485 memset(&sigact, 0, sizeof(sigact));
486 sigact.sa_handler = cpu_signal;
487 sigaction(SIG_IPI, &sigact, NULL);
489 sigemptyset(&set);
490 sigaddset(&set, SIG_IPI);
491 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
492 #endif
495 #else /* _WIN32 */
497 HANDLE qemu_event_handle;
499 static void dummy_event_handler(void *opaque)
503 static int qemu_event_init(void)
505 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
506 if (!qemu_event_handle) {
507 fprintf(stderr, "Failed CreateEvent: %ld\n", GetLastError());
508 return -1;
510 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
511 return 0;
514 static void qemu_event_increment(void)
516 if (!SetEvent(qemu_event_handle)) {
517 fprintf(stderr, "qemu_event_increment: SetEvent failed: %ld\n",
518 GetLastError());
519 exit (1);
523 static int qemu_signal_init(void)
525 return 0;
528 static void qemu_kvm_init_cpu_signals(CPUState *env)
530 abort();
533 static void qemu_tcg_init_cpu_signals(void)
536 #endif /* _WIN32 */
538 #ifndef CONFIG_IOTHREAD
539 int qemu_init_main_loop(void)
541 int ret;
543 ret = qemu_signal_init();
544 if (ret) {
545 return ret;
548 qemu_init_sigbus();
550 return qemu_event_init();
553 void qemu_main_loop_start(void)
557 void qemu_init_vcpu(void *_env)
559 CPUState *env = _env;
560 int r;
562 env->nr_cores = smp_cores;
563 env->nr_threads = smp_threads;
565 if (kvm_enabled()) {
566 r = kvm_init_vcpu(env);
567 if (r < 0) {
568 fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
569 exit(1);
571 qemu_kvm_init_cpu_signals(env);
572 } else {
573 qemu_tcg_init_cpu_signals();
577 int qemu_cpu_is_self(void *env)
579 return 1;
582 void run_on_cpu(CPUState *env, void (*func)(void *data), void *data)
584 func(data);
587 void resume_all_vcpus(void)
591 void pause_all_vcpus(void)
595 void qemu_cpu_kick(void *env)
599 void qemu_cpu_kick_self(void)
601 #ifndef _WIN32
602 assert(cpu_single_env);
604 raise(SIG_IPI);
605 #else
606 abort();
607 #endif
610 void qemu_notify_event(void)
612 CPUState *env = cpu_single_env;
614 qemu_event_increment ();
615 if (env) {
616 cpu_exit(env);
618 if (next_cpu && env != next_cpu) {
619 cpu_exit(next_cpu);
621 exit_request = 1;
624 void qemu_mutex_lock_iothread(void) {}
625 void qemu_mutex_unlock_iothread(void) {}
627 void cpu_stop_current(void)
631 void vm_stop(int reason)
633 do_vm_stop(reason);
636 #else /* CONFIG_IOTHREAD */
638 QemuMutex qemu_global_mutex;
639 static QemuCond qemu_io_proceeded_cond;
640 static bool iothread_requesting_mutex;
642 static QemuThread io_thread;
644 static QemuThread *tcg_cpu_thread;
645 static QemuCond *tcg_halt_cond;
647 /* cpu creation */
648 static QemuCond qemu_cpu_cond;
649 /* system init */
650 static QemuCond qemu_pause_cond;
651 static QemuCond qemu_work_cond;
653 int qemu_init_main_loop(void)
655 int ret;
657 qemu_init_sigbus();
659 ret = qemu_signal_init();
660 if (ret) {
661 return ret;
664 /* Note eventfd must be drained before signalfd handlers run */
665 ret = qemu_event_init();
666 if (ret) {
667 return ret;
670 qemu_cond_init(&qemu_cpu_cond);
671 qemu_cond_init(&qemu_pause_cond);
672 qemu_cond_init(&qemu_work_cond);
673 qemu_cond_init(&qemu_io_proceeded_cond);
674 qemu_mutex_init(&qemu_global_mutex);
675 qemu_mutex_lock(&qemu_global_mutex);
677 qemu_thread_get_self(&io_thread);
679 return 0;
682 void qemu_main_loop_start(void)
684 resume_all_vcpus();
687 void run_on_cpu(CPUState *env, void (*func)(void *data), void *data)
