linux-user: add core dump support for PPC
[qemu.git] / linux-user / elfload.c
blobd284108f00d24d900c6df47755beb8e1786b4ffe
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include <sys/time.h>
3 #include <sys/param.h>
5 #include <stdio.h>
6 #include <sys/types.h>
7 #include <fcntl.h>
8 #include <errno.h>
9 #include <unistd.h>
10 #include <sys/mman.h>
11 #include <sys/resource.h>
12 #include <stdlib.h>
13 #include <string.h>
14 #include <time.h>
16 #include "qemu.h"
17 #include "disas.h"
19 #ifdef _ARCH_PPC64
20 #undef ARCH_DLINFO
21 #undef ELF_PLATFORM
22 #undef ELF_HWCAP
23 #undef ELF_CLASS
24 #undef ELF_DATA
25 #undef ELF_ARCH
26 #endif
28 #define ELF_OSABI ELFOSABI_SYSV
30 /* from personality.h */
33 * Flags for bug emulation.
35 * These occupy the top three bytes.
37 enum {
38 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
39 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to descriptors
40 * (signal handling)
42 MMAP_PAGE_ZERO = 0x0100000,
43 ADDR_COMPAT_LAYOUT = 0x0200000,
44 READ_IMPLIES_EXEC = 0x0400000,
45 ADDR_LIMIT_32BIT = 0x0800000,
46 SHORT_INODE = 0x1000000,
47 WHOLE_SECONDS = 0x2000000,
48 STICKY_TIMEOUTS = 0x4000000,
49 ADDR_LIMIT_3GB = 0x8000000,
53 * Personality types.
55 * These go in the low byte. Avoid using the top bit, it will
56 * conflict with error returns.
58 enum {
59 PER_LINUX = 0x0000,
60 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
61 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
62 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
63 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
64 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS |
65 WHOLE_SECONDS | SHORT_INODE,
66 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
67 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
68 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
69 PER_BSD = 0x0006,
70 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
71 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
72 PER_LINUX32 = 0x0008,
73 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
74 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
75 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
76 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
77 PER_RISCOS = 0x000c,
78 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
79 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
80 PER_OSF4 = 0x000f, /* OSF/1 v4 */
81 PER_HPUX = 0x0010,
82 PER_MASK = 0x00ff,
86 * Return the base personality without flags.
88 #define personality(pers) (pers & PER_MASK)
90 /* this flag is uneffective under linux too, should be deleted */
91 #ifndef MAP_DENYWRITE
92 #define MAP_DENYWRITE 0
93 #endif
95 /* should probably go in elf.h */
96 #ifndef ELIBBAD
97 #define ELIBBAD 80
98 #endif
100 typedef target_ulong target_elf_greg_t;
101 #ifdef USE_UID16
102 typedef uint16_t target_uid_t;
103 typedef uint16_t target_gid_t;
104 #else
105 typedef uint32_t target_uid_t;
106 typedef uint32_t target_gid_t;
107 #endif
108 typedef int32_t target_pid_t;
110 #ifdef TARGET_I386
112 #define ELF_PLATFORM get_elf_platform()
114 static const char *get_elf_platform(void)
116 static char elf_platform[] = "i386";
117 int family = (thread_env->cpuid_version >> 8) & 0xff;
118 if (family > 6)
119 family = 6;
120 if (family >= 3)
121 elf_platform[1] = '0' + family;
122 return elf_platform;
125 #define ELF_HWCAP get_elf_hwcap()
127 static uint32_t get_elf_hwcap(void)
129 return thread_env->cpuid_features;
132 #ifdef TARGET_X86_64
133 #define ELF_START_MMAP 0x2aaaaab000ULL
134 #define elf_check_arch(x) ( ((x) == ELF_ARCH) )
136 #define ELF_CLASS ELFCLASS64
137 #define ELF_DATA ELFDATA2LSB
138 #define ELF_ARCH EM_X86_64
140 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
142 regs->rax = 0;
143 regs->rsp = infop->start_stack;
144 regs->rip = infop->entry;
147 #define ELF_NREG 27
148 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
151 * Note that ELF_NREG should be 29 as there should be place for
152 * TRAPNO and ERR "registers" as well but linux doesn't dump
153 * those.
155 * See linux kernel: arch/x86/include/asm/elf.h
157 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
159 (*regs)[0] = env->regs[15];
160 (*regs)[1] = env->regs[14];
161 (*regs)[2] = env->regs[13];
162 (*regs)[3] = env->regs[12];
163 (*regs)[4] = env->regs[R_EBP];
164 (*regs)[5] = env->regs[R_EBX];
165 (*regs)[6] = env->regs[11];
166 (*regs)[7] = env->regs[10];
167 (*regs)[8] = env->regs[9];
168 (*regs)[9] = env->regs[8];
169 (*regs)[10] = env->regs[R_EAX];
170 (*regs)[11] = env->regs[R_ECX];
171 (*regs)[12] = env->regs[R_EDX];
172 (*regs)[13] = env->regs[R_ESI];
173 (*regs)[14] = env->regs[R_EDI];
174 (*regs)[15] = env->regs[R_EAX]; /* XXX */
175 (*regs)[16] = env->eip;
176 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
177 (*regs)[18] = env->eflags;
178 (*regs)[19] = env->regs[R_ESP];
179 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
180 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
181 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
182 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
183 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
184 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
185 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
188 #else
190 #define ELF_START_MMAP 0x80000000
193 * This is used to ensure we don't load something for the wrong architecture.
195 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
198 * These are used to set parameters in the core dumps.
200 #define ELF_CLASS ELFCLASS32
201 #define ELF_DATA ELFDATA2LSB
202 #define ELF_ARCH EM_386
204 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
206 regs->esp = infop->start_stack;
207 regs->eip = infop->entry;
209 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
210 starts %edx contains a pointer to a function which might be
211 registered using `atexit'. This provides a mean for the
212 dynamic linker to call DT_FINI functions for shared libraries
213 that have been loaded before the code runs.
215 A value of 0 tells we have no such handler. */
216 regs->edx = 0;
219 #define ELF_NREG 17
220 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
223 * Note that ELF_NREG should be 19 as there should be place for
224 * TRAPNO and ERR "registers" as well but linux doesn't dump
225 * those.
227 * See linux kernel: arch/x86/include/asm/elf.h
229 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
231 (*regs)[0] = env->regs[R_EBX];
232 (*regs)[1] = env->regs[R_ECX];
233 (*regs)[2] = env->regs[R_EDX];
234 (*regs)[3] = env->regs[R_ESI];
235 (*regs)[4] = env->regs[R_EDI];
236 (*regs)[5] = env->regs[R_EBP];
237 (*regs)[6] = env->regs[R_EAX];
238 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
239 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
240 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
241 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
242 (*regs)[11] = env->regs[R_EAX]; /* XXX */
243 (*regs)[12] = env->eip;
244 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
245 (*regs)[14] = env->eflags;
246 (*regs)[15] = env->regs[R_ESP];
247 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
249 #endif
251 #define USE_ELF_CORE_DUMP
252 #define ELF_EXEC_PAGESIZE 4096
254 #endif
256 #ifdef TARGET_ARM
258 #define ELF_START_MMAP 0x80000000
260 #define elf_check_arch(x) ( (x) == EM_ARM )
262 #define ELF_CLASS ELFCLASS32
263 #ifdef TARGET_WORDS_BIGENDIAN
264 #define ELF_DATA ELFDATA2MSB
265 #else
266 #define ELF_DATA ELFDATA2LSB
267 #endif
268 #define ELF_ARCH EM_ARM
270 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
272 abi_long stack = infop->start_stack;
273 memset(regs, 0, sizeof(*regs));
274 regs->ARM_cpsr = 0x10;
275 if (infop->entry & 1)
276 regs->ARM_cpsr |= CPSR_T;
277 regs->ARM_pc = infop->entry & 0xfffffffe;
278 regs->ARM_sp = infop->start_stack;
279 /* FIXME - what to for failure of get_user()? */
280 get_user_ual(regs->ARM_r2, stack + 8); /* envp */
281 get_user_ual(regs->ARM_r1, stack + 4); /* envp */
282 /* XXX: it seems that r0 is zeroed after ! */
283 regs->ARM_r0 = 0;
284 /* For uClinux PIC binaries. */
285 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
286 regs->ARM_r10 = infop->start_data;
289 #define ELF_NREG 18
290 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
292 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
294 (*regs)[0] = tswapl(env->regs[0]);
295 (*regs)[1] = tswapl(env->regs[1]);
296 (*regs)[2] = tswapl(env->regs[2]);
297 (*regs)[3] = tswapl(env->regs[3]);
298 (*regs)[4] = tswapl(env->regs[4]);
299 (*regs)[5] = tswapl(env->regs[5]);
300 (*regs)[6] = tswapl(env->regs[6]);
301 (*regs)[7] = tswapl(env->regs[7]);
302 (*regs)[8] = tswapl(env->regs[8]);
303 (*regs)[9] = tswapl(env->regs[9]);
304 (*regs)[10] = tswapl(env->regs[10]);
305 (*regs)[11] = tswapl(env->regs[11]);
306 (*regs)[12] = tswapl(env->regs[12]);
307 (*regs)[13] = tswapl(env->regs[13]);
308 (*regs)[14] = tswapl(env->regs[14]);
309 (*regs)[15] = tswapl(env->regs[15]);
311 (*regs)[16] = tswapl(cpsr_read((CPUState *)env));
312 (*regs)[17] = tswapl(env->regs[0]); /* XXX */
315 #define USE_ELF_CORE_DUMP
316 #define ELF_EXEC_PAGESIZE 4096
318 enum
320 ARM_HWCAP_ARM_SWP = 1 << 0,
321 ARM_HWCAP_ARM_HALF = 1 << 1,
322 ARM_HWCAP_ARM_THUMB = 1 << 2,
323 ARM_HWCAP_ARM_26BIT = 1 << 3,
324 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
325 ARM_HWCAP_ARM_FPA = 1 << 5,
326 ARM_HWCAP_ARM_VFP = 1 << 6,
327 ARM_HWCAP_ARM_EDSP = 1 << 7,
