target-arm: Correctly reset SCTLR_EL3 for 64-bit CPUs
[qemu.git] / target-arm / helper.c
blobe583e6a2d36940051d78f0e55a20ca45d1795348
1 #include "qemu/osdep.h"
2 #include "cpu.h"
3 #include "internals.h"
4 #include "exec/gdbstub.h"
5 #include "exec/helper-proto.h"
6 #include "qemu/host-utils.h"
7 #include "sysemu/arch_init.h"
8 #include "sysemu/sysemu.h"
9 #include "qemu/bitops.h"
10 #include "qemu/crc32c.h"
11 #include "exec/cpu_ldst.h"
12 #include "arm_ldst.h"
13 #include <zlib.h> /* For crc32 */
14 #include "exec/semihost.h"
15 #include "sysemu/kvm.h"
17 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
19 #ifndef CONFIG_USER_ONLY
20 static bool get_phys_addr(CPUARMState *env, target_ulong address,
21 int access_type, ARMMMUIdx mmu_idx,
22 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
23 target_ulong *page_size, uint32_t *fsr,
24 ARMMMUFaultInfo *fi);
26 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
27 int access_type, ARMMMUIdx mmu_idx,
28 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
29 target_ulong *page_size_ptr, uint32_t *fsr,
30 ARMMMUFaultInfo *fi);
32 /* Definitions for the PMCCNTR and PMCR registers */
33 #define PMCRD 0x8
34 #define PMCRC 0x4
35 #define PMCRE 0x1
36 #endif
38 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
40 int nregs;
42 /* VFP data registers are always little-endian. */
43 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
44 if (reg < nregs) {
45 stfq_le_p(buf, env->vfp.regs[reg]);
46 return 8;
48 if (arm_feature(env, ARM_FEATURE_NEON)) {
49 /* Aliases for Q regs. */
50 nregs += 16;
51 if (reg < nregs) {
52 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
53 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
54 return 16;
57 switch (reg - nregs) {
58 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
59 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
60 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
62 return 0;
65 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
67 int nregs;
69 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
70 if (reg < nregs) {
71 env->vfp.regs[reg] = ldfq_le_p(buf);
72 return 8;
74 if (arm_feature(env, ARM_FEATURE_NEON)) {
75 nregs += 16;
76 if (reg < nregs) {
77 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
78 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
79 return 16;
82 switch (reg - nregs) {
83 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
84 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
85 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
87 return 0;
90 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
92 switch (reg) {
93 case 0 ... 31:
94 /* 128 bit FP register */
95 stfq_le_p(buf, env->vfp.regs[reg * 2]);
96 stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
97 return 16;
98 case 32:
99 /* FPSR */
100 stl_p(buf, vfp_get_fpsr(env));
101 return 4;
102 case 33:
103 /* FPCR */
104 stl_p(buf, vfp_get_fpcr(env));
105 return 4;
106 default:
107 return 0;
111 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
113 switch (reg) {
114 case 0 ... 31:
115 /* 128 bit FP register */
116 env->vfp.regs[reg * 2] = ldfq_le_p(buf);
117 env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
118 return 16;
119 case 32:
120 /* FPSR */
121 vfp_set_fpsr(env, ldl_p(buf));
122 return 4;
123 case 33:
124 /* FPCR */
125 vfp_set_fpcr(env, ldl_p(buf));
126 return 4;
127 default:
128 return 0;
132 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
134 assert(ri->fieldoffset);
135 if (cpreg_field_is_64bit(ri)) {
136 return CPREG_FIELD64(env, ri);
137 } else {
138 return CPREG_FIELD32(env, ri);
142 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
143 uint64_t value)
145 assert(ri->fieldoffset);
146 if (cpreg_field_is_64bit(ri)) {
147 CPREG_FIELD64(env, ri) = value;
148 } else {
149 CPREG_FIELD32(env, ri) = value;
153 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
155 return (char *)env + ri->fieldoffset;
158 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
160 /* Raw read of a coprocessor register (as needed for migration, etc). */
161 if (ri->type & ARM_CP_CONST) {
162 return ri->resetvalue;
163 } else if (ri->raw_readfn) {
164 return ri->raw_readfn(env, ri);
165 } else if (ri->readfn) {
166 return ri->readfn(env, ri);
167 } else {
168 return raw_read(env, ri);
172 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
173 uint64_t v)
175 /* Raw write of a coprocessor register (as needed for migration, etc).
176 * Note that constant registers are treated as write-ignored; the
177 * caller should check for success by whether a readback gives the
178 * value written.
180 if (ri->type & ARM_CP_CONST) {
181 return;
182 } else if (ri->raw_writefn) {
183 ri->raw_writefn(env, ri, v);
184 } else if (ri->writefn) {
185 ri->writefn(env, ri, v);
186 } else {
187 raw_write(env, ri, v);
191 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
193 /* Return true if the regdef would cause an assertion if you called
194 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
195 * program bug for it not to have the NO_RAW flag).
196 * NB that returning false here doesn't necessarily mean that calling
197 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
198 * read/write access functions which are safe for raw use" from "has
199 * read/write access functions which have side effects but has forgotten
200 * to provide raw access functions".
201 * The tests here line up with the conditions in read/write_raw_cp_reg()
202 * and assertions in raw_read()/raw_write().
204 if ((ri->type & ARM_CP_CONST) ||
205 ri->fieldoffset ||
206 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
207 return false;
209 return true;
212 bool write_cpustate_to_list(ARMCPU *cpu)
214 /* Write the coprocessor state from cpu->env to the (index,value) list. */
215 int i;
216 bool ok = true;
218 for (i = 0; i < cpu->cpreg_array_len; i++) {
219 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
220 const ARMCPRegInfo *ri;
222 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
223 if (!ri) {
224 ok = false;
225 continue;
227 if (ri->type & ARM_CP_NO_RAW) {
228 continue;
230 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
232 return ok;
235 bool write_list_to_cpustate(ARMCPU *cpu)
237 int i;
238 bool ok = true;
240 for (i = 0; i < cpu->cpreg_array_len; i++) {
241 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
242 uint64_t v = cpu->cpreg_values[i];
243 const ARMCPRegInfo *ri;
245 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
246 if (!ri) {
247 ok = false;
248 continue;
250 if (ri->type & ARM_CP_NO_RAW) {
251 continue;
253 /* Write value and confirm it reads back as written
254 * (to catch read-only registers and partially read-only
255 * registers where the incoming migration value doesn't match)
257 write_raw_cp_reg(&cpu->env, ri, v);
258 if (read_raw_cp_reg(&cpu->env, ri) != v) {
259 ok = false;
262 return ok;
265 static void add_cpreg_to_list(gpointer key, gpointer opaque)
267 ARMCPU *cpu = opaque;
268 uint64_t regidx;
269 const ARMCPRegInfo *ri;
271 regidx = *(uint32_t *)key;
272 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
274 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
275 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
276 /* The value array need not be initialized at this point */
277 cpu->cpreg_array_len++;
281 static void count_cpreg(gpointer key, gpointer opaque)
283 ARMCPU *cpu = opaque;
284 uint64_t regidx;
285 const ARMCPRegInfo *ri;
287 regidx = *(uint32_t *)key;
288 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
290 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
291 cpu->cpreg_array_len++;
295 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
297 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
298 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
300 if (aidx > bidx) {
301 return 1;
303 if (aidx < bidx) {
304 return -1;
306 return 0;
309 void init_cpreg_list(ARMCPU *cpu)
311 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
312 * Note that we require cpreg_tuples[] to be sorted by key ID.
314 GList *keys;
315 int arraylen;
317 keys = g_hash_table_get_keys(cpu->cp_regs);
318 keys = g_list_sort(keys, cpreg_key_compare);
320 cpu->cpreg_array_len = 0;
322 g_list_foreach(keys, count_cpreg, cpu);
324 arraylen = cpu->cpreg_array_len;
325 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
326 cpu->cpreg_values = g_new(uint64_t, arraylen);
327 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
328 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
329 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
330 cpu->cpreg_array_len = 0;
332 g_list_foreach(keys, add_cpreg_to_list, cpu);
334 assert(cpu->cpreg_array_len == arraylen);
336 g_list_free(keys);
340 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
341 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
343 * access_el3_aa32ns: Used to check AArch32 register views.
344 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
346 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
347 const ARMCPRegInfo *ri,
348 bool isread)
350 bool secure = arm_is_secure_below_el3(env);
352 assert(!arm_el_is_aa64(env, 3));
353 if (secure) {
354 return CP_ACCESS_TRAP_UNCATEGORIZED;
356 return CP_ACCESS_OK;
359 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
360 const ARMCPRegInfo *ri,
361 bool isread)
363 if (!arm_el_is_aa64(env, 3)) {
364 return access_el3_aa32ns(env, ri, isread);
366 return CP_ACCESS_OK;
369 /* Some secure-only AArch32 registers trap to EL3 if used from
370 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
371 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
372 * We assume that the .access field is set to PL1_RW.
374 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
375 const ARMCPRegInfo *ri,
376 bool isread)
378 if (arm_current_el(env) == 3) {
379 return CP_ACCESS_OK;
381 if (arm_is_secure_below_el3(env)) {
382 return CP_ACCESS_TRAP_EL3;
384 /* This will be EL1 NS and EL2 NS, which just UNDEF */
385 return CP_ACCESS_TRAP_UNCATEGORIZED;
388 /* Check for traps to "powerdown debug" registers, which are controlled
389 * by MDCR.TDOSA
391 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
392 bool isread)
394 int el = arm_current_el(env);
396 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA)
397 && !arm_is_secure_below_el3(env)) {
398 return CP_ACCESS_TRAP_EL2;
400 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
401 return CP_ACCESS_TRAP_EL3;
403 return CP_ACCESS_OK;
406 /* Check for traps to "debug ROM" registers, which are controlled
407 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
409 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
410 bool isread)
412 int el = arm_current_el(env);
414 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA)
415 && !arm_is_secure_below_el3(env)) {
416 return CP_ACCESS_TRAP_EL2;
418 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
419 return CP_ACCESS_TRAP_EL3;
421 return CP_ACCESS_OK;
424 /* Check for traps to general debug registers, which are controlled
425 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
427 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
428 bool isread)
430 int el = arm_current_el(env);
432 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA)
433 && !arm_is_secure_below_el3(env)) {
434 return CP_ACCESS_TRAP_EL2;
436 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
437 return CP_ACCESS_TRAP_EL3;
439 return CP_ACCESS_OK;
442 /* Check for traps to performance monitor registers, which are controlled
443 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
445 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
446 bool isread)
448 int el = arm_current_el(env);
450 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
451 && !arm_is_secure_below_el3(env)) {
452 return CP_ACCESS_TRAP_EL2;
454 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
455 return CP_ACCESS_TRAP_EL3;
457 return CP_ACCESS_OK;
460 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
462 ARMCPU *cpu = arm_env_get_cpu(env);
464 raw_write(env, ri, value);
465 tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */
468 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
470 ARMCPU *cpu = arm_env_get_cpu(env);
472 if (raw_read(env, ri) != value) {
473 /* Unlike real hardware the qemu TLB uses virtual addresses,
474 * not modified virtual addresses, so this causes a TLB flush.
476 tlb_flush(CPU(cpu), 1);
477 raw_write(env, ri, value);
481 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
482 uint64_t value)
484 ARMCPU *cpu = arm_env_get_cpu(env);
486 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU)
487 && !extended_addresses_enabled(env)) {
488 /* For VMSA (when not using the LPAE long descriptor page table
489 * format) this register includes the ASID, so do a TLB flush.
490 * For PMSA it is purely a process ID and no action is needed.
492 tlb_flush(CPU(cpu), 1);
494 raw_write(env, ri, value);
497 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
498 uint64_t value)
500 /* Invalidate all (TLBIALL) */
501 ARMCPU *cpu = arm_env_get_cpu(env);
503 tlb_flush(CPU(cpu), 1);
506 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
507 uint64_t value)
509 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
510 ARMCPU *cpu = arm_env_get_cpu(env);
512 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
515 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
516 uint64_t value)
518 /* Invalidate by ASID (TLBIASID) */
519 ARMCPU *cpu = arm_env_get_cpu(env);
521 tlb_flush(CPU(cpu), value == 0);
524 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
525 uint64_t value)
527 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
528 ARMCPU *cpu = arm_env_get_cpu(env);
530 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
533 /* IS variants of TLB operations must affect all cores */
534 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
535 uint64_t value)
537 CPUState *other_cs;
539 CPU_FOREACH(other_cs) {
540 tlb_flush(other_cs, 1);
544 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
545 uint64_t value)
547 CPUState *other_cs;
549 CPU_FOREACH(other_cs) {
550 tlb_flush(other_cs, value == 0);
554 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
555 uint64_t value)
557 CPUState *other_cs;
559 CPU_FOREACH(other_cs) {
560 tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
564 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
565 uint64_t value)
567 CPUState *other_cs;
569 CPU_FOREACH(other_cs) {
570 tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
574 static const ARMCPRegInfo cp_reginfo[] = {
575 /* Define the secure and non-secure FCSE identifier CP registers
576 * separately because there is no secure bank in V8 (no _EL3). This allows
577 * the secure register to be properly reset and migrated. There is also no
578 * v8 EL1 version of the register so the non-secure instance stands alone.
580 { .name = "FCSEIDR(NS)",
581 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
582 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
583 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
584 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
585 { .name = "FCSEIDR(S)",
586 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
587 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
588 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
589 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
590 /* Define the secure and non-secure context identifier CP registers
591 * separately because there is no secure bank in V8 (no _EL3). This allows
592 * the secure register to be properly reset and migrated. In the
593 * non-secure case, the 32-bit register will have reset and migration
594 * disabled during registration as it is handled by the 64-bit instance.
596 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
597 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
598 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
599 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
600 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
601 { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
602 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
603 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
604 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
605 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
606 REGINFO_SENTINEL
609 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
610 /* NB: Some of these registers exist in v8 but with more precise
611 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
613 /* MMU Domain access control / MPU write buffer control */
614 { .name = "DACR",
615 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
616 .access = PL1_RW, .resetvalue = 0,
617 .writefn = dacr_write, .raw_writefn = raw_write,
618 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
619 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
620 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
621 * For v6 and v5, these mappings are overly broad.
623 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
624 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
625 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
626 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
627 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
628 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
629 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
630 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
631 /* Cache maintenance ops; some of this space may be overridden later. */
632 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
633 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
634 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
635 REGINFO_SENTINEL
638 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
639 /* Not all pre-v6 cores implemented this WFI, so this is slightly
640 * over-broad.
642 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
643 .access = PL1_W, .type = ARM_CP_WFI },
644 REGINFO_SENTINEL
647 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
648 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
649 * is UNPREDICTABLE; we choose to NOP as most implementations do).
651 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
652 .access = PL1_W, .type = ARM_CP_WFI },
653 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
654 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
655 * OMAPCP will override this space.
657 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
658 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
659 .resetvalue = 0 },
660 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
661 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
662 .resetvalue = 0 },
663 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
664 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
665 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
666 .resetvalue = 0 },
667 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
668 * implementing it as RAZ means the "debug architecture version" bits
669 * will read as a reserved value, which should cause Linux to not try
670 * to use the debug hardware.
672 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
673 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
674 /* MMU TLB control. Note that the wildcarding means we cover not just
675 * the unified TLB ops but also the dside/iside/inner-shareable variants.