689 struct qemu_work_item wi;
691 if (qemu_cpu_is_self(env)) {
692 func(data);
693 return;
696 wi.func = func;
697 wi.data = data;
698 if (!env->queued_work_first) {
699 env->queued_work_first = &wi;
700 } else {
701 env->queued_work_last->next = &wi;
703 env->queued_work_last = &wi;
704 wi.next = NULL;
705 wi.done = false;
707 qemu_cpu_kick(env);
708 while (!wi.done) {
709 CPUState *self_env = cpu_single_env;
711 qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex);
712 cpu_single_env = self_env;
716 static void flush_queued_work(CPUState *env)
718 struct qemu_work_item *wi;
720 if (!env->queued_work_first) {
721 return;
724 while ((wi = env->queued_work_first)) {
725 env->queued_work_first = wi->next;
726 wi->func(wi->data);
727 wi->done = true;
729 env->queued_work_last = NULL;
730 qemu_cond_broadcast(&qemu_work_cond);
733 static void qemu_wait_io_event_common(CPUState *env)
735 if (env->stop) {
736 env->stop = 0;
737 env->stopped = 1;
738 qemu_cond_signal(&qemu_pause_cond);
740 flush_queued_work(env);
741 env->thread_kicked = false;
744 static void qemu_tcg_wait_io_event(void)
746 CPUState *env;
748 while (all_cpu_threads_idle()) {
749 /* Start accounting real time to the virtual clock if the CPUs
750 are idle. */
751 qemu_clock_warp(vm_clock);
752 qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
755 while (iothread_requesting_mutex) {
756 qemu_cond_wait(&qemu_io_proceeded_cond, &qemu_global_mutex);
759 for (env = first_cpu; env != NULL; env = env->next_cpu) {
760 qemu_wait_io_event_common(env);
764 static void qemu_kvm_wait_io_event(CPUState *env)
766 while (cpu_thread_is_idle(env)) {
767 qemu_cond_wait(env->halt_cond, &qemu_global_mutex);
770 qemu_kvm_eat_signals(env);
771 qemu_wait_io_event_common(env);
774 static void *qemu_kvm_cpu_thread_fn(void *arg)
776 CPUState *env = arg;
777 int r;
779 qemu_mutex_lock(&qemu_global_mutex);
780 qemu_thread_get_self(env->thread);
781 env->thread_id = qemu_get_thread_id();
783 r = kvm_init_vcpu(env);
784 if (r < 0) {
785 fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
786 exit(1);
789 qemu_kvm_init_cpu_signals(env);
791 /* signal CPU creation */
792 env->created = 1;
793 qemu_cond_signal(&qemu_cpu_cond);
795 while (1) {
796 if (cpu_can_run(env)) {
797 r = kvm_cpu_exec(env);
798 if (r == EXCP_DEBUG) {
799 cpu_handle_guest_debug(env);
802 qemu_kvm_wait_io_event(env);
805 return NULL;
808 static void *qemu_tcg_cpu_thread_fn(void *arg)
810 CPUState *env = arg;
812 qemu_tcg_init_cpu_signals();
813 qemu_thread_get_self(env->thread);
815 /* signal CPU creation */
816 qemu_mutex_lock(&qemu_global_mutex);
817 for (env = first_cpu; env != NULL; env = env->next_cpu) {
818 env->thread_id = qemu_get_thread_id();
819 env->created = 1;
821 qemu_cond_signal(&qemu_cpu_cond);
823 /* wait for initial kick-off after machine start */
824 while (first_cpu->stopped) {
825 qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
828 while (1) {
829 cpu_exec_all();
830 if (use_icount && qemu_next_icount_deadline() <= 0) {
831 qemu_notify_event();
833 qemu_tcg_wait_io_event();
836 return NULL;
839 static void qemu_cpu_kick_thread(CPUState *env)
841 #ifndef _WIN32
842 int err;
844 err = pthread_kill(env->thread->thread, SIG_IPI);
845 if (err) {
846 fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
847 exit(1);
849 #else /* _WIN32 */
850 if (!qemu_cpu_is_self(env)) {
851 SuspendThread(env->thread->thread);
852 cpu_signal(0);