328 ARM_HWCAP_ARM_JAVA = 1 << 8,
329 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
330 ARM_HWCAP_ARM_THUMBEE = 1 << 10,
331 ARM_HWCAP_ARM_NEON = 1 << 11,
332 ARM_HWCAP_ARM_VFPv3 = 1 << 12,
333 ARM_HWCAP_ARM_VFPv3D16 = 1 << 13,
336 #define ELF_HWCAP (ARM_HWCAP_ARM_SWP | ARM_HWCAP_ARM_HALF \
337 | ARM_HWCAP_ARM_THUMB | ARM_HWCAP_ARM_FAST_MULT \
338 | ARM_HWCAP_ARM_FPA | ARM_HWCAP_ARM_VFP \
339 | ARM_HWCAP_ARM_NEON | ARM_HWCAP_ARM_VFPv3 )
341 #endif
343 #ifdef TARGET_SPARC
344 #ifdef TARGET_SPARC64
346 #define ELF_START_MMAP 0x80000000
348 #ifndef TARGET_ABI32
349 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
350 #else
351 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
352 #endif
354 #define ELF_CLASS ELFCLASS64
355 #define ELF_DATA ELFDATA2MSB
356 #define ELF_ARCH EM_SPARCV9
358 #define STACK_BIAS 2047
360 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
362 #ifndef TARGET_ABI32
363 regs->tstate = 0;
364 #endif
365 regs->pc = infop->entry;
366 regs->npc = regs->pc + 4;
367 regs->y = 0;
368 #ifdef TARGET_ABI32
369 regs->u_regs[14] = infop->start_stack - 16 * 4;
370 #else
371 if (personality(infop->personality) == PER_LINUX32)
372 regs->u_regs[14] = infop->start_stack - 16 * 4;
373 else
374 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
375 #endif
378 #else
379 #define ELF_START_MMAP 0x80000000
381 #define elf_check_arch(x) ( (x) == EM_SPARC )
383 #define ELF_CLASS ELFCLASS32
384 #define ELF_DATA ELFDATA2MSB
385 #define ELF_ARCH EM_SPARC
387 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
389 regs->psr = 0;
390 regs->pc = infop->entry;
391 regs->npc = regs->pc + 4;
392 regs->y = 0;
393 regs->u_regs[14] = infop->start_stack - 16 * 4;
396 #endif
397 #endif
399 #ifdef TARGET_PPC
401 #define ELF_START_MMAP 0x80000000
403 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
405 #define elf_check_arch(x) ( (x) == EM_PPC64 )
407 #define ELF_CLASS ELFCLASS64
409 #else
411 #define elf_check_arch(x) ( (x) == EM_PPC )
413 #define ELF_CLASS ELFCLASS32
415 #endif
417 #ifdef TARGET_WORDS_BIGENDIAN
418 #define ELF_DATA ELFDATA2MSB
419 #else
420 #define ELF_DATA ELFDATA2LSB
421 #endif
422 #define ELF_ARCH EM_PPC
424 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
425 See arch/powerpc/include/asm/cputable.h. */
426 enum {
427 QEMU_PPC_FEATURE_32 = 0x80000000,
428 QEMU_PPC_FEATURE_64 = 0x40000000,
429 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
430 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
431 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
432 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
433 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
434 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
435 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
436 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
437 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
438 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
439 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
440 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
441 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
442 QEMU_PPC_FEATURE_CELL = 0x00010000,
443 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
444 QEMU_PPC_FEATURE_SMT = 0x00004000,
445 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
446 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
447 QEMU_PPC_FEATURE_PA6T = 0x00000800,
448 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
449 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
450 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
451 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
452 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
454 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
455 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
458 #define ELF_HWCAP get_elf_hwcap()
460 static uint32_t get_elf_hwcap(void)
462 CPUState *e = thread_env;
463 uint32_t features = 0;
465 /* We don't have to be terribly complete here; the high points are
466 Altivec/FP/SPE support. Anything else is just a bonus. */
467 #define GET_FEATURE(flag, feature) \
468 do {if (e->insns_flags & flag) features |= feature; } while(0)
469 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
470 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
471 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
472 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
473 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
474 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
475 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
476 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
477 #undef GET_FEATURE
479 return features;
483 * We need to put in some extra aux table entries to tell glibc what
484 * the cache block size is, so it can use the dcbz instruction safely.
486 #define AT_DCACHEBSIZE 19
487 #define AT_ICACHEBSIZE 20
488 #define AT_UCACHEBSIZE 21
489 /* A special ignored type value for PPC, for glibc compatibility. */
490 #define AT_IGNOREPPC 22
492 * The requirements here are:
493 * - keep the final alignment of sp (sp & 0xf)
494 * - make sure the 32-bit value at the first 16 byte aligned position of
495 * AUXV is greater than 16 for glibc compatibility.
496 * AT_IGNOREPPC is used for that.
497 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
498 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
500 #define DLINFO_ARCH_ITEMS 5
501 #define ARCH_DLINFO \
502 do { \
503 NEW_AUX_ENT(AT_DCACHEBSIZE, 0x20); \
504 NEW_AUX_ENT(AT_ICACHEBSIZE, 0x20); \
505 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
506 /* \
507 * Now handle glibc compatibility. \
508 */ \
509 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
510 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
511 } while (0)
513 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
515 abi_ulong pos = infop->start_stack;
516 abi_ulong tmp;
517 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
518 abi_ulong entry, toc;
519 #endif
521 _regs->gpr[1] = infop->start_stack;
522 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
523 entry = ldq_raw(infop->entry) + infop->load_addr;
524 toc = ldq_raw(infop->entry + 8) + infop->load_addr;
525 _regs->gpr[2] = toc;
526 infop->entry = entry;
527 #endif
528 _regs->nip = infop->entry;
529 /* Note that isn't exactly what regular kernel does
530 * but this is what the ABI wants and is needed to allow
531 * execution of PPC BSD programs.
533 /* FIXME - what to for failure of get_user()? */
534 get_user_ual(_regs->gpr[3], pos);
535 pos += sizeof(abi_ulong);
536 _regs->gpr[4] = pos;
537 for (tmp = 1; tmp != 0; pos += sizeof(abi_ulong))
538 tmp = ldl(pos);
539 _regs->gpr[5] = pos;
542 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
543 #define ELF_NREG 48
544 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
546 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
548 int i;
549 target_ulong ccr = 0;
551 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
552 (*regs)[i] = tswapl(env->gpr[i]);
555 (*regs)[32] = tswapl(env->nip);
556 (*regs)[33] = tswapl(env->msr);
557 (*regs)[35] = tswapl(env->ctr);
558 (*regs)[36] = tswapl(env->lr);
559 (*regs)[37] = tswapl(env->xer);
561 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
562 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
564 (*regs)[38] = tswapl(ccr);
567 #define USE_ELF_CORE_DUMP
568 #define ELF_EXEC_PAGESIZE 4096
570 #endif
572 #ifdef TARGET_MIPS
574 #define ELF_START_MMAP 0x80000000
576 #define elf_check_arch(x) ( (x) == EM_MIPS )
578 #ifdef TARGET_MIPS64
579 #define ELF_CLASS ELFCLASS64
580 #else
581 #define ELF_CLASS ELFCLASS32
582 #endif
583 #ifdef TARGET_WORDS_BIGENDIAN
584 #define ELF_DATA ELFDATA2MSB
585 #else
586 #define ELF_DATA ELFDATA2LSB
587 #endif
588 #define ELF_ARCH EM_MIPS
590 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
592 regs->cp0_status = 2 << CP0St_KSU;
593 regs->cp0_epc = infop->entry;
594 regs->regs[29] = infop->start_stack;
597 #define ELF_EXEC_PAGESIZE 4096
599 #endif /* TARGET_MIPS */
601 #ifdef TARGET_MICROBLAZE
603 #define ELF_START_MMAP 0x80000000
605 #define elf_check_arch(x) ( (x) == EM_XILINX_MICROBLAZE )
607 #define ELF_CLASS ELFCLASS32
608 #define ELF_DATA ELFDATA2MSB
609 #define ELF_ARCH EM_MIPS
611 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
613 regs->pc = infop->entry;
614 regs->r1 = infop->start_stack;
618 #define ELF_EXEC_PAGESIZE 4096
620 #endif /* TARGET_MICROBLAZE */
622 #ifdef TARGET_SH4
624 #define ELF_START_MMAP 0x80000000
626 #define elf_check_arch(x) ( (x) == EM_SH )
628 #define ELF_CLASS ELFCLASS32
629 #define ELF_DATA ELFDATA2LSB
630 #define ELF_ARCH EM_SH
632 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
634 /* Check other registers XXXXX */
635 regs->pc = infop->entry;
636 regs->regs[15] = infop->start_stack;
639 #define ELF_EXEC_PAGESIZE 4096
641 #endif
643 #ifdef TARGET_CRIS
645 #define ELF_START_MMAP 0x80000000
647 #define elf_check_arch(x) ( (x) == EM_CRIS )
649 #define ELF_CLASS ELFCLASS32
650 #define ELF_DATA ELFDATA2LSB
651 #define ELF_ARCH EM_CRIS
653 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
655 regs->erp = infop->entry;
658 #define ELF_EXEC_PAGESIZE 8192
660 #endif
662 #ifdef TARGET_M68K
664 #define ELF_START_MMAP 0x80000000
666 #define elf_check_arch(x) ( (x) == EM_68K )
668 #define ELF_CLASS ELFCLASS32
669 #define ELF_DATA ELFDATA2MSB
670 #define ELF_ARCH EM_68K
672 /* ??? Does this need to do anything?
673 #define ELF_PLAT_INIT(_r) */
675 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
677 regs->usp = infop->start_stack;
678 regs->sr = 0;
679 regs->pc = infop->entry;
682 #define ELF_EXEC_PAGESIZE 8192
684 #endif
686 #ifdef TARGET_ALPHA
688 #define ELF_START_MMAP (0x30000000000ULL)
690 #define elf_check_arch(x) ( (x) == ELF_ARCH )
692 #define ELF_CLASS ELFCLASS64
693 #define ELF_DATA ELFDATA2MSB
694 #define ELF_ARCH EM_ALPHA
696 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
698 regs->pc = infop->entry;
699 regs->ps = 8;
700 regs->usp = infop->start_stack;
703 #define ELF_EXEC_PAGESIZE 8192
705 #endif /* TARGET_ALPHA */
707 #ifndef ELF_PLATFORM
708 #define ELF_PLATFORM (NULL)
709 #endif
711 #ifndef ELF_HWCAP
712 #define ELF_HWCAP 0
713 #endif
715 #ifdef TARGET_ABI32
716 #undef ELF_CLASS
717 #define ELF_CLASS ELFCLASS32
718 #undef bswaptls
719 #define bswaptls(ptr) bswap32s(ptr)
720 #endif
722 #include "elf.h"
724 struct exec
726 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
727 unsigned int a_text; /* length of text, in bytes */
728 unsigned int a_data; /* length of data, in bytes */
729 unsigned int a_bss; /* length of uninitialized data area, in bytes */
730 unsigned int a_syms; /* length of symbol table data in file, in bytes */
731 unsigned int a_entry; /* start address */
732 unsigned int a_trsize; /* length of relocation info for text, in bytes */
733 unsigned int a_drsize; /* length of relocation info for data, in bytes */
737 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
738 #define OMAGIC 0407
739 #define NMAGIC 0410
740 #define ZMAGIC 0413
741 #define QMAGIC 0314
743 /* max code+data+bss space allocated to elf interpreter */
744 #define INTERP_MAP_SIZE (32 * 1024 * 1024)
746 /* max code+data+bss+brk space allocated to ET_DYN executables */
747 #define ET_DYN_MAP_SIZE (128 * 1024 * 1024)
749 /* Necessary parameters */
750 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
751 #define TARGET_ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(TARGET_ELF_EXEC_PAGESIZE-1))
752 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
754 #define INTERPRETER_NONE 0
755 #define INTERPRETER_AOUT 1
756 #define INTERPRETER_ELF 2
758 #define DLINFO_ITEMS 12
760 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
762 memcpy(to, from, n);
765 static int load_aout_interp(void * exptr, int interp_fd);
767 #ifdef BSWAP_NEEDED
768 static void bswap_ehdr(struct elfhdr *ehdr)
770 bswap16s(&ehdr->e_type); /* Object file type */
771 bswap16s(&ehdr->e_machine); /* Architecture */
772 bswap32s(&ehdr->e_version); /* Object file version */
773 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
774 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
775 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
776 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
777 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
778 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
779 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
780 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
781 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
782 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
785 static void bswap_phdr(struct elf_phdr *phdr)
787 bswap32s(&phdr->p_type); /* Segment type */
788 bswaptls(&phdr->p_offset); /* Segment file offset */
789 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
790 bswaptls(&phdr->p_paddr); /* Segment physical address */
791 bswaptls(&phdr->p_filesz); /* Segment size in file */
792 bswaptls(&phdr->p_memsz); /* Segment size in memory */
793 bswap32s(&phdr->p_flags); /* Segment flags */
794 bswaptls(&phdr->p_align); /* Segment alignment */
797 static void bswap_shdr(struct elf_shdr *shdr)
799 bswap32s(&shdr->sh_name);
800 bswap32s(&shdr->sh_type);
801 bswaptls(&shdr->sh_flags);
802 bswaptls(&shdr->sh_addr);
803 bswaptls(&shdr->sh_offset);
804 bswaptls(&shdr->sh_size);
805 bswap32s(&shdr->sh_link);
806 bswap32s(&shdr->sh_info);
807 bswaptls(&shdr->sh_addralign);
808 bswaptls(&shdr->sh_entsize);
811 static void bswap_sym(struct elf_sym *sym)
813 bswap32s(&sym->st_name);
814 bswaptls(&sym->st_value);
815 bswaptls(&sym->st_size);
816 bswap16s(&sym->st_shndx);
818 #endif
820 #ifdef USE_ELF_CORE_DUMP
821 static int elf_core_dump(int, const CPUState *);
823 #ifdef BSWAP_NEEDED
824 static void bswap_note(struct elf_note *en)
826 bswap32s(&en->n_namesz);
827 bswap32s(&en->n_descsz);
828 bswap32s(&en->n_type);
830 #endif /* BSWAP_NEEDED */
832 #endif /* USE_ELF_CORE_DUMP */
835 * 'copy_elf_strings()' copies argument/envelope strings from user
836 * memory to free pages in kernel mem. These are in a format ready
837 * to be put directly into the top of new user memory.
840 static abi_ulong copy_elf_strings(int argc,char ** argv, void **page,
841 abi_ulong p)
843 char *tmp, *tmp1, *pag = NULL;
844 int len, offset = 0;
846 if (!p) {
847 return 0; /* bullet-proofing */
849 while (argc-- > 0) {
850 tmp = argv[argc];
851 if (!tmp) {
852 fprintf(stderr, "VFS: argc is wrong");
853 exit(-1);
855 tmp1 = tmp;
856 while (*tmp++);
857 len = tmp - tmp1;
858 if (p < len) { /* this shouldn't happen - 128kB */
859 return 0;
861 while (len) {
862 --p; --tmp; --len;
863 if (--offset < 0) {
864 offset = p % TARGET_PAGE_SIZE;
865 pag = (char *)page[p/TARGET_PAGE_SIZE];
866 if (!pag) {
867 pag = (char *)malloc(TARGET_PAGE_SIZE);
868 memset(pag, 0, TARGET_PAGE_SIZE);
869 page[p/TARGET_PAGE_SIZE] = pag;
870 if (!pag)
871 return 0;
874 if (len == 0 || offset == 0) {
875 *(pag + offset) = *tmp;
877 else {
878 int bytes_to_copy = (len > offset) ? offset : len;
879 tmp -= bytes_to_copy;
880 p -= bytes_to_copy;
881 offset -= bytes_to_copy;
882 len -= bytes_to_copy;
883 memcpy_fromfs(pag + offset, tmp, bytes_to_copy + 1);
887 return p;
890 static abi_ulong setup_arg_pages(abi_ulong p, struct linux_binprm *bprm,
891 struct image_info *info)
893 abi_ulong stack_base, size, error;
894 int i;
896 /* Create enough stack to hold everything. If we don't use
897 * it for args, we'll use it for something else...
899 size = x86_stack_size;
900 if (size < MAX_ARG_PAGES*TARGET_PAGE_SIZE)
901 size = MAX_ARG_PAGES*TARGET_PAGE_SIZE;
902 error = target_mmap(0,
903 size + qemu_host_page_size,
904 PROT_READ | PROT_WRITE,
905 MAP_PRIVATE | MAP_ANONYMOUS,
906 -1, 0);
907 if (error == -1) {
908 perror("stk mmap");
909 exit(-1);
911 /* we reserve one extra page at the top of the stack as guard */
912 target_mprotect(error + size, qemu_host_page_size, PROT_NONE);
914 stack_base = error + size - MAX_ARG_PAGES*TARGET_PAGE_SIZE;
915 p += stack_base;
917 for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
918 if (bprm->page[i]) {
919 info->rss++;
920 /* FIXME - check return value of memcpy_to_target() for failure */
921 memcpy_to_target(stack_base, bprm->page[i], TARGET_PAGE_SIZE);
922 free(bprm->page[i]);
924 stack_base += TARGET_PAGE_SIZE;
926 return p;
929 static void set_brk(abi_ulong start, abi_ulong end)
931 /* page-align the start and end addresses... */
932 start = HOST_PAGE_ALIGN(start);
933 end = HOST_PAGE_ALIGN(end);
934 if (end <= start)
935 return;
936 if(target_mmap(start, end - start,
937 PROT_READ | PROT_WRITE | PROT_EXEC,
938 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0) == -1) {
939 perror("cannot mmap brk");
940 exit(-1);
945 /* We need to explicitly zero any fractional pages after the data
946 section (i.e. bss). This would contain the junk from the file that
947 should not be in memory. */
948 static void padzero(abi_ulong elf_bss, abi_ulong last_bss)
950 abi_ulong nbyte;
952 if (elf_bss >= last_bss)
953 return;
955 /* XXX: this is really a hack : if the real host page size is
956 smaller than the target page size, some pages after the end
957 of the file may not be mapped. A better fix would be to
958 patch target_mmap(), but it is more complicated as the file
959 size must be known */
960 if (qemu_real_host_page_size < qemu_host_page_size) {
961 abi_ulong end_addr, end_addr1;
962 end_addr1 = (elf_bss + qemu_real_host_page_size - 1) &
963 ~(qemu_real_host_page_size - 1);
964 end_addr = HOST_PAGE_ALIGN(elf_bss);
965 if (end_addr1 < end_addr) {
966 mmap((void *)g2h(end_addr1), end_addr - end_addr1,
967 PROT_READ|PROT_WRITE|PROT_EXEC,
968 MAP_FIXED|MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
972 nbyte = elf_bss & (qemu_host_page_size-1);
973 if (nbyte) {
974 nbyte = qemu_host_page_size - nbyte;
975 do {
976 /* FIXME - what to do if put_user() fails? */
977 put_user_u8(0, elf_bss);
978 elf_bss++;
979 } while (--nbyte);
984 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
985 struct elfhdr * exec,
986 abi_ulong load_addr,
987 abi_ulong load_bias,
988 abi_ulong interp_load_addr, int ibcs,
989 struct image_info *info)
991 abi_ulong sp;
992 int size;
993 abi_ulong u_platform;
994 const char *k_platform;
995 const int n = sizeof(elf_addr_t);
997 sp = p;
998 u_platform = 0;
999 k_platform = ELF_PLATFORM;
1000 if (k_platform) {
1001 size_t len = strlen(k_platform) + 1;
1002 sp -= (len + n - 1) & ~(n - 1);
1003 u_platform = sp;
1004 /* FIXME - check return value of memcpy_to_target() for failure */
1005 memcpy_to_target(sp, k_platform, len);
1008 * Force 16 byte _final_ alignment here for generality.
1010 sp = sp &~ (abi_ulong)15;
1011 size = (DLINFO_ITEMS + 1) * 2;
1012 if (k_platform)
1013 size += 2;
1014 #ifdef DLINFO_ARCH_ITEMS
1015 size += DLINFO_ARCH_ITEMS * 2;
1016 #endif
1017 size += envc + argc + 2;
1018 size += (!ibcs ? 3 : 1); /* argc itself */
1019 size *= n;
1020 if (size & 15)
1021 sp -= 16 - (size & 15);
1023 /* This is correct because Linux defines
1024 * elf_addr_t as Elf32_Off / Elf64_Off
1026 #define NEW_AUX_ENT(id, val) do { \
1027 sp -= n; put_user_ual(val, sp); \
1028 sp -= n; put_user_ual(id, sp); \
1029 } while(0)
1031 NEW_AUX_ENT (AT_NULL, 0);
1033 /* There must be exactly DLINFO_ITEMS entries here. */
1034 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(load_addr + exec->e_phoff));
1035 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1036 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1037 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
1038 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_load_addr));
1039 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1040 NEW_AUX_ENT(AT_ENTRY, load_bias + exec->e_entry);
1041 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1042 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1043 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1044 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1045 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1046 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1047 if (k_platform)
1048 NEW_AUX_ENT(AT_PLATFORM, u_platform);
1049 #ifdef ARCH_DLINFO
1051 * ARCH_DLINFO must come last so platform specific code can enforce
1052 * special alignment requirements on the AUXV if necessary (eg. PPC).
1054 ARCH_DLINFO;
1055 #endif
1056 #undef NEW_AUX_ENT
1058 info->saved_auxv = sp;
1060 sp = loader_build_argptr(envc, argc, sp, p, !ibcs);
1061 return sp;
1065 static abi_ulong load_elf_interp(struct elfhdr * interp_elf_ex,
1066 int interpreter_fd,
1067 abi_ulong *interp_load_addr)
1069 struct elf_phdr *elf_phdata = NULL;
1070 struct elf_phdr *eppnt;
1071 abi_ulong load_addr = 0;
1072 int load_addr_set = 0;
1073 int retval;
1074 abi_ulong last_bss, elf_bss;
1075 abi_ulong error;
1076 int i;
1078 elf_bss = 0;
1079 last_bss = 0;
1080 error = 0;
1082 #ifdef BSWAP_NEEDED
1083 bswap_ehdr(interp_elf_ex);
1084 #endif
1085 /* First of all, some simple consistency checks */
1086 if ((interp_elf_ex->e_type != ET_EXEC &&
1087 interp_elf_ex->e_type != ET_DYN) ||
1088 !elf_check_arch(interp_elf_ex->e_machine)) {
1089 return ~((abi_ulong)0UL);
1093 /* Now read in all of the header information */
1095 if (sizeof(struct elf_phdr) * interp_elf_ex->e_phnum > TARGET_PAGE_SIZE)
1096 return ~(abi_ulong)0UL;
1098 elf_phdata = (struct elf_phdr *)
1099 malloc(sizeof(struct elf_phdr) * interp_elf_ex->e_phnum);
1101 if (!elf_phdata)
1102 return ~((abi_ulong)0UL);
1105 * If the size of this structure has changed, then punt, since
1106 * we will be doing the wrong thing.
1108 if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr)) {
1109 free(elf_phdata);
1110 return ~((abi_ulong)0UL);
1113 retval = lseek(interpreter_fd, interp_elf_ex->e_phoff, SEEK_SET);
1114 if(retval >= 0) {
1115 retval = read(interpreter_fd,
1116 (char *) elf_phdata,
1117 sizeof(struct elf_phdr) * interp_elf_ex->e_phnum);
1119 if (retval < 0) {
1120 perror("load_elf_interp");
1121 exit(-1);
1122 free (elf_phdata);
1123 return retval;
1125 #ifdef BSWAP_NEEDED
1126 eppnt = elf_phdata;
1127 for (i=0; i<interp_elf_ex->e_phnum; i++, eppnt++) {
1128 bswap_phdr(eppnt);
1130 #endif
1132 if (interp_elf_ex->e_type == ET_DYN) {
1133 /* in order to avoid hardcoding the interpreter load
1134 address in qemu, we allocate a big enough memory zone */
1135 error = target_mmap(0, INTERP_MAP_SIZE,
1136 PROT_NONE, MAP_PRIVATE | MAP_ANON,
1137 -1, 0);
1138 if (error == -1) {
1139 perror("mmap");
1140 exit(-1);
1142 load_addr = error;
1143 load_addr_set = 1;
1146 eppnt = elf_phdata;
1147 for(i=0; i<interp_elf_ex->e_phnum; i++, eppnt++)
1148 if (eppnt->p_type == PT_LOAD) {
1149 int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
1150 int elf_prot = 0;
1151 abi_ulong vaddr = 0;
1152 abi_ulong k;
1154 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
1155 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
1156 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
1157 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set) {
1158 elf_type |= MAP_FIXED;
1159 vaddr = eppnt->p_vaddr;
1161 error = target_mmap(load_addr+TARGET_ELF_PAGESTART(vaddr),
1162 eppnt->p_filesz + TARGET_ELF_PAGEOFFSET(eppnt->p_vaddr),
1163 elf_prot,
1164 elf_type,
1165 interpreter_fd,
1166 eppnt->p_offset - TARGET_ELF_PAGEOFFSET(eppnt->p_vaddr));
1168 if (error == -1) {
1169 /* Real error */
1170 close(interpreter_fd);
1171 free(elf_phdata);
1172 return ~((abi_ulong)0UL);
1175 if (!load_addr_set && interp_elf_ex->e_type == ET_DYN) {
1176 load_addr = error;
1177 load_addr_set = 1;
1181 * Find the end of the file mapping for this phdr, and keep
1182 * track of the largest address we see for this.
1184 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
1185 if (k > elf_bss) elf_bss = k;
1188 * Do the same thing for the memory mapping - between
1189 * elf_bss and last_bss is the bss section.
1191 k = load_addr + eppnt->p_memsz + eppnt->p_vaddr;
1192 if (k > last_bss) last_bss = k;
1195 /* Now use mmap to map the library into memory. */
1197 close(interpreter_fd);
1200 * Now fill out the bss section. First pad the last page up
1201 * to the page boundary, and then perform a mmap to make sure
1202 * that there are zeromapped pages up to and including the last
1203 * bss page.
1205 padzero(elf_bss, last_bss);
1206 elf_bss = TARGET_ELF_PAGESTART(elf_bss + qemu_host_page_size - 1); /* What we have mapped so far */
1208 /* Map the last of the bss segment */
1209 if (last_bss > elf_bss) {
1210 target_mmap(elf_bss, last_bss-elf_bss,
1211 PROT_READ|PROT_WRITE|PROT_EXEC,
1212 MAP_FIXED|MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
1214 free(elf_phdata);
1216 *interp_load_addr = load_addr;
1217 return ((abi_ulong) interp_elf_ex->e_entry) + load_addr;
1220 static int symfind(const void *s0, const void *s1)
1222 struct elf_sym *key = (struct elf_sym *)s0;
1223 struct elf_sym *sym = (struct elf_sym *)s1;
1224 int result = 0;
1225 if (key->st_value < sym->st_value) {
1226 result = -1;
1227 } else if (key->st_value >= sym->st_value + sym->st_size) {
1228 result = 1;
1230 return result;
1233 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
1235 #if ELF_CLASS == ELFCLASS32
1236 struct elf_sym *syms = s->disas_symtab.elf32;
1237 #else
1238 struct elf_sym *syms = s->disas_symtab.elf64;
1239 #endif
1241 // binary search
1242 struct elf_sym key;
1243 struct elf_sym *sym;
1245 key.st_value = orig_addr;
1247 sym = bsearch(&key, syms, s->disas_num_syms, sizeof(*syms), symfind);
1248 if (sym != NULL) {
1249 return s->disas_strtab + sym->st_name;
1252 return "";
1255 /* FIXME: This should use elf_ops.h */
1256 static int symcmp(const void *s0, const void *s1)
1258 struct elf_sym *sym0 = (struct elf_sym *)s0;
1259 struct elf_sym *sym1 = (struct elf_sym *)s1;
1260 return (sym0->st_value < sym1->st_value)
1261 ? -1
1262 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
1265 /* Best attempt to load symbols from this ELF object. */
1266 static void load_symbols(struct elfhdr *hdr, int fd)
1268 unsigned int i, nsyms;
1269 struct elf_shdr sechdr, symtab, strtab;
1270 char *strings;
1271 struct syminfo *s;
1272 struct elf_sym *syms;
1274 lseek(fd, hdr->e_shoff, SEEK_SET);
1275 for (i = 0; i < hdr->e_shnum; i++) {
1276 if (read(fd, &sechdr, sizeof(sechdr)) != sizeof(sechdr))
1277 return;
1278 #ifdef BSWAP_NEEDED
1279 bswap_shdr(&sechdr);
1280 #endif
1281 if (sechdr.sh_type == SHT_SYMTAB) {
1282 symtab = sechdr;
1283 lseek(fd, hdr->e_shoff
1284 + sizeof(sechdr) * sechdr.sh_link, SEEK_SET);
1285 if (read(fd, &strtab, sizeof(strtab))
1286 != sizeof(strtab))
1287 return;
1288 #ifdef BSWAP_NEEDED
1289 bswap_shdr(&strtab);
1290 #endif
1291 goto found;
1294 return; /* Shouldn't happen... */
1296 found:
1297 /* Now know where the strtab and symtab are. Snarf them. */
1298 s = malloc(sizeof(*s));
1299 syms = malloc(symtab.sh_size);
1300 if (!syms)
1301 return;
1302 s->disas_strtab = strings = malloc(strtab.sh_size);
1303 if (!s->disas_strtab)
1304 return;
1306 lseek(fd, symtab.sh_offset, SEEK_SET);
1307 if (read(fd, syms, symtab.sh_size) != symtab.sh_size)
1308 return;
1310 nsyms = symtab.sh_size / sizeof(struct elf_sym);
1312 i = 0;
1313 while (i < nsyms) {
1314 #ifdef BSWAP_NEEDED
1315 bswap_sym(syms + i);
1316 #endif
1317 // Throw away entries which we do not need.
1318 if (syms[i].st_shndx == SHN_UNDEF ||
1319 syms[i].st_shndx >= SHN_LORESERVE ||
1320 ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
1321 nsyms--;
1322 if (i < nsyms) {
1323 syms[i] = syms[nsyms];
1325 continue;
1327 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
1328 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
1329 syms[i].st_value &= ~(target_ulong)1;
1330 #endif
1331 i++;
1333 syms = realloc(syms, nsyms * sizeof(*syms));
1335 qsort(syms, nsyms, sizeof(*syms), symcmp);
1337 lseek(fd, strtab.sh_offset, SEEK_SET);
1338 if (read(fd, strings, strtab.sh_size) != strtab.sh_size)
1339 return;
1340 s->disas_num_syms = nsyms;
1341 #if ELF_CLASS == ELFCLASS32
1342 s->disas_symtab.elf32 = syms;
1343 s->lookup_symbol = (lookup_symbol_t)lookup_symbolxx;
1344 #else
1345 s->disas_symtab.elf64 = syms;
1346 s->lookup_symbol = (lookup_symbol_t)lookup_symbolxx;
1347 #endif
1348 s->next = syminfos;
1349 syminfos = s;
1352 int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
1353 struct image_info * info)
1355 struct elfhdr elf_ex;
1356 struct elfhdr interp_elf_ex;
1357 struct exec interp_ex;
1358 int interpreter_fd = -1; /* avoid warning */
1359 abi_ulong load_addr, load_bias;
1360 int load_addr_set = 0;
1361 unsigned int interpreter_type = INTERPRETER_NONE;
1362 unsigned char ibcs2_interpreter;
1363 int i;
1364 abi_ulong mapped_addr;
1365 struct elf_phdr * elf_ppnt;
1366 struct elf_phdr *elf_phdata;
1367 abi_ulong elf_bss, k, elf_brk;
1368 int retval;
1369 char * elf_interpreter;
1370 abi_ulong elf_entry, interp_load_addr = 0;
1371 int status;
1372 abi_ulong start_code, end_code, start_data, end_data;
1373 abi_ulong reloc_func_desc = 0;
1374 abi_ulong elf_stack;
1375 char passed_fileno[6];
1377 ibcs2_interpreter = 0;
1378 status = 0;
1379 load_addr = 0;
1380 load_bias = 0;
1381 elf_ex = *((struct elfhdr *) bprm->buf); /* exec-header */
1382 #ifdef BSWAP_NEEDED
1383 bswap_ehdr(&elf_ex);
1384 #endif
1386 /* First of all, some simple consistency checks */
1387 if ((elf_ex.e_type != ET_EXEC && elf_ex.e_type != ET_DYN) ||
1388 (! elf_check_arch(elf_ex.e_machine))) {
1389 return -ENOEXEC;
1392 bprm->p = copy_elf_strings(1, &bprm->filename, bprm->page, bprm->p);
1393 bprm->p = copy_elf_strings(bprm->envc,bprm->envp,bprm->page,bprm->p);
1394 bprm->p = copy_elf_strings(bprm->argc,bprm->argv,bprm->page,bprm->p);
1395 if (!bprm->p) {
1396 retval = -E2BIG;
1399 /* Now read in all of the header information */
1400 elf_phdata = (struct elf_phdr *)malloc(elf_ex.e_phentsize*elf_ex.e_phnum);
1401 if (elf_phdata == NULL) {
1402 return -ENOMEM;
1405 retval = lseek(bprm->fd, elf_ex.e_phoff, SEEK_SET);
1406 if(retval > 0) {
1407 retval = read(bprm->fd, (char *) elf_phdata,
1408 elf_ex.e_phentsize * elf_ex.e_phnum);
1411 if (retval < 0) {
1412 perror("load_elf_binary");
1413 exit(-1);
1414 free (elf_phdata);
1415 return -errno;
1418 #ifdef BSWAP_NEEDED
1419 elf_ppnt = elf_phdata;
1420 for (i=0; i<elf_ex.e_phnum; i++, elf_ppnt++) {
1421 bswap_phdr(elf_ppnt);
1423 #endif
1424 elf_ppnt = elf_phdata;
1426 elf_bss = 0;
1427 elf_brk = 0;
1430 elf_stack = ~((abi_ulong)0UL);
1431 elf_interpreter = NULL;
1432 start_code = ~((abi_ulong)0UL);
1433 end_code = 0;
1434 start_data = 0;
1435 end_data = 0;
1436 interp_ex.a_info = 0;
1438 for(i=0;i < elf_ex.e_phnum; i++) {
1439 if (elf_ppnt->p_type == PT_INTERP) {
1440 if ( elf_interpreter != NULL )
1442 free (elf_phdata);
1443 free(elf_interpreter);
1444 close(bprm->fd);
1445 return -EINVAL;
1448 /* This is the program interpreter used for
1449 * shared libraries - for now assume that this
1450 * is an a.out format binary
1453 elf_interpreter = (char *)malloc(elf_ppnt->p_filesz);
1455 if (elf_interpreter == NULL) {
1456 free (elf_phdata);
1457 close(bprm->fd);
1458 return -ENOMEM;
1461 retval = lseek(bprm->fd, elf_ppnt->p_offset, SEEK_SET);
1462 if(retval >= 0) {
1463 retval = read(bprm->fd, elf_interpreter, elf_ppnt->p_filesz);
1465 if(retval < 0) {
1466 perror("load_elf_binary2");
1467 exit(-1);
1470 /* If the program interpreter is one of these two,
1471 then assume an iBCS2 image. Otherwise assume
1472 a native linux image. */
1474 /* JRP - Need to add X86 lib dir stuff here... */
1476 if (strcmp(elf_interpreter,"/usr/lib/libc.so.1") == 0 ||
1477 strcmp(elf_interpreter,"/usr/lib/ld.so.1") == 0) {
1478 ibcs2_interpreter = 1;
1481 #if 0
1482 printf("Using ELF interpreter %s\n", path(elf_interpreter));
1483 #endif
1484 if (retval >= 0) {
1485 retval = open(path(elf_interpreter), O_RDONLY);
1486 if(retval >= 0) {
1487 interpreter_fd = retval;
1489 else {
1490 perror(elf_interpreter);
1491 exit(-1);
1492 /* retval = -errno; */
1496 if (retval >= 0) {
1497 retval = lseek(interpreter_fd, 0, SEEK_SET);
1498 if(retval >= 0) {
1499 retval = read(interpreter_fd,bprm->buf,128);
1502 if (retval >= 0) {
1503 interp_ex = *((struct exec *) bprm->buf); /* aout exec-header */
1504 interp_elf_ex = *((struct elfhdr *) bprm->buf); /* elf exec-header */
1506 if (retval < 0) {
1507 perror("load_elf_binary3");
1508 exit(-1);
1509 free (elf_phdata);
1510 free(elf_interpreter);
1511 close(bprm->fd);
1512 return retval;
1515 elf_ppnt++;
1518 /* Some simple consistency checks for the interpreter */
1519 if (elf_interpreter){
1520 interpreter_type = INTERPRETER_ELF | INTERPRETER_AOUT;
1522 /* Now figure out which format our binary is */
1523 if ((N_MAGIC(interp_ex) != OMAGIC) && (N_MAGIC(interp_ex) != ZMAGIC) &&
1524 (N_MAGIC(interp_ex) != QMAGIC)) {
1525 interpreter_type = INTERPRETER_ELF;
1528 if (interp_elf_ex.e_ident[0] != 0x7f ||
1529 strncmp((char *)&interp_elf_ex.e_ident[1], "ELF",3) != 0) {
1530 interpreter_type &= ~INTERPRETER_ELF;
1533 if (!interpreter_type) {
1534 free(elf_interpreter);
1535 free(elf_phdata);
1536 close(bprm->fd);
1537 return -ELIBBAD;
1541 /* OK, we are done with that, now set up the arg stuff,
1542 and then start this sucker up */
1545 char * passed_p;
1547 if (interpreter_type == INTERPRETER_AOUT) {
1548 snprintf(passed_fileno, sizeof(passed_fileno), "%d", bprm->fd);
1549 passed_p = passed_fileno;
1551 if (elf_interpreter) {
1552 bprm->p = copy_elf_strings(1,&passed_p,bprm->page,bprm->p);
1553 bprm->argc++;
1556 if (!bprm->p) {
1557 if (elf_interpreter) {
1558 free(elf_interpreter);
1560 free (elf_phdata);
1561 close(bprm->fd);
1562 return -E2BIG;
1566 /* OK, This is the point of no return */
1567 info->end_data = 0;
1568 info->end_code = 0;
1569 info->start_mmap = (abi_ulong)ELF_START_MMAP;
1570 info->mmap = 0;
1571 elf_entry = (abi_ulong) elf_ex.e_entry;
1573 #if defined(CONFIG_USE_GUEST_BASE)
1575 * In case where user has not explicitly set the guest_base, we
1576 * probe here that should we set it automatically.
1578 if (!have_guest_base) {
1580 * Go through ELF program header table and find out whether
1581 * any of the segments drop below our current mmap_min_addr and
1582 * in that case set guest_base to corresponding address.
1584 for (i = 0, elf_ppnt = elf_phdata; i < elf_ex.e_phnum;
1585 i++, elf_ppnt++) {
1586 if (elf_ppnt->p_type != PT_LOAD)
1587 continue;
1588 if (HOST_PAGE_ALIGN(elf_ppnt->p_vaddr) < mmap_min_addr) {
1589 guest_base = HOST_PAGE_ALIGN(mmap_min_addr);
1590 break;
1594 #endif /* CONFIG_USE_GUEST_BASE */
1596 /* Do this so that we can load the interpreter, if need be. We will
1597 change some of these later */
1598 info->rss = 0;
1599 bprm->p = setup_arg_pages(bprm->p, bprm, info);
1600 info->start_stack = bprm->p;
1602 /* Now we do a little grungy work by mmaping the ELF image into
1603 * the correct location in memory. At this point, we assume that
1604 * the image should be loaded at fixed address, not at a variable
1605 * address.
1608 for(i = 0, elf_ppnt = elf_phdata; i < elf_ex.e_phnum; i++, elf_ppnt++) {
1609 int elf_prot = 0;
1610 int elf_flags = 0;
1611 abi_ulong error;
1613 if (elf_ppnt->p_type != PT_LOAD)
1614 continue;
1616 if (elf_ppnt->p_flags & PF_R) elf_prot |= PROT_READ;
1617 if (elf_ppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
1618 if (elf_ppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
1619 elf_flags = MAP_PRIVATE | MAP_DENYWRITE;
1620 if (elf_ex.e_type == ET_EXEC || load_addr_set) {
1621 elf_flags |= MAP_FIXED;
1622 } else if (elf_ex.e_type == ET_DYN) {
1623 /* Try and get dynamic programs out of the way of the default mmap
1624 base, as well as whatever program they might try to exec. This
1625 is because the brk will follow the loader, and is not movable. */
1626 /* NOTE: for qemu, we do a big mmap to get enough space
1627 without hardcoding any address */
1628 error = target_mmap(0, ET_DYN_MAP_SIZE,
1629 PROT_NONE, MAP_PRIVATE | MAP_ANON,
1630 -1, 0);
1631 if (error == -1) {
1632 perror("mmap");
1633 exit(-1);
1635 load_bias = TARGET_ELF_PAGESTART(error - elf_ppnt->p_vaddr);
1638 error = target_mmap(TARGET_ELF_PAGESTART(load_bias + elf_ppnt->p_vaddr),
1639 (elf_ppnt->p_filesz +
1640 TARGET_ELF_PAGEOFFSET(elf_ppnt->p_vaddr)),
1641 elf_prot,
1642 (MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE),
1643 bprm->fd,
1644 (elf_ppnt->p_offset -
1645 TARGET_ELF_PAGEOFFSET(elf_ppnt->p_vaddr)));
1646 if (error == -1) {
1647 perror("mmap");
1648 exit(-1);
1651 #ifdef LOW_ELF_STACK
1652 if (TARGET_ELF_PAGESTART(elf_ppnt->p_vaddr) < elf_stack)
1653 elf_stack = TARGET_ELF_PAGESTART(elf_ppnt->p_vaddr);
1654 #endif
1656 if (!load_addr_set) {
1657 load_addr_set = 1;
1658 load_addr = elf_ppnt->p_vaddr - elf_ppnt->p_offset;
1659 if (elf_ex.e_type == ET_DYN) {
1660 load_bias += error -
1661 TARGET_ELF_PAGESTART(load_bias + elf_ppnt->p_vaddr);
1662 load_addr += load_bias;
1663 reloc_func_desc = load_bias;
1666 k = elf_ppnt->p_vaddr;
1667 if (k < start_code)
1668 start_code = k;
1669 if (start_data < k)
1670 start_data = k;
1671 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
1672 if (k > elf_bss)
1673 elf_bss = k;
1674 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
1675 end_code = k;
1676 if (end_data < k)
1677 end_data = k;
1678 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
1679 if (k > elf_brk) elf_brk = k;
1682 elf_entry += load_bias;
1683 elf_bss += load_bias;
1684 elf_brk += load_bias;
1685 start_code += load_bias;
1686 end_code += load_bias;
1687 start_data += load_bias;
1688 end_data += load_bias;
1690 if (elf_interpreter) {
1691 if (interpreter_type & 1) {
1692 elf_entry = load_aout_interp(&interp_ex, interpreter_fd);
1694 else if (interpreter_type & 2) {
1695 elf_entry = load_elf_interp(&interp_elf_ex, interpreter_fd,
1696 &interp_load_addr);
1698 reloc_func_desc = interp_load_addr;
1700 close(interpreter_fd);
1701 free(elf_interpreter);
1703 if (elf_entry == ~((abi_ulong)0UL)) {
1704 printf("Unable to load interpreter\n");
1705 free(elf_phdata);
1706 exit(-1);
1707 return 0;
1711 free(elf_phdata);
1713 if (qemu_log_enabled())
1714 load_symbols(&elf_ex, bprm->fd);
1716 if (interpreter_type != INTERPRETER_AOUT) close(bprm->fd);
1717 info->personality = (ibcs2_interpreter ? PER_SVR4 : PER_LINUX);
1719 #ifdef LOW_ELF_STACK
1720 info->start_stack = bprm->p = elf_stack - 4;
1721 #endif
1722 bprm->p = create_elf_tables(bprm->p,
1723 bprm->argc,
1724 bprm->envc,
1725 &elf_ex,
1726 load_addr, load_bias,
1727 interp_load_addr,
1728 (interpreter_type == INTERPRETER_AOUT ? 0 : 1),
1729 info);
1730 info->load_addr = reloc_func_desc;
1731 info->start_brk = info->brk = elf_brk;
1732 info->end_code = end_code;
1733 info->start_code = start_code;
1734 info->start_data = start_data;
1735 info->end_data = end_data;
1736 info->start_stack = bprm->p;
1738 /* Calling set_brk effectively mmaps the pages that we need for the bss and break
1739 sections */
1740 set_brk(elf_bss, elf_brk);
1742 padzero(elf_bss, elf_brk);
1744 #if 0
1745 printf("(start_brk) %x\n" , info->start_brk);
1746 printf("(end_code) %x\n" , info->end_code);
1747 printf("(start_code) %x\n" , info->start_code);
1748 printf("(end_data) %x\n" , info->end_data);
1749 printf("(start_stack) %x\n" , info->start_stack);
1750 printf("(brk) %x\n" , info->brk);
1751 #endif
1753 if ( info->personality == PER_SVR4 )
1755 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
1756 and some applications "depend" upon this behavior.
1757 Since we do not have the power to recompile these, we
1758 emulate the SVr4 behavior. Sigh. */
1759 mapped_addr = target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
1760 MAP_FIXED | MAP_PRIVATE, -1, 0);
1763 info->entry = elf_entry;
1765 #ifdef USE_ELF_CORE_DUMP
1766 bprm->core_dump = &elf_core_dump;
1767 #endif
1769 return 0;
1772 #ifdef USE_ELF_CORE_DUMP
1775 * Definitions to generate Intel SVR4-like core files.
1776 * These mostly have the same names as the SVR4 types with "target_elf_"
1777 * tacked on the front to prevent clashes with linux definitions,
1778 * and the typedef forms have been avoided. This is mostly like
1779 * the SVR4 structure, but more Linuxy, with things that Linux does
1780 * not support and which gdb doesn't really use excluded.
1782 * Fields we don't dump (their contents is zero) in linux-user qemu
1783 * are marked with XXX.
1785 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
1787 * Porting ELF coredump for target is (quite) simple process. First you
1788 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
1789 * the target resides):
1791 * #define USE_ELF_CORE_DUMP
1793 * Next you define type of register set used for dumping. ELF specification
1794 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
1796 * typedef <target_regtype> target_elf_greg_t;
1797 * #define ELF_NREG <number of registers>
1798 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
1800 * Last step is to implement target specific function that copies registers
1801 * from given cpu into just specified register set. Prototype is:
1803 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
1804 * const CPUState *env);
1806 * Parameters:
1807 * regs - copy register values into here (allocated and zeroed by caller)
1808 * env - copy registers from here
1810 * Example for ARM target is provided in this file.
1813 /* An ELF note in memory */
1814 struct memelfnote {
1815 const char *name;
1816 size_t namesz;
1817 size_t namesz_rounded;
1818 int type;
1819 size_t datasz;
1820 void *data;
1821 size_t notesz;
1824 struct target_elf_siginfo {
1825 int si_signo; /* signal number */
1826 int si_code; /* extra code */
1827 int si_errno; /* errno */
1830 struct target_elf_prstatus {
1831 struct target_elf_siginfo pr_info; /* Info associated with signal */
1832 short pr_cursig; /* Current signal */
1833 target_ulong pr_sigpend; /* XXX */
1834 target_ulong pr_sighold; /* XXX */
1835 target_pid_t pr_pid;
1836 target_pid_t pr_ppid;
1837 target_pid_t pr_pgrp;
1838 target_pid_t pr_sid;
1839 struct target_timeval pr_utime; /* XXX User time */
1840 struct target_timeval pr_stime; /* XXX System time */
1841 struct target_timeval pr_cutime; /* XXX Cumulative user time */
1842 struct target_timeval pr_cstime; /* XXX Cumulative system time */
1843 target_elf_gregset_t pr_reg; /* GP registers */
1844 int pr_fpvalid; /* XXX */
1847 #define ELF_PRARGSZ (80) /* Number of chars for args */
1849 struct target_elf_prpsinfo {
1850 char pr_state; /* numeric process state */
1851 char pr_sname; /* char for pr_state */
1852 char pr_zomb; /* zombie */
1853 char pr_nice; /* nice val */
1854 target_ulong pr_flag; /* flags */
1855 target_uid_t pr_uid;
1856 target_gid_t pr_gid;
1857 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
1858 /* Lots missing */
1859 char pr_fname[16]; /* filename of executable */
1860 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
1863 /* Here is the structure in which status of each thread is captured. */
1864 struct elf_thread_status {
1865 QTAILQ_ENTRY(elf_thread_status) ets_link;
1866 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
1867 #if 0
1868 elf_fpregset_t fpu; /* NT_PRFPREG */
1869 struct task_struct *thread;
1870 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
1871 #endif
1872 struct memelfnote notes[1];
1873 int num_notes;
1876 struct elf_note_info {
1877 struct memelfnote *notes;
1878 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
1879 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
1881 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
1882 #if 0
1884 * Current version of ELF coredump doesn't support
1885 * dumping fp regs etc.
1887 elf_fpregset_t *fpu;
1888 elf_fpxregset_t *xfpu;
1889 int thread_status_size;
1890 #endif
1891 int notes_size;
1892 int numnote;
1895 struct vm_area_struct {
1896 abi_ulong vma_start; /* start vaddr of memory region */
1897 abi_ulong vma_end; /* end vaddr of memory region */
1898 abi_ulong vma_flags; /* protection etc. flags for the region */
1899 QTAILQ_ENTRY(vm_area_struct) vma_link;
1902 struct mm_struct {
1903 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
1904 int mm_count; /* number of mappings */
1907 static struct mm_struct *vma_init(void);
1908 static void vma_delete(struct mm_struct *);
1909 static int vma_add_mapping(struct mm_struct *, abi_ulong,
1910 abi_ulong, abi_ulong);
1911 static int vma_get_mapping_count(const struct mm_struct *);
1912 static struct vm_area_struct *vma_first(const struct mm_struct *);
1913 static struct vm_area_struct *vma_next(struct vm_area_struct *);
1914 static abi_ulong vma_dump_size(const struct vm_area_struct *);
1915 static int vma_walker(void *priv, unsigned long start, unsigned long end,
1916 unsigned long flags);
1918 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
1919 static void fill_note(struct memelfnote *, const char *, int,
1920 unsigned int, void *);
1921 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
1922 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
1923 static void fill_auxv_note(struct memelfnote *, const TaskState *);
1924 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
1925 static size_t note_size(const struct memelfnote *);
1926 static void free_note_info(struct elf_note_info *);
1927 static int fill_note_info(struct elf_note_info *, long, const CPUState *);
1928 static void fill_thread_info(struct elf_note_info *, const CPUState *);
1929 static int core_dump_filename(const TaskState *, char *, size_t);
1931 static int dump_write(int, const void *, size_t);
1932 static int write_note(struct memelfnote *, int);
1933 static int write_note_info(struct elf_note_info *, int);
1935 #ifdef BSWAP_NEEDED
1936 static void bswap_prstatus(struct target_elf_prstatus *);
1937 static void bswap_psinfo(struct target_elf_prpsinfo *);
1939 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
1941 prstatus->pr_info.si_signo = tswapl(prstatus->pr_info.si_signo);
1942 prstatus->pr_info.si_code = tswapl(prstatus->pr_info.si_code);
1943 prstatus->pr_info.si_errno = tswapl(prstatus->pr_info.si_errno);
1944 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
1945 prstatus->pr_sigpend = tswapl(prstatus->pr_sigpend);
1946 prstatus->pr_sighold = tswapl(prstatus->pr_sighold);
1947 prstatus->pr_pid = tswap32(prstatus->pr_pid);
1948 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
1949 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
1950 prstatus->pr_sid = tswap32(prstatus->pr_sid);
1951 /* cpu times are not filled, so we skip them */
1952 /* regs should be in correct format already */
1953 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
1956 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
1958 psinfo->pr_flag = tswapl(psinfo->pr_flag);
1959 psinfo->pr_uid = tswap16(psinfo->pr_uid);
1960 psinfo->pr_gid = tswap16(psinfo->pr_gid);
1961 psinfo->pr_pid = tswap32(psinfo->pr_pid);
1962 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
1963 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
1964 psinfo->pr_sid = tswap32(psinfo->pr_sid);
1966 #endif /* BSWAP_NEEDED */
1969 * Minimal support for linux memory regions. These are needed
1970 * when we are finding out what memory exactly belongs to
1971 * emulated process. No locks needed here, as long as
1972 * thread that received the signal is stopped.
1975 static struct mm_struct *vma_init(void)
1977 struct mm_struct *mm;
1979 if ((mm = qemu_malloc(sizeof (*mm))) == NULL)
1980 return (NULL);
1982 mm->mm_count = 0;
1983 QTAILQ_INIT(&mm->mm_mmap);
1985 return (mm);
1988 static void vma_delete(struct mm_struct *mm)
1990 struct vm_area_struct *vma;
1992 while ((vma = vma_first(mm)) != NULL) {
1993 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
1994 qemu_free(vma);
1996 qemu_free(mm);
1999 static int vma_add_mapping(struct mm_struct *mm, abi_ulong start,
2000 abi_ulong end, abi_ulong flags)
2002 struct vm_area_struct *vma;
2004 if ((vma = qemu_mallocz(sizeof (*vma))) == NULL)
2005 return (-1);
2007 vma->vma_start = start;
2008 vma->vma_end = end;
2009 vma->vma_flags = flags;
2011 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
2012 mm->mm_count++;
2014 return (0);
2017 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2019 return (QTAILQ_FIRST(&mm->mm_mmap));
2022 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2024 return (QTAILQ_NEXT(vma, vma_link));
2027 static int vma_get_mapping_count(const struct mm_struct *mm)
2029 return (mm->mm_count);
2033 * Calculate file (dump) size of given memory region.
2035 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2037 /* if we cannot even read the first page, skip it */
2038 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2039 return (0);
2042 * Usually we don't dump executable pages as they contain
2043 * non-writable code that debugger can read directly from
2044 * target library etc. However, thread stacks are marked
2045 * also executable so we read in first page of given region
2046 * and check whether it contains elf header. If there is
2047 * no elf header, we dump it.
2049 if (vma->vma_flags & PROT_EXEC) {
2050 char page[TARGET_PAGE_SIZE];
2052 copy_from_user(page, vma->vma_start, sizeof (page));
2053 if ((page[EI_MAG0] == ELFMAG0) &&
2054 (page[EI_MAG1] == ELFMAG1) &&
2055 (page[EI_MAG2] == ELFMAG2) &&
2056 (page[EI_MAG3] == ELFMAG3)) {
2058 * Mappings are possibly from ELF binary. Don't dump
2059 * them.
2061 return (0);
2065 return (vma->vma_end - vma->vma_start);
2068 static int vma_walker(void *priv, unsigned long start, unsigned long end,
2069 unsigned long flags)
2071 struct mm_struct *mm = (struct mm_struct *)priv;
2074 * Don't dump anything that qemu has reserved for internal use.
2076 if (flags & PAGE_RESERVED)
2077 return (0);
2079 vma_add_mapping(mm, start, end, flags);
2080 return (0);
2083 static void fill_note(struct memelfnote *note, const char *name, int type,
2084 unsigned int sz, void *data)
2086 unsigned int namesz;
2088 namesz = strlen(name) + 1;
2089 note->name = name;
2090 note->namesz = namesz;
2091 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2092 note->type = type;
2093 note->datasz = roundup(sz, sizeof (int32_t));;
2094 note->data = data;
2097 * We calculate rounded up note size here as specified by
2098 * ELF document.
2100 note->notesz = sizeof (struct elf_note) +
2101 note->namesz_rounded + note->datasz;
2104 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
2105 uint32_t flags)
2107 (void) memset(elf, 0, sizeof(*elf));
2109 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
2110 elf->e_ident[EI_CLASS] = ELF_CLASS;
2111 elf->e_ident[EI_DATA] = ELF_DATA;
2112 elf->e_ident[EI_VERSION] = EV_CURRENT;
2113 elf->e_ident[EI_OSABI] = ELF_OSABI;
2115 elf->e_type = ET_CORE;
2116 elf->e_machine = machine;
2117 elf->e_version = EV_CURRENT;
2118 elf->e_phoff = sizeof(struct elfhdr);
2119 elf->e_flags = flags;
2120 elf->e_ehsize = sizeof(struct elfhdr);
2121 elf->e_phentsize = sizeof(struct elf_phdr);
2122 elf->e_phnum = segs;
2124 #ifdef BSWAP_NEEDED
2125 bswap_ehdr(elf);
2126 #endif
2129 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2131 phdr->p_type = PT_NOTE;
2132 phdr->p_offset = offset;
2133 phdr->p_vaddr = 0;
2134 phdr->p_paddr = 0;
2135 phdr->p_filesz = sz;
2136 phdr->p_memsz = 0;
2137 phdr->p_flags = 0;
2138 phdr->p_align = 0;
2140 #ifdef BSWAP_NEEDED
2141 bswap_phdr(phdr);
2142 #endif
2145 static size_t note_size(const struct memelfnote *note)
2147 return (note->notesz);
2150 static void fill_prstatus(struct target_elf_prstatus *prstatus,
2151 const TaskState *ts, int signr)
2153 (void) memset(prstatus, 0, sizeof (*prstatus));
2154 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
2155 prstatus->pr_pid = ts->ts_tid;
2156 prstatus->pr_ppid = getppid();
2157 prstatus->pr_pgrp = getpgrp();
2158 prstatus->pr_sid = getsid(0);
2160 #ifdef BSWAP_NEEDED
2161 bswap_prstatus(prstatus);
2162 #endif
2165 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
2167 char *filename, *base_filename;
2168 unsigned int i, len;
2170 (void) memset(psinfo, 0, sizeof (*psinfo));
2172 len = ts->info->arg_end - ts->info->arg_start;
2173 if (len >= ELF_PRARGSZ)
2174 len = ELF_PRARGSZ - 1;
2175 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
2176 return -EFAULT;
2177 for (i = 0; i < len; i++)
2178 if (psinfo->pr_psargs[i] == 0)
2179 psinfo->pr_psargs[i] = ' ';
2180 psinfo->pr_psargs[len] = 0;
2182 psinfo->pr_pid = getpid();
2183 psinfo->pr_ppid = getppid();
2184 psinfo->pr_pgrp = getpgrp();
2185 psinfo->pr_sid = getsid(0);
2186 psinfo->pr_uid = getuid();
2187 psinfo->pr_gid = getgid();
2189 filename = strdup(ts->bprm->filename);
2190 base_filename = strdup(basename(filename));
2191 (void) strncpy(psinfo->pr_fname, base_filename,
2192 sizeof(psinfo->pr_fname));
2193 free(base_filename);
2194 free(filename);
2196 #ifdef BSWAP_NEEDED
2197 bswap_psinfo(psinfo);
2198 #endif
2199 return (0);
2202 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
2204 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
2205 elf_addr_t orig_auxv = auxv;
2206 abi_ulong val;
2207 void *ptr;
2208 int i, len;
2211 * Auxiliary vector is stored in target process stack. It contains
2212 * {type, value} pairs that we need to dump into note. This is not
2213 * strictly necessary but we do it here for sake of completeness.
2216 /* find out lenght of the vector, AT_NULL is terminator */
2217 i = len = 0;
2218 do {
2219 get_user_ual(val, auxv);
2220 i += 2;
2221 auxv += 2 * sizeof (elf_addr_t);
2222 } while (val != AT_NULL);
2223 len = i * sizeof (elf_addr_t);
2225 /* read in whole auxv vector and copy it to memelfnote */
2226 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
2227 if (ptr != NULL) {
2228 fill_note(note, "CORE", NT_AUXV, len, ptr);
2229 unlock_user(ptr, auxv, len);
2234 * Constructs name of coredump file. We have following convention
2235 * for the name:
2236 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2238 * Returns 0 in case of success, -1 otherwise (errno is set).
2240 static int core_dump_filename(const TaskState *ts, char *buf,
2241 size_t bufsize)
2243 char timestamp[64];
2244 char *filename = NULL;
2245 char *base_filename = NULL;
2246 struct timeval tv;
2247 struct tm tm;
2249 assert(bufsize >= PATH_MAX);
2251 if (gettimeofday(&tv, NULL) < 0) {
2252 (void) fprintf(stderr, "unable to get current timestamp: %s",
2253 strerror(errno));
2254 return (-1);
2257 filename = strdup(ts->bprm->filename);
2258 base_filename = strdup(basename(filename));
2259 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
2260 localtime_r(&tv.tv_sec, &tm));
2261 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
2262 base_filename, timestamp, (int)getpid());
2263 free(base_filename);
2264 free(filename);
2266 return (0);
2269 static int dump_write(int fd, const void *ptr, size_t size)
2271 const char *bufp = (const char *)ptr;
2272 ssize_t bytes_written, bytes_left;
2273 struct rlimit dumpsize;
2274 off_t pos;
2276 bytes_written = 0;
2277 getrlimit(RLIMIT_CORE, &dumpsize);
2278 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
2279 if (errno == ESPIPE) { /* not a seekable stream */
2280 bytes_left = size;
2281 } else {
2282 return pos;
2284 } else {
2285 if (dumpsize.rlim_cur <= pos) {
2286 return -1;
2287 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
2288 bytes_left = size;
2289 } else {
2290 size_t limit_left=dumpsize.rlim_cur - pos;
2291 bytes_left = limit_left >= size ? size : limit_left ;
2296 * In normal conditions, single write(2) should do but
2297 * in case of socket etc. this mechanism is more portable.
2299 do {
2300 bytes_written = write(fd, bufp, bytes_left);
2301 if (bytes_written < 0) {
2302 if (errno == EINTR)
2303 continue;
2304 return (-1);
2305 } else if (bytes_written == 0) { /* eof */
2306 return (-1);
2308 bufp += bytes_written;
2309 bytes_left -= bytes_written;
2310 } while (bytes_left > 0);
2312 return (0);
2315 static int write_note(struct memelfnote *men, int fd)
2317 struct elf_note en;
2319 en.n_namesz = men->namesz;
2320 en.n_type = men->type;
2321 en.n_descsz = men->datasz;
2323 #ifdef BSWAP_NEEDED
2324 bswap_note(&en);
2325 #endif
2327 if (dump_write(fd, &en, sizeof(en)) != 0)
2328 return (-1);
2329 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
2330 return (-1);
2331 if (dump_write(fd, men->data, men->datasz) != 0)
2332 return (-1);
2334 return (0);
2337 static void fill_thread_info(struct elf_note_info *info, const CPUState *env)
2339 TaskState *ts = (TaskState *)env->opaque;
2340 struct elf_thread_status *ets;
2342 ets = qemu_mallocz(sizeof (*ets));
2343 ets->num_notes = 1; /* only prstatus is dumped */
2344 fill_prstatus(&ets->prstatus, ts, 0);
2345 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
2346 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
2347 &ets->prstatus);
2349 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
2351 info->notes_size += note_size(&ets->notes[0]);
2354 static int fill_note_info(struct elf_note_info *info,
2355 long signr, const CPUState *env)
2357 #define NUMNOTES 3
2358 CPUState *cpu = NULL;
2359 TaskState *ts = (TaskState *)env->opaque;
2360 int i;
2362 (void) memset(info, 0, sizeof (*info));
2364 QTAILQ_INIT(&info->thread_list);
2366 info->notes = qemu_mallocz(NUMNOTES * sizeof (struct memelfnote));
2367 if (info->notes == NULL)
2368 return (-ENOMEM);
2369 info->prstatus = qemu_mallocz(sizeof (*info->prstatus));
2370 if (info->prstatus == NULL)
2371 return (-ENOMEM);
2372 info->psinfo = qemu_mallocz(sizeof (*info->psinfo));
2373 if (info->prstatus == NULL)
2374 return (-ENOMEM);
2377 * First fill in status (and registers) of current thread
2378 * including process info & aux vector.
2380 fill_prstatus(info->prstatus, ts, signr);
2381 elf_core_copy_regs(&info->prstatus->pr_reg, env);
2382 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
2383 sizeof (*info->prstatus), info->prstatus);
2384 fill_psinfo(info->psinfo, ts);
2385 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
2386 sizeof (*info->psinfo), info->psinfo);
2387 fill_auxv_note(&info->notes[2], ts);
2388 info->numnote = 3;
2390 info->notes_size = 0;
2391 for (i = 0; i < info->numnote; i++)
2392 info->notes_size += note_size(&info->notes[i]);
2394 /* read and fill status of all threads */
2395 cpu_list_lock();
2396 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
2397 if (cpu == thread_env)
2398 continue;
2399 fill_thread_info(info, cpu);
2401 cpu_list_unlock();
2403 return (0);
2406 static void free_note_info(struct elf_note_info *info)
2408 struct elf_thread_status *ets;
2410 while (!QTAILQ_EMPTY(&info->thread_list)) {
2411 ets = QTAILQ_FIRST(&info->thread_list);
2412 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
2413 qemu_free(ets);
2416 qemu_free(info->prstatus);
2417 qemu_free(info->psinfo);
2418 qemu_free(info->notes);
2421 static int write_note_info(struct elf_note_info *info, int fd)
2423 struct elf_thread_status *ets;
2424 int i, error = 0;
2426 /* write prstatus, psinfo and auxv for current thread */
2427 for (i = 0; i < info->numnote; i++)
2428 if ((error = write_note(&info->notes[i], fd)) != 0)
2429 return (error);
2431 /* write prstatus for each thread */
2432 for (ets = info->thread_list.tqh_first; ets != NULL;
2433 ets = ets->ets_link.tqe_next) {
2434 if ((error = write_note(&ets->notes[0], fd)) != 0)
2435 return (error);
2438 return (0);
2442 * Write out ELF coredump.
2444 * See documentation of ELF object file format in:
2445 * http://www.caldera.com/developers/devspecs/gabi41.pdf
2447 * Coredump format in linux is following:
2449 * 0 +----------------------+ \
2450 * | ELF header | ET_CORE |
2451 * +----------------------+ |
2452 * | ELF program headers | |--- headers
2453 * | - NOTE section | |
2454 * | - PT_LOAD sections | |
2455 * +----------------------+ /
2456 * | NOTEs: |
2457 * | - NT_PRSTATUS |
2458 * | - NT_PRSINFO |
2459 * | - NT_AUXV |
2460 * +----------------------+ <-- aligned to target page
2461 * | Process memory dump |
2462 * : :
2463 * . .
2464 * : :
2465 * | |
2466 * +----------------------+
2468 * NT_PRSTATUS -> struct elf_prstatus (per thread)
2469 * NT_PRSINFO -> struct elf_prpsinfo
2470 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
2472 * Format follows System V format as close as possible. Current
2473 * version limitations are as follows:
2474 * - no floating point registers are dumped
2476 * Function returns 0 in case of success, negative errno otherwise.
2478 * TODO: make this work also during runtime: it should be
2479 * possible to force coredump from running process and then
2480 * continue processing. For example qemu could set up SIGUSR2
2481 * handler (provided that target process haven't registered
2482 * handler for that) that does the dump when signal is received.
2484 static int elf_core_dump(int signr, const CPUState *env)
2486 const TaskState *ts = (const TaskState *)env->opaque;
2487 struct vm_area_struct *vma = NULL;
2488 char corefile[PATH_MAX];
2489 struct elf_note_info info;
2490 struct elfhdr elf;
2491 struct elf_phdr phdr;
2492 struct rlimit dumpsize;
2493 struct mm_struct *mm = NULL;
2494 off_t offset = 0, data_offset = 0;
2495 int segs = 0;
2496 int fd = -1;
2498 errno = 0;
2499 getrlimit(RLIMIT_CORE, &dumpsize);
2500 if (dumpsize.rlim_cur == 0)
2501 return 0;
2503 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
2504 return (-errno);
2506 if ((fd = open(corefile, O_WRONLY | O_CREAT,
2507 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
2508 return (-errno);
2511 * Walk through target process memory mappings and
2512 * set up structure containing this information. After
2513 * this point vma_xxx functions can be used.
2515 if ((mm = vma_init()) == NULL)
2516 goto out;
2518 walk_memory_regions(mm, vma_walker);
2519 segs = vma_get_mapping_count(mm);
2522 * Construct valid coredump ELF header. We also
2523 * add one more segment for notes.
2525 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
2526 if (dump_write(fd, &elf, sizeof (elf)) != 0)
2527 goto out;
2529 /* fill in in-memory version of notes */
2530 if (fill_note_info(&info, signr, env) < 0)
2531 goto out;
2533 offset += sizeof (elf); /* elf header */
2534 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
2536 /* write out notes program header */
2537 fill_elf_note_phdr(&phdr, info.notes_size, offset);
2539 offset += info.notes_size;
2540 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
2541 goto out;
2544 * ELF specification wants data to start at page boundary so
2545 * we align it here.
2547 offset = roundup(offset, ELF_EXEC_PAGESIZE);
2550 * Write program headers for memory regions mapped in
2551 * the target process.
2553 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
2554 (void) memset(&phdr, 0, sizeof (phdr));
2556 phdr.p_type = PT_LOAD;
2557 phdr.p_offset = offset;
2558 phdr.p_vaddr = vma->vma_start;
2559 phdr.p_paddr = 0;
2560 phdr.p_filesz = vma_dump_size(vma);
2561 offset += phdr.p_filesz;
2562 phdr.p_memsz = vma->vma_end - vma->vma_start;
2563 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
2564 if (vma->vma_flags & PROT_WRITE)
2565 phdr.p_flags |= PF_W;
2566 if (vma->vma_flags & PROT_EXEC)
2567 phdr.p_flags |= PF_X;
2568 phdr.p_align = ELF_EXEC_PAGESIZE;
2570 dump_write(fd, &phdr, sizeof (phdr));
2574 * Next we write notes just after program headers. No
2575 * alignment needed here.
2577 if (write_note_info(&info, fd) < 0)
2578 goto out;
2580 /* align data to page boundary */
2581 data_offset = lseek(fd, 0, SEEK_CUR);
2582 data_offset = TARGET_PAGE_ALIGN(data_offset);
2583 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
2584 goto out;
2587 * Finally we can dump process memory into corefile as well.
2589 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
2590 abi_ulong addr;
2591 abi_ulong end;
2593 end = vma->vma_start + vma_dump_size(vma);
2595 for (addr = vma->vma_start; addr < end;
2596 addr += TARGET_PAGE_SIZE) {
2597 char page[TARGET_PAGE_SIZE];
2598 int error;
2601 * Read in page from target process memory and
2602 * write it to coredump file.
2604 error = copy_from_user(page, addr, sizeof (page));
2605 if (error != 0) {
2606 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
2607 addr);
2608 errno = -error;
2609 goto out;
2611 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
2612 goto out;
2616 out:
2617 free_note_info(&info);
2618 if (mm != NULL)
2619 vma_delete(mm);
2620 (void) close(fd);
2622 if (errno != 0)
2623 return (-errno);
2624 return (0);
2627 #endif /* USE_ELF_CORE_DUMP */
2629 static int load_aout_interp(void * exptr, int interp_fd)
2631 printf("a.out interpreter not yet supported\n");
2632 return(0);
2635 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
2637 init_thread(regs, infop);