677 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
678 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
679 .type = ARM_CP_NO_RAW },
680 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
681 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
682 .type = ARM_CP_NO_RAW },
683 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
684 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
685 .type = ARM_CP_NO_RAW },
686 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
687 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
688 .type = ARM_CP_NO_RAW },
689 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
690 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
691 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
692 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
693 REGINFO_SENTINEL
696 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
697 uint64_t value)
699 uint32_t mask = 0;
701 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
702 if (!arm_feature(env, ARM_FEATURE_V8)) {
703 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
704 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
705 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
707 if (arm_feature(env, ARM_FEATURE_VFP)) {
708 /* VFP coprocessor: cp10 & cp11 [23:20] */
709 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
711 if (!arm_feature(env, ARM_FEATURE_NEON)) {
712 /* ASEDIS [31] bit is RAO/WI */
713 value |= (1 << 31);
716 /* VFPv3 and upwards with NEON implement 32 double precision
717 * registers (D0-D31).
719 if (!arm_feature(env, ARM_FEATURE_NEON) ||
720 !arm_feature(env, ARM_FEATURE_VFP3)) {
721 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
722 value |= (1 << 30);
725 value &= mask;
727 env->cp15.cpacr_el1 = value;
730 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
731 bool isread)
733 if (arm_feature(env, ARM_FEATURE_V8)) {
734 /* Check if CPACR accesses are to be trapped to EL2 */
735 if (arm_current_el(env) == 1 &&
736 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
737 return CP_ACCESS_TRAP_EL2;
738 /* Check if CPACR accesses are to be trapped to EL3 */
739 } else if (arm_current_el(env) < 3 &&
740 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
741 return CP_ACCESS_TRAP_EL3;
745 return CP_ACCESS_OK;
748 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
749 bool isread)
751 /* Check if CPTR accesses are set to trap to EL3 */
752 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
753 return CP_ACCESS_TRAP_EL3;
756 return CP_ACCESS_OK;
759 static const ARMCPRegInfo v6_cp_reginfo[] = {
760 /* prefetch by MVA in v6, NOP in v7 */
761 { .name = "MVA_prefetch",
762 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
763 .access = PL1_W, .type = ARM_CP_NOP },
764 /* We need to break the TB after ISB to execute self-modifying code
765 * correctly and also to take any pending interrupts immediately.
766 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
768 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
769 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
770 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
771 .access = PL0_W, .type = ARM_CP_NOP },
772 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
773 .access = PL0_W, .type = ARM_CP_NOP },
774 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
775 .access = PL1_RW,
776 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
777 offsetof(CPUARMState, cp15.ifar_ns) },
778 .resetvalue = 0, },
779 /* Watchpoint Fault Address Register : should actually only be present
780 * for 1136, 1176, 11MPCore.
782 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
783 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
784 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
785 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
786 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
787 .resetvalue = 0, .writefn = cpacr_write },
788 REGINFO_SENTINEL
791 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
792 bool isread)
794 /* Performance monitor registers user accessibility is controlled
795 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
796 * trapping to EL2 or EL3 for other accesses.
798 int el = arm_current_el(env);
800 if (el == 0 && !env->cp15.c9_pmuserenr) {
801 return CP_ACCESS_TRAP;
803 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
804 && !arm_is_secure_below_el3(env)) {
805 return CP_ACCESS_TRAP_EL2;
807 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
808 return CP_ACCESS_TRAP_EL3;
811 return CP_ACCESS_OK;
814 #ifndef CONFIG_USER_ONLY
816 static inline bool arm_ccnt_enabled(CPUARMState *env)
818 /* This does not support checking PMCCFILTR_EL0 register */
820 if (!(env->cp15.c9_pmcr & PMCRE)) {
821 return false;
824 return true;
827 void pmccntr_sync(CPUARMState *env)
829 uint64_t temp_ticks;
831 temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
832 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
834 if (env->cp15.c9_pmcr & PMCRD) {
835 /* Increment once every 64 processor clock cycles */
836 temp_ticks /= 64;
839 if (arm_ccnt_enabled(env)) {
840 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
844 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
845 uint64_t value)
847 pmccntr_sync(env);
849 if (value & PMCRC) {
850 /* The counter has been reset */
851 env->cp15.c15_ccnt = 0;
854 /* only the DP, X, D and E bits are writable */
855 env->cp15.c9_pmcr &= ~0x39;
856 env->cp15.c9_pmcr |= (value & 0x39);
858 pmccntr_sync(env);
861 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
863 uint64_t total_ticks;
865 if (!arm_ccnt_enabled(env)) {
866 /* Counter is disabled, do not change value */
867 return env->cp15.c15_ccnt;
870 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
871 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
873 if (env->cp15.c9_pmcr & PMCRD) {
874 /* Increment once every 64 processor clock cycles */
875 total_ticks /= 64;
877 return total_ticks - env->cp15.c15_ccnt;
880 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
881 uint64_t value)
883 uint64_t total_ticks;
885 if (!arm_ccnt_enabled(env)) {
886 /* Counter is disabled, set the absolute value */
887 env->cp15.c15_ccnt = value;
888 return;
891 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
892 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
894 if (env->cp15.c9_pmcr & PMCRD) {
895 /* Increment once every 64 processor clock cycles */
896 total_ticks /= 64;
898 env->cp15.c15_ccnt = total_ticks - value;
901 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
902 uint64_t value)
904 uint64_t cur_val = pmccntr_read(env, NULL);
906 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
909 #else /* CONFIG_USER_ONLY */
911 void pmccntr_sync(CPUARMState *env)
915 #endif
917 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
918 uint64_t value)
920 pmccntr_sync(env);
921 env->cp15.pmccfiltr_el0 = value & 0x7E000000;
922 pmccntr_sync(env);
925 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
926 uint64_t value)
928 value &= (1 << 31);
929 env->cp15.c9_pmcnten |= value;
932 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
933 uint64_t value)
935 value &= (1 << 31);
936 env->cp15.c9_pmcnten &= ~value;
939 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
940 uint64_t value)
942 env->cp15.c9_pmovsr &= ~value;
945 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
946 uint64_t value)
948 env->cp15.c9_pmxevtyper = value & 0xff;
951 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
952 uint64_t value)
954 env->cp15.c9_pmuserenr = value & 1;
957 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
958 uint64_t value)
960 /* We have no event counters so only the C bit can be changed */
961 value &= (1 << 31);
962 env->cp15.c9_pminten |= value;
965 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
966 uint64_t value)
968 value &= (1 << 31);
969 env->cp15.c9_pminten &= ~value;
972 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
973 uint64_t value)
975 /* Note that even though the AArch64 view of this register has bits
976 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
977 * architectural requirements for bits which are RES0 only in some
978 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
979 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
981 raw_write(env, ri, value & ~0x1FULL);
984 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
986 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
987 * For bits that vary between AArch32/64, code needs to check the
988 * current execution mode before directly using the feature bit.
990 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
992 if (!arm_feature(env, ARM_FEATURE_EL2)) {
993 valid_mask &= ~SCR_HCE;
995 /* On ARMv7, SMD (or SCD as it is called in v7) is only
996 * supported if EL2 exists. The bit is UNK/SBZP when
997 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
998 * when EL2 is unavailable.
999 * On ARMv8, this bit is always available.
1001 if (arm_feature(env, ARM_FEATURE_V7) &&
1002 !arm_feature(env, ARM_FEATURE_V8)) {
1003 valid_mask &= ~SCR_SMD;
1007 /* Clear all-context RES0 bits. */
1008 value &= valid_mask;
1009 raw_write(env, ri, value);
1012 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1014 ARMCPU *cpu = arm_env_get_cpu(env);
1016 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1017 * bank
1019 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1020 ri->secure & ARM_CP_SECSTATE_S);
1022 return cpu->ccsidr[index];
1025 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1026 uint64_t value)
1028 raw_write(env, ri, value & 0xf);
1031 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1033 CPUState *cs = ENV_GET_CPU(env);
1034 uint64_t ret = 0;
1036 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1037 ret |= CPSR_I;
1039 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1040 ret |= CPSR_F;
1042 /* External aborts are not possible in QEMU so A bit is always clear */
1043 return ret;
1046 static const ARMCPRegInfo v7_cp_reginfo[] = {
1047 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1048 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1049 .access = PL1_W, .type = ARM_CP_NOP },
1050 /* Performance monitors are implementation defined in v7,
1051 * but with an ARM recommended set of registers, which we
1052 * follow (although we don't actually implement any counters)
1054 * Performance registers fall into three categories:
1055 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1056 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1057 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1058 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1059 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1061 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1062 .access = PL0_RW, .type = ARM_CP_ALIAS,
1063 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1064 .writefn = pmcntenset_write,
1065 .accessfn = pmreg_access,
1066 .raw_writefn = raw_write },
1067 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1068 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1069 .access = PL0_RW, .accessfn = pmreg_access,
1070 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1071 .writefn = pmcntenset_write, .raw_writefn = raw_write },
1072 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1073 .access = PL0_RW,
1074 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1075 .accessfn = pmreg_access,
1076 .writefn = pmcntenclr_write,
1077 .type = ARM_CP_ALIAS },
1078 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1079 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1080 .access = PL0_RW, .accessfn = pmreg_access,
1081 .type = ARM_CP_ALIAS,
1082 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1083 .writefn = pmcntenclr_write },
1084 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1085 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1086 .accessfn = pmreg_access,
1087 .writefn = pmovsr_write,
1088 .raw_writefn = raw_write },
1089 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1090 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1091 .access = PL0_RW, .accessfn = pmreg_access,
1092 .type = ARM_CP_ALIAS,
1093 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1094 .writefn = pmovsr_write,
1095 .raw_writefn = raw_write },
1096 /* Unimplemented so WI. */
1097 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1098 .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP },
1099 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
1100 * We choose to RAZ/WI.
1102 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1103 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1104 .accessfn = pmreg_access },
1105 #ifndef CONFIG_USER_ONLY
1106 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1107 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
1108 .readfn = pmccntr_read, .writefn = pmccntr_write32,
1109 .accessfn = pmreg_access },
1110 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1111 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1112 .access = PL0_RW, .accessfn = pmreg_access,
1113 .type = ARM_CP_IO,
1114 .readfn = pmccntr_read, .writefn = pmccntr_write, },
1115 #endif
1116 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1117 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
1118 .writefn = pmccfiltr_write,
1119 .access = PL0_RW, .accessfn = pmreg_access,
1120 .type = ARM_CP_IO,
1121 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1122 .resetvalue = 0, },
1123 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1124 .access = PL0_RW,
1125 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
1126 .accessfn = pmreg_access, .writefn = pmxevtyper_write,
1127 .raw_writefn = raw_write },
1128 /* Unimplemented, RAZ/WI. */
1129 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1130 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1131 .accessfn = pmreg_access },
1132 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1133 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
1134 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1135 .resetvalue = 0,
1136 .writefn = pmuserenr_write, .raw_writefn = raw_write },
1137 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
1138 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
1139 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1140 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1141 .resetvalue = 0,
1142 .writefn = pmuserenr_write, .raw_writefn = raw_write },
1143 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1144 .access = PL1_RW, .accessfn = access_tpm,
1145 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1146 .resetvalue = 0,
1147 .writefn = pmintenset_write, .raw_writefn = raw_write },
1148 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
1149 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1150 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1151 .writefn = pmintenclr_write, },
1152 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
1153 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
1154 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1155 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1156 .writefn = pmintenclr_write },
1157 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
1158 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
1159 .access = PL1_RW, .writefn = vbar_write,
1160 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
1161 offsetof(CPUARMState, cp15.vbar_ns) },
1162 .resetvalue = 0 },
1163 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
1164 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
1165 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
1166 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
1167 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
1168 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1169 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1170 offsetof(CPUARMState, cp15.csselr_ns) } },
1171 /* Auxiliary ID register: this actually has an IMPDEF value but for now
1172 * just RAZ for all cores:
1174 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1175 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
1176 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1177 /* Auxiliary fault status registers: these also are IMPDEF, and we
1178 * choose to RAZ/WI for all cores.
1180 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1181 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1182 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1183 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1184 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1185 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1186 /* MAIR can just read-as-written because we don't implement caches
1187 * and so don't need to care about memory attributes.
1189 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1190 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
1191 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
1192 .resetvalue = 0 },
1193 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
1194 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
1195 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
1196 .resetvalue = 0 },
1197 /* For non-long-descriptor page tables these are PRRR and NMRR;
1198 * regardless they still act as reads-as-written for QEMU.
1200 /* MAIR0/1 are defined separately from their 64-bit counterpart which
1201 * allows them to assign the correct fieldoffset based on the endianness
1202 * handled in the field definitions.
1204 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
1205 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
1206 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1207 offsetof(CPUARMState, cp15.mair0_ns) },
1208 .resetfn = arm_cp_reset_ignore },
1209 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
1210 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
1211 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1212 offsetof(CPUARMState, cp15.mair1_ns) },
1213 .resetfn = arm_cp_reset_ignore },
1214 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1215 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1216 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1217 /* 32 bit ITLB invalidates */
1218 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1219 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1220 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1221 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1222 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1223 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1224 /* 32 bit DTLB invalidates */
1225 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1226 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1227 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1228 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1229 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1230 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1231 /* 32 bit TLB invalidates */
1232 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1233 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1234 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1235 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1236 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1237 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1238 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1239 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1240 REGINFO_SENTINEL
1243 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1244 /* 32 bit TLB invalidates, Inner Shareable */
1245 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1246 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1247 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1248 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1249 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1250 .type = ARM_CP_NO_RAW, .access = PL1_W,
1251 .writefn = tlbiasid_is_write },
1252 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1253 .type = ARM_CP_NO_RAW, .access = PL1_W,
1254 .writefn = tlbimvaa_is_write },
1255 REGINFO_SENTINEL
1258 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1259 uint64_t value)
1261 value &= 1;
1262 env->teecr = value;
1265 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1266 bool isread)
1268 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1269 return CP_ACCESS_TRAP;
1271 return CP_ACCESS_OK;
1274 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1275 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1276 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1277 .resetvalue = 0,
1278 .writefn = teecr_write },
1279 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1280 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1281 .accessfn = teehbr_access, .resetvalue = 0 },
1282 REGINFO_SENTINEL
1285 static const ARMCPRegInfo v6k_cp_reginfo[] = {
1286 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1287 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1288 .access = PL0_RW,
1289 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1290 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1291 .access = PL0_RW,
1292 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1293 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1294 .resetfn = arm_cp_reset_ignore },
1295 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1296 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1297 .access = PL0_R|PL1_W,
1298 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1299 .resetvalue = 0},
1300 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1301 .access = PL0_R|PL1_W,
1302 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1303 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1304 .resetfn = arm_cp_reset_ignore },
1305 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1306 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1307 .access = PL1_RW,
1308 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1309 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1310 .access = PL1_RW,
1311 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1312 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1313 .resetvalue = 0 },
1314 REGINFO_SENTINEL
1317 #ifndef CONFIG_USER_ONLY
1319 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
1320 bool isread)
1322 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
1323 * Writable only at the highest implemented exception level.