853 ResumeThread(env->thread->thread);
855 #endif
858 void qemu_cpu_kick(void *_env)
860 CPUState *env = _env;
862 qemu_cond_broadcast(env->halt_cond);
863 if (kvm_enabled() && !env->thread_kicked) {
864 qemu_cpu_kick_thread(env);
865 env->thread_kicked = true;
869 void qemu_cpu_kick_self(void)
871 #ifndef _WIN32
872 assert(cpu_single_env);
874 if (!cpu_single_env->thread_kicked) {
875 qemu_cpu_kick_thread(cpu_single_env);
876 cpu_single_env->thread_kicked = true;
878 #else
879 abort();
880 #endif
883 int qemu_cpu_is_self(void *_env)
885 CPUState *env = _env;
887 return qemu_thread_is_self(env->thread);
890 void qemu_mutex_lock_iothread(void)
892 if (kvm_enabled()) {
893 qemu_mutex_lock(&qemu_global_mutex);
894 } else {
895 iothread_requesting_mutex = true;
896 if (qemu_mutex_trylock(&qemu_global_mutex)) {
897 qemu_cpu_kick_thread(first_cpu);
898 qemu_mutex_lock(&qemu_global_mutex);
900 iothread_requesting_mutex = false;
901 qemu_cond_broadcast(&qemu_io_proceeded_cond);
905 void qemu_mutex_unlock_iothread(void)
907 qemu_mutex_unlock(&qemu_global_mutex);
910 static int all_vcpus_paused(void)
912 CPUState *penv = first_cpu;
914 while (penv) {
915 if (!penv->stopped) {
916 return 0;
918 penv = (CPUState *)penv->next_cpu;
921 return 1;
924 void pause_all_vcpus(void)
926 CPUState *penv = first_cpu;
928 while (penv) {
929 penv->stop = 1;
930 qemu_cpu_kick(penv);
931 penv = (CPUState *)penv->next_cpu;
934 while (!all_vcpus_paused()) {
935 qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
936 penv = first_cpu;
937 while (penv) {
938 qemu_cpu_kick(penv);
939 penv = (CPUState *)penv->next_cpu;
944 void resume_all_vcpus(void)
946 CPUState *penv = first_cpu;
948 while (penv) {
949 penv->stop = 0;
950 penv->stopped = 0;
951 qemu_cpu_kick(penv);
952 penv = (CPUState *)penv->next_cpu;
956 static void qemu_tcg_init_vcpu(void *_env)
958 CPUState *env = _env;
960 /* share a single thread for all cpus with TCG */
961 if (!tcg_cpu_thread) {
962 env->thread = g_malloc0(sizeof(QemuThread));
963 env->halt_cond = g_malloc0(sizeof(QemuCond));
964 qemu_cond_init(env->halt_cond);
965 tcg_halt_cond = env->halt_cond;
966 qemu_thread_create(env->thread, qemu_tcg_cpu_thread_fn, env);
967 while (env->created == 0) {
968 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
970 tcg_cpu_thread = env->thread;
971 } else {
972 env->thread = tcg_cpu_thread;
973 env->halt_cond = tcg_halt_cond;
977 static void qemu_kvm_start_vcpu(CPUState *env)
979 env->thread = g_malloc0(sizeof(QemuThread));
980 env->halt_cond = g_malloc0(sizeof(QemuCond));
981 qemu_cond_init(env->halt_cond);
982 qemu_thread_create(env->thread, qemu_kvm_cpu_thread_fn, env);
983 while (env->created == 0) {
984 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
988 void qemu_init_vcpu(void *_env)
990 CPUState *env = _env;
992 env->nr_cores = smp_cores;
993 env->nr_threads = smp_threads;
994 env->stopped = 1;
995 if (kvm_enabled()) {
996 qemu_kvm_start_vcpu(env);
997 } else {
998 qemu_tcg_init_vcpu(env);
1002 void qemu_notify_event(void)
1004 qemu_event_increment();
1007 void cpu_stop_current(void)
1009 if (cpu_single_env) {
1010 cpu_single_env->stop = 0;
1011 cpu_single_env->stopped = 1;
1012 cpu_exit(cpu_single_env);
1013 qemu_cond_signal(&qemu_pause_cond);
1017 void vm_stop(int reason)
1019 if (!qemu_thread_is_self(&io_thread)) {
1020 qemu_system_vmstop_request(reason);
1022 * FIXME: should not return to device code in case
1023 * vm_stop() has been requested.
1025 cpu_stop_current();
1026 return;
1028 do_vm_stop(reason);
1031 #endif
1033 static int tcg_cpu_exec(CPUState *env)
1035 int ret;
1036 #ifdef CONFIG_PROFILER
1037 int64_t ti;
1038 #endif
1040 #ifdef CONFIG_PROFILER
1041 ti = profile_getclock();
1042 #endif
1043 if (use_icount) {
1044 int64_t count;
1045 int decr;
1046 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
1047 env->icount_decr.u16.low = 0;
1048 env->icount_extra = 0;
1049 count = qemu_icount_round(qemu_next_icount_deadline());
1050 qemu_icount += count;
1051 decr = (count > 0xffff) ? 0xffff : count;
1052 count -= decr;
1053 env->icount_decr.u16.low = decr;
1054 env->icount_extra = count;
1056 ret = cpu_exec(env);
1057 #ifdef CONFIG_PROFILER
1058 qemu_time += profile_getclock() - ti;
1059 #endif
1060 if (use_icount) {
1061 /* Fold pending instructions back into the
1062 instruction counter, and clear the interrupt flag. */
1063 qemu_icount -= (env->icount_decr.u16.low
1064 + env->icount_extra);
1065 env->icount_decr.u32 = 0;
1066 env->icount_extra = 0;
1068 return ret;
1071 bool cpu_exec_all(void)
1073 int r;
1075 /* Account partial waits to the vm_clock. */
1076 qemu_clock_warp(vm_clock);
1078 if (next_cpu == NULL) {
1079 next_cpu = first_cpu;
1081 for (; next_cpu != NULL && !exit_request; next_cpu = next_cpu->next_cpu) {
1082 CPUState *env = next_cpu;
1084 qemu_clock_enable(vm_clock,
1085 (env->singlestep_enabled & SSTEP_NOTIMER) == 0);
1087 #ifndef CONFIG_IOTHREAD
1088 if (qemu_alarm_pending()) {
1089 break;
1091 #endif
1092 if (cpu_can_run(env)) {
1093 if (kvm_enabled()) {
1094 r = kvm_cpu_exec(env);
1095 qemu_kvm_eat_signals(env);
1096 } else {
1097 r = tcg_cpu_exec(env);
1099 if (r == EXCP_DEBUG) {
1100 cpu_handle_guest_debug(env);
1101 break;
1103 } else if (env->stop || env->stopped) {
1104 break;
1107 exit_request = 0;
1108 return !all_cpu_threads_idle();
1111 void set_numa_modes(void)
1113 CPUState *env;
1114 int i;
1116 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1117 for (i = 0; i < nb_numa_nodes; i++) {
1118 if (node_cpumask[i] & (1 << env->cpu_index)) {
1119 env->numa_node = i;
1125 void set_cpu_log(const char *optarg)
1127 int mask;
1128 const CPULogItem *item;
1130 mask = cpu_str_to_log_mask(optarg);
1131 if (!mask) {
1132 printf("Log items (comma separated):\n");
1133 for (item = cpu_log_items; item->mask != 0; item++) {
1134 printf("%-10s %s\n", item->name, item->help);
1136 exit(1);
1138 cpu_set_log(mask);
1141 void set_cpu_log_filename(const char *optarg)
1143 cpu_set_log_filename(optarg);
1146 /* Return the virtual CPU time, based on the instruction counter. */
1147 int64_t cpu_get_icount(void)
1149 int64_t icount;
1150 CPUState *env = cpu_single_env;;
1152 icount = qemu_icount;
1153 if (env) {
1154 if (!can_do_io(env)) {
1155 fprintf(stderr, "Bad clock read\n");
1157 icount -= (env->icount_decr.u16.low + env->icount_extra);
1159 return qemu_icount_bias + (icount << icount_time_shift);
1162 void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
1164 /* XXX: implement xxx_cpu_list for targets that still miss it */
1165 #if defined(cpu_list_id)
1166 cpu_list_id(f, cpu_fprintf, optarg);
1167 #elif defined(cpu_list)
1168 cpu_list(f, cpu_fprintf); /* deprecated */
1169 #endif