aspeed/smc: Dump address offset in trace events
[qemu.git] / hw / ssi / aspeed_smc.c
blob8a988c167604721aa6e4eeb9cc7b145e2a4b0261
1 /*
2 * ASPEED AST2400 SMC Controller (SPI Flash Only)
4 * Copyright (C) 2016 IBM Corp.
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "hw/sysbus.h"
27 #include "migration/vmstate.h"
28 #include "qemu/log.h"
29 #include "qemu/module.h"
30 #include "qemu/error-report.h"
31 #include "qapi/error.h"
32 #include "qemu/units.h"
33 #include "trace.h"
35 #include "hw/irq.h"
36 #include "hw/qdev-properties.h"
37 #include "hw/ssi/aspeed_smc.h"
39 /* CE Type Setting Register */
40 #define R_CONF (0x00 / 4)
41 #define CONF_LEGACY_DISABLE (1 << 31)
42 #define CONF_ENABLE_W4 20
43 #define CONF_ENABLE_W3 19
44 #define CONF_ENABLE_W2 18
45 #define CONF_ENABLE_W1 17
46 #define CONF_ENABLE_W0 16
47 #define CONF_FLASH_TYPE4 8
48 #define CONF_FLASH_TYPE3 6
49 #define CONF_FLASH_TYPE2 4
50 #define CONF_FLASH_TYPE1 2
51 #define CONF_FLASH_TYPE0 0
52 #define CONF_FLASH_TYPE_NOR 0x0
53 #define CONF_FLASH_TYPE_NAND 0x1
54 #define CONF_FLASH_TYPE_SPI 0x2 /* AST2600 is SPI only */
56 /* CE Control Register */
57 #define R_CE_CTRL (0x04 / 4)
58 #define CTRL_EXTENDED4 4 /* 32 bit addressing for SPI */
59 #define CTRL_EXTENDED3 3 /* 32 bit addressing for SPI */
60 #define CTRL_EXTENDED2 2 /* 32 bit addressing for SPI */
61 #define CTRL_EXTENDED1 1 /* 32 bit addressing for SPI */
62 #define CTRL_EXTENDED0 0 /* 32 bit addressing for SPI */
64 /* Interrupt Control and Status Register */
65 #define R_INTR_CTRL (0x08 / 4)
66 #define INTR_CTRL_DMA_STATUS (1 << 11)
67 #define INTR_CTRL_CMD_ABORT_STATUS (1 << 10)
68 #define INTR_CTRL_WRITE_PROTECT_STATUS (1 << 9)
69 #define INTR_CTRL_DMA_EN (1 << 3)
70 #define INTR_CTRL_CMD_ABORT_EN (1 << 2)
71 #define INTR_CTRL_WRITE_PROTECT_EN (1 << 1)
73 /* Command Control Register */
74 #define R_CE_CMD_CTRL (0x0C / 4)
75 #define CTRL_ADDR_BYTE0_DISABLE_SHIFT 4
76 #define CTRL_DATA_BYTE0_DISABLE_SHIFT 0
78 #define aspeed_smc_addr_byte_enabled(s, i) \
79 (!((s)->regs[R_CE_CMD_CTRL] & (1 << (CTRL_ADDR_BYTE0_DISABLE_SHIFT + (i)))))
80 #define aspeed_smc_data_byte_enabled(s, i) \
81 (!((s)->regs[R_CE_CMD_CTRL] & (1 << (CTRL_DATA_BYTE0_DISABLE_SHIFT + (i)))))
83 /* CEx Control Register */
84 #define R_CTRL0 (0x10 / 4)
85 #define CTRL_IO_QPI (1 << 31)
86 #define CTRL_IO_QUAD_DATA (1 << 30)
87 #define CTRL_IO_DUAL_DATA (1 << 29)
88 #define CTRL_IO_DUAL_ADDR_DATA (1 << 28) /* Includes dummies */
89 #define CTRL_IO_QUAD_ADDR_DATA (1 << 28) /* Includes dummies */
90 #define CTRL_CMD_SHIFT 16
91 #define CTRL_CMD_MASK 0xff
92 #define CTRL_DUMMY_HIGH_SHIFT 14
93 #define CTRL_AST2400_SPI_4BYTE (1 << 13)
94 #define CE_CTRL_CLOCK_FREQ_SHIFT 8
95 #define CE_CTRL_CLOCK_FREQ_MASK 0xf
96 #define CE_CTRL_CLOCK_FREQ(div) \
97 (((div) & CE_CTRL_CLOCK_FREQ_MASK) << CE_CTRL_CLOCK_FREQ_SHIFT)
98 #define CTRL_DUMMY_LOW_SHIFT 6 /* 2 bits [7:6] */
99 #define CTRL_CE_STOP_ACTIVE (1 << 2)
100 #define CTRL_CMD_MODE_MASK 0x3
101 #define CTRL_READMODE 0x0
102 #define CTRL_FREADMODE 0x1
103 #define CTRL_WRITEMODE 0x2
104 #define CTRL_USERMODE 0x3
105 #define R_CTRL1 (0x14 / 4)
106 #define R_CTRL2 (0x18 / 4)
107 #define R_CTRL3 (0x1C / 4)
108 #define R_CTRL4 (0x20 / 4)
110 /* CEx Segment Address Register */
111 #define R_SEG_ADDR0 (0x30 / 4)
112 #define SEG_END_SHIFT 24 /* 8MB units */
113 #define SEG_END_MASK 0xff
114 #define SEG_START_SHIFT 16 /* address bit [A29-A23] */
115 #define SEG_START_MASK 0xff
116 #define R_SEG_ADDR1 (0x34 / 4)
117 #define R_SEG_ADDR2 (0x38 / 4)
118 #define R_SEG_ADDR3 (0x3C / 4)
119 #define R_SEG_ADDR4 (0x40 / 4)
121 /* Misc Control Register #1 */
122 #define R_MISC_CTRL1 (0x50 / 4)
124 /* SPI dummy cycle data */
125 #define R_DUMMY_DATA (0x54 / 4)
127 /* FMC_WDT2 Control/Status Register for Alternate Boot (AST2600) */
128 #define R_FMC_WDT2_CTRL (0x64 / 4)
129 #define FMC_WDT2_CTRL_ALT_BOOT_MODE BIT(6) /* O: 2 chips 1: 1 chip */
130 #define FMC_WDT2_CTRL_SINGLE_BOOT_MODE BIT(5)
131 #define FMC_WDT2_CTRL_BOOT_SOURCE BIT(4) /* O: primary 1: alternate */
132 #define FMC_WDT2_CTRL_EN BIT(0)
134 /* DMA Control/Status Register */
135 #define R_DMA_CTRL (0x80 / 4)
136 #define DMA_CTRL_REQUEST (1 << 31)
137 #define DMA_CTRL_GRANT (1 << 30)
138 #define DMA_CTRL_DELAY_MASK 0xf
139 #define DMA_CTRL_DELAY_SHIFT 8
140 #define DMA_CTRL_FREQ_MASK 0xf
141 #define DMA_CTRL_FREQ_SHIFT 4
142 #define DMA_CTRL_CALIB (1 << 3)
143 #define DMA_CTRL_CKSUM (1 << 2)
144 #define DMA_CTRL_WRITE (1 << 1)
145 #define DMA_CTRL_ENABLE (1 << 0)
147 /* DMA Flash Side Address */
148 #define R_DMA_FLASH_ADDR (0x84 / 4)
150 /* DMA DRAM Side Address */
151 #define R_DMA_DRAM_ADDR (0x88 / 4)
153 /* DMA Length Register */
154 #define R_DMA_LEN (0x8C / 4)
156 /* Checksum Calculation Result */
157 #define R_DMA_CHECKSUM (0x90 / 4)
159 /* Read Timing Compensation Register */
160 #define R_TIMINGS (0x94 / 4)
162 /* SPI controller registers and bits (AST2400) */
163 #define R_SPI_CONF (0x00 / 4)
164 #define SPI_CONF_ENABLE_W0 0
165 #define R_SPI_CTRL0 (0x4 / 4)
166 #define R_SPI_MISC_CTRL (0x10 / 4)
167 #define R_SPI_TIMINGS (0x14 / 4)
169 #define ASPEED_SMC_R_SPI_MAX (0x20 / 4)
170 #define ASPEED_SMC_R_SMC_MAX (0x20 / 4)
173 * DMA DRAM addresses should be 4 bytes aligned and the valid address
174 * range is 0x40000000 - 0x5FFFFFFF (AST2400)
175 * 0x80000000 - 0xBFFFFFFF (AST2500)
177 * DMA flash addresses should be 4 bytes aligned and the valid address
178 * range is 0x20000000 - 0x2FFFFFFF.
180 * DMA length is from 4 bytes to 32MB
181 * 0: 4 bytes
182 * 0x7FFFFF: 32M bytes
184 #define DMA_DRAM_ADDR(asc, val) ((val) & (asc)->dma_dram_mask)
185 #define DMA_FLASH_ADDR(asc, val) ((val) & (asc)->dma_flash_mask)
186 #define DMA_LENGTH(val) ((val) & 0x01FFFFFC)
188 /* Flash opcodes. */
189 #define SPI_OP_READ 0x03 /* Read data bytes (low frequency) */
191 #define SNOOP_OFF 0xFF
192 #define SNOOP_START 0x0
195 * Default segments mapping addresses and size for each peripheral per
196 * controller. These can be changed when board is initialized with the
197 * Segment Address Registers.
199 static const AspeedSegments aspeed_2500_spi1_segments[];
200 static const AspeedSegments aspeed_2500_spi2_segments[];
202 #define ASPEED_SMC_FEATURE_DMA 0x1
203 #define ASPEED_SMC_FEATURE_DMA_GRANT 0x2
204 #define ASPEED_SMC_FEATURE_WDT_CONTROL 0x4
206 static inline bool aspeed_smc_has_dma(const AspeedSMCClass *asc)
208 return !!(asc->features & ASPEED_SMC_FEATURE_DMA);
211 static inline bool aspeed_smc_has_wdt_control(const AspeedSMCClass *asc)
213 return !!(asc->features & ASPEED_SMC_FEATURE_WDT_CONTROL);
216 #define aspeed_smc_error(fmt, ...) \
217 qemu_log_mask(LOG_GUEST_ERROR, "%s: " fmt "\n", __func__, ## __VA_ARGS__)
219 static bool aspeed_smc_flash_overlap(const AspeedSMCState *s,
220 const AspeedSegments *new,
221 int cs)
223 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
224 AspeedSegments seg;
225 int i;
227 for (i = 0; i < asc->max_peripherals; i++) {
228 if (i == cs) {
229 continue;
232 asc->reg_to_segment(s, s->regs[R_SEG_ADDR0 + i], &seg);
234 if (new->addr + new->size > seg.addr &&
235 new->addr < seg.addr + seg.size) {
236 aspeed_smc_error("new segment CS%d [ 0x%"
237 HWADDR_PRIx" - 0x%"HWADDR_PRIx" ] overlaps with "
238 "CS%d [ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]",
239 cs, new->addr, new->addr + new->size,
240 i, seg.addr, seg.addr + seg.size);
241 return true;
244 return false;
247 static void aspeed_smc_flash_set_segment_region(AspeedSMCState *s, int cs,
248 uint64_t regval)
250 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
251 AspeedSMCFlash *fl = &s->flashes[cs];
252 AspeedSegments seg;
254 asc->reg_to_segment(s, regval, &seg);
256 memory_region_transaction_begin();
257 memory_region_set_size(&fl->mmio, seg.size);
258 memory_region_set_address(&fl->mmio, seg.addr - asc->flash_window_base);
259 memory_region_set_enabled(&fl->mmio, !!seg.size);
260 memory_region_transaction_commit();
262 s->regs[R_SEG_ADDR0 + cs] = regval;
265 static void aspeed_smc_flash_set_segment(AspeedSMCState *s, int cs,
266 uint64_t new)
268 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
269 AspeedSegments seg;
271 asc->reg_to_segment(s, new, &seg);
273 trace_aspeed_smc_flash_set_segment(cs, new, seg.addr, seg.addr + seg.size);
275 /* The start address of CS0 is read-only */
276 if (cs == 0 && seg.addr != asc->flash_window_base) {
277 aspeed_smc_error("Tried to change CS0 start address to 0x%"
278 HWADDR_PRIx, seg.addr);
279 seg.addr = asc->flash_window_base;
280 new = asc->segment_to_reg(s, &seg);
284 * The end address of the AST2500 spi controllers is also
285 * read-only.
287 if ((asc->segments == aspeed_2500_spi1_segments ||
288 asc->segments == aspeed_2500_spi2_segments) &&
289 cs == asc->max_peripherals &&
290 seg.addr + seg.size != asc->segments[cs].addr +
291 asc->segments[cs].size) {
292 aspeed_smc_error("Tried to change CS%d end address to 0x%"
293 HWADDR_PRIx, cs, seg.addr + seg.size);
294 seg.size = asc->segments[cs].addr + asc->segments[cs].size -
295 seg.addr;
296 new = asc->segment_to_reg(s, &seg);
299 /* Keep the segment in the overall flash window */
300 if (seg.size &&
301 (seg.addr + seg.size <= asc->flash_window_base ||
302 seg.addr > asc->flash_window_base + asc->flash_window_size)) {
303 aspeed_smc_error("new segment for CS%d is invalid : "
304 "[ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]",
305 cs, seg.addr, seg.addr + seg.size);
306 return;
309 /* Check start address vs. alignment */
310 if (seg.size && !QEMU_IS_ALIGNED(seg.addr, seg.size)) {
311 aspeed_smc_error("new segment for CS%d is not "
312 "aligned : [ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]",
313 cs, seg.addr, seg.addr + seg.size);
316 /* And segments should not overlap (in the specs) */
317 aspeed_smc_flash_overlap(s, &seg, cs);
319 /* All should be fine now to move the region */
320 aspeed_smc_flash_set_segment_region(s, cs, new);
323 static uint64_t aspeed_smc_flash_default_read(void *opaque, hwaddr addr,
324 unsigned size)
326 aspeed_smc_error("To 0x%" HWADDR_PRIx " of size %u" PRIx64, addr, size);
327 return 0;
330 static void aspeed_smc_flash_default_write(void *opaque, hwaddr addr,
331 uint64_t data, unsigned size)
333 aspeed_smc_error("To 0x%" HWADDR_PRIx " of size %u: 0x%" PRIx64,
334 addr, size, data);
337 static const MemoryRegionOps aspeed_smc_flash_default_ops = {
338 .read = aspeed_smc_flash_default_read,
339 .write = aspeed_smc_flash_default_write,
340 .endianness = DEVICE_LITTLE_ENDIAN,
341 .valid = {
342 .min_access_size = 1,
343 .max_access_size = 4,
347 static inline int aspeed_smc_flash_mode(const AspeedSMCFlash *fl)
349 const AspeedSMCState *s = fl->controller;
351 return s->regs[s->r_ctrl0 + fl->cs] & CTRL_CMD_MODE_MASK;
354 static inline bool aspeed_smc_is_writable(const AspeedSMCFlash *fl)
356 const AspeedSMCState *s = fl->controller;
358 return s->regs[s->r_conf] & (1 << (s->conf_enable_w0 + fl->cs));
361 static inline int aspeed_smc_flash_cmd(const AspeedSMCFlash *fl)
363 const AspeedSMCState *s = fl->controller;
364 int cmd = (s->regs[s->r_ctrl0 + fl->cs] >> CTRL_CMD_SHIFT) & CTRL_CMD_MASK;
367 * In read mode, the default SPI command is READ (0x3). In other
368 * modes, the command should necessarily be defined
370 * TODO: add support for READ4 (0x13) on AST2600
372 if (aspeed_smc_flash_mode(fl) == CTRL_READMODE) {
373 cmd = SPI_OP_READ;
376 if (!cmd) {
377 aspeed_smc_error("no command defined for mode %d",
378 aspeed_smc_flash_mode(fl));
381 return cmd;
384 static inline int aspeed_smc_flash_addr_width(const AspeedSMCFlash *fl)
386 const AspeedSMCState *s = fl->controller;
387 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
389 if (asc->addr_width) {
390 return asc->addr_width(s);
391 } else {
392 return s->regs[s->r_ce_ctrl] & (1 << (CTRL_EXTENDED0 + fl->cs)) ? 4 : 3;
396 static void aspeed_smc_flash_do_select(AspeedSMCFlash *fl, bool unselect)
398 AspeedSMCState *s = fl->controller;
400 trace_aspeed_smc_flash_select(fl->cs, unselect ? "un" : "");
402 qemu_set_irq(s->cs_lines[fl->cs], unselect);
405 static void aspeed_smc_flash_select(AspeedSMCFlash *fl)
407 aspeed_smc_flash_do_select(fl, false);
410 static void aspeed_smc_flash_unselect(AspeedSMCFlash *fl)
412 aspeed_smc_flash_do_select(fl, true);
415 static uint32_t aspeed_smc_check_segment_addr(const AspeedSMCFlash *fl,
416 uint32_t addr)
418 const AspeedSMCState *s = fl->controller;
419 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
420 AspeedSegments seg;
422 asc->reg_to_segment(s, s->regs[R_SEG_ADDR0 + fl->cs], &seg);
423 if ((addr % seg.size) != addr) {
424 aspeed_smc_error("invalid address 0x%08x for CS%d segment : "
425 "[ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]",
426 addr, fl->cs, seg.addr, seg.addr + seg.size);
427 addr %= seg.size;
430 return addr;
433 static int aspeed_smc_flash_dummies(const AspeedSMCFlash *fl)
435 const AspeedSMCState *s = fl->controller;
436 uint32_t r_ctrl0 = s->regs[s->r_ctrl0 + fl->cs];
437 uint32_t dummy_high = (r_ctrl0 >> CTRL_DUMMY_HIGH_SHIFT) & 0x1;
438 uint32_t dummy_low = (r_ctrl0 >> CTRL_DUMMY_LOW_SHIFT) & 0x3;
439 uint32_t dummies = ((dummy_high << 2) | dummy_low) * 8;
441 if (r_ctrl0 & CTRL_IO_DUAL_ADDR_DATA) {
442 dummies /= 2;
445 return dummies;
448 static void aspeed_smc_flash_setup(AspeedSMCFlash *fl, uint32_t addr)
450 const AspeedSMCState *s = fl->controller;
451 uint8_t cmd = aspeed_smc_flash_cmd(fl);
452 int i = aspeed_smc_flash_addr_width(fl);
454 /* Flash access can not exceed CS segment */
455 addr = aspeed_smc_check_segment_addr(fl, addr);
457 ssi_transfer(s->spi, cmd);
458 while (i--) {
459 if (aspeed_smc_addr_byte_enabled(s, i)) {
460 ssi_transfer(s->spi, (addr >> (i * 8)) & 0xff);
465 * Use fake transfers to model dummy bytes. The value should
466 * be configured to some non-zero value in fast read mode and
467 * zero in read mode. But, as the HW allows inconsistent
468 * settings, let's check for fast read mode.
470 if (aspeed_smc_flash_mode(fl) == CTRL_FREADMODE) {
471 for (i = 0; i < aspeed_smc_flash_dummies(fl); i++) {
472 ssi_transfer(fl->controller->spi, s->regs[R_DUMMY_DATA] & 0xff);
477 static uint64_t aspeed_smc_flash_read(void *opaque, hwaddr addr, unsigned size)
479 AspeedSMCFlash *fl = opaque;
480 AspeedSMCState *s = fl->controller;
481 uint64_t ret = 0;
482 int i;
484 switch (aspeed_smc_flash_mode(fl)) {
485 case CTRL_USERMODE:
486 for (i = 0; i < size; i++) {
487 ret |= ssi_transfer(s->spi, 0x0) << (8 * i);
489 break;
490 case CTRL_READMODE:
491 case CTRL_FREADMODE:
492 aspeed_smc_flash_select(fl);
493 aspeed_smc_flash_setup(fl, addr);
495 for (i = 0; i < size; i++) {
496 ret |= ssi_transfer(s->spi, 0x0) << (8 * i);
499 aspeed_smc_flash_unselect(fl);
500 break;
501 default:
502 aspeed_smc_error("invalid flash mode %d", aspeed_smc_flash_mode(fl));
505 trace_aspeed_smc_flash_read(fl->cs, addr, size, ret,
506 aspeed_smc_flash_mode(fl));
507 return ret;
511 * TODO (clg@kaod.org): stolen from xilinx_spips.c. Should move to a
512 * common include header.
514 typedef enum {
515 READ = 0x3, READ_4 = 0x13,
516 FAST_READ = 0xb, FAST_READ_4 = 0x0c,
517 DOR = 0x3b, DOR_4 = 0x3c,
518 QOR = 0x6b, QOR_4 = 0x6c,
519 DIOR = 0xbb, DIOR_4 = 0xbc,
520 QIOR = 0xeb, QIOR_4 = 0xec,
522 PP = 0x2, PP_4 = 0x12,
523 DPP = 0xa2,
524 QPP = 0x32, QPP_4 = 0x34,
525 } FlashCMD;
527 static int aspeed_smc_num_dummies(uint8_t command)
529 switch (command) { /* check for dummies */
530 case READ: /* no dummy bytes/cycles */
531 case PP:
532 case DPP:
533 case QPP:
534 case READ_4:
535 case PP_4:
536 case QPP_4:
537 return 0;
538 case FAST_READ:
539 case DOR:
540 case QOR:
541 case FAST_READ_4:
542 case DOR_4:
543 case QOR_4:
544 return 1;
545 case DIOR:
546 case DIOR_4:
547 return 2;
548 case QIOR:
549 case QIOR_4:
550 return 4;
551 default:
552 return -1;
556 static bool aspeed_smc_do_snoop(AspeedSMCFlash *fl, uint64_t data,
557 unsigned size)
559 AspeedSMCState *s = fl->controller;
560 uint8_t addr_width = aspeed_smc_flash_addr_width(fl);
562 trace_aspeed_smc_do_snoop(fl->cs, s->snoop_index, s->snoop_dummies,
563 (uint8_t) data & 0xff);
565 if (s->snoop_index == SNOOP_OFF) {
566 return false; /* Do nothing */
568 } else if (s->snoop_index == SNOOP_START) {
569 uint8_t cmd = data & 0xff;
570 int ndummies = aspeed_smc_num_dummies(cmd);
573 * No dummy cycles are expected with the current command. Turn
574 * off snooping and let the transfer proceed normally.
576 if (ndummies <= 0) {
577 s->snoop_index = SNOOP_OFF;
578 return false;
581 s->snoop_dummies = ndummies * 8;
583 } else if (s->snoop_index >= addr_width + 1) {
585 /* The SPI transfer has reached the dummy cycles sequence */
586 for (; s->snoop_dummies; s->snoop_dummies--) {
587 ssi_transfer(s->spi, s->regs[R_DUMMY_DATA] & 0xff);
590 /* If no more dummy cycles are expected, turn off snooping */
591 if (!s->snoop_dummies) {
592 s->snoop_index = SNOOP_OFF;
593 } else {
594 s->snoop_index += size;
598 * Dummy cycles have been faked already. Ignore the current
599 * SPI transfer
601 return true;
604 s->snoop_index += size;
605 return false;
608 static void aspeed_smc_flash_write(void *opaque, hwaddr addr, uint64_t data,
609 unsigned size)
611 AspeedSMCFlash *fl = opaque;
612 AspeedSMCState *s = fl->controller;
613 int i;
615 trace_aspeed_smc_flash_write(fl->cs, addr, size, data,
616 aspeed_smc_flash_mode(fl));
618 if (!aspeed_smc_is_writable(fl)) {
619 aspeed_smc_error("flash is not writable at 0x%" HWADDR_PRIx, addr);
620 return;
623 switch (aspeed_smc_flash_mode(fl)) {
624 case CTRL_USERMODE:
625 if (aspeed_smc_do_snoop(fl, data, size)) {
626 break;
629 for (i = 0; i < size; i++) {
630 ssi_transfer(s->spi, (data >> (8 * i)) & 0xff);
632 break;
633 case CTRL_WRITEMODE:
634 aspeed_smc_flash_select(fl);
635 aspeed_smc_flash_setup(fl, addr);
637 for (i = 0; i < size; i++) {
638 ssi_transfer(s->spi, (data >> (8 * i)) & 0xff);
641 aspeed_smc_flash_unselect(fl);
642 break;
643 default:
644 aspeed_smc_error("invalid flash mode %d", aspeed_smc_flash_mode(fl));
648 static const MemoryRegionOps aspeed_smc_flash_ops = {
649 .read = aspeed_smc_flash_read,
650 .write = aspeed_smc_flash_write,
651 .endianness = DEVICE_LITTLE_ENDIAN,
652 .valid = {
653 .min_access_size = 1,
654 .max_access_size = 4,
658 static void aspeed_smc_flash_update_ctrl(AspeedSMCFlash *fl, uint32_t value)
660 AspeedSMCState *s = fl->controller;
661 bool unselect;
663 /* User mode selects the CS, other modes unselect */
664 unselect = (value & CTRL_CMD_MODE_MASK) != CTRL_USERMODE;
666 /* A change of CTRL_CE_STOP_ACTIVE from 0 to 1, unselects the CS */
667 if (!(s->regs[s->r_ctrl0 + fl->cs] & CTRL_CE_STOP_ACTIVE) &&
668 value & CTRL_CE_STOP_ACTIVE) {
669 unselect = true;
672 s->regs[s->r_ctrl0 + fl->cs] = value;
674 s->snoop_index = unselect ? SNOOP_OFF : SNOOP_START;
676 aspeed_smc_flash_do_select(fl, unselect);
679 static void aspeed_smc_reset(DeviceState *d)
681 AspeedSMCState *s = ASPEED_SMC(d);
682 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
683 int i;
685 if (asc->resets) {
686 memcpy(s->regs, asc->resets, sizeof s->regs);
687 } else {
688 memset(s->regs, 0, sizeof s->regs);
691 /* Unselect all peripherals */
692 for (i = 0; i < s->num_cs; ++i) {
693 s->regs[s->r_ctrl0 + i] |= CTRL_CE_STOP_ACTIVE;
694 qemu_set_irq(s->cs_lines[i], true);
697 /* setup the default segment register values and regions for all */
698 for (i = 0; i < asc->max_peripherals; ++i) {
699 aspeed_smc_flash_set_segment_region(s, i,
700 asc->segment_to_reg(s, &asc->segments[i]));
703 s->snoop_index = SNOOP_OFF;
704 s->snoop_dummies = 0;
707 static uint64_t aspeed_smc_read(void *opaque, hwaddr addr, unsigned int size)
709 AspeedSMCState *s = ASPEED_SMC(opaque);
710 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(opaque);
712 addr >>= 2;
714 if (addr == s->r_conf ||
715 (addr >= s->r_timings &&
716 addr < s->r_timings + asc->nregs_timings) ||
717 addr == s->r_ce_ctrl ||
718 addr == R_CE_CMD_CTRL ||
719 addr == R_INTR_CTRL ||
720 addr == R_DUMMY_DATA ||
721 (aspeed_smc_has_wdt_control(asc) && addr == R_FMC_WDT2_CTRL) ||
722 (aspeed_smc_has_dma(asc) && addr == R_DMA_CTRL) ||
723 (aspeed_smc_has_dma(asc) && addr == R_DMA_FLASH_ADDR) ||
724 (aspeed_smc_has_dma(asc) && addr == R_DMA_DRAM_ADDR) ||
725 (aspeed_smc_has_dma(asc) && addr == R_DMA_LEN) ||
726 (aspeed_smc_has_dma(asc) && addr == R_DMA_CHECKSUM) ||
727 (addr >= R_SEG_ADDR0 &&
728 addr < R_SEG_ADDR0 + asc->max_peripherals) ||
729 (addr >= s->r_ctrl0 && addr < s->r_ctrl0 + asc->max_peripherals)) {
731 trace_aspeed_smc_read(addr << 2, size, s->regs[addr]);
733 return s->regs[addr];
734 } else {
735 qemu_log_mask(LOG_UNIMP, "%s: not implemented: 0x%" HWADDR_PRIx "\n",
736 __func__, addr);
737 return -1;
741 static uint8_t aspeed_smc_hclk_divisor(uint8_t hclk_mask)
743 /* HCLK/1 .. HCLK/16 */
744 const uint8_t hclk_divisors[] = {
745 15, 7, 14, 6, 13, 5, 12, 4, 11, 3, 10, 2, 9, 1, 8, 0
747 int i;
749 for (i = 0; i < ARRAY_SIZE(hclk_divisors); i++) {
750 if (hclk_mask == hclk_divisors[i]) {
751 return i + 1;
755 aspeed_smc_error("invalid HCLK mask %x", hclk_mask);
756 return 0;
760 * When doing calibration, the SPI clock rate in the CE0 Control
761 * Register and the read delay cycles in the Read Timing Compensation
762 * Register are set using bit[11:4] of the DMA Control Register.
764 static void aspeed_smc_dma_calibration(AspeedSMCState *s)
766 uint8_t delay =
767 (s->regs[R_DMA_CTRL] >> DMA_CTRL_DELAY_SHIFT) & DMA_CTRL_DELAY_MASK;
768 uint8_t hclk_mask =
769 (s->regs[R_DMA_CTRL] >> DMA_CTRL_FREQ_SHIFT) & DMA_CTRL_FREQ_MASK;
770 uint8_t hclk_div = aspeed_smc_hclk_divisor(hclk_mask);
771 uint32_t hclk_shift = (hclk_div - 1) << 2;
772 uint8_t cs;
775 * The Read Timing Compensation Register values apply to all CS on
776 * the SPI bus and only HCLK/1 - HCLK/5 can have tunable delays
778 if (hclk_div && hclk_div < 6) {
779 s->regs[s->r_timings] &= ~(0xf << hclk_shift);
780 s->regs[s->r_timings] |= delay << hclk_shift;
784 * TODO: compute the CS from the DMA address and the segment
785 * registers. This is not really a problem for now because the
786 * Timing Register values apply to all CS and software uses CS0 to
787 * do calibration.
789 cs = 0;
790 s->regs[s->r_ctrl0 + cs] &=
791 ~(CE_CTRL_CLOCK_FREQ_MASK << CE_CTRL_CLOCK_FREQ_SHIFT);
792 s->regs[s->r_ctrl0 + cs] |= CE_CTRL_CLOCK_FREQ(hclk_div);
796 * Emulate read errors in the DMA Checksum Register for high
797 * frequencies and optimistic settings of the Read Timing Compensation
798 * Register. This will help in tuning the SPI timing calibration
799 * algorithm.
801 static bool aspeed_smc_inject_read_failure(AspeedSMCState *s)
803 uint8_t delay =
804 (s->regs[R_DMA_CTRL] >> DMA_CTRL_DELAY_SHIFT) & DMA_CTRL_DELAY_MASK;
805 uint8_t hclk_mask =
806 (s->regs[R_DMA_CTRL] >> DMA_CTRL_FREQ_SHIFT) & DMA_CTRL_FREQ_MASK;
809 * Typical values of a palmetto-bmc machine.
811 switch (aspeed_smc_hclk_divisor(hclk_mask)) {
812 case 4 ... 16:
813 return false;
814 case 3: /* at least one HCLK cycle delay */
815 return (delay & 0x7) < 1;
816 case 2: /* at least two HCLK cycle delay */
817 return (delay & 0x7) < 2;
818 case 1: /* (> 100MHz) is above the max freq of the controller */
819 return true;
820 default:
821 g_assert_not_reached();
826 * Accumulate the result of the reads to provide a checksum that will
827 * be used to validate the read timing settings.
829 static void aspeed_smc_dma_checksum(AspeedSMCState *s)
831 MemTxResult result;
832 uint32_t data;
834 if (s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE) {
835 aspeed_smc_error("invalid direction for DMA checksum");
836 return;
839 if (s->regs[R_DMA_CTRL] & DMA_CTRL_CALIB) {
840 aspeed_smc_dma_calibration(s);
843 while (s->regs[R_DMA_LEN]) {
844 data = address_space_ldl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
845 MEMTXATTRS_UNSPECIFIED, &result);
846 if (result != MEMTX_OK) {
847 aspeed_smc_error("Flash read failed @%08x",
848 s->regs[R_DMA_FLASH_ADDR]);
849 return;
851 trace_aspeed_smc_dma_checksum(s->regs[R_DMA_FLASH_ADDR], data);
854 * When the DMA is on-going, the DMA registers are updated
855 * with the current working addresses and length.
857 s->regs[R_DMA_CHECKSUM] += data;
858 s->regs[R_DMA_FLASH_ADDR] += 4;
859 s->regs[R_DMA_LEN] -= 4;
862 if (s->inject_failure && aspeed_smc_inject_read_failure(s)) {
863 s->regs[R_DMA_CHECKSUM] = 0xbadc0de;
868 static void aspeed_smc_dma_rw(AspeedSMCState *s)
870 MemTxResult result;
871 uint32_t data;
873 trace_aspeed_smc_dma_rw(s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE ?
874 "write" : "read",
875 s->regs[R_DMA_FLASH_ADDR],
876 s->regs[R_DMA_DRAM_ADDR],
877 s->regs[R_DMA_LEN]);
878 while (s->regs[R_DMA_LEN]) {
879 if (s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE) {
880 data = address_space_ldl_le(&s->dram_as, s->regs[R_DMA_DRAM_ADDR],
881 MEMTXATTRS_UNSPECIFIED, &result);
882 if (result != MEMTX_OK) {
883 aspeed_smc_error("DRAM read failed @%08x",
884 s->regs[R_DMA_DRAM_ADDR]);
885 return;
888 address_space_stl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
889 data, MEMTXATTRS_UNSPECIFIED, &result);
890 if (result != MEMTX_OK) {
891 aspeed_smc_error("Flash write failed @%08x",
892 s->regs[R_DMA_FLASH_ADDR]);
893 return;
895 } else {
896 data = address_space_ldl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
897 MEMTXATTRS_UNSPECIFIED, &result);
898 if (result != MEMTX_OK) {
899 aspeed_smc_error("Flash read failed @%08x",
900 s->regs[R_DMA_FLASH_ADDR]);
901 return;
904 address_space_stl_le(&s->dram_as, s->regs[R_DMA_DRAM_ADDR],
905 data, MEMTXATTRS_UNSPECIFIED, &result);
906 if (result != MEMTX_OK) {
907 aspeed_smc_error("DRAM write failed @%08x",
908 s->regs[R_DMA_DRAM_ADDR]);
909 return;
914 * When the DMA is on-going, the DMA registers are updated
915 * with the current working addresses and length.
917 s->regs[R_DMA_FLASH_ADDR] += 4;
918 s->regs[R_DMA_DRAM_ADDR] += 4;
919 s->regs[R_DMA_LEN] -= 4;
920 s->regs[R_DMA_CHECKSUM] += data;
924 static void aspeed_smc_dma_stop(AspeedSMCState *s)
927 * When the DMA is disabled, INTR_CTRL_DMA_STATUS=0 means the
928 * engine is idle
930 s->regs[R_INTR_CTRL] &= ~INTR_CTRL_DMA_STATUS;
931 s->regs[R_DMA_CHECKSUM] = 0;
934 * Lower the DMA irq in any case. The IRQ control register could
935 * have been cleared before disabling the DMA.
937 qemu_irq_lower(s->irq);
941 * When INTR_CTRL_DMA_STATUS=1, the DMA has completed and a new DMA
942 * can start even if the result of the previous was not collected.
944 static bool aspeed_smc_dma_in_progress(AspeedSMCState *s)
946 return s->regs[R_DMA_CTRL] & DMA_CTRL_ENABLE &&
947 !(s->regs[R_INTR_CTRL] & INTR_CTRL_DMA_STATUS);
950 static void aspeed_smc_dma_done(AspeedSMCState *s)
952 s->regs[R_INTR_CTRL] |= INTR_CTRL_DMA_STATUS;
953 if (s->regs[R_INTR_CTRL] & INTR_CTRL_DMA_EN) {
954 qemu_irq_raise(s->irq);
958 static void aspeed_smc_dma_ctrl(AspeedSMCState *s, uint32_t dma_ctrl)
960 if (!(dma_ctrl & DMA_CTRL_ENABLE)) {
961 s->regs[R_DMA_CTRL] = dma_ctrl;
963 aspeed_smc_dma_stop(s);
964 return;
967 if (aspeed_smc_dma_in_progress(s)) {
968 aspeed_smc_error("DMA in progress !");
969 return;
972 s->regs[R_DMA_CTRL] = dma_ctrl;
974 if (s->regs[R_DMA_CTRL] & DMA_CTRL_CKSUM) {
975 aspeed_smc_dma_checksum(s);
976 } else {
977 aspeed_smc_dma_rw(s);
980 aspeed_smc_dma_done(s);
983 static inline bool aspeed_smc_dma_granted(AspeedSMCState *s)
985 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
987 if (!(asc->features & ASPEED_SMC_FEATURE_DMA_GRANT)) {
988 return true;
991 if (!(s->regs[R_DMA_CTRL] & DMA_CTRL_GRANT)) {
992 aspeed_smc_error("DMA not granted");
993 return false;
996 return true;
999 static void aspeed_2600_smc_dma_ctrl(AspeedSMCState *s, uint32_t dma_ctrl)
1001 /* Preserve DMA bits */
1002 dma_ctrl |= s->regs[R_DMA_CTRL] & (DMA_CTRL_REQUEST | DMA_CTRL_GRANT);
1004 if (dma_ctrl == 0xAEED0000) {
1005 /* automatically grant request */
1006 s->regs[R_DMA_CTRL] |= (DMA_CTRL_REQUEST | DMA_CTRL_GRANT);
1007 return;
1010 /* clear request */
1011 if (dma_ctrl == 0xDEEA0000) {
1012 s->regs[R_DMA_CTRL] &= ~(DMA_CTRL_REQUEST | DMA_CTRL_GRANT);
1013 return;
1016 if (!aspeed_smc_dma_granted(s)) {
1017 aspeed_smc_error("DMA not granted");
1018 return;
1021 aspeed_smc_dma_ctrl(s, dma_ctrl);
1022 s->regs[R_DMA_CTRL] &= ~(DMA_CTRL_REQUEST | DMA_CTRL_GRANT);
1025 static void aspeed_smc_write(void *opaque, hwaddr addr, uint64_t data,
1026 unsigned int size)
1028 AspeedSMCState *s = ASPEED_SMC(opaque);
1029 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
1030 uint32_t value = data;
1032 trace_aspeed_smc_write(addr, size, data);
1034 addr >>= 2;
1036 if (addr == s->r_conf ||
1037 (addr >= s->r_timings &&
1038 addr < s->r_timings + asc->nregs_timings) ||
1039 addr == s->r_ce_ctrl) {
1040 s->regs[addr] = value;
1041 } else if (addr >= s->r_ctrl0 && addr < s->r_ctrl0 + s->num_cs) {
1042 int cs = addr - s->r_ctrl0;
1043 aspeed_smc_flash_update_ctrl(&s->flashes[cs], value);
1044 } else if (addr >= R_SEG_ADDR0 &&
1045 addr < R_SEG_ADDR0 + asc->max_peripherals) {
1046 int cs = addr - R_SEG_ADDR0;
1048 if (value != s->regs[R_SEG_ADDR0 + cs]) {
1049 aspeed_smc_flash_set_segment(s, cs, value);
1051 } else if (addr == R_CE_CMD_CTRL) {
1052 s->regs[addr] = value & 0xff;
1053 } else if (addr == R_DUMMY_DATA) {
1054 s->regs[addr] = value & 0xff;
1055 } else if (aspeed_smc_has_wdt_control(asc) && addr == R_FMC_WDT2_CTRL) {
1056 s->regs[addr] = value & FMC_WDT2_CTRL_EN;
1057 } else if (addr == R_INTR_CTRL) {
1058 s->regs[addr] = value;
1059 } else if (aspeed_smc_has_dma(asc) && addr == R_DMA_CTRL) {
1060 asc->dma_ctrl(s, value);
1061 } else if (aspeed_smc_has_dma(asc) && addr == R_DMA_DRAM_ADDR &&
1062 aspeed_smc_dma_granted(s)) {
1063 s->regs[addr] = DMA_DRAM_ADDR(asc, value);
1064 } else if (aspeed_smc_has_dma(asc) && addr == R_DMA_FLASH_ADDR &&
1065 aspeed_smc_dma_granted(s)) {
1066 s->regs[addr] = DMA_FLASH_ADDR(asc, value);
1067 } else if (aspeed_smc_has_dma(asc) && addr == R_DMA_LEN &&
1068 aspeed_smc_dma_granted(s)) {
1069 s->regs[addr] = DMA_LENGTH(value);
1070 } else {
1071 qemu_log_mask(LOG_UNIMP, "%s: not implemented: 0x%" HWADDR_PRIx "\n",
1072 __func__, addr);
1073 return;
1077 static const MemoryRegionOps aspeed_smc_ops = {
1078 .read = aspeed_smc_read,
1079 .write = aspeed_smc_write,
1080 .endianness = DEVICE_LITTLE_ENDIAN,
1083 static void aspeed_smc_instance_init(Object *obj)
1085 AspeedSMCState *s = ASPEED_SMC(obj);
1086 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
1087 int i;
1089 for (i = 0; i < asc->max_peripherals; i++) {
1090 object_initialize_child(obj, "flash[*]", &s->flashes[i],
1091 TYPE_ASPEED_SMC_FLASH);
1096 * Initialize the custom address spaces for DMAs
1098 static void aspeed_smc_dma_setup(AspeedSMCState *s, Error **errp)
1100 if (!s->dram_mr) {
1101 error_setg(errp, TYPE_ASPEED_SMC ": 'dram' link not set");
1102 return;
1105 address_space_init(&s->flash_as, &s->mmio_flash,
1106 TYPE_ASPEED_SMC ".dma-flash");
1107 address_space_init(&s->dram_as, s->dram_mr,
1108 TYPE_ASPEED_SMC ".dma-dram");
1111 static void aspeed_smc_realize(DeviceState *dev, Error **errp)
1113 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1114 AspeedSMCState *s = ASPEED_SMC(dev);
1115 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
1116 int i;
1117 hwaddr offset = 0;
1119 /* keep a copy under AspeedSMCState to speed up accesses */
1120 s->r_conf = asc->r_conf;
1121 s->r_ce_ctrl = asc->r_ce_ctrl;
1122 s->r_ctrl0 = asc->r_ctrl0;
1123 s->r_timings = asc->r_timings;
1124 s->conf_enable_w0 = asc->conf_enable_w0;
1126 /* Enforce some real HW limits */
1127 if (s->num_cs > asc->max_peripherals) {
1128 aspeed_smc_error("num_cs cannot exceed: %d", asc->max_peripherals);
1129 s->num_cs = asc->max_peripherals;
1132 /* DMA irq. Keep it first for the initialization in the SoC */
1133 sysbus_init_irq(sbd, &s->irq);
1135 s->spi = ssi_create_bus(dev, "spi");
1137 /* Setup cs_lines for peripherals */
1138 s->cs_lines = g_new0(qemu_irq, s->num_cs);
1140 for (i = 0; i < s->num_cs; ++i) {
1141 sysbus_init_irq(sbd, &s->cs_lines[i]);
1144 /* The memory region for the controller registers */
1145 memory_region_init_io(&s->mmio, OBJECT(s), &aspeed_smc_ops, s,
1146 TYPE_ASPEED_SMC, asc->nregs * 4);
1147 sysbus_init_mmio(sbd, &s->mmio);
1150 * The container memory region representing the address space
1151 * window in which the flash modules are mapped. The size and
1152 * address depends on the SoC model and controller type.
1154 memory_region_init_io(&s->mmio_flash, OBJECT(s),
1155 &aspeed_smc_flash_default_ops, s,
1156 TYPE_ASPEED_SMC ".flash",
1157 asc->flash_window_size);
1158 memory_region_init_alias(&s->mmio_flash_alias, OBJECT(s),
1159 TYPE_ASPEED_SMC ".flash",
1160 &s->mmio_flash, 0, asc->flash_window_size);
1161 sysbus_init_mmio(sbd, &s->mmio_flash_alias);
1164 * Let's create a sub memory region for each possible peripheral. All
1165 * have a configurable memory segment in the overall flash mapping
1166 * window of the controller but, there is not necessarily a flash
1167 * module behind to handle the memory accesses. This depends on
1168 * the board configuration.
1170 for (i = 0; i < asc->max_peripherals; ++i) {
1171 AspeedSMCFlash *fl = &s->flashes[i];
1173 if (!object_property_set_link(OBJECT(fl), "controller", OBJECT(s),
1174 errp)) {
1175 return;
1177 if (!object_property_set_uint(OBJECT(fl), "cs", i, errp)) {
1178 return;
1180 if (!sysbus_realize(SYS_BUS_DEVICE(fl), errp)) {
1181 return;
1184 memory_region_add_subregion(&s->mmio_flash, offset, &fl->mmio);
1185 offset += asc->segments[i].size;
1188 /* DMA support */
1189 if (aspeed_smc_has_dma(asc)) {
1190 aspeed_smc_dma_setup(s, errp);
1194 static const VMStateDescription vmstate_aspeed_smc = {
1195 .name = "aspeed.smc",
1196 .version_id = 2,
1197 .minimum_version_id = 2,
1198 .fields = (VMStateField[]) {
1199 VMSTATE_UINT32_ARRAY(regs, AspeedSMCState, ASPEED_SMC_R_MAX),
1200 VMSTATE_UINT8(snoop_index, AspeedSMCState),
1201 VMSTATE_UINT8(snoop_dummies, AspeedSMCState),
1202 VMSTATE_END_OF_LIST()
1206 static Property aspeed_smc_properties[] = {
1207 DEFINE_PROP_UINT32("num-cs", AspeedSMCState, num_cs, 1),
1208 DEFINE_PROP_BOOL("inject-failure", AspeedSMCState, inject_failure, false),
1209 DEFINE_PROP_LINK("dram", AspeedSMCState, dram_mr,
1210 TYPE_MEMORY_REGION, MemoryRegion *),
1211 DEFINE_PROP_END_OF_LIST(),
1214 static void aspeed_smc_class_init(ObjectClass *klass, void *data)
1216 DeviceClass *dc = DEVICE_CLASS(klass);
1218 dc->realize = aspeed_smc_realize;
1219 dc->reset = aspeed_smc_reset;
1220 device_class_set_props(dc, aspeed_smc_properties);
1221 dc->vmsd = &vmstate_aspeed_smc;
1224 static const TypeInfo aspeed_smc_info = {
1225 .name = TYPE_ASPEED_SMC,
1226 .parent = TYPE_SYS_BUS_DEVICE,
1227 .instance_init = aspeed_smc_instance_init,
1228 .instance_size = sizeof(AspeedSMCState),
1229 .class_size = sizeof(AspeedSMCClass),
1230 .class_init = aspeed_smc_class_init,
1231 .abstract = true,
1234 static void aspeed_smc_flash_realize(DeviceState *dev, Error **errp)
1236 AspeedSMCFlash *s = ASPEED_SMC_FLASH(dev);
1237 AspeedSMCClass *asc;
1238 g_autofree char *name = g_strdup_printf(TYPE_ASPEED_SMC_FLASH ".%d", s->cs);
1240 if (!s->controller) {
1241 error_setg(errp, TYPE_ASPEED_SMC_FLASH ": 'controller' link not set");
1242 return;
1245 asc = ASPEED_SMC_GET_CLASS(s->controller);
1248 * Use the default segment value to size the memory region. This
1249 * can be changed by FW at runtime.
1251 memory_region_init_io(&s->mmio, OBJECT(s), &aspeed_smc_flash_ops,
1252 s, name, asc->segments[s->cs].size);
1253 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->mmio);
1256 static Property aspeed_smc_flash_properties[] = {
1257 DEFINE_PROP_UINT8("cs", AspeedSMCFlash, cs, 0),
1258 DEFINE_PROP_LINK("controller", AspeedSMCFlash, controller, TYPE_ASPEED_SMC,
1259 AspeedSMCState *),
1260 DEFINE_PROP_END_OF_LIST(),
1263 static void aspeed_smc_flash_class_init(ObjectClass *klass, void *data)
1265 DeviceClass *dc = DEVICE_CLASS(klass);
1267 dc->desc = "Aspeed SMC Flash device region";
1268 dc->realize = aspeed_smc_flash_realize;
1269 device_class_set_props(dc, aspeed_smc_flash_properties);
1272 static const TypeInfo aspeed_smc_flash_info = {
1273 .name = TYPE_ASPEED_SMC_FLASH,
1274 .parent = TYPE_SYS_BUS_DEVICE,
1275 .instance_size = sizeof(AspeedSMCFlash),
1276 .class_init = aspeed_smc_flash_class_init,
1280 * The Segment Registers of the AST2400 and AST2500 have a 8MB
1281 * unit. The address range of a flash SPI peripheral is encoded with
1282 * absolute addresses which should be part of the overall controller
1283 * window.
1285 static uint32_t aspeed_smc_segment_to_reg(const AspeedSMCState *s,
1286 const AspeedSegments *seg)
1288 uint32_t reg = 0;
1289 reg |= ((seg->addr >> 23) & SEG_START_MASK) << SEG_START_SHIFT;
1290 reg |= (((seg->addr + seg->size) >> 23) & SEG_END_MASK) << SEG_END_SHIFT;
1291 return reg;
1294 static void aspeed_smc_reg_to_segment(const AspeedSMCState *s,
1295 uint32_t reg, AspeedSegments *seg)
1297 seg->addr = ((reg >> SEG_START_SHIFT) & SEG_START_MASK) << 23;
1298 seg->size = (((reg >> SEG_END_SHIFT) & SEG_END_MASK) << 23) - seg->addr;
1301 static const AspeedSegments aspeed_2400_smc_segments[] = {
1302 { 0x10000000, 32 * MiB },
1305 static void aspeed_2400_smc_class_init(ObjectClass *klass, void *data)
1307 DeviceClass *dc = DEVICE_CLASS(klass);
1308 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1310 dc->desc = "Aspeed 2400 SMC Controller";
1311 asc->r_conf = R_CONF;
1312 asc->r_ce_ctrl = R_CE_CTRL;
1313 asc->r_ctrl0 = R_CTRL0;
1314 asc->r_timings = R_TIMINGS;
1315 asc->nregs_timings = 1;
1316 asc->conf_enable_w0 = CONF_ENABLE_W0;
1317 asc->max_peripherals = 1;
1318 asc->segments = aspeed_2400_smc_segments;
1319 asc->flash_window_base = 0x10000000;
1320 asc->flash_window_size = 0x6000000;
1321 asc->features = 0x0;
1322 asc->nregs = ASPEED_SMC_R_SMC_MAX;
1323 asc->segment_to_reg = aspeed_smc_segment_to_reg;
1324 asc->reg_to_segment = aspeed_smc_reg_to_segment;
1325 asc->dma_ctrl = aspeed_smc_dma_ctrl;
1328 static const TypeInfo aspeed_2400_smc_info = {
1329 .name = "aspeed.smc-ast2400",
1330 .parent = TYPE_ASPEED_SMC,
1331 .class_init = aspeed_2400_smc_class_init,
1334 static const uint32_t aspeed_2400_fmc_resets[ASPEED_SMC_R_MAX] = {
1336 * CE0 and CE1 types are HW strapped in SCU70. Do it here to
1337 * simplify the model.
1339 [R_CONF] = CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0,
1342 static const AspeedSegments aspeed_2400_fmc_segments[] = {
1343 { 0x20000000, 64 * MiB }, /* start address is readonly */
1344 { 0x24000000, 32 * MiB },
1345 { 0x26000000, 32 * MiB },
1346 { 0x28000000, 32 * MiB },
1347 { 0x2A000000, 32 * MiB }
1350 static void aspeed_2400_fmc_class_init(ObjectClass *klass, void *data)
1352 DeviceClass *dc = DEVICE_CLASS(klass);
1353 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1355 dc->desc = "Aspeed 2400 FMC Controller";
1356 asc->r_conf = R_CONF;
1357 asc->r_ce_ctrl = R_CE_CTRL;
1358 asc->r_ctrl0 = R_CTRL0;
1359 asc->r_timings = R_TIMINGS;
1360 asc->nregs_timings = 1;
1361 asc->conf_enable_w0 = CONF_ENABLE_W0;
1362 asc->max_peripherals = 5;
1363 asc->segments = aspeed_2400_fmc_segments;
1364 asc->resets = aspeed_2400_fmc_resets;
1365 asc->flash_window_base = 0x20000000;
1366 asc->flash_window_size = 0x10000000;
1367 asc->features = ASPEED_SMC_FEATURE_DMA;
1368 asc->dma_flash_mask = 0x0FFFFFFC;
1369 asc->dma_dram_mask = 0x1FFFFFFC;
1370 asc->nregs = ASPEED_SMC_R_MAX;
1371 asc->segment_to_reg = aspeed_smc_segment_to_reg;
1372 asc->reg_to_segment = aspeed_smc_reg_to_segment;
1373 asc->dma_ctrl = aspeed_smc_dma_ctrl;
1376 static const TypeInfo aspeed_2400_fmc_info = {
1377 .name = "aspeed.fmc-ast2400",
1378 .parent = TYPE_ASPEED_SMC,
1379 .class_init = aspeed_2400_fmc_class_init,
1382 static const AspeedSegments aspeed_2400_spi1_segments[] = {
1383 { 0x30000000, 64 * MiB },
1386 static int aspeed_2400_spi1_addr_width(const AspeedSMCState *s)
1388 return s->regs[R_SPI_CTRL0] & CTRL_AST2400_SPI_4BYTE ? 4 : 3;
1391 static void aspeed_2400_spi1_class_init(ObjectClass *klass, void *data)
1393 DeviceClass *dc = DEVICE_CLASS(klass);
1394 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1396 dc->desc = "Aspeed 2400 SPI1 Controller";
1397 asc->r_conf = R_SPI_CONF;
1398 asc->r_ce_ctrl = 0xff;
1399 asc->r_ctrl0 = R_SPI_CTRL0;
1400 asc->r_timings = R_SPI_TIMINGS;
1401 asc->nregs_timings = 1;
1402 asc->conf_enable_w0 = SPI_CONF_ENABLE_W0;
1403 asc->max_peripherals = 1;
1404 asc->segments = aspeed_2400_spi1_segments;
1405 asc->flash_window_base = 0x30000000;
1406 asc->flash_window_size = 0x10000000;
1407 asc->features = 0x0;
1408 asc->nregs = ASPEED_SMC_R_SPI_MAX;
1409 asc->segment_to_reg = aspeed_smc_segment_to_reg;
1410 asc->reg_to_segment = aspeed_smc_reg_to_segment;
1411 asc->dma_ctrl = aspeed_smc_dma_ctrl;
1412 asc->addr_width = aspeed_2400_spi1_addr_width;
1415 static const TypeInfo aspeed_2400_spi1_info = {
1416 .name = "aspeed.spi1-ast2400",
1417 .parent = TYPE_ASPEED_SMC,
1418 .class_init = aspeed_2400_spi1_class_init,
1421 static const uint32_t aspeed_2500_fmc_resets[ASPEED_SMC_R_MAX] = {
1422 [R_CONF] = (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0 |
1423 CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1),
1426 static const AspeedSegments aspeed_2500_fmc_segments[] = {
1427 { 0x20000000, 128 * MiB }, /* start address is readonly */
1428 { 0x28000000, 32 * MiB },
1429 { 0x2A000000, 32 * MiB },
1432 static void aspeed_2500_fmc_class_init(ObjectClass *klass, void *data)
1434 DeviceClass *dc = DEVICE_CLASS(klass);
1435 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1437 dc->desc = "Aspeed 2600 FMC Controller";
1438 asc->r_conf = R_CONF;
1439 asc->r_ce_ctrl = R_CE_CTRL;
1440 asc->r_ctrl0 = R_CTRL0;
1441 asc->r_timings = R_TIMINGS;
1442 asc->nregs_timings = 1;
1443 asc->conf_enable_w0 = CONF_ENABLE_W0;
1444 asc->max_peripherals = 3;
1445 asc->segments = aspeed_2500_fmc_segments;
1446 asc->resets = aspeed_2500_fmc_resets;
1447 asc->flash_window_base = 0x20000000;
1448 asc->flash_window_size = 0x10000000;
1449 asc->features = ASPEED_SMC_FEATURE_DMA;
1450 asc->dma_flash_mask = 0x0FFFFFFC;
1451 asc->dma_dram_mask = 0x3FFFFFFC;
1452 asc->nregs = ASPEED_SMC_R_MAX;
1453 asc->segment_to_reg = aspeed_smc_segment_to_reg;
1454 asc->reg_to_segment = aspeed_smc_reg_to_segment;
1455 asc->dma_ctrl = aspeed_smc_dma_ctrl;
1458 static const TypeInfo aspeed_2500_fmc_info = {
1459 .name = "aspeed.fmc-ast2500",
1460 .parent = TYPE_ASPEED_SMC,
1461 .class_init = aspeed_2500_fmc_class_init,
1464 static const AspeedSegments aspeed_2500_spi1_segments[] = {
1465 { 0x30000000, 32 * MiB }, /* start address is readonly */
1466 { 0x32000000, 96 * MiB }, /* end address is readonly */
1469 static void aspeed_2500_spi1_class_init(ObjectClass *klass, void *data)
1471 DeviceClass *dc = DEVICE_CLASS(klass);
1472 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1474 dc->desc = "Aspeed 2600 SPI1 Controller";
1475 asc->r_conf = R_CONF;
1476 asc->r_ce_ctrl = R_CE_CTRL;
1477 asc->r_ctrl0 = R_CTRL0;
1478 asc->r_timings = R_TIMINGS;
1479 asc->nregs_timings = 1;
1480 asc->conf_enable_w0 = CONF_ENABLE_W0;
1481 asc->max_peripherals = 2;
1482 asc->segments = aspeed_2500_spi1_segments;
1483 asc->flash_window_base = 0x30000000;
1484 asc->flash_window_size = 0x8000000;
1485 asc->features = 0x0;
1486 asc->nregs = ASPEED_SMC_R_MAX;
1487 asc->segment_to_reg = aspeed_smc_segment_to_reg;
1488 asc->reg_to_segment = aspeed_smc_reg_to_segment;
1489 asc->dma_ctrl = aspeed_smc_dma_ctrl;
1492 static const TypeInfo aspeed_2500_spi1_info = {
1493 .name = "aspeed.spi1-ast2500",
1494 .parent = TYPE_ASPEED_SMC,
1495 .class_init = aspeed_2500_spi1_class_init,
1498 static const AspeedSegments aspeed_2500_spi2_segments[] = {
1499 { 0x38000000, 32 * MiB }, /* start address is readonly */
1500 { 0x3A000000, 96 * MiB }, /* end address is readonly */
1503 static void aspeed_2500_spi2_class_init(ObjectClass *klass, void *data)
1505 DeviceClass *dc = DEVICE_CLASS(klass);
1506 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1508 dc->desc = "Aspeed 2600 SPI2 Controller";
1509 asc->r_conf = R_CONF;
1510 asc->r_ce_ctrl = R_CE_CTRL;
1511 asc->r_ctrl0 = R_CTRL0;
1512 asc->r_timings = R_TIMINGS;
1513 asc->nregs_timings = 1;
1514 asc->conf_enable_w0 = CONF_ENABLE_W0;
1515 asc->max_peripherals = 2;
1516 asc->segments = aspeed_2500_spi2_segments;
1517 asc->flash_window_base = 0x38000000;
1518 asc->flash_window_size = 0x8000000;
1519 asc->features = 0x0;
1520 asc->nregs = ASPEED_SMC_R_MAX;
1521 asc->segment_to_reg = aspeed_smc_segment_to_reg;
1522 asc->reg_to_segment = aspeed_smc_reg_to_segment;
1523 asc->dma_ctrl = aspeed_smc_dma_ctrl;
1526 static const TypeInfo aspeed_2500_spi2_info = {
1527 .name = "aspeed.spi2-ast2500",
1528 .parent = TYPE_ASPEED_SMC,
1529 .class_init = aspeed_2500_spi2_class_init,
1533 * The Segment Registers of the AST2600 have a 1MB unit. The address
1534 * range of a flash SPI peripheral is encoded with offsets in the overall
1535 * controller window. The previous SoC AST2400 and AST2500 used
1536 * absolute addresses. Only bits [27:20] are relevant and the end
1537 * address is an upper bound limit.
1539 #define AST2600_SEG_ADDR_MASK 0x0ff00000
1541 static uint32_t aspeed_2600_smc_segment_to_reg(const AspeedSMCState *s,
1542 const AspeedSegments *seg)
1544 uint32_t reg = 0;
1546 /* Disabled segments have a nil register */
1547 if (!seg->size) {
1548 return 0;
1551 reg |= (seg->addr & AST2600_SEG_ADDR_MASK) >> 16; /* start offset */
1552 reg |= (seg->addr + seg->size - 1) & AST2600_SEG_ADDR_MASK; /* end offset */
1553 return reg;
1556 static void aspeed_2600_smc_reg_to_segment(const AspeedSMCState *s,
1557 uint32_t reg, AspeedSegments *seg)
1559 uint32_t start_offset = (reg << 16) & AST2600_SEG_ADDR_MASK;
1560 uint32_t end_offset = reg & AST2600_SEG_ADDR_MASK;
1561 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
1563 if (reg) {
1564 seg->addr = asc->flash_window_base + start_offset;
1565 seg->size = end_offset + MiB - start_offset;
1566 } else {
1567 seg->addr = asc->flash_window_base;
1568 seg->size = 0;
1572 static const uint32_t aspeed_2600_fmc_resets[ASPEED_SMC_R_MAX] = {
1573 [R_CONF] = (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0 |
1574 CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1 |
1575 CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE2),
1578 static const AspeedSegments aspeed_2600_fmc_segments[] = {
1579 { 0x0, 128 * MiB }, /* start address is readonly */
1580 { 128 * MiB, 128 * MiB }, /* default is disabled but needed for -kernel */
1581 { 0x0, 0 }, /* disabled */
1584 static void aspeed_2600_fmc_class_init(ObjectClass *klass, void *data)
1586 DeviceClass *dc = DEVICE_CLASS(klass);
1587 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1589 dc->desc = "Aspeed 2600 FMC Controller";
1590 asc->r_conf = R_CONF;
1591 asc->r_ce_ctrl = R_CE_CTRL;
1592 asc->r_ctrl0 = R_CTRL0;
1593 asc->r_timings = R_TIMINGS;
1594 asc->nregs_timings = 1;
1595 asc->conf_enable_w0 = CONF_ENABLE_W0;
1596 asc->max_peripherals = 3;
1597 asc->segments = aspeed_2600_fmc_segments;
1598 asc->resets = aspeed_2600_fmc_resets;
1599 asc->flash_window_base = 0x20000000;
1600 asc->flash_window_size = 0x10000000;
1601 asc->features = ASPEED_SMC_FEATURE_DMA |
1602 ASPEED_SMC_FEATURE_WDT_CONTROL;
1603 asc->dma_flash_mask = 0x0FFFFFFC;
1604 asc->dma_dram_mask = 0x3FFFFFFC;
1605 asc->nregs = ASPEED_SMC_R_MAX;
1606 asc->segment_to_reg = aspeed_2600_smc_segment_to_reg;
1607 asc->reg_to_segment = aspeed_2600_smc_reg_to_segment;
1608 asc->dma_ctrl = aspeed_2600_smc_dma_ctrl;
1611 static const TypeInfo aspeed_2600_fmc_info = {
1612 .name = "aspeed.fmc-ast2600",
1613 .parent = TYPE_ASPEED_SMC,
1614 .class_init = aspeed_2600_fmc_class_init,
1617 static const AspeedSegments aspeed_2600_spi1_segments[] = {
1618 { 0x0, 128 * MiB }, /* start address is readonly */
1619 { 0x0, 0 }, /* disabled */
1622 static void aspeed_2600_spi1_class_init(ObjectClass *klass, void *data)
1624 DeviceClass *dc = DEVICE_CLASS(klass);
1625 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1627 dc->desc = "Aspeed 2600 SPI1 Controller";
1628 asc->r_conf = R_CONF;
1629 asc->r_ce_ctrl = R_CE_CTRL;
1630 asc->r_ctrl0 = R_CTRL0;
1631 asc->r_timings = R_TIMINGS;
1632 asc->nregs_timings = 2;
1633 asc->conf_enable_w0 = CONF_ENABLE_W0;
1634 asc->max_peripherals = 2;
1635 asc->segments = aspeed_2600_spi1_segments;
1636 asc->flash_window_base = 0x30000000;
1637 asc->flash_window_size = 0x10000000;
1638 asc->features = ASPEED_SMC_FEATURE_DMA |
1639 ASPEED_SMC_FEATURE_DMA_GRANT;
1640 asc->dma_flash_mask = 0x0FFFFFFC;
1641 asc->dma_dram_mask = 0x3FFFFFFC;
1642 asc->nregs = ASPEED_SMC_R_MAX;
1643 asc->segment_to_reg = aspeed_2600_smc_segment_to_reg;
1644 asc->reg_to_segment = aspeed_2600_smc_reg_to_segment;
1645 asc->dma_ctrl = aspeed_2600_smc_dma_ctrl;
1648 static const TypeInfo aspeed_2600_spi1_info = {
1649 .name = "aspeed.spi1-ast2600",
1650 .parent = TYPE_ASPEED_SMC,
1651 .class_init = aspeed_2600_spi1_class_init,
1654 static const AspeedSegments aspeed_2600_spi2_segments[] = {
1655 { 0x0, 128 * MiB }, /* start address is readonly */
1656 { 0x0, 0 }, /* disabled */
1657 { 0x0, 0 }, /* disabled */
1660 static void aspeed_2600_spi2_class_init(ObjectClass *klass, void *data)
1662 DeviceClass *dc = DEVICE_CLASS(klass);
1663 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1665 dc->desc = "Aspeed 2600 SPI2 Controller";
1666 asc->r_conf = R_CONF;
1667 asc->r_ce_ctrl = R_CE_CTRL;
1668 asc->r_ctrl0 = R_CTRL0;
1669 asc->r_timings = R_TIMINGS;
1670 asc->nregs_timings = 3;
1671 asc->conf_enable_w0 = CONF_ENABLE_W0;
1672 asc->max_peripherals = 3;
1673 asc->segments = aspeed_2600_spi2_segments;
1674 asc->flash_window_base = 0x50000000;
1675 asc->flash_window_size = 0x10000000;
1676 asc->features = ASPEED_SMC_FEATURE_DMA |
1677 ASPEED_SMC_FEATURE_DMA_GRANT;
1678 asc->dma_flash_mask = 0x0FFFFFFC;
1679 asc->dma_dram_mask = 0x3FFFFFFC;
1680 asc->nregs = ASPEED_SMC_R_MAX;
1681 asc->segment_to_reg = aspeed_2600_smc_segment_to_reg;
1682 asc->reg_to_segment = aspeed_2600_smc_reg_to_segment;
1683 asc->dma_ctrl = aspeed_2600_smc_dma_ctrl;
1686 static const TypeInfo aspeed_2600_spi2_info = {
1687 .name = "aspeed.spi2-ast2600",
1688 .parent = TYPE_ASPEED_SMC,
1689 .class_init = aspeed_2600_spi2_class_init,
1692 static void aspeed_smc_register_types(void)
1694 type_register_static(&aspeed_smc_flash_info);
1695 type_register_static(&aspeed_smc_info);
1696 type_register_static(&aspeed_2400_smc_info);
1697 type_register_static(&aspeed_2400_fmc_info);
1698 type_register_static(&aspeed_2400_spi1_info);
1699 type_register_static(&aspeed_2500_fmc_info);
1700 type_register_static(&aspeed_2500_spi1_info);
1701 type_register_static(&aspeed_2500_spi2_info);
1702 type_register_static(&aspeed_2600_fmc_info);
1703 type_register_static(&aspeed_2600_spi1_info);
1704 type_register_static(&aspeed_2600_spi2_info);
1707 type_init(aspeed_smc_register_types)