2 * Hierarchical Bitmap Data Type
4 * Copyright Red Hat, Inc., 2012
6 * Author: Paolo Bonzini <pbonzini@redhat.com>
8 * This work is licensed under the terms of the GNU GPL, version 2 or
9 * later. See the COPYING file in the top-level directory.
12 #include "qemu/osdep.h"
13 #include "qemu/hbitmap.h"
14 #include "qemu/host-utils.h"
16 #include "crypto/hash.h"
18 /* HBitmaps provides an array of bits. The bits are stored as usual in an
19 * array of unsigned longs, but HBitmap is also optimized to provide fast
20 * iteration over set bits; going from one bit to the next is O(logB n)
21 * worst case, with B = sizeof(long) * CHAR_BIT: the result is low enough
22 * that the number of levels is in fact fixed.
24 * In order to do this, it stacks multiple bitmaps with progressively coarser
25 * granularity; in all levels except the last, bit N is set iff the N-th
26 * unsigned long is nonzero in the immediately next level. When iteration
27 * completes on the last level it can examine the 2nd-last level to quickly
28 * skip entire words, and even do so recursively to skip blocks of 64 words or
29 * powers thereof (32 on 32-bit machines).
31 * Given an index in the bitmap, it can be split in group of bits like
32 * this (for the 64-bit case):
34 * bits 0-57 => word in the last bitmap | bits 58-63 => bit in the word
35 * bits 0-51 => word in the 2nd-last bitmap | bits 52-57 => bit in the word
36 * bits 0-45 => word in the 3rd-last bitmap | bits 46-51 => bit in the word
38 * So it is easy to move up simply by shifting the index right by
39 * log2(BITS_PER_LONG) bits. To move down, you shift the index left
40 * similarly, and add the word index within the group. Iteration uses
41 * ffs (find first set bit) to find the next word to examine; this
42 * operation can be done in constant time in most current architectures.
44 * Setting or clearing a range of m bits on all levels, the work to perform
45 * is O(m + m/W + m/W^2 + ...), which is O(m) like on a regular bitmap.
47 * When iterating on a bitmap, each bit (on any level) is only visited
48 * once. Hence, The total cost of visiting a bitmap with m bits in it is
49 * the number of bits that are set in all bitmaps. Unless the bitmap is
50 * extremely sparse, this is also O(m + m/W + m/W^2 + ...), so the amortized
51 * cost of advancing from one bit to the next is usually constant (worst case
52 * O(logB n) as in the non-amortized complexity).
57 * Size of the bitmap, as requested in hbitmap_alloc or in hbitmap_truncate.
61 /* Number of total bits in the bottom level. */
64 /* Number of set bits in the bottom level. */
67 /* A scaling factor. Given a granularity of G, each bit in the bitmap will
68 * will actually represent a group of 2^G elements. Each operation on a
69 * range of bits first rounds the bits to determine which group they land
70 * in, and then affect the entire page; iteration will only visit the first
71 * bit of each group. Here is an example of operations in a size-16,
72 * granularity-1 HBitmap:
74 * initial state 00000000
75 * set(start=0, count=9) 11111000 (iter: 0, 2, 4, 6, 8)
76 * reset(start=1, count=3) 00111000 (iter: 4, 6, 8)
77 * set(start=9, count=2) 00111100 (iter: 4, 6, 8, 10)
78 * reset(start=5, count=5) 00000000
80 * From an implementation point of view, when setting or resetting bits,
81 * the bitmap will scale bit numbers right by this amount of bits. When
82 * iterating, the bitmap will scale bit numbers left by this amount of
87 /* A meta dirty bitmap to track the dirtiness of bits in this HBitmap. */
90 /* A number of progressively less coarse bitmaps (i.e. level 0 is the
91 * coarsest). Each bit in level N represents a word in level N+1 that
92 * has a set bit, except the last level where each bit represents the
95 * Note that all bitmaps have the same number of levels. Even a 1-bit
96 * bitmap will still allocate HBITMAP_LEVELS arrays.
98 unsigned long *levels
[HBITMAP_LEVELS
];
100 /* The length of each levels[] array. */
101 uint64_t sizes
[HBITMAP_LEVELS
];
104 /* Advance hbi to the next nonzero word and return it. hbi->pos
105 * is updated. Returns zero if we reach the end of the bitmap.
107 static unsigned long hbitmap_iter_skip_words(HBitmapIter
*hbi
)
109 size_t pos
= hbi
->pos
;
110 const HBitmap
*hb
= hbi
->hb
;
111 unsigned i
= HBITMAP_LEVELS
- 1;
116 pos
>>= BITS_PER_LEVEL
;
117 cur
= hbi
->cur
[i
] & hb
->levels
[i
][pos
];
120 /* Check for end of iteration. We always use fewer than BITS_PER_LONG
121 * bits in the level 0 bitmap; thus we can repurpose the most significant
122 * bit as a sentinel. The sentinel is set in hbitmap_alloc and ensures
123 * that the above loop ends even without an explicit check on i.
126 if (i
== 0 && cur
== (1UL << (BITS_PER_LONG
- 1))) {
129 for (; i
< HBITMAP_LEVELS
- 1; i
++) {
130 /* Shift back pos to the left, matching the right shifts above.
131 * The index of this word's least significant set bit provides
132 * the low-order bits.
135 pos
= (pos
<< BITS_PER_LEVEL
) + ctzl(cur
);
136 hbi
->cur
[i
] = cur
& (cur
- 1);
138 /* Set up next level for iteration. */
139 cur
= hb
->levels
[i
+ 1][pos
];
143 trace_hbitmap_iter_skip_words(hbi
->hb
, hbi
, pos
, cur
);
149 int64_t hbitmap_iter_next(HBitmapIter
*hbi
)
151 unsigned long cur
= hbi
->cur
[HBITMAP_LEVELS
- 1] &
152 hbi
->hb
->levels
[HBITMAP_LEVELS
- 1][hbi
->pos
];
156 cur
= hbitmap_iter_skip_words(hbi
);
162 /* The next call will resume work from the next bit. */
163 hbi
->cur
[HBITMAP_LEVELS
- 1] = cur
& (cur
- 1);
164 item
= ((uint64_t)hbi
->pos
<< BITS_PER_LEVEL
) + ctzl(cur
);
166 return item
<< hbi
->granularity
;
169 void hbitmap_iter_init(HBitmapIter
*hbi
, const HBitmap
*hb
, uint64_t first
)
175 pos
= first
>> hb
->granularity
;
176 assert(pos
< hb
->size
);
177 hbi
->pos
= pos
>> BITS_PER_LEVEL
;
178 hbi
->granularity
= hb
->granularity
;
180 for (i
= HBITMAP_LEVELS
; i
-- > 0; ) {
181 bit
= pos
& (BITS_PER_LONG
- 1);
182 pos
>>= BITS_PER_LEVEL
;
184 /* Drop bits representing items before first. */
185 hbi
->cur
[i
] = hb
->levels
[i
][pos
] & ~((1UL << bit
) - 1);
187 /* We have already added level i+1, so the lowest set bit has
188 * been processed. Clear it.
190 if (i
!= HBITMAP_LEVELS
- 1) {
191 hbi
->cur
[i
] &= ~(1UL << bit
);
196 int64_t hbitmap_next_dirty(const HBitmap
*hb
, int64_t start
, int64_t count
)
199 int64_t first_dirty_off
;
202 assert(start
>= 0 && count
>= 0);
204 if (start
>= hb
->orig_size
|| count
== 0) {
208 end
= count
> hb
->orig_size
- start
? hb
->orig_size
: start
+ count
;
210 hbitmap_iter_init(&hbi
, hb
, start
);
211 first_dirty_off
= hbitmap_iter_next(&hbi
);
213 if (first_dirty_off
< 0 || first_dirty_off
>= end
) {
217 return MAX(start
, first_dirty_off
);
220 int64_t hbitmap_next_zero(const HBitmap
*hb
, int64_t start
, int64_t count
)
222 size_t pos
= (start
>> hb
->granularity
) >> BITS_PER_LEVEL
;
223 unsigned long *last_lev
= hb
->levels
[HBITMAP_LEVELS
- 1];
224 unsigned long cur
= last_lev
[pos
];
225 unsigned start_bit_offset
;
226 uint64_t end_bit
, sz
;
229 assert(start
>= 0 && count
>= 0);
231 if (start
>= hb
->orig_size
|| count
== 0) {
235 end_bit
= count
> hb
->orig_size
- start
?
237 ((start
+ count
- 1) >> hb
->granularity
) + 1;
238 sz
= (end_bit
+ BITS_PER_LONG
- 1) >> BITS_PER_LEVEL
;
240 /* There may be some zero bits in @cur before @start. We are not interested
241 * in them, let's set them.
243 start_bit_offset
= (start
>> hb
->granularity
) & (BITS_PER_LONG
- 1);
244 cur
|= (1UL << start_bit_offset
) - 1;
245 assert((start
>> hb
->granularity
) < hb
->size
);
247 if (cur
== (unsigned long)-1) {
250 } while (pos
< sz
&& last_lev
[pos
] == (unsigned long)-1);
259 res
= (pos
<< BITS_PER_LEVEL
) + ctol(cur
);
260 if (res
>= end_bit
) {
264 res
= res
<< hb
->granularity
;
266 assert(((start
- res
) >> hb
->granularity
) == 0);
273 bool hbitmap_next_dirty_area(const HBitmap
*hb
, int64_t start
, int64_t end
,
274 int64_t max_dirty_count
,
275 int64_t *dirty_start
, int64_t *dirty_count
)
279 assert(start
>= 0 && end
>= 0 && max_dirty_count
> 0);
281 end
= MIN(end
, hb
->orig_size
);
286 start
= hbitmap_next_dirty(hb
, start
, end
- start
);
291 end
= start
+ MIN(end
- start
, max_dirty_count
);
293 next_zero
= hbitmap_next_zero(hb
, start
, end
- start
);
294 if (next_zero
>= 0) {
298 *dirty_start
= start
;
299 *dirty_count
= end
- start
;
304 bool hbitmap_status(const HBitmap
*hb
, int64_t start
, int64_t count
,
307 int64_t next_dirty
, next_zero
;
311 assert(start
+ count
<= hb
->orig_size
);
313 next_dirty
= hbitmap_next_dirty(hb
, start
, count
);
314 if (next_dirty
== -1) {
319 if (next_dirty
> start
) {
320 *pnum
= next_dirty
- start
;
324 assert(next_dirty
== start
);
326 next_zero
= hbitmap_next_zero(hb
, start
, count
);
327 if (next_zero
== -1) {
332 assert(next_zero
> start
);
333 *pnum
= next_zero
- start
;
337 bool hbitmap_empty(const HBitmap
*hb
)
339 return hb
->count
== 0;
342 int hbitmap_granularity(const HBitmap
*hb
)
344 return hb
->granularity
;
347 uint64_t hbitmap_count(const HBitmap
*hb
)
349 return hb
->count
<< hb
->granularity
;
353 * hbitmap_iter_next_word:
354 * @hbi: HBitmapIter to operate on.
355 * @p_cur: Location where to store the next non-zero word.
357 * Return the index of the next nonzero word that is set in @hbi's
358 * associated HBitmap, and set *p_cur to the content of that word
359 * (bits before the index that was passed to hbitmap_iter_init are
360 * trimmed on the first call). Return -1, and set *p_cur to zero,
361 * if all remaining words are zero.
363 static size_t hbitmap_iter_next_word(HBitmapIter
*hbi
, unsigned long *p_cur
)
365 unsigned long cur
= hbi
->cur
[HBITMAP_LEVELS
- 1];
368 cur
= hbitmap_iter_skip_words(hbi
);
375 /* The next call will resume work from the next word. */
376 hbi
->cur
[HBITMAP_LEVELS
- 1] = 0;
381 /* Count the number of set bits between start and end, not accounting for
382 * the granularity. Also an example of how to use hbitmap_iter_next_word.
384 static uint64_t hb_count_between(HBitmap
*hb
, uint64_t start
, uint64_t last
)
388 uint64_t end
= last
+ 1;
392 hbitmap_iter_init(&hbi
, hb
, start
<< hb
->granularity
);
394 pos
= hbitmap_iter_next_word(&hbi
, &cur
);
395 if (pos
>= (end
>> BITS_PER_LEVEL
)) {
398 count
+= ctpopl(cur
);
401 if (pos
== (end
>> BITS_PER_LEVEL
)) {
402 /* Drop bits representing the END-th and subsequent items. */
403 int bit
= end
& (BITS_PER_LONG
- 1);
404 cur
&= (1UL << bit
) - 1;
405 count
+= ctpopl(cur
);
411 /* Setting starts at the last layer and propagates up if an element
414 static inline bool hb_set_elem(unsigned long *elem
, uint64_t start
, uint64_t last
)
419 assert((last
>> BITS_PER_LEVEL
) == (start
>> BITS_PER_LEVEL
));
420 assert(start
<= last
);
422 mask
= 2UL << (last
& (BITS_PER_LONG
- 1));
423 mask
-= 1UL << (start
& (BITS_PER_LONG
- 1));
429 /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)...
430 * Returns true if at least one bit is changed. */
431 static bool hb_set_between(HBitmap
*hb
, int level
, uint64_t start
,
434 size_t pos
= start
>> BITS_PER_LEVEL
;
435 size_t lastpos
= last
>> BITS_PER_LEVEL
;
436 bool changed
= false;
441 uint64_t next
= (start
| (BITS_PER_LONG
- 1)) + 1;
442 changed
|= hb_set_elem(&hb
->levels
[level
][i
], start
, next
- 1);
445 next
+= BITS_PER_LONG
;
446 if (++i
== lastpos
) {
449 changed
|= (hb
->levels
[level
][i
] == 0);
450 hb
->levels
[level
][i
] = ~0UL;
453 changed
|= hb_set_elem(&hb
->levels
[level
][i
], start
, last
);
455 /* If there was any change in this layer, we may have to update
458 if (level
> 0 && changed
) {
459 hb_set_between(hb
, level
- 1, pos
, lastpos
);
464 void hbitmap_set(HBitmap
*hb
, uint64_t start
, uint64_t count
)
466 /* Compute range in the last layer. */
468 uint64_t last
= start
+ count
- 1;
474 trace_hbitmap_set(hb
, start
, count
,
475 start
>> hb
->granularity
, last
>> hb
->granularity
);
477 first
= start
>> hb
->granularity
;
478 last
>>= hb
->granularity
;
479 assert(last
< hb
->size
);
480 n
= last
- first
+ 1;
482 hb
->count
+= n
- hb_count_between(hb
, first
, last
);
483 if (hb_set_between(hb
, HBITMAP_LEVELS
- 1, first
, last
) &&
485 hbitmap_set(hb
->meta
, start
, count
);
489 /* Resetting works the other way round: propagate up if the new
492 static inline bool hb_reset_elem(unsigned long *elem
, uint64_t start
, uint64_t last
)
497 assert((last
>> BITS_PER_LEVEL
) == (start
>> BITS_PER_LEVEL
));
498 assert(start
<= last
);
500 mask
= 2UL << (last
& (BITS_PER_LONG
- 1));
501 mask
-= 1UL << (start
& (BITS_PER_LONG
- 1));
502 blanked
= *elem
!= 0 && ((*elem
& ~mask
) == 0);
507 /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)...
508 * Returns true if at least one bit is changed. */
509 static bool hb_reset_between(HBitmap
*hb
, int level
, uint64_t start
,
512 size_t pos
= start
>> BITS_PER_LEVEL
;
513 size_t lastpos
= last
>> BITS_PER_LEVEL
;
514 bool changed
= false;
519 uint64_t next
= (start
| (BITS_PER_LONG
- 1)) + 1;
521 /* Here we need a more complex test than when setting bits. Even if
522 * something was changed, we must not blank bits in the upper level
523 * unless the lower-level word became entirely zero. So, remove pos
524 * from the upper-level range if bits remain set.
526 if (hb_reset_elem(&hb
->levels
[level
][i
], start
, next
- 1)) {
534 next
+= BITS_PER_LONG
;
535 if (++i
== lastpos
) {
538 changed
|= (hb
->levels
[level
][i
] != 0);
539 hb
->levels
[level
][i
] = 0UL;
543 /* Same as above, this time for lastpos. */
544 if (hb_reset_elem(&hb
->levels
[level
][i
], start
, last
)) {
550 if (level
> 0 && changed
) {
551 hb_reset_between(hb
, level
- 1, pos
, lastpos
);
558 void hbitmap_reset(HBitmap
*hb
, uint64_t start
, uint64_t count
)
560 /* Compute range in the last layer. */
562 uint64_t last
= start
+ count
- 1;
563 uint64_t gran
= 1ULL << hb
->granularity
;
569 assert(QEMU_IS_ALIGNED(start
, gran
));
570 assert(QEMU_IS_ALIGNED(count
, gran
) || (start
+ count
== hb
->orig_size
));
572 trace_hbitmap_reset(hb
, start
, count
,
573 start
>> hb
->granularity
, last
>> hb
->granularity
);
575 first
= start
>> hb
->granularity
;
576 last
>>= hb
->granularity
;
577 assert(last
< hb
->size
);
579 hb
->count
-= hb_count_between(hb
, first
, last
);
580 if (hb_reset_between(hb
, HBITMAP_LEVELS
- 1, first
, last
) &&
582 hbitmap_set(hb
->meta
, start
, count
);
586 void hbitmap_reset_all(HBitmap
*hb
)
590 /* Same as hbitmap_alloc() except for memset() instead of malloc() */
591 for (i
= HBITMAP_LEVELS
; --i
>= 1; ) {
592 memset(hb
->levels
[i
], 0, hb
->sizes
[i
] * sizeof(unsigned long));
595 hb
->levels
[0][0] = 1UL << (BITS_PER_LONG
- 1);
599 bool hbitmap_is_serializable(const HBitmap
*hb
)
601 /* Every serialized chunk must be aligned to 64 bits so that endianness
602 * requirements can be fulfilled on both 64 bit and 32 bit hosts.
603 * We have hbitmap_serialization_align() which converts this
604 * alignment requirement from bitmap bits to items covered (e.g. sectors).
606 * 64 << hb->granularity
607 * Since this value must not exceed UINT64_MAX, hb->granularity must be
608 * less than 58 (== 64 - 6, where 6 is ld(64), i.e. 1 << 6 == 64).
610 * In order for hbitmap_serialization_align() to always return a
611 * meaningful value, bitmaps that are to be serialized must have a
612 * granularity of less than 58. */
614 return hb
->granularity
< 58;
617 bool hbitmap_get(const HBitmap
*hb
, uint64_t item
)
619 /* Compute position and bit in the last layer. */
620 uint64_t pos
= item
>> hb
->granularity
;
621 unsigned long bit
= 1UL << (pos
& (BITS_PER_LONG
- 1));
622 assert(pos
< hb
->size
);
624 return (hb
->levels
[HBITMAP_LEVELS
- 1][pos
>> BITS_PER_LEVEL
] & bit
) != 0;
627 uint64_t hbitmap_serialization_align(const HBitmap
*hb
)
629 assert(hbitmap_is_serializable(hb
));
631 /* Require at least 64 bit granularity to be safe on both 64 bit and 32 bit
633 return UINT64_C(64) << hb
->granularity
;
636 /* Start should be aligned to serialization granularity, chunk size should be
637 * aligned to serialization granularity too, except for last chunk.
639 static void serialization_chunk(const HBitmap
*hb
,
640 uint64_t start
, uint64_t count
,
641 unsigned long **first_el
, uint64_t *el_count
)
643 uint64_t last
= start
+ count
- 1;
644 uint64_t gran
= hbitmap_serialization_align(hb
);
646 assert((start
& (gran
- 1)) == 0);
647 assert((last
>> hb
->granularity
) < hb
->size
);
648 if ((last
>> hb
->granularity
) != hb
->size
- 1) {
649 assert((count
& (gran
- 1)) == 0);
652 start
= (start
>> hb
->granularity
) >> BITS_PER_LEVEL
;
653 last
= (last
>> hb
->granularity
) >> BITS_PER_LEVEL
;
655 *first_el
= &hb
->levels
[HBITMAP_LEVELS
- 1][start
];
656 *el_count
= last
- start
+ 1;
659 uint64_t hbitmap_serialization_size(const HBitmap
*hb
,
660 uint64_t start
, uint64_t count
)
668 serialization_chunk(hb
, start
, count
, &cur
, &el_count
);
670 return el_count
* sizeof(unsigned long);
673 void hbitmap_serialize_part(const HBitmap
*hb
, uint8_t *buf
,
674 uint64_t start
, uint64_t count
)
677 unsigned long *cur
, *end
;
682 serialization_chunk(hb
, start
, count
, &cur
, &el_count
);
683 end
= cur
+ el_count
;
687 (BITS_PER_LONG
== 32 ? cpu_to_le32(*cur
) : cpu_to_le64(*cur
));
689 memcpy(buf
, &el
, sizeof(el
));
695 void hbitmap_deserialize_part(HBitmap
*hb
, uint8_t *buf
,
696 uint64_t start
, uint64_t count
,
700 unsigned long *cur
, *end
;
705 serialization_chunk(hb
, start
, count
, &cur
, &el_count
);
706 end
= cur
+ el_count
;
709 memcpy(cur
, buf
, sizeof(*cur
));
711 if (BITS_PER_LONG
== 32) {
712 le32_to_cpus((uint32_t *)cur
);
714 le64_to_cpus((uint64_t *)cur
);
717 buf
+= sizeof(unsigned long);
721 hbitmap_deserialize_finish(hb
);
725 void hbitmap_deserialize_zeroes(HBitmap
*hb
, uint64_t start
, uint64_t count
,
729 unsigned long *first
;
734 serialization_chunk(hb
, start
, count
, &first
, &el_count
);
736 memset(first
, 0, el_count
* sizeof(unsigned long));
738 hbitmap_deserialize_finish(hb
);
742 void hbitmap_deserialize_ones(HBitmap
*hb
, uint64_t start
, uint64_t count
,
746 unsigned long *first
;
751 serialization_chunk(hb
, start
, count
, &first
, &el_count
);
753 memset(first
, 0xff, el_count
* sizeof(unsigned long));
755 hbitmap_deserialize_finish(hb
);
759 void hbitmap_deserialize_finish(HBitmap
*bitmap
)
761 int64_t i
, size
, prev_size
;
764 /* restore levels starting from penultimate to zero level, assuming
765 * that the last level is ok */
766 size
= MAX((bitmap
->size
+ BITS_PER_LONG
- 1) >> BITS_PER_LEVEL
, 1);
767 for (lev
= HBITMAP_LEVELS
- 1; lev
-- > 0; ) {
769 size
= MAX((size
+ BITS_PER_LONG
- 1) >> BITS_PER_LEVEL
, 1);
770 memset(bitmap
->levels
[lev
], 0, size
* sizeof(unsigned long));
772 for (i
= 0; i
< prev_size
; ++i
) {
773 if (bitmap
->levels
[lev
+ 1][i
]) {
774 bitmap
->levels
[lev
][i
>> BITS_PER_LEVEL
] |=
775 1UL << (i
& (BITS_PER_LONG
- 1));
780 bitmap
->levels
[0][0] |= 1UL << (BITS_PER_LONG
- 1);
781 bitmap
->count
= hb_count_between(bitmap
, 0, bitmap
->size
- 1);
784 void hbitmap_free(HBitmap
*hb
)
788 for (i
= HBITMAP_LEVELS
; i
-- > 0; ) {
789 g_free(hb
->levels
[i
]);
794 HBitmap
*hbitmap_alloc(uint64_t size
, int granularity
)
796 HBitmap
*hb
= g_new0(struct HBitmap
, 1);
799 assert(size
<= INT64_MAX
);
800 hb
->orig_size
= size
;
802 assert(granularity
>= 0 && granularity
< 64);
803 size
= (size
+ (1ULL << granularity
) - 1) >> granularity
;
804 assert(size
<= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE
));
807 hb
->granularity
= granularity
;
808 for (i
= HBITMAP_LEVELS
; i
-- > 0; ) {
809 size
= MAX((size
+ BITS_PER_LONG
- 1) >> BITS_PER_LEVEL
, 1);
811 hb
->levels
[i
] = g_new0(unsigned long, size
);
814 /* We necessarily have free bits in level 0 due to the definition
815 * of HBITMAP_LEVELS, so use one for a sentinel. This speeds up
816 * hbitmap_iter_skip_words.
819 hb
->levels
[0][0] |= 1UL << (BITS_PER_LONG
- 1);
823 void hbitmap_truncate(HBitmap
*hb
, uint64_t size
)
827 uint64_t num_elements
= size
;
830 assert(size
<= INT64_MAX
);
831 hb
->orig_size
= size
;
833 /* Size comes in as logical elements, adjust for granularity. */
834 size
= (size
+ (1ULL << hb
->granularity
) - 1) >> hb
->granularity
;
835 assert(size
<= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE
));
836 shrink
= size
< hb
->size
;
838 /* bit sizes are identical; nothing to do. */
839 if (size
== hb
->size
) {
843 /* If we're losing bits, let's clear those bits before we invalidate all of
844 * our invariants. This helps keep the bitcount consistent, and will prevent
845 * us from carrying around garbage bits beyond the end of the map.
848 /* Don't clear partial granularity groups;
849 * start at the first full one. */
850 uint64_t start
= ROUND_UP(num_elements
, UINT64_C(1) << hb
->granularity
);
851 uint64_t fix_count
= (hb
->size
<< hb
->granularity
) - start
;
854 hbitmap_reset(hb
, start
, fix_count
);
858 for (i
= HBITMAP_LEVELS
; i
-- > 0; ) {
859 size
= MAX(BITS_TO_LONGS(size
), 1);
860 if (hb
->sizes
[i
] == size
) {
865 hb
->levels
[i
] = g_renew(unsigned long, hb
->levels
[i
], size
);
867 memset(&hb
->levels
[i
][old
], 0x00,
868 (size
- old
) * sizeof(*hb
->levels
[i
]));
872 hbitmap_truncate(hb
->meta
, hb
->size
<< hb
->granularity
);
876 bool hbitmap_can_merge(const HBitmap
*a
, const HBitmap
*b
)
878 return (a
->orig_size
== b
->orig_size
);
882 * hbitmap_sparse_merge: performs dst = dst | src
883 * works with differing granularities.
884 * best used when src is sparsely populated.
886 static void hbitmap_sparse_merge(HBitmap
*dst
, const HBitmap
*src
)
892 hbitmap_next_dirty_area(src
, offset
, src
->orig_size
, INT64_MAX
,
896 hbitmap_set(dst
, offset
, count
);
901 * Given HBitmaps A and B, let R := A (BITOR) B.
902 * Bitmaps A and B will not be modified,
903 * except when bitmap R is an alias of A or B.
905 * @return true if the merge was successful,
906 * false if it was not attempted.
908 bool hbitmap_merge(const HBitmap
*a
, const HBitmap
*b
, HBitmap
*result
)
913 if (!hbitmap_can_merge(a
, b
) || !hbitmap_can_merge(a
, result
)) {
916 assert(hbitmap_can_merge(b
, result
));
918 if ((!hbitmap_count(a
) && result
== b
) ||
919 (!hbitmap_count(b
) && result
== a
)) {
923 if (!hbitmap_count(a
) && !hbitmap_count(b
)) {
924 hbitmap_reset_all(result
);
928 if (a
->granularity
!= b
->granularity
) {
929 if ((a
!= result
) && (b
!= result
)) {
930 hbitmap_reset_all(result
);
933 hbitmap_sparse_merge(result
, a
);
936 hbitmap_sparse_merge(result
, b
);
941 /* This merge is O(size), as BITS_PER_LONG and HBITMAP_LEVELS are constant.
942 * It may be possible to improve running times for sparsely populated maps
943 * by using hbitmap_iter_next, but this is suboptimal for dense maps.
945 assert(a
->size
== b
->size
);
946 for (i
= HBITMAP_LEVELS
- 1; i
>= 0; i
--) {
947 for (j
= 0; j
< a
->sizes
[i
]; j
++) {
948 result
->levels
[i
][j
] = a
->levels
[i
][j
] | b
->levels
[i
][j
];
952 /* Recompute the dirty count */
953 result
->count
= hb_count_between(result
, 0, result
->size
- 1);
958 char *hbitmap_sha256(const HBitmap
*bitmap
, Error
**errp
)
960 size_t size
= bitmap
->sizes
[HBITMAP_LEVELS
- 1] * sizeof(unsigned long);
961 char *data
= (char *)bitmap
->levels
[HBITMAP_LEVELS
- 1];
963 qcrypto_hash_digest(QCRYPTO_HASH_ALG_SHA256
, data
, size
, &hash
, errp
);