1325 int el = arm_current_el(env);
1327 switch (el) {
1328 case 0:
1329 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
1330 return CP_ACCESS_TRAP;
1332 break;
1333 case 1:
1334 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
1335 arm_is_secure_below_el3(env)) {
1336 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
1337 return CP_ACCESS_TRAP_UNCATEGORIZED;
1339 break;
1340 case 2:
1341 case 3:
1342 break;
1345 if (!isread && el < arm_highest_el(env)) {
1346 return CP_ACCESS_TRAP_UNCATEGORIZED;
1349 return CP_ACCESS_OK;
1352 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
1353 bool isread)
1355 unsigned int cur_el = arm_current_el(env);
1356 bool secure = arm_is_secure(env);
1358 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1359 if (cur_el == 0 &&
1360 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1361 return CP_ACCESS_TRAP;
1364 if (arm_feature(env, ARM_FEATURE_EL2) &&
1365 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1366 !extract32(env->cp15.cnthctl_el2, 0, 1)) {
1367 return CP_ACCESS_TRAP_EL2;
1369 return CP_ACCESS_OK;
1372 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
1373 bool isread)
1375 unsigned int cur_el = arm_current_el(env);
1376 bool secure = arm_is_secure(env);
1378 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1379 * EL0[PV]TEN is zero.
1381 if (cur_el == 0 &&
1382 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1383 return CP_ACCESS_TRAP;
1386 if (arm_feature(env, ARM_FEATURE_EL2) &&
1387 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1388 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
1389 return CP_ACCESS_TRAP_EL2;
1391 return CP_ACCESS_OK;
1394 static CPAccessResult gt_pct_access(CPUARMState *env,
1395 const ARMCPRegInfo *ri,
1396 bool isread)
1398 return gt_counter_access(env, GTIMER_PHYS, isread);
1401 static CPAccessResult gt_vct_access(CPUARMState *env,
1402 const ARMCPRegInfo *ri,
1403 bool isread)
1405 return gt_counter_access(env, GTIMER_VIRT, isread);
1408 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1409 bool isread)
1411 return gt_timer_access(env, GTIMER_PHYS, isread);
1414 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1415 bool isread)
1417 return gt_timer_access(env, GTIMER_VIRT, isread);
1420 static CPAccessResult gt_stimer_access(CPUARMState *env,
1421 const ARMCPRegInfo *ri,
1422 bool isread)
1424 /* The AArch64 register view of the secure physical timer is
1425 * always accessible from EL3, and configurably accessible from
1426 * Secure EL1.
1428 switch (arm_current_el(env)) {
1429 case 1:
1430 if (!arm_is_secure(env)) {
1431 return CP_ACCESS_TRAP;
1433 if (!(env->cp15.scr_el3 & SCR_ST)) {
1434 return CP_ACCESS_TRAP_EL3;
1436 return CP_ACCESS_OK;
1437 case 0:
1438 case 2:
1439 return CP_ACCESS_TRAP;
1440 case 3:
1441 return CP_ACCESS_OK;
1442 default:
1443 g_assert_not_reached();
1447 static uint64_t gt_get_countervalue(CPUARMState *env)
1449 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1452 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1454 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1456 if (gt->ctl & 1) {
1457 /* Timer enabled: calculate and set current ISTATUS, irq, and
1458 * reset timer to when ISTATUS next has to change
1460 uint64_t offset = timeridx == GTIMER_VIRT ?
1461 cpu->env.cp15.cntvoff_el2 : 0;
1462 uint64_t count = gt_get_countervalue(&cpu->env);
1463 /* Note that this must be unsigned 64 bit arithmetic: */
1464 int istatus = count - offset >= gt->cval;
1465 uint64_t nexttick;
1467 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1468 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
1469 (istatus && !(gt->ctl & 2)));
1470 if (istatus) {
1471 /* Next transition is when count rolls back over to zero */
1472 nexttick = UINT64_MAX;
1473 } else {
1474 /* Next transition is when we hit cval */
1475 nexttick = gt->cval + offset;
1477 /* Note that the desired next expiry time might be beyond the
1478 * signed-64-bit range of a QEMUTimer -- in this case we just
1479 * set the timer for as far in the future as possible. When the
1480 * timer expires we will reset the timer for any remaining period.
1482 if (nexttick > INT64_MAX / GTIMER_SCALE) {
1483 nexttick = INT64_MAX / GTIMER_SCALE;
1485 timer_mod(cpu->gt_timer[timeridx], nexttick);
1486 } else {
1487 /* Timer disabled: ISTATUS and timer output always clear */
1488 gt->ctl &= ~4;
1489 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1490 timer_del(cpu->gt_timer[timeridx]);
1494 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
1495 int timeridx)
1497 ARMCPU *cpu = arm_env_get_cpu(env);
1499 timer_del(cpu->gt_timer[timeridx]);
1502 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1504 return gt_get_countervalue(env);
1507 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1509 return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
1512 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1513 int timeridx,
1514 uint64_t value)
1516 env->cp15.c14_timer[timeridx].cval = value;
1517 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1520 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
1521 int timeridx)
1523 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1525 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
1526 (gt_get_countervalue(env) - offset));
1529 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1530 int timeridx,
1531 uint64_t value)
1533 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1535 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
1536 sextract64(value, 0, 32);
1537 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1540 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1541 int timeridx,
1542 uint64_t value)
1544 ARMCPU *cpu = arm_env_get_cpu(env);
1545 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1547 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1548 if ((oldval ^ value) & 1) {
1549 /* Enable toggled */
1550 gt_recalc_timer(cpu, timeridx);
1551 } else if ((oldval ^ value) & 2) {
1552 /* IMASK toggled: don't need to recalculate,
1553 * just set the interrupt line based on ISTATUS
1555 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
1556 (oldval & 4) && !(value & 2));
1560 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1562 gt_timer_reset(env, ri, GTIMER_PHYS);
1565 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1566 uint64_t value)
1568 gt_cval_write(env, ri, GTIMER_PHYS, value);
1571 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1573 return gt_tval_read(env, ri, GTIMER_PHYS);
1576 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1577 uint64_t value)
1579 gt_tval_write(env, ri, GTIMER_PHYS, value);
1582 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1583 uint64_t value)
1585 gt_ctl_write(env, ri, GTIMER_PHYS, value);
1588 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1590 gt_timer_reset(env, ri, GTIMER_VIRT);
1593 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1594 uint64_t value)
1596 gt_cval_write(env, ri, GTIMER_VIRT, value);
1599 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1601 return gt_tval_read(env, ri, GTIMER_VIRT);
1604 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1605 uint64_t value)
1607 gt_tval_write(env, ri, GTIMER_VIRT, value);
1610 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1611 uint64_t value)
1613 gt_ctl_write(env, ri, GTIMER_VIRT, value);
1616 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
1617 uint64_t value)
1619 ARMCPU *cpu = arm_env_get_cpu(env);
1621 raw_write(env, ri, value);
1622 gt_recalc_timer(cpu, GTIMER_VIRT);
1625 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1627 gt_timer_reset(env, ri, GTIMER_HYP);
1630 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1631 uint64_t value)
1633 gt_cval_write(env, ri, GTIMER_HYP, value);
1636 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1638 return gt_tval_read(env, ri, GTIMER_HYP);
1641 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1642 uint64_t value)
1644 gt_tval_write(env, ri, GTIMER_HYP, value);
1647 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1648 uint64_t value)
1650 gt_ctl_write(env, ri, GTIMER_HYP, value);
1653 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1655 gt_timer_reset(env, ri, GTIMER_SEC);
1658 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1659 uint64_t value)
1661 gt_cval_write(env, ri, GTIMER_SEC, value);
1664 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1666 return gt_tval_read(env, ri, GTIMER_SEC);
1669 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1670 uint64_t value)
1672 gt_tval_write(env, ri, GTIMER_SEC, value);
1675 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1676 uint64_t value)
1678 gt_ctl_write(env, ri, GTIMER_SEC, value);
1681 void arm_gt_ptimer_cb(void *opaque)
1683 ARMCPU *cpu = opaque;
1685 gt_recalc_timer(cpu, GTIMER_PHYS);
1688 void arm_gt_vtimer_cb(void *opaque)
1690 ARMCPU *cpu = opaque;
1692 gt_recalc_timer(cpu, GTIMER_VIRT);
1695 void arm_gt_htimer_cb(void *opaque)
1697 ARMCPU *cpu = opaque;
1699 gt_recalc_timer(cpu, GTIMER_HYP);
1702 void arm_gt_stimer_cb(void *opaque)
1704 ARMCPU *cpu = opaque;
1706 gt_recalc_timer(cpu, GTIMER_SEC);
1709 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1710 /* Note that CNTFRQ is purely reads-as-written for the benefit
1711 * of software; writing it doesn't actually change the timer frequency.
1712 * Our reset value matches the fixed frequency we implement the timer at.
1714 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1715 .type = ARM_CP_ALIAS,
1716 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1717 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
1719 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1720 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1721 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1722 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1723 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
1725 /* overall control: mostly access permissions */
1726 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
1727 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1728 .access = PL1_RW,
1729 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1730 .resetvalue = 0,
1732 /* per-timer control */
1733 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1734 .secure = ARM_CP_SECSTATE_NS,
1735 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1736 .accessfn = gt_ptimer_access,
1737 .fieldoffset = offsetoflow32(CPUARMState,
1738 cp15.c14_timer[GTIMER_PHYS].ctl),
1739 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1741 { .name = "CNTP_CTL(S)",
1742 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1743 .secure = ARM_CP_SECSTATE_S,
1744 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1745 .accessfn = gt_ptimer_access,
1746 .fieldoffset = offsetoflow32(CPUARMState,
1747 cp15.c14_timer[GTIMER_SEC].ctl),
1748 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1750 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1751 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1752 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1753 .accessfn = gt_ptimer_access,
1754 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1755 .resetvalue = 0,
1756 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1758 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1759 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1760 .accessfn = gt_vtimer_access,
1761 .fieldoffset = offsetoflow32(CPUARMState,
1762 cp15.c14_timer[GTIMER_VIRT].ctl),
1763 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1765 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1766 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1767 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1768 .accessfn = gt_vtimer_access,
1769 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1770 .resetvalue = 0,
1771 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1773 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1774 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1775 .secure = ARM_CP_SECSTATE_NS,
1776 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1777 .accessfn = gt_ptimer_access,
1778 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1780 { .name = "CNTP_TVAL(S)",
1781 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1782 .secure = ARM_CP_SECSTATE_S,
1783 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1784 .accessfn = gt_ptimer_access,
1785 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
1787 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1788 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
1789 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1790 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
1791 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1793 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
1794 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1795 .accessfn = gt_vtimer_access,
1796 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
1798 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1799 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
1800 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1801 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
1802 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
1804 /* The counter itself */
1805 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
1806 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
1807 .accessfn = gt_pct_access,
1808 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
1810 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
1811 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
1812 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1813 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
1815 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
1816 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
1817 .accessfn = gt_vct_access,
1818 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
1820 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
1821 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
1822 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1823 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
1825 /* Comparison value, indicating when the timer goes off */
1826 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
1827 .secure = ARM_CP_SECSTATE_NS,
1828 .access = PL1_RW | PL0_R,
1829 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1830 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1831 .accessfn = gt_ptimer_access,
1832 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
1834 { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2,
1835 .secure = ARM_CP_SECSTATE_S,
1836 .access = PL1_RW | PL0_R,
1837 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1838 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
1839 .accessfn = gt_ptimer_access,
1840 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
1842 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1843 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
1844 .access = PL1_RW | PL0_R,
1845 .type = ARM_CP_IO,
1846 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1847 .resetvalue = 0, .accessfn = gt_ptimer_access,
1848 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
1850 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
1851 .access = PL1_RW | PL0_R,
1852 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1853 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1854 .accessfn = gt_vtimer_access,
1855 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
1857 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1858 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
1859 .access = PL1_RW | PL0_R,
1860 .type = ARM_CP_IO,
1861 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1862 .resetvalue = 0, .accessfn = gt_vtimer_access,
1863 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
1865 /* Secure timer -- this is actually restricted to only EL3
1866 * and configurably Secure-EL1 via the accessfn.
1868 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
1869 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
1870 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
1871 .accessfn = gt_stimer_access,
1872 .readfn = gt_sec_tval_read,
1873 .writefn = gt_sec_tval_write,
1874 .resetfn = gt_sec_timer_reset,
1876 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
1877 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
1878 .type = ARM_CP_IO, .access = PL1_RW,
1879 .accessfn = gt_stimer_access,
1880 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
1881 .resetvalue = 0,
1882 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1884 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
1885 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
1886 .type = ARM_CP_IO, .access = PL1_RW,
1887 .accessfn = gt_stimer_access,
1888 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
1889 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
1891 REGINFO_SENTINEL
1894 #else
1895 /* In user-mode none of the generic timer registers are accessible,
1896 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
1897 * so instead just don't register any of them.
1899 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1900 REGINFO_SENTINEL
1903 #endif
1905 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1907 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1908 raw_write(env, ri, value);
1909 } else if (arm_feature(env, ARM_FEATURE_V7)) {
1910 raw_write(env, ri, value & 0xfffff6ff);
1911 } else {
1912 raw_write(env, ri, value & 0xfffff1ff);
1916 #ifndef CONFIG_USER_ONLY
1917 /* get_phys_addr() isn't present for user-mode-only targets */
1919 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
1920 bool isread)
1922 if (ri->opc2 & 4) {
1923 /* The ATS12NSO* operations must trap to EL3 if executed in
1924 * Secure EL1 (which can only happen if EL3 is AArch64).
1925 * They are simply UNDEF if executed from NS EL1.
1926 * They function normally from EL2 or EL3.
1928 if (arm_current_el(env) == 1) {
1929 if (arm_is_secure_below_el3(env)) {
1930 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
1932 return CP_ACCESS_TRAP_UNCATEGORIZED;
1935 return CP_ACCESS_OK;
1938 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
1939 int access_type, ARMMMUIdx mmu_idx)
1941 hwaddr phys_addr;
1942 target_ulong page_size;
1943 int prot;
1944 uint32_t fsr;
1945 bool ret;
1946 uint64_t par64;
1947 MemTxAttrs attrs = {};
1948 ARMMMUFaultInfo fi = {};
1950 ret = get_phys_addr(env, value, access_type, mmu_idx,
1951 &phys_addr, &attrs, &prot, &page_size, &fsr, &fi);
1952 if (extended_addresses_enabled(env)) {
1953 /* fsr is a DFSR/IFSR value for the long descriptor
1954 * translation table format, but with WnR always clear.
1955 * Convert it to a 64-bit PAR.
1957 par64 = (1 << 11); /* LPAE bit always set */
1958 if (!ret) {
1959 par64 |= phys_addr & ~0xfffULL;
1960 if (!attrs.secure) {
1961 par64 |= (1 << 9); /* NS */
1963 /* We don't set the ATTR or SH fields in the PAR. */
1964 } else {
1965 par64 |= 1; /* F */
1966 par64 |= (fsr & 0x3f) << 1; /* FS */
1967 /* Note that S2WLK and FSTAGE are always zero, because we don't
1968 * implement virtualization and therefore there can't be a stage 2
1969 * fault.
1972 } else {
1973 /* fsr is a DFSR/IFSR value for the short descriptor
1974 * translation table format (with WnR always clear).
1975 * Convert it to a 32-bit PAR.
1977 if (!ret) {
1978 /* We do not set any attribute bits in the PAR */
1979 if (page_size == (1 << 24)
1980 && arm_feature(env, ARM_FEATURE_V7)) {
1981 par64 = (phys_addr & 0xff000000) | (1 << 1);
1982 } else {
1983 par64 = phys_addr & 0xfffff000;
1985 if (!attrs.secure) {
1986 par64 |= (1 << 9); /* NS */
1988 } else {
1989 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
1990 ((fsr & 0xf) << 1) | 1;
1993 return par64;
1996 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1998 int access_type = ri->opc2 & 1;
1999 uint64_t par64;
2000 ARMMMUIdx mmu_idx;
2001 int el = arm_current_el(env);
2002 bool secure = arm_is_secure_below_el3(env);
2004 switch (ri->opc2 & 6) {
2005 case 0:
2006 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
2007 switch (el) {
2008 case 3:
2009 mmu_idx = ARMMMUIdx_S1E3;
2010 break;
2011 case 2:
2012 mmu_idx = ARMMMUIdx_S1NSE1;
2013 break;
2014 case 1:
2015 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2016 break;
2017 default:
2018 g_assert_not_reached();
2020 break;
2021 case 2:
2022 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
2023 switch (el) {
2024 case 3:
2025 mmu_idx = ARMMMUIdx_S1SE0;
2026 break;
2027 case 2:
2028 mmu_idx = ARMMMUIdx_S1NSE0;
2029 break;
2030 case 1:
2031 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2032 break;
2033 default:
2034 g_assert_not_reached();
2036 break;
2037 case 4:
2038 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
2039 mmu_idx = ARMMMUIdx_S12NSE1;
2040 break;
2041 case 6:
2042 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
2043 mmu_idx = ARMMMUIdx_S12NSE0;
2044 break;
2045 default:
2046 g_assert_not_reached();
2049 par64 = do_ats_write(env, value, access_type, mmu_idx);
2051 A32_BANKED_CURRENT_REG_SET(env, par, par64);
2054 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
2055 uint64_t value)
2057 int access_type = ri->opc2 & 1;
2058 uint64_t par64;
2060 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);
2062 A32_BANKED_CURRENT_REG_SET(env, par, par64);
2065 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
2066 bool isread)
2068 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
2069 return CP_ACCESS_TRAP;
2071 return CP_ACCESS_OK;
2074 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
2075 uint64_t value)
2077 int access_type = ri->opc2 & 1;
2078 ARMMMUIdx mmu_idx;
2079 int secure = arm_is_secure_below_el3(env);
2081 switch (ri->opc2 & 6) {
2082 case 0:
2083 switch (ri->opc1) {
2084 case 0: /* AT S1E1R, AT S1E1W */
2085 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2086 break;
2087 case 4: /* AT S1E2R, AT S1E2W */
2088 mmu_idx = ARMMMUIdx_S1E2;
2089 break;
2090 case 6: /* AT S1E3R, AT S1E3W */
2091 mmu_idx = ARMMMUIdx_S1E3;
2092 break;
2093 default:
2094 g_assert_not_reached();
2096 break;
2097 case 2: /* AT S1E0R, AT S1E0W */
2098 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2099 break;
2100 case 4: /* AT S12E1R, AT S12E1W */
2101 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
2102 break;
2103 case 6: /* AT S12E0R, AT S12E0W */
2104 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
2105 break;
2106 default:
2107 g_assert_not_reached();
2110 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
2112 #endif
2114 static const ARMCPRegInfo vapa_cp_reginfo[] = {
2115 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
2116 .access = PL1_RW, .resetvalue = 0,
2117 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
2118 offsetoflow32(CPUARMState, cp15.par_ns) },
2119 .writefn = par_write },
2120 #ifndef CONFIG_USER_ONLY
2121 /* This underdecoding is safe because the reginfo is NO_RAW. */
2122 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
2123 .access = PL1_W, .accessfn = ats_access,
2124 .writefn = ats_write, .type = ARM_CP_NO_RAW },
2125 #endif
2126 REGINFO_SENTINEL
2129 /* Return basic MPU access permission bits. */
2130 static uint32_t simple_mpu_ap_bits(uint32_t val)
2132 uint32_t ret;
2133 uint32_t mask;
2134 int i;
2135 ret = 0;
2136 mask = 3;
2137 for (i = 0; i < 16; i += 2) {
2138 ret |= (val >> i) & mask;
2139 mask <<= 2;
2141 return ret;
2144 /* Pad basic MPU access permission bits to extended format. */
2145 static uint32_t extended_mpu_ap_bits(uint32_t val)
2147 uint32_t ret;
2148 uint32_t mask;
2149 int i;
2150 ret = 0;
2151 mask = 3;
2152 for (i = 0; i < 16; i += 2) {
2153 ret |= (val & mask) << i;
2154 mask <<= 2;
2156 return ret;
2159 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2160 uint64_t value)
2162 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
2165 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2167 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
2170 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2171 uint64_t value)
2173 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
2176 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2178 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
2181 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
2183 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2185 if (!u32p) {
2186 return 0;
2189 u32p += env->cp15.c6_rgnr;
2190 return *u32p;
2193 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
2194 uint64_t value)
2196 ARMCPU *cpu = arm_env_get_cpu(env);
2197 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2199 if (!u32p) {
2200 return;
2203 u32p += env->cp15.c6_rgnr;
2204 tlb_flush(CPU(cpu), 1); /* Mappings may have changed - purge! */
2205 *u32p = value;
2208 static void pmsav7_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2210 ARMCPU *cpu = arm_env_get_cpu(env);
2211 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2213 if (!u32p) {
2214 return;
2217 memset(u32p, 0, sizeof(*u32p) * cpu->pmsav7_dregion);
2220 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2221 uint64_t value)
2223 ARMCPU *cpu = arm_env_get_cpu(env);
2224 uint32_t nrgs = cpu->pmsav7_dregion;
2226 if (value >= nrgs) {
2227 qemu_log_mask(LOG_GUEST_ERROR,
2228 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2229 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
2230 return;
2233 raw_write(env, ri, value);
2236 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
2237 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
2238 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2239 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
2240 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2241 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
2242 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2243 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
2244 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2245 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
2246 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2247 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
2248 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2249 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
2250 .access = PL1_RW,
2251 .fieldoffset = offsetof(CPUARMState, cp15.c6_rgnr),
2252 .writefn = pmsav7_rgnr_write },
2253 REGINFO_SENTINEL
2256 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
2257 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2258 .access = PL1_RW, .type = ARM_CP_ALIAS,
2259 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2260 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
2261 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2262 .access = PL1_RW, .type = ARM_CP_ALIAS,
2263 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2264 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
2265 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
2266 .access = PL1_RW,
2267 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2268 .resetvalue = 0, },
2269 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
2270 .access = PL1_RW,
2271 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2272 .resetvalue = 0, },
2273 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2274 .access = PL1_RW,
2275 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
2276 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
2277 .access = PL1_RW,
2278 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
2279 /* Protection region base and size registers */
2280 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
2281 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2282 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
2283 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
2284 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2285 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
2286 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
2287 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2288 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
2289 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
2290 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2291 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
2292 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
2293 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2294 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
2295 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
2296 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2297 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
2298 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
2299 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2300 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
2301 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
2302 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2303 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
2304 REGINFO_SENTINEL
2307 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
2308 uint64_t value)
2310 TCR *tcr = raw_ptr(env, ri);
2311 int maskshift = extract32(value, 0, 3);
2313 if (!arm_feature(env, ARM_FEATURE_V8)) {
2314 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
2315 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2316 * using Long-desciptor translation table format */
2317 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
2318 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
2319 /* In an implementation that includes the Security Extensions
2320 * TTBCR has additional fields PD0 [4] and PD1 [5] for
2321 * Short-descriptor translation table format.
2323 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
2324 } else {
2325 value &= TTBCR_N;
2329 /* Update the masks corresponding to the TCR bank being written
2330 * Note that we always calculate mask and base_mask, but
2331 * they are only used for short-descriptor tables (ie if EAE is 0);
2332 * for long-descriptor tables the TCR fields are used differently
2333 * and the mask and base_mask values are meaningless.
2335 tcr->raw_tcr = value;
2336 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
2337 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
2340 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2341 uint64_t value)
2343 ARMCPU *cpu = arm_env_get_cpu(env);
2345 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2346 /* With LPAE the TTBCR could result in a change of ASID
2347 * via the TTBCR.A1 bit, so do a TLB flush.
2349 tlb_flush(CPU(cpu), 1);
2351 vmsa_ttbcr_raw_write(env, ri, value);
2354 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2356 TCR *tcr = raw_ptr(env, ri);
2358 /* Reset both the TCR as well as the masks corresponding to the bank of
2359 * the TCR being reset.
2361 tcr->raw_tcr = 0;
2362 tcr->mask = 0;
2363 tcr->base_mask = 0xffffc000u;
2366 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2367 uint64_t value)
2369 ARMCPU *cpu = arm_env_get_cpu(env);
2370 TCR *tcr = raw_ptr(env, ri);
2372 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2373 tlb_flush(CPU(cpu), 1);
2374 tcr->raw_tcr = value;
2377 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2378 uint64_t value)
2380 /* 64 bit accesses to the TTBRs can change the ASID and so we
2381 * must flush the TLB.
2383 if (cpreg_field_is_64bit(ri)) {
2384 ARMCPU *cpu = arm_env_get_cpu(env);
2386 tlb_flush(CPU(cpu), 1);
2388 raw_write(env, ri, value);
2391 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2392 uint64_t value)
2394 ARMCPU *cpu = arm_env_get_cpu(env);
2395 CPUState *cs = CPU(cpu);
2397 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
2398 if (raw_read(env, ri) != value) {
2399 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0,
2400 ARMMMUIdx_S2NS, -1);
2401 raw_write(env, ri, value);
2405 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
2406 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2407 .access = PL1_RW, .type = ARM_CP_ALIAS,
2408 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
2409 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
2410 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2411 .access = PL1_RW, .resetvalue = 0,
2412 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
2413 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
2414 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
2415 .access = PL1_RW, .resetvalue = 0,
2416 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
2417 offsetof(CPUARMState, cp15.dfar_ns) } },
2418 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
2419 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
2420 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
2421 .resetvalue = 0, },
2422 REGINFO_SENTINEL
2425 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
2426 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
2427 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
2428 .access = PL1_RW,
2429 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
2430 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
2431 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
2432 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2433 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2434 offsetof(CPUARMState, cp15.ttbr0_ns) } },
2435 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
2436 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
2437 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2438 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2439 offsetof(CPUARMState, cp15.ttbr1_ns) } },
2440 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
2441 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2442 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
2443 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
2444 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
2445 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2446 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
2447 .raw_writefn = vmsa_ttbcr_raw_write,
2448 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
2449 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
2450 REGINFO_SENTINEL
2453 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
2454 uint64_t value)
2456 env->cp15.c15_ticonfig = value & 0xe7;
2457 /* The OS_TYPE bit in this register changes the reported CPUID! */
2458 env->cp15.c0_cpuid = (value & (1 << 5)) ?
2459 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
2462 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2463 uint64_t value)
2465 env->cp15.c15_threadid = value & 0xffff;
2468 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
2469 uint64_t value)
2471 /* Wait-for-interrupt (deprecated) */
2472 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
2475 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
2476 uint64_t value)
2478 /* On OMAP there are registers indicating the max/min index of dcache lines
2479 * containing a dirty line; cache flush operations have to reset these.
2481 env->cp15.c15_i_max = 0x000;
2482 env->cp15.c15_i_min = 0xff0;
2485 static const ARMCPRegInfo omap_cp_reginfo[] = {
2486 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
2487 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
2488 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
2489 .resetvalue = 0, },
2490 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2491 .access = PL1_RW, .type = ARM_CP_NOP },
2492 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2493 .access = PL1_RW,
2494 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
2495 .writefn = omap_ticonfig_write },
2496 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
2497 .access = PL1_RW,
2498 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
2499 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
2500 .access = PL1_RW, .resetvalue = 0xff0,
2501 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
2502 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
2503 .access = PL1_RW,
2504 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
2505 .writefn = omap_threadid_write },
2506 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
2507 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2508 .type = ARM_CP_NO_RAW,
2509 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
2510 /* TODO: Peripheral port remap register:
2511 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2512 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2513 * when MMU is off.
2515 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
2516 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
2517 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
2518 .writefn = omap_cachemaint_write },
2519 { .name = "C9", .cp = 15, .crn = 9,
2520 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
2521 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
2522 REGINFO_SENTINEL
2525 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2526 uint64_t value)
2528 env->cp15.c15_cpar = value & 0x3fff;
2531 static const ARMCPRegInfo xscale_cp_reginfo[] = {
2532 { .name = "XSCALE_CPAR",
2533 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2534 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
2535 .writefn = xscale_cpar_write, },
2536 { .name = "XSCALE_AUXCR",
2537 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
2538 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
2539 .resetvalue = 0, },
2540 /* XScale specific cache-lockdown: since we have no cache we NOP these
2541 * and hope the guest does not really rely on cache behaviour.
2543 { .name = "XSCALE_LOCK_ICACHE_LINE",
2544 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2545 .access = PL1_W, .type = ARM_CP_NOP },
2546 { .name = "XSCALE_UNLOCK_ICACHE",
2547 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2548 .access = PL1_W, .type = ARM_CP_NOP },
2549 { .name = "XSCALE_DCACHE_LOCK",
2550 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
2551 .access = PL1_RW, .type = ARM_CP_NOP },
2552 { .name = "XSCALE_UNLOCK_DCACHE",
2553 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
2554 .access = PL1_W, .type = ARM_CP_NOP },
2555 REGINFO_SENTINEL
2558 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2559 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2560 * implementation of this implementation-defined space.
2561 * Ideally this should eventually disappear in favour of actually
2562 * implementing the correct behaviour for all cores.
2564 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2565 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2566 .access = PL1_RW,
2567 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
2568 .resetvalue = 0 },
2569 REGINFO_SENTINEL
2572 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2573 /* Cache status: RAZ because we have no cache so it's always clean */
2574 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
2575 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2576 .resetvalue = 0 },
2577 REGINFO_SENTINEL
2580 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2581 /* We never have a a block transfer operation in progress */
2582 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
2583 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2584 .resetvalue = 0 },
2585 /* The cache ops themselves: these all NOP for QEMU */
2586 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2587 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2588 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2589 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2590 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2591 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2592 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2593 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2594 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2595 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2596 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2597 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2598 REGINFO_SENTINEL
2601 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2602 /* The cache test-and-clean instructions always return (1 << 30)
2603 * to indicate that there are no dirty cache lines.
2605 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
2606 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2607 .resetvalue = (1 << 30) },
2608 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
2609 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2610 .resetvalue = (1 << 30) },
2611 REGINFO_SENTINEL
2614 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2615 /* Ignore ReadBuffer accesses */
2616 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2617 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2618 .access = PL1_RW, .resetvalue = 0,
2619 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
2620 REGINFO_SENTINEL
2623 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2625 ARMCPU *cpu = arm_env_get_cpu(env);
2626 unsigned int cur_el = arm_current_el(env);
2627 bool secure = arm_is_secure(env);
2629 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2630 return env->cp15.vpidr_el2;
2632 return raw_read(env, ri);
2635 static uint64_t mpidr_read_val(CPUARMState *env)
2637 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
2638 uint64_t mpidr = cpu->mp_affinity;
2640 if (arm_feature(env, ARM_FEATURE_V7MP)) {
2641 mpidr |= (1U << 31);
2642 /* Cores which are uniprocessor (non-coherent)
2643 * but still implement the MP extensions set
2644 * bit 30. (For instance, Cortex-R5).
2646 if (cpu->mp_is_up) {
2647 mpidr |= (1u << 30);
2650 return mpidr;
2653 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2655 unsigned int cur_el = arm_current_el(env);
2656 bool secure = arm_is_secure(env);
2658 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2659 return env->cp15.vmpidr_el2;
2661 return mpidr_read_val(env);
2664 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
2665 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
2666 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
2667 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
2668 REGINFO_SENTINEL
2671 static const ARMCPRegInfo lpae_cp_reginfo[] = {
2672 /* NOP AMAIR0/1 */
2673 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
2674 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
2675 .access = PL1_RW, .type = ARM_CP_CONST,
2676 .resetvalue = 0 },
2677 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2678 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
2679 .access = PL1_RW, .type = ARM_CP_CONST,
2680 .resetvalue = 0 },
2681 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
2682 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
2683 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
2684 offsetof(CPUARMState, cp15.par_ns)} },
2685 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
2686 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2687 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2688 offsetof(CPUARMState, cp15.ttbr0_ns) },
2689 .writefn = vmsa_ttbr_write, },
2690 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
2691 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2692 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2693 offsetof(CPUARMState, cp15.ttbr1_ns) },
2694 .writefn = vmsa_ttbr_write, },
2695 REGINFO_SENTINEL
2698 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2700 return vfp_get_fpcr(env);
2703 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2704 uint64_t value)
2706 vfp_set_fpcr(env, value);
2709 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2711 return vfp_get_fpsr(env);
2714 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2715 uint64_t value)
2717 vfp_set_fpsr(env, value);
2720 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
2721 bool isread)
2723 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
2724 return CP_ACCESS_TRAP;
2726 return CP_ACCESS_OK;
2729 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
2730 uint64_t value)
2732 env->daif = value & PSTATE_DAIF;
2735 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
2736 const ARMCPRegInfo *ri,
2737 bool isread)
2739 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2740 * SCTLR_EL1.UCI is set.
2742 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
2743 return CP_ACCESS_TRAP;
2745 return CP_ACCESS_OK;
2748 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2749 * Page D4-1736 (DDI0487A.b)
2752 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2753 uint64_t value)
2755 ARMCPU *cpu = arm_env_get_cpu(env);
2756 CPUState *cs = CPU(cpu);
2758 if (arm_is_secure_below_el3(env)) {
2759 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2760 } else {
2761 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1);
2765 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2766 uint64_t value)
2768 bool sec = arm_is_secure_below_el3(env);
2769 CPUState *other_cs;
2771 CPU_FOREACH(other_cs) {
2772 if (sec) {
2773 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2774 } else {
2775 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
2776 ARMMMUIdx_S12NSE0, -1);
2781 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2782 uint64_t value)
2784 /* Note that the 'ALL' scope must invalidate both stage 1 and
2785 * stage 2 translations, whereas most other scopes only invalidate
2786 * stage 1 translations.
2788 ARMCPU *cpu = arm_env_get_cpu(env);
2789 CPUState *cs = CPU(cpu);
2791 if (arm_is_secure_below_el3(env)) {
2792 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2793 } else {
2794 if (arm_feature(env, ARM_FEATURE_EL2)) {
2795 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0,
2796 ARMMMUIdx_S2NS, -1);
2797 } else {
2798 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1);
2803 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
2804 uint64_t value)
2806 ARMCPU *cpu = arm_env_get_cpu(env);
2807 CPUState *cs = CPU(cpu);
2809 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E2, -1);
2812 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
2813 uint64_t value)
2815 ARMCPU *cpu = arm_env_get_cpu(env);
2816 CPUState *cs = CPU(cpu);
2818 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E3, -1);
2821 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2822 uint64_t value)
2824 /* Note that the 'ALL' scope must invalidate both stage 1 and
2825 * stage 2 translations, whereas most other scopes only invalidate
2826 * stage 1 translations.
2828 bool sec = arm_is_secure_below_el3(env);
2829 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
2830 CPUState *other_cs;
2832 CPU_FOREACH(other_cs) {
2833 if (sec) {
2834 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2835 } else if (has_el2) {
2836 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
2837 ARMMMUIdx_S12NSE0, ARMMMUIdx_S2NS, -1);
2838 } else {
2839 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
2840 ARMMMUIdx_S12NSE0, -1);
2845 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2846 uint64_t value)
2848 CPUState *other_cs;
2850 CPU_FOREACH(other_cs) {
2851 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E2, -1);
2855 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2856 uint64_t value)
2858 CPUState *other_cs;
2860 CPU_FOREACH(other_cs) {
2861 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E3, -1);
2865 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2866 uint64_t value)
2868 /* Invalidate by VA, EL1&0 (AArch64 version).
2869 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
2870 * since we don't support flush-for-specific-ASID-only or
2871 * flush-last-level-only.
2873 ARMCPU *cpu = arm_env_get_cpu(env);
2874 CPUState *cs = CPU(cpu);
2875 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2877 if (arm_is_secure_below_el3(env)) {
2878 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1SE1,
2879 ARMMMUIdx_S1SE0, -1);
2880 } else {
2881 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S12NSE1,
2882 ARMMMUIdx_S12NSE0, -1);
2886 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
2887 uint64_t value)
2889 /* Invalidate by VA, EL2
2890 * Currently handles both VAE2 and VALE2, since we don't support
2891 * flush-last-level-only.
2893 ARMCPU *cpu = arm_env_get_cpu(env);
2894 CPUState *cs = CPU(cpu);
2895 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2897 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E2, -1);
2900 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
2901 uint64_t value)
2903 /* Invalidate by VA, EL3
2904 * Currently handles both VAE3 and VALE3, since we don't support
2905 * flush-last-level-only.
2907 ARMCPU *cpu = arm_env_get_cpu(env);
2908 CPUState *cs = CPU(cpu);
2909 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2911 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E3, -1);
2914 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2915 uint64_t value)
2917 bool sec = arm_is_secure_below_el3(env);
2918 CPUState *other_cs;
2919 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2921 CPU_FOREACH(other_cs) {
2922 if (sec) {
2923 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1SE1,
2924 ARMMMUIdx_S1SE0, -1);
2925 } else {
2926 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S12NSE1,
2927 ARMMMUIdx_S12NSE0, -1);
2932 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2933 uint64_t value)
2935 CPUState *other_cs;
2936 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2938 CPU_FOREACH(other_cs) {
2939 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E2, -1);
2943 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2944 uint64_t value)
2946 CPUState *other_cs;
2947 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2949 CPU_FOREACH(other_cs) {
2950 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E3, -1);
2954 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2955 uint64_t value)
2957 /* Invalidate by IPA. This has to invalidate any structures that
2958 * contain only stage 2 translation information, but does not need
2959 * to apply to structures that contain combined stage 1 and stage 2
2960 * translation information.
2961 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
2963 ARMCPU *cpu = arm_env_get_cpu(env);
2964 CPUState *cs = CPU(cpu);
2965 uint64_t pageaddr;
2967 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
2968 return;
2971 pageaddr = sextract64(value << 12, 0, 48);
2973 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S2NS, -1);
2976 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2977 uint64_t value)
2979 CPUState *other_cs;
2980 uint64_t pageaddr;
2982 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
2983 return;
2986 pageaddr = sextract64(value << 12, 0, 48);
2988 CPU_FOREACH(other_cs) {
2989 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S2NS, -1);
2993 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
2994 bool isread)
2996 /* We don't implement EL2, so the only control on DC ZVA is the
2997 * bit in the SCTLR which can prohibit access for EL0.
2999 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
3000 return CP_ACCESS_TRAP;
3002 return CP_ACCESS_OK;
3005 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
3007 ARMCPU *cpu = arm_env_get_cpu(env);
3008 int dzp_bit = 1 << 4;
3010 /* DZP indicates whether DC ZVA access is allowed */
3011 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
3012 dzp_bit = 0;
3014 return cpu->dcz_blocksize | dzp_bit;
3017 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
3018 bool isread)
3020 if (!(env->pstate & PSTATE_SP)) {
3021 /* Access to SP_EL0 is undefined if it's being used as
3022 * the stack pointer.
3024 return CP_ACCESS_TRAP_UNCATEGORIZED;
3026 return CP_ACCESS_OK;
3029 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
3031 return env->pstate & PSTATE_SP;
3034 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
3036 update_spsel(env, val);
3039 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3040 uint64_t value)
3042 ARMCPU *cpu = arm_env_get_cpu(env);
3044 if (raw_read(env, ri) == value) {
3045 /* Skip the TLB flush if nothing actually changed; Linux likes
3046 * to do a lot of pointless SCTLR writes.
3048 return;
3051 raw_write(env, ri, value);
3052 /* ??? Lots of these bits are not implemented. */
3053 /* This may enable/disable the MMU, so do a TLB flush. */
3054 tlb_flush(CPU(cpu), 1);
3057 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
3058 bool isread)
3060 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
3061 return CP_ACCESS_TRAP_FP_EL2;
3063 if (env->cp15.cptr_el[3] & CPTR_TFP) {
3064 return CP_ACCESS_TRAP_FP_EL3;
3066 return CP_ACCESS_OK;
3069 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3070 uint64_t value)
3072 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
3075 static const ARMCPRegInfo v8_cp_reginfo[] = {
3076 /* Minimal set of EL0-visible registers. This will need to be expanded
3077 * significantly for system emulation of AArch64 CPUs.
3079 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
3080 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
3081 .access = PL0_RW, .type = ARM_CP_NZCV },
3082 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
3083 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
3084 .type = ARM_CP_NO_RAW,
3085 .access = PL0_RW, .accessfn = aa64_daif_access,
3086 .fieldoffset = offsetof(CPUARMState, daif),
3087 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
3088 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
3089 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
3090 .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
3091 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
3092 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
3093 .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
3094 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
3095 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
3096 .access = PL0_R, .type = ARM_CP_NO_RAW,
3097 .readfn = aa64_dczid_read },
3098 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
3099 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
3100 .access = PL0_W, .type = ARM_CP_DC_ZVA,
3101 #ifndef CONFIG_USER_ONLY
3102 /* Avoid overhead of an access check that always passes in user-mode */
3103 .accessfn = aa64_zva_access,
3104 #endif
3106 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
3107 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
3108 .access = PL1_R, .type = ARM_CP_CURRENTEL },
3109 /* Cache ops: all NOPs since we don't emulate caches */
3110 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
3111 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3112 .access = PL1_W, .type = ARM_CP_NOP },
3113 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
3114 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3115 .access = PL1_W, .type = ARM_CP_NOP },
3116 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
3117 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
3118 .access = PL0_W, .type = ARM_CP_NOP,
3119 .accessfn = aa64_cacheop_access },
3120 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
3121 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3122 .access = PL1_W, .type = ARM_CP_NOP },
3123 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
3124 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3125 .access = PL1_W, .type = ARM_CP_NOP },
3126 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
3127 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
3128 .access = PL0_W, .type = ARM_CP_NOP,
3129 .accessfn = aa64_cacheop_access },
3130 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
3131 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3132 .access = PL1_W, .type = ARM_CP_NOP },
3133 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
3134 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
3135 .access = PL0_W, .type = ARM_CP_NOP,
3136 .accessfn = aa64_cacheop_access },
3137 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
3138 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
3139 .access = PL0_W, .type = ARM_CP_NOP,
3140 .accessfn = aa64_cacheop_access },
3141 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
3142 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3143 .access = PL1_W, .type = ARM_CP_NOP },
3144 /* TLBI operations */
3145 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
3146 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
3147 .access = PL1_W, .type = ARM_CP_NO_RAW,
3148 .writefn = tlbi_aa64_vmalle1is_write },
3149 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
3150 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
3151 .access = PL1_W, .type = ARM_CP_NO_RAW,
3152 .writefn = tlbi_aa64_vae1is_write },
3153 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
3154 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
3155 .access = PL1_W, .type = ARM_CP_NO_RAW,
3156 .writefn = tlbi_aa64_vmalle1is_write },
3157 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
3158 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
3159 .access = PL1_W, .type = ARM_CP_NO_RAW,
3160 .writefn = tlbi_aa64_vae1is_write },
3161 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
3162 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3163 .access = PL1_W, .type = ARM_CP_NO_RAW,
3164 .writefn = tlbi_aa64_vae1is_write },
3165 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
3166 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3167 .access = PL1_W, .type = ARM_CP_NO_RAW,
3168 .writefn = tlbi_aa64_vae1is_write },
3169 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
3170 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
3171 .access = PL1_W, .type = ARM_CP_NO_RAW,
3172 .writefn = tlbi_aa64_vmalle1_write },
3173 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
3174 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
3175 .access = PL1_W, .type = ARM_CP_NO_RAW,
3176 .writefn = tlbi_aa64_vae1_write },
3177 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
3178 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
3179 .access = PL1_W, .type = ARM_CP_NO_RAW,
3180 .writefn = tlbi_aa64_vmalle1_write },
3181 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
3182 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
3183 .access = PL1_W, .type = ARM_CP_NO_RAW,
3184 .writefn = tlbi_aa64_vae1_write },
3185 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
3186 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3187 .access = PL1_W, .type = ARM_CP_NO_RAW,
3188 .writefn = tlbi_aa64_vae1_write },
3189 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
3190 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3191 .access = PL1_W, .type = ARM_CP_NO_RAW,
3192 .writefn = tlbi_aa64_vae1_write },
3193 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
3194 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3195 .access = PL2_W, .type = ARM_CP_NO_RAW,
3196 .writefn = tlbi_aa64_ipas2e1is_write },
3197 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
3198 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3199 .access = PL2_W, .type = ARM_CP_NO_RAW,
3200 .writefn = tlbi_aa64_ipas2e1is_write },
3201 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
3202 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3203 .access = PL2_W, .type = ARM_CP_NO_RAW,
3204 .writefn = tlbi_aa64_alle1is_write },
3205 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
3206 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
3207 .access = PL2_W, .type = ARM_CP_NO_RAW,
3208 .writefn = tlbi_aa64_alle1is_write },
3209 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
3210 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3211 .access = PL2_W, .type = ARM_CP_NO_RAW,
3212 .writefn = tlbi_aa64_ipas2e1_write },
3213 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
3214 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3215 .access = PL2_W, .type = ARM_CP_NO_RAW,
3216 .writefn = tlbi_aa64_ipas2e1_write },
3217 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
3218 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3219 .access = PL2_W, .type = ARM_CP_NO_RAW,
3220 .writefn = tlbi_aa64_alle1_write },
3221 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
3222 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
3223 .access = PL2_W, .type = ARM_CP_NO_RAW,
3224 .writefn = tlbi_aa64_alle1is_write },
3225 #ifndef CONFIG_USER_ONLY
3226 /* 64 bit address translation operations */
3227 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
3228 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
3229 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3230 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
3231 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
3232 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3233 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
3234 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
3235 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3236 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
3237 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
3238 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3239 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
3240 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
3241 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3242 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
3243 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
3244 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3245 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
3246 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
3247 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3248 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
3249 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
3250 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3251 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3252 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
3253 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
3254 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3255 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
3256 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
3257 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3258 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
3259 .type = ARM_CP_ALIAS,
3260 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
3261 .access = PL1_RW, .resetvalue = 0,
3262 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
3263 .writefn = par_write },
3264 #endif
3265 /* TLB invalidate last level of translation table walk */
3266 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3267 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
3268 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3269 .type = ARM_CP_NO_RAW, .access = PL1_W,
3270 .writefn = tlbimvaa_is_write },
3271 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3272 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
3273 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3274 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
3275 /* 32 bit cache operations */
3276 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3277 .type = ARM_CP_NOP, .access = PL1_W },
3278 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
3279 .type = ARM_CP_NOP, .access = PL1_W },
3280 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3281 .type = ARM_CP_NOP, .access = PL1_W },
3282 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
3283 .type = ARM_CP_NOP, .access = PL1_W },
3284 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
3285 .type = ARM_CP_NOP, .access = PL1_W },
3286 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
3287 .type = ARM_CP_NOP, .access = PL1_W },
3288 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3289 .type = ARM_CP_NOP, .access = PL1_W },
3290 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3291 .type = ARM_CP_NOP, .access = PL1_W },
3292 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
3293 .type = ARM_CP_NOP, .access = PL1_W },
3294 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3295 .type = ARM_CP_NOP, .access = PL1_W },
3296 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
3297 .type = ARM_CP_NOP, .access = PL1_W },
3298 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
3299 .type = ARM_CP_NOP, .access = PL1_W },
3300 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3301 .type = ARM_CP_NOP, .access = PL1_W },
3302 /* MMU Domain access control / MPU write buffer control */
3303 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
3304 .access = PL1_RW, .resetvalue = 0,
3305 .writefn = dacr_write, .raw_writefn = raw_write,
3306 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
3307 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
3308 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
3309 .type = ARM_CP_ALIAS,
3310 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
3311 .access = PL1_RW,
3312 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
3313 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
3314 .type = ARM_CP_ALIAS,
3315 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
3316 .access = PL1_RW,
3317 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
3318 /* We rely on the access checks not allowing the guest to write to the
3319 * state field when SPSel indicates that it's being used as the stack
3320 * pointer.
3322 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
3323 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
3324 .access = PL1_RW, .accessfn = sp_el0_access,
3325 .type = ARM_CP_ALIAS,
3326 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
3327 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
3328 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
3329 .access = PL2_RW, .type = ARM_CP_ALIAS,
3330 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
3331 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
3332 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
3333 .type = ARM_CP_NO_RAW,
3334 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
3335 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
3336 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
3337 .type = ARM_CP_ALIAS,
3338 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
3339 .access = PL2_RW, .accessfn = fpexc32_access },
3340 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
3341 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
3342 .access = PL2_RW, .resetvalue = 0,
3343 .writefn = dacr_write, .raw_writefn = raw_write,
3344 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
3345 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
3346 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
3347 .access = PL2_RW, .resetvalue = 0,
3348 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
3349 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
3350 .type = ARM_CP_ALIAS,
3351 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
3352 .access = PL2_RW,
3353 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
3354 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
3355 .type = ARM_CP_ALIAS,
3356 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
3357 .access = PL2_RW,
3358 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
3359 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
3360 .type = ARM_CP_ALIAS,
3361 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
3362 .access = PL2_RW,
3363 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
3364 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
3365 .type = ARM_CP_ALIAS,
3366 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
3367 .access = PL2_RW,
3368 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
3369 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
3370 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
3371 .resetvalue = 0,
3372 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
3373 { .name = "SDCR", .type = ARM_CP_ALIAS,
3374 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
3375 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3376 .writefn = sdcr_write,
3377 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
3378 REGINFO_SENTINEL
3381 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
3382 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
3383 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3384 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3385 .access = PL2_RW,
3386 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3387 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3388 .type = ARM_CP_NO_RAW,
3389 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3390 .access = PL2_RW,
3391 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3392 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3393 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3394 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3395 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3396 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3397 .access = PL2_RW, .type = ARM_CP_CONST,
3398 .resetvalue = 0 },
3399 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3400 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3401 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3402 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3403 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3404 .access = PL2_RW, .type = ARM_CP_CONST,
3405 .resetvalue = 0 },
3406 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3407 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3408 .access = PL2_RW, .type = ARM_CP_CONST,
3409 .resetvalue = 0 },
3410 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3411 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3412 .access = PL2_RW, .type = ARM_CP_CONST,
3413 .resetvalue = 0 },
3414 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3415 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3416 .access = PL2_RW, .type = ARM_CP_CONST,
3417 .resetvalue = 0 },
3418 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3419 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3420 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3421 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
3422 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3423 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3424 .type = ARM_CP_CONST, .resetvalue = 0 },
3425 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3426 .cp = 15, .opc1 = 6, .crm = 2,
3427 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3428 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
3429 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3430 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3431 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3432 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3433 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3434 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3435 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3436 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3437 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3438 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3439 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3440 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3441 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3442 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3443 .resetvalue = 0 },
3444 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3445 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3446 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3447 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3448 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3449 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3450 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3451 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3452 .resetvalue = 0 },
3453 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3454 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3455 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3456 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3457 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3458 .resetvalue = 0 },
3459 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3460 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3461 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3462 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3463 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3464 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3465 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3466 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3467 .access = PL2_RW, .accessfn = access_tda,
3468 .type = ARM_CP_CONST, .resetvalue = 0 },
3469 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
3470 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3471 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3472 .type = ARM_CP_CONST, .resetvalue = 0 },
3473 REGINFO_SENTINEL
3476 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3478 ARMCPU *cpu = arm_env_get_cpu(env);
3479 uint64_t valid_mask = HCR_MASK;
3481 if (arm_feature(env, ARM_FEATURE_EL3)) {
3482 valid_mask &= ~HCR_HCD;
3483 } else {
3484 valid_mask &= ~HCR_TSC;
3487 /* Clear RES0 bits. */
3488 value &= valid_mask;
3490 /* These bits change the MMU setup:
3491 * HCR_VM enables stage 2 translation
3492 * HCR_PTW forbids certain page-table setups
3493 * HCR_DC Disables stage1 and enables stage2 translation
3495 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
3496 tlb_flush(CPU(cpu), 1);
3498 raw_write(env, ri, value);
3501 static const ARMCPRegInfo el2_cp_reginfo[] = {
3502 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3503 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3504 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
3505 .writefn = hcr_write },
3506 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
3507 .type = ARM_CP_ALIAS,
3508 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
3509 .access = PL2_RW,
3510 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
3511 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
3512 .type = ARM_CP_ALIAS,
3513 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
3514 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
3515 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
3516 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
3517 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
3518 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
3519 .type = ARM_CP_ALIAS,
3520 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
3521 .access = PL2_RW,
3522 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
3523 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3524 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3525 .access = PL2_RW, .writefn = vbar_write,
3526 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
3527 .resetvalue = 0 },
3528 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
3529 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
3530 .access = PL3_RW, .type = ARM_CP_ALIAS,
3531 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
3532 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3533 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3534 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
3535 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
3536 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3537 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3538 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
3539 .resetvalue = 0 },
3540 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3541 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3542 .access = PL2_RW, .type = ARM_CP_ALIAS,
3543 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
3544 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3545 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3546 .access = PL2_RW, .type = ARM_CP_CONST,
3547 .resetvalue = 0 },
3548 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3549 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3550 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3551 .access = PL2_RW, .type = ARM_CP_CONST,
3552 .resetvalue = 0 },
3553 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3554 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3555 .access = PL2_RW, .type = ARM_CP_CONST,
3556 .resetvalue = 0 },
3557 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3558 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3559 .access = PL2_RW, .type = ARM_CP_CONST,
3560 .resetvalue = 0 },
3561 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3562 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3563 .access = PL2_RW, .writefn = vmsa_tcr_el1_write,
3564 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3565 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
3566 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
3567 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3568 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3569 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3570 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
3571 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3572 .access = PL2_RW, .type = ARM_CP_ALIAS,
3573 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3574 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3575 .cp = 15, .opc1 = 6, .crm = 2,
3576 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3577 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3578 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
3579 .writefn = vttbr_write },
3580 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3581 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3582 .access = PL2_RW, .writefn = vttbr_write,
3583 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
3584 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3585 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3586 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3587 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
3588 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3589 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3590 .access = PL2_RW, .resetvalue = 0,
3591 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
3592 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3593 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3594 .access = PL2_RW, .resetvalue = 0,
3595 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3596 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3597 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3598 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3599 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
3600 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3601 .type = ARM_CP_NO_RAW, .access = PL2_W,
3602 .writefn = tlbi_aa64_alle2_write },
3603 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
3604 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3605 .type = ARM_CP_NO_RAW, .access = PL2_W,
3606 .writefn = tlbi_aa64_vae2_write },
3607 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
3608 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3609 .access = PL2_W, .type = ARM_CP_NO_RAW,
3610 .writefn = tlbi_aa64_vae2_write },
3611 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
3612 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3613 .access = PL2_W, .type = ARM_CP_NO_RAW,
3614 .writefn = tlbi_aa64_alle2is_write },
3615 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
3616 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3617 .type = ARM_CP_NO_RAW, .access = PL2_W,
3618 .writefn = tlbi_aa64_vae2is_write },
3619 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
3620 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3621 .access = PL2_W, .type = ARM_CP_NO_RAW,
3622 .writefn = tlbi_aa64_vae2is_write },
3623 #ifndef CONFIG_USER_ONLY
3624 /* Unlike the other EL2-related AT operations, these must
3625 * UNDEF from EL3 if EL2 is not implemented, which is why we
3626 * define them here rather than with the rest of the AT ops.
3628 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
3629 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3630 .access = PL2_W, .accessfn = at_s1e2_access,
3631 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3632 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
3633 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3634 .access = PL2_W, .accessfn = at_s1e2_access,
3635 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3636 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
3637 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
3638 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
3639 * to behave as if SCR.NS was 1.
3641 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3642 .access = PL2_W,
3643 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3644 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3645 .access = PL2_W,
3646 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3647 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3648 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3649 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
3650 * reset values as IMPDEF. We choose to reset to 3 to comply with
3651 * both ARMv7 and ARMv8.
3653 .access = PL2_RW, .resetvalue = 3,
3654 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
3655 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3656 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3657 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
3658 .writefn = gt_cntvoff_write,
3659 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3660 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3661 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
3662 .writefn = gt_cntvoff_write,
3663 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3664 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3665 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3666 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3667 .type = ARM_CP_IO, .access = PL2_RW,
3668 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3669 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3670 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3671 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
3672 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3673 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3674 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3675 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
3676 .resetfn = gt_hyp_timer_reset,
3677 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
3678 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3679 .type = ARM_CP_IO,
3680 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3681 .access = PL2_RW,
3682 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
3683 .resetvalue = 0,
3684 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
3685 #endif
3686 /* The only field of MDCR_EL2 that has a defined architectural reset value
3687 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
3688 * don't impelment any PMU event counters, so using zero as a reset
3689 * value for MDCR_EL2 is okay
3691 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3692 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3693 .access = PL2_RW, .resetvalue = 0,
3694 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
3695 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
3696 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3697 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3698 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3699 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
3700 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3701 .access = PL2_RW,
3702 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3703 REGINFO_SENTINEL
3706 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
3707 bool isread)
3709 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
3710 * At Secure EL1 it traps to EL3.
3712 if (arm_current_el(env) == 3) {
3713 return CP_ACCESS_OK;
3715 if (arm_is_secure_below_el3(env)) {
3716 return CP_ACCESS_TRAP_EL3;
3718 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
3719 if (isread) {
3720 return CP_ACCESS_OK;
3722 return CP_ACCESS_TRAP_UNCATEGORIZED;
3725 static const ARMCPRegInfo el3_cp_reginfo[] = {
3726 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
3727 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
3728 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
3729 .resetvalue = 0, .writefn = scr_write },
3730 { .name = "SCR", .type = ARM_CP_ALIAS,
3731 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
3732 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3733 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
3734 .writefn = scr_write },
3735 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
3736 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
3737 .access = PL3_RW, .resetvalue = 0,
3738 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
3739 { .name = "SDER",
3740 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
3741 .access = PL3_RW, .resetvalue = 0,
3742 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
3743 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
3744 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3745 .writefn = vbar_write, .resetvalue = 0,
3746 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
3747 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
3748 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
3749 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3750 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
3751 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
3752 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
3753 .access = PL3_RW, .writefn = vmsa_tcr_el1_write,
3754 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3755 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
3756 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
3757 .type = ARM_CP_ALIAS,
3758 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
3759 .access = PL3_RW,
3760 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
3761 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
3762 .type = ARM_CP_ALIAS,
3763 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
3764 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
3765 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
3766 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
3767 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
3768 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
3769 .type = ARM_CP_ALIAS,
3770 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
3771 .access = PL3_RW,
3772 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
3773 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
3774 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
3775 .access = PL3_RW, .writefn = vbar_write,
3776 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
3777 .resetvalue = 0 },
3778 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
3779 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
3780 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
3781 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
3782 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
3783 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
3784 .access = PL3_RW, .resetvalue = 0,
3785 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
3786 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
3787 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
3788 .access = PL3_RW, .type = ARM_CP_CONST,
3789 .resetvalue = 0 },
3790 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
3791 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
3792 .access = PL3_RW, .type = ARM_CP_CONST,
3793 .resetvalue = 0 },
3794 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
3795 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
3796 .access = PL3_RW, .type = ARM_CP_CONST,
3797 .resetvalue = 0 },
3798 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
3799 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
3800 .access = PL3_W, .type = ARM_CP_NO_RAW,
3801 .writefn = tlbi_aa64_alle3is_write },
3802 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
3803 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
3804 .access = PL3_W, .type = ARM_CP_NO_RAW,
3805 .writefn = tlbi_aa64_vae3is_write },
3806 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
3807 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
3808 .access = PL3_W, .type = ARM_CP_NO_RAW,
3809 .writefn = tlbi_aa64_vae3is_write },
3810 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
3811 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
3812 .access = PL3_W, .type = ARM_CP_NO_RAW,
3813 .writefn = tlbi_aa64_alle3_write },
3814 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
3815 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
3816 .access = PL3_W, .type = ARM_CP_NO_RAW,
3817 .writefn = tlbi_aa64_vae3_write },
3818 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
3819 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
3820 .access = PL3_W, .type = ARM_CP_NO_RAW,
3821 .writefn = tlbi_aa64_vae3_write },
3822 REGINFO_SENTINEL
3825 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
3826 bool isread)
3828 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
3829 * but the AArch32 CTR has its own reginfo struct)
3831 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
3832 return CP_ACCESS_TRAP;
3834 return CP_ACCESS_OK;
3837 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3838 uint64_t value)
3840 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
3841 * read via a bit in OSLSR_EL1.
3843 int oslock;
3845 if (ri->state == ARM_CP_STATE_AA32) {
3846 oslock = (value == 0xC5ACCE55);
3847 } else {
3848 oslock = value & 1;
3851 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
3854 static const ARMCPRegInfo debug_cp_reginfo[] = {
3855 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
3856 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
3857 * unlike DBGDRAR it is never accessible from EL0.
3858 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
3859 * accessor.
3861 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
3862 .access = PL0_R, .accessfn = access_tdra,
3863 .type = ARM_CP_CONST, .resetvalue = 0 },
3864 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
3865 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
3866 .access = PL1_R, .accessfn = access_tdra,
3867 .type = ARM_CP_CONST, .resetvalue = 0 },
3868 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3869 .access = PL0_R, .accessfn = access_tdra,
3870 .type = ARM_CP_CONST, .resetvalue = 0 },
3871 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
3872 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
3873 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
3874 .access = PL1_RW, .accessfn = access_tda,
3875 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
3876 .resetvalue = 0 },
3877 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
3878 * We don't implement the configurable EL0 access.
3880 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
3881 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
3882 .type = ARM_CP_ALIAS,
3883 .access = PL1_R, .accessfn = access_tda,
3884 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
3885 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
3886 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
3887 .access = PL1_W, .type = ARM_CP_NO_RAW,
3888 .accessfn = access_tdosa,
3889 .writefn = oslar_write },
3890 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
3891 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
3892 .access = PL1_R, .resetvalue = 10,
3893 .accessfn = access_tdosa,
3894 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
3895 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
3896 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
3897 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
3898 .access = PL1_RW, .accessfn = access_tdosa,
3899 .type = ARM_CP_NOP },
3900 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
3901 * implement vector catch debug events yet.
3903 { .name = "DBGVCR",
3904 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
3905 .access = PL1_RW, .accessfn = access_tda,
3906 .type = ARM_CP_NOP },
3907 REGINFO_SENTINEL
3910 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
3911 /* 64 bit access versions of the (dummy) debug registers */
3912 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
3913 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
3914 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
3915 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
3916 REGINFO_SENTINEL
3919 void hw_watchpoint_update(ARMCPU *cpu, int n)
3921 CPUARMState *env = &cpu->env;
3922 vaddr len = 0;
3923 vaddr wvr = env->cp15.dbgwvr[n];
3924 uint64_t wcr = env->cp15.dbgwcr[n];
3925 int mask;
3926 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
3928 if (env->cpu_watchpoint[n]) {
3929 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
3930 env->cpu_watchpoint[n] = NULL;
3933 if (!extract64(wcr, 0, 1)) {
3934 /* E bit clear : watchpoint disabled */
3935 return;
3938 switch (extract64(wcr, 3, 2)) {
3939 case 0:
3940 /* LSC 00 is reserved and must behave as if the wp is disabled */
3941 return;
3942 case 1:
3943 flags |= BP_MEM_READ;
3944 break;
3945 case 2:
3946 flags |= BP_MEM_WRITE;
3947 break;
3948 case 3:
3949 flags |= BP_MEM_ACCESS;
3950 break;
3953 /* Attempts to use both MASK and BAS fields simultaneously are
3954 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
3955 * thus generating a watchpoint for every byte in the masked region.
3957 mask = extract64(wcr, 24, 4);
3958 if (mask == 1 || mask == 2) {
3959 /* Reserved values of MASK; we must act as if the mask value was
3960 * some non-reserved value, or as if the watchpoint were disabled.
3961 * We choose the latter.
3963 return;
3964 } else if (mask) {
3965 /* Watchpoint covers an aligned area up to 2GB in size */
3966 len = 1ULL << mask;
3967 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
3968 * whether the watchpoint fires when the unmasked bits match; we opt
3969 * to generate the exceptions.
3971 wvr &= ~(len - 1);
3972 } else {
3973 /* Watchpoint covers bytes defined by the byte address select bits */
3974 int bas = extract64(wcr, 5, 8);
3975 int basstart;
3977 if (bas == 0) {
3978 /* This must act as if the watchpoint is disabled */
3979 return;
3982 if (extract64(wvr, 2, 1)) {
3983 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
3984 * ignored, and BAS[3:0] define which bytes to watch.
3986 bas &= 0xf;
3988 /* The BAS bits are supposed to be programmed to indicate a contiguous
3989 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
3990 * we fire for each byte in the word/doubleword addressed by the WVR.
3991 * We choose to ignore any non-zero bits after the first range of 1s.
3993 basstart = ctz32(bas);
3994 len = cto32(bas >> basstart);
3995 wvr += basstart;
3998 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
3999 &env->cpu_watchpoint[n]);
4002 void hw_watchpoint_update_all(ARMCPU *cpu)
4004 int i;
4005 CPUARMState *env = &cpu->env;
4007 /* Completely clear out existing QEMU watchpoints and our array, to
4008 * avoid possible stale entries following migration load.
4010 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
4011 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
4013 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
4014 hw_watchpoint_update(cpu, i);
4018 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4019 uint64_t value)
4021 ARMCPU *cpu = arm_env_get_cpu(env);
4022 int i = ri->crm;
4024 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
4025 * register reads and behaves as if values written are sign extended.
4026 * Bits [1:0] are RES0.
4028 value = sextract64(value, 0, 49) & ~3ULL;
4030 raw_write(env, ri, value);
4031 hw_watchpoint_update(cpu, i);
4034 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4035 uint64_t value)
4037 ARMCPU *cpu = arm_env_get_cpu(env);
4038 int i = ri->crm;
4040 raw_write(env, ri, value);
4041 hw_watchpoint_update(cpu, i);
4044 void hw_breakpoint_update(ARMCPU *cpu, int n)
4046 CPUARMState *env = &cpu->env;
4047 uint64_t bvr = env->cp15.dbgbvr[n];
4048 uint64_t bcr = env->cp15.dbgbcr[n];
4049 vaddr addr;
4050 int bt;
4051 int flags = BP_CPU;
4053 if (env->cpu_breakpoint[n]) {
4054 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
4055 env->cpu_breakpoint[n] = NULL;
4058 if (!extract64(bcr, 0, 1)) {
4059 /* E bit clear : watchpoint disabled */
4060 return;
4063 bt = extract64(bcr, 20, 4);
4065 switch (bt) {
4066 case 4: /* unlinked address mismatch (reserved if AArch64) */
4067 case 5: /* linked address mismatch (reserved if AArch64) */
4068 qemu_log_mask(LOG_UNIMP,
4069 "arm: address mismatch breakpoint types not implemented");
4070 return;
4071 case 0: /* unlinked address match */
4072 case 1: /* linked address match */
4074 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
4075 * we behave as if the register was sign extended. Bits [1:0] are
4076 * RES0. The BAS field is used to allow setting breakpoints on 16
4077 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
4078 * a bp will fire if the addresses covered by the bp and the addresses
4079 * covered by the insn overlap but the insn doesn't start at the
4080 * start of the bp address range. We choose to require the insn and
4081 * the bp to have the same address. The constraints on writing to
4082 * BAS enforced in dbgbcr_write mean we have only four cases:
4083 * 0b0000 => no breakpoint
4084 * 0b0011 => breakpoint on addr
4085 * 0b1100 => breakpoint on addr + 2
4086 * 0b1111 => breakpoint on addr
4087 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
4089 int bas = extract64(bcr, 5, 4);
4090 addr = sextract64(bvr, 0, 49) & ~3ULL;
4091 if (bas == 0) {
4092 return;
4094 if (bas == 0xc) {
4095 addr += 2;
4097 break;
4099 case 2: /* unlinked context ID match */
4100 case 8: /* unlinked VMID match (reserved if no EL2) */
4101 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
4102 qemu_log_mask(LOG_UNIMP,
4103 "arm: unlinked context breakpoint types not implemented");
4104 return;
4105 case 9: /* linked VMID match (reserved if no EL2) */
4106 case 11: /* linked context ID and VMID match (reserved if no EL2) */
4107 case 3: /* linked context ID match */
4108 default:
4109 /* We must generate no events for Linked context matches (unless
4110 * they are linked to by some other bp/wp, which is handled in
4111 * updates for the linking bp/wp). We choose to also generate no events
4112 * for reserved values.
4114 return;
4117 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
4120 void hw_breakpoint_update_all(ARMCPU *cpu)
4122 int i;
4123 CPUARMState *env = &cpu->env;
4125 /* Completely clear out existing QEMU breakpoints and our array, to
4126 * avoid possible stale entries following migration load.
4128 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
4129 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
4131 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
4132 hw_breakpoint_update(cpu, i);
4136 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4137 uint64_t value)
4139 ARMCPU *cpu = arm_env_get_cpu(env);
4140 int i = ri->crm;
4142 raw_write(env, ri, value);
4143 hw_breakpoint_update(cpu, i);
4146 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4147 uint64_t value)
4149 ARMCPU *cpu = arm_env_get_cpu(env);
4150 int i = ri->crm;
4152 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
4153 * copy of BAS[0].
4155 value = deposit64(value, 6, 1, extract64(value, 5, 1));
4156 value = deposit64(value, 8, 1, extract64(value, 7, 1));
4158 raw_write(env, ri, value);
4159 hw_breakpoint_update(cpu, i);
4162 static void define_debug_regs(ARMCPU *cpu)
4164 /* Define v7 and v8 architectural debug registers.
4165 * These are just dummy implementations for now.
4167 int i;
4168 int wrps, brps, ctx_cmps;
4169 ARMCPRegInfo dbgdidr = {
4170 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
4171 .access = PL0_R, .accessfn = access_tda,
4172 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
4175 /* Note that all these register fields hold "number of Xs minus 1". */
4176 brps = extract32(cpu->dbgdidr, 24, 4);
4177 wrps = extract32(cpu->dbgdidr, 28, 4);
4178 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
4180 assert(ctx_cmps <= brps);
4182 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
4183 * of the debug registers such as number of breakpoints;
4184 * check that if they both exist then they agree.
4186 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
4187 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
4188 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
4189 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
4192 define_one_arm_cp_reg(cpu, &dbgdidr);
4193 define_arm_cp_regs(cpu, debug_cp_reginfo);
4195 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
4196 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
4199 for (i = 0; i < brps + 1; i++) {
4200 ARMCPRegInfo dbgregs[] = {
4201 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
4202 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
4203 .access = PL1_RW, .accessfn = access_tda,
4204 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
4205 .writefn = dbgbvr_write, .raw_writefn = raw_write
4207 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
4208 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
4209 .access = PL1_RW, .accessfn = access_tda,
4210 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
4211 .writefn = dbgbcr_write, .raw_writefn = raw_write
4213 REGINFO_SENTINEL
4215 define_arm_cp_regs(cpu, dbgregs);
4218 for (i = 0; i < wrps + 1; i++) {
4219 ARMCPRegInfo dbgregs[] = {
4220 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
4221 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
4222 .access = PL1_RW, .accessfn = access_tda,
4223 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
4224 .writefn = dbgwvr_write, .raw_writefn = raw_write
4226 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
4227 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
4228 .access = PL1_RW, .accessfn = access_tda,
4229 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
4230 .writefn = dbgwcr_write, .raw_writefn = raw_write
4232 REGINFO_SENTINEL
4234 define_arm_cp_regs(cpu, dbgregs);
4238 void register_cp_regs_for_features(ARMCPU *cpu)
4240 /* Register all the coprocessor registers based on feature bits */
4241 CPUARMState *env = &cpu->env;
4242 if (arm_feature(env, ARM_FEATURE_M)) {
4243 /* M profile has no coprocessor registers */
4244 return;
4247 define_arm_cp_regs(cpu, cp_reginfo);
4248 if (!arm_feature(env, ARM_FEATURE_V8)) {
4249 /* Must go early as it is full of wildcards that may be
4250 * overridden by later definitions.
4252 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
4255 if (arm_feature(env, ARM_FEATURE_V6)) {
4256 /* The ID registers all have impdef reset values */
4257 ARMCPRegInfo v6_idregs[] = {
4258 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
4259 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4260 .access = PL1_R, .type = ARM_CP_CONST,
4261 .resetvalue = cpu->id_pfr0 },
4262 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
4263 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
4264 .access = PL1_R, .type = ARM_CP_CONST,
4265 .resetvalue = cpu->id_pfr1 },
4266 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
4267 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
4268 .access = PL1_R, .type = ARM_CP_CONST,
4269 .resetvalue = cpu->id_dfr0 },
4270 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
4271 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
4272 .access = PL1_R, .type = ARM_CP_CONST,
4273 .resetvalue = cpu->id_afr0 },
4274 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
4275 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
4276 .access = PL1_R, .type = ARM_CP_CONST,
4277 .resetvalue = cpu->id_mmfr0 },
4278 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
4279 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
4280 .access = PL1_R, .type = ARM_CP_CONST,
4281 .resetvalue = cpu->id_mmfr1 },
4282 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
4283 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
4284 .access = PL1_R, .type = ARM_CP_CONST,
4285 .resetvalue = cpu->id_mmfr2 },
4286 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
4287 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
4288 .access = PL1_R, .type = ARM_CP_CONST,
4289 .resetvalue = cpu->id_mmfr3 },
4290 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
4291 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4292 .access = PL1_R, .type = ARM_CP_CONST,
4293 .resetvalue = cpu->id_isar0 },
4294 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
4295 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
4296 .access = PL1_R, .type = ARM_CP_CONST,
4297 .resetvalue = cpu->id_isar1 },
4298 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
4299 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4300 .access = PL1_R, .type = ARM_CP_CONST,
4301 .resetvalue = cpu->id_isar2 },
4302 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
4303 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
4304 .access = PL1_R, .type = ARM_CP_CONST,
4305 .resetvalue = cpu->id_isar3 },
4306 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
4307 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
4308 .access = PL1_R, .type = ARM_CP_CONST,
4309 .resetvalue = cpu->id_isar4 },
4310 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
4311 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
4312 .access = PL1_R, .type = ARM_CP_CONST,
4313 .resetvalue = cpu->id_isar5 },
4314 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
4315 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
4316 .access = PL1_R, .type = ARM_CP_CONST,
4317 .resetvalue = cpu->id_mmfr4 },
4318 /* 7 is as yet unallocated and must RAZ */
4319 { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH,
4320 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
4321 .access = PL1_R, .type = ARM_CP_CONST,
4322 .resetvalue = 0 },
4323 REGINFO_SENTINEL
4325 define_arm_cp_regs(cpu, v6_idregs);
4326 define_arm_cp_regs(cpu, v6_cp_reginfo);
4327 } else {
4328 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
4330 if (arm_feature(env, ARM_FEATURE_V6K)) {
4331 define_arm_cp_regs(cpu, v6k_cp_reginfo);
4333 if (arm_feature(env, ARM_FEATURE_V7MP) &&
4334 !arm_feature(env, ARM_FEATURE_MPU)) {
4335 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
4337 if (arm_feature(env, ARM_FEATURE_V7)) {
4338 /* v7 performance monitor control register: same implementor
4339 * field as main ID register, and we implement only the cycle
4340 * count register.
4342 #ifndef CONFIG_USER_ONLY
4343 ARMCPRegInfo pmcr = {
4344 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
4345 .access = PL0_RW,
4346 .type = ARM_CP_IO | ARM_CP_ALIAS,
4347 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
4348 .accessfn = pmreg_access, .writefn = pmcr_write,
4349 .raw_writefn = raw_write,
4351 ARMCPRegInfo pmcr64 = {
4352 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
4353 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
4354 .access = PL0_RW, .accessfn = pmreg_access,
4355 .type = ARM_CP_IO,
4356 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
4357 .resetvalue = cpu->midr & 0xff000000,
4358 .writefn = pmcr_write, .raw_writefn = raw_write,
4360 define_one_arm_cp_reg(cpu, &pmcr);
4361 define_one_arm_cp_reg(cpu, &pmcr64);
4362 #endif
4363 ARMCPRegInfo clidr = {
4364 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
4365 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
4366 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
4368 define_one_arm_cp_reg(cpu, &clidr);
4369 define_arm_cp_regs(cpu, v7_cp_reginfo);
4370 define_debug_regs(cpu);
4371 } else {
4372 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
4374 if (arm_feature(env, ARM_FEATURE_V8)) {
4375 /* AArch64 ID registers, which all have impdef reset values.
4376 * Note that within the ID register ranges the unused slots
4377 * must all RAZ, not UNDEF; future architecture versions may
4378 * define new registers here.
4380 ARMCPRegInfo v8_idregs[] = {
4381 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
4382 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
4383 .access = PL1_R, .type = ARM_CP_CONST,
4384 .resetvalue = cpu->id_aa64pfr0 },
4385 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
4386 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
4387 .access = PL1_R, .type = ARM_CP_CONST,
4388 .resetvalue = cpu->id_aa64pfr1},
4389 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4390 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
4391 .access = PL1_R, .type = ARM_CP_CONST,
4392 .resetvalue = 0 },
4393 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4394 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
4395 .access = PL1_R, .type = ARM_CP_CONST,
4396 .resetvalue = 0 },
4397 { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4398 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
4399 .access = PL1_R, .type = ARM_CP_CONST,
4400 .resetvalue = 0 },
4401 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4402 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
4403 .access = PL1_R, .type = ARM_CP_CONST,
4404 .resetvalue = 0 },
4405 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4406 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
4407 .access = PL1_R, .type = ARM_CP_CONST,
4408 .resetvalue = 0 },
4409 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4410 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
4411 .access = PL1_R, .type = ARM_CP_CONST,
4412 .resetvalue = 0 },
4413 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
4414 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
4415 .access = PL1_R, .type = ARM_CP_CONST,
4416 /* We mask out the PMUVer field, because we don't currently
4417 * implement the PMU. Not advertising it prevents the guest
4418 * from trying to use it and getting UNDEFs on registers we
4419 * don't implement.
4421 .resetvalue = cpu->id_aa64dfr0 & ~0xf00 },
4422 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
4423 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
4424 .access = PL1_R, .type = ARM_CP_CONST,
4425 .resetvalue = cpu->id_aa64dfr1 },
4426 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4427 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
4428 .access = PL1_R, .type = ARM_CP_CONST,
4429 .resetvalue = 0 },
4430 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4431 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
4432 .access = PL1_R, .type = ARM_CP_CONST,
4433 .resetvalue = 0 },
4434 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
4435 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
4436 .access = PL1_R, .type = ARM_CP_CONST,
4437 .resetvalue = cpu->id_aa64afr0 },
4438 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
4439 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
4440 .access = PL1_R, .type = ARM_CP_CONST,
4441 .resetvalue = cpu->id_aa64afr1 },
4442 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4443 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
4444 .access = PL1_R, .type = ARM_CP_CONST,
4445 .resetvalue = 0 },
4446 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4447 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
4448 .access = PL1_R, .type = ARM_CP_CONST,
4449 .resetvalue = 0 },
4450 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
4451 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
4452 .access = PL1_R, .type = ARM_CP_CONST,
4453 .resetvalue = cpu->id_aa64isar0 },
4454 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
4455 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
4456 .access = PL1_R, .type = ARM_CP_CONST,
4457 .resetvalue = cpu->id_aa64isar1 },
4458 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4459 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
4460 .access = PL1_R, .type = ARM_CP_CONST,
4461 .resetvalue = 0 },
4462 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4463 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
4464 .access = PL1_R, .type = ARM_CP_CONST,
4465 .resetvalue = 0 },
4466 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4467 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
4468 .access = PL1_R, .type = ARM_CP_CONST,
4469 .resetvalue = 0 },
4470 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4471 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
4472 .access = PL1_R, .type = ARM_CP_CONST,
4473 .resetvalue = 0 },
4474 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4475 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
4476 .access = PL1_R, .type = ARM_CP_CONST,
4477 .resetvalue = 0 },
4478 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4479 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
4480 .access = PL1_R, .type = ARM_CP_CONST,
4481 .resetvalue = 0 },
4482 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
4483 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4484 .access = PL1_R, .type = ARM_CP_CONST,
4485 .resetvalue = cpu->id_aa64mmfr0 },
4486 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
4487 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
4488 .access = PL1_R, .type = ARM_CP_CONST,
4489 .resetvalue = cpu->id_aa64mmfr1 },
4490 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4491 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
4492 .access = PL1_R, .type = ARM_CP_CONST,
4493 .resetvalue = 0 },
4494 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4495 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
4496 .access = PL1_R, .type = ARM_CP_CONST,
4497 .resetvalue = 0 },
4498 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4499 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
4500 .access = PL1_R, .type = ARM_CP_CONST,
4501 .resetvalue = 0 },
4502 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4503 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
4504 .access = PL1_R, .type = ARM_CP_CONST,
4505 .resetvalue = 0 },
4506 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4507 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
4508 .access = PL1_R, .type = ARM_CP_CONST,
4509 .resetvalue = 0 },
4510 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4511 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
4512 .access = PL1_R, .type = ARM_CP_CONST,
4513 .resetvalue = 0 },
4514 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
4515 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
4516 .access = PL1_R, .type = ARM_CP_CONST,
4517 .resetvalue = cpu->mvfr0 },
4518 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
4519 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
4520 .access = PL1_R, .type = ARM_CP_CONST,
4521 .resetvalue = cpu->mvfr1 },
4522 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
4523 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
4524 .access = PL1_R, .type = ARM_CP_CONST,
4525 .resetvalue = cpu->mvfr2 },
4526 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4527 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
4528 .access = PL1_R, .type = ARM_CP_CONST,
4529 .resetvalue = 0 },
4530 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4531 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
4532 .access = PL1_R, .type = ARM_CP_CONST,
4533 .resetvalue = 0 },
4534 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4535 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
4536 .access = PL1_R, .type = ARM_CP_CONST,
4537 .resetvalue = 0 },
4538 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4539 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
4540 .access = PL1_R, .type = ARM_CP_CONST,
4541 .resetvalue = 0 },
4542 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4543 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
4544 .access = PL1_R, .type = ARM_CP_CONST,
4545 .resetvalue = 0 },
4546 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
4547 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
4548 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4549 .resetvalue = cpu->pmceid0 },
4550 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
4551 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
4552 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4553 .resetvalue = cpu->pmceid0 },
4554 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
4555 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
4556 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4557 .resetvalue = cpu->pmceid1 },
4558 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
4559 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
4560 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4561 .resetvalue = cpu->pmceid1 },
4562 REGINFO_SENTINEL
4564 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
4565 if (!arm_feature(env, ARM_FEATURE_EL3) &&
4566 !arm_feature(env, ARM_FEATURE_EL2)) {
4567 ARMCPRegInfo rvbar = {
4568 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
4569 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4570 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
4572 define_one_arm_cp_reg(cpu, &rvbar);
4574 define_arm_cp_regs(cpu, v8_idregs);
4575 define_arm_cp_regs(cpu, v8_cp_reginfo);
4577 if (arm_feature(env, ARM_FEATURE_EL2)) {
4578 uint64_t vmpidr_def = mpidr_read_val(env);
4579 ARMCPRegInfo vpidr_regs[] = {
4580 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
4581 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4582 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4583 .resetvalue = cpu->midr,
4584 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4585 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
4586 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4587 .access = PL2_RW, .resetvalue = cpu->midr,
4588 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4589 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
4590 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4591 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4592 .resetvalue = vmpidr_def,
4593 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4594 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
4595 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4596 .access = PL2_RW,
4597 .resetvalue = vmpidr_def,
4598 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4599 REGINFO_SENTINEL
4601 define_arm_cp_regs(cpu, vpidr_regs);
4602 define_arm_cp_regs(cpu, el2_cp_reginfo);
4603 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
4604 if (!arm_feature(env, ARM_FEATURE_EL3)) {
4605 ARMCPRegInfo rvbar = {
4606 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
4607 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
4608 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
4610 define_one_arm_cp_reg(cpu, &rvbar);
4612 } else {
4613 /* If EL2 is missing but higher ELs are enabled, we need to
4614 * register the no_el2 reginfos.
4616 if (arm_feature(env, ARM_FEATURE_EL3)) {
4617 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
4618 * of MIDR_EL1 and MPIDR_EL1.
4620 ARMCPRegInfo vpidr_regs[] = {
4621 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4622 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4623 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4624 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
4625 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4626 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4627 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4628 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4629 .type = ARM_CP_NO_RAW,
4630 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
4631 REGINFO_SENTINEL
4633 define_arm_cp_regs(cpu, vpidr_regs);
4634 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
4637 if (arm_feature(env, ARM_FEATURE_EL3)) {
4638 define_arm_cp_regs(cpu, el3_cp_reginfo);
4639 ARMCPRegInfo el3_regs[] = {
4640 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
4641 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
4642 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
4643 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
4644 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
4645 .access = PL3_RW,
4646 .raw_writefn = raw_write, .writefn = sctlr_write,
4647 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
4648 .resetvalue = cpu->reset_sctlr },
4649 REGINFO_SENTINEL
4652 define_arm_cp_regs(cpu, el3_regs);
4654 /* The behaviour of NSACR is sufficiently various that we don't
4655 * try to describe it in a single reginfo:
4656 * if EL3 is 64 bit, then trap to EL3 from S EL1,
4657 * reads as constant 0xc00 from NS EL1 and NS EL2
4658 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
4659 * if v7 without EL3, register doesn't exist
4660 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
4662 if (arm_feature(env, ARM_FEATURE_EL3)) {
4663 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
4664 ARMCPRegInfo nsacr = {
4665 .name = "NSACR", .type = ARM_CP_CONST,
4666 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4667 .access = PL1_RW, .accessfn = nsacr_access,
4668 .resetvalue = 0xc00
4670 define_one_arm_cp_reg(cpu, &nsacr);
4671 } else {
4672 ARMCPRegInfo nsacr = {
4673 .name = "NSACR",
4674 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4675 .access = PL3_RW | PL1_R,
4676 .resetvalue = 0,
4677 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
4679 define_one_arm_cp_reg(cpu, &nsacr);
4681 } else {
4682 if (arm_feature(env, ARM_FEATURE_V8)) {
4683 ARMCPRegInfo nsacr = {
4684 .name = "NSACR", .type = ARM_CP_CONST,
4685 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4686 .access = PL1_R,
4687 .resetvalue = 0xc00
4689 define_one_arm_cp_reg(cpu, &nsacr);
4693 if (arm_feature(env, ARM_FEATURE_MPU)) {
4694 if (arm_feature(env, ARM_FEATURE_V6)) {
4695 /* PMSAv6 not implemented */
4696 assert(arm_feature(env, ARM_FEATURE_V7));
4697 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
4698 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
4699 } else {
4700 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
4702 } else {
4703 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
4704 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
4706 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
4707 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
4709 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
4710 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
4712 if (arm_feature(env, ARM_FEATURE_VAPA)) {
4713 define_arm_cp_regs(cpu, vapa_cp_reginfo);
4715 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
4716 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
4718 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
4719 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
4721 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
4722 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
4724 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
4725 define_arm_cp_regs(cpu, omap_cp_reginfo);
4727 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
4728 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
4730 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
4731 define_arm_cp_regs(cpu, xscale_cp_reginfo);
4733 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
4734 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
4736 if (arm_feature(env, ARM_FEATURE_LPAE)) {
4737 define_arm_cp_regs(cpu, lpae_cp_reginfo);
4739 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
4740 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
4741 * be read-only (ie write causes UNDEF exception).
4744 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
4745 /* Pre-v8 MIDR space.
4746 * Note that the MIDR isn't a simple constant register because
4747 * of the TI925 behaviour where writes to another register can
4748 * cause the MIDR value to change.
4750 * Unimplemented registers in the c15 0 0 0 space default to
4751 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
4752 * and friends override accordingly.
4754 { .name = "MIDR",
4755 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
4756 .access = PL1_R, .resetvalue = cpu->midr,
4757 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
4758 .readfn = midr_read,
4759 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
4760 .type = ARM_CP_OVERRIDE },
4761 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
4762 { .name = "DUMMY",
4763 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
4764 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4765 { .name = "DUMMY",
4766 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
4767 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4768 { .name = "DUMMY",
4769 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
4770 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4771 { .name = "DUMMY",
4772 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
4773 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4774 { .name = "DUMMY",
4775 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
4776 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4777 REGINFO_SENTINEL
4779 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
4780 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
4781 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
4782 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
4783 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
4784 .readfn = midr_read },
4785 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
4786 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
4787 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
4788 .access = PL1_R, .resetvalue = cpu->midr },
4789 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
4790 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
4791 .access = PL1_R, .resetvalue = cpu->midr },
4792 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
4793 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
4794 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
4795 REGINFO_SENTINEL
4797 ARMCPRegInfo id_cp_reginfo[] = {
4798 /* These are common to v8 and pre-v8 */
4799 { .name = "CTR",
4800 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
4801 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
4802 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
4803 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
4804 .access = PL0_R, .accessfn = ctr_el0_access,
4805 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
4806 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
4807 { .name = "TCMTR",
4808 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
4809 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4810 REGINFO_SENTINEL
4812 /* TLBTR is specific to VMSA */
4813 ARMCPRegInfo id_tlbtr_reginfo = {
4814 .name = "TLBTR",
4815 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
4816 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
4818 /* MPUIR is specific to PMSA V6+ */
4819 ARMCPRegInfo id_mpuir_reginfo = {
4820 .name = "MPUIR",
4821 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
4822 .access = PL1_R, .type = ARM_CP_CONST,
4823 .resetvalue = cpu->pmsav7_dregion << 8
4825 ARMCPRegInfo crn0_wi_reginfo = {
4826 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
4827 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
4828 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
4830 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
4831 arm_feature(env, ARM_FEATURE_STRONGARM)) {
4832 ARMCPRegInfo *r;
4833 /* Register the blanket "writes ignored" value first to cover the
4834 * whole space. Then update the specific ID registers to allow write
4835 * access, so that they ignore writes rather than causing them to
4836 * UNDEF.
4838 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
4839 for (r = id_pre_v8_midr_cp_reginfo;
4840 r->type != ARM_CP_SENTINEL; r++) {
4841 r->access = PL1_RW;
4843 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
4844 r->access = PL1_RW;
4846 id_tlbtr_reginfo.access = PL1_RW;
4847 id_tlbtr_reginfo.access = PL1_RW;
4849 if (arm_feature(env, ARM_FEATURE_V8)) {
4850 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
4851 } else {
4852 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
4854 define_arm_cp_regs(cpu, id_cp_reginfo);
4855 if (!arm_feature(env, ARM_FEATURE_MPU)) {
4856 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
4857 } else if (arm_feature(env, ARM_FEATURE_V7)) {
4858 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
4862 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
4863 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
4866 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
4867 ARMCPRegInfo auxcr_reginfo[] = {
4868 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
4869 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
4870 .access = PL1_RW, .type = ARM_CP_CONST,
4871 .resetvalue = cpu->reset_auxcr },
4872 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
4873 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
4874 .access = PL2_RW, .type = ARM_CP_CONST,
4875 .resetvalue = 0 },
4876 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
4877 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
4878 .access = PL3_RW, .type = ARM_CP_CONST,
4879 .resetvalue = 0 },
4880 REGINFO_SENTINEL
4882 define_arm_cp_regs(cpu, auxcr_reginfo);
4885 if (arm_feature(env, ARM_FEATURE_CBAR)) {
4886 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
4887 /* 32 bit view is [31:18] 0...0 [43:32]. */
4888 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
4889 | extract64(cpu->reset_cbar, 32, 12);
4890 ARMCPRegInfo cbar_reginfo[] = {
4891 { .name = "CBAR",
4892 .type = ARM_CP_CONST,
4893 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
4894 .access = PL1_R, .resetvalue = cpu->reset_cbar },
4895 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
4896 .type = ARM_CP_CONST,
4897 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
4898 .access = PL1_R, .resetvalue = cbar32 },
4899 REGINFO_SENTINEL
4901 /* We don't implement a r/w 64 bit CBAR currently */
4902 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
4903 define_arm_cp_regs(cpu, cbar_reginfo);
4904 } else {
4905 ARMCPRegInfo cbar = {
4906 .name = "CBAR",
4907 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
4908 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
4909 .fieldoffset = offsetof(CPUARMState,
4910 cp15.c15_config_base_address)
4912 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
4913 cbar.access = PL1_R;
4914 cbar.fieldoffset = 0;
4915 cbar.type = ARM_CP_CONST;
4917 define_one_arm_cp_reg(cpu, &cbar);
4921 /* Generic registers whose values depend on the implementation */
4923 ARMCPRegInfo sctlr = {
4924 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
4925 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
4926 .access = PL1_RW,
4927 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
4928 offsetof(CPUARMState, cp15.sctlr_ns) },
4929 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
4930 .raw_writefn = raw_write,
4932 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
4933 /* Normally we would always end the TB on an SCTLR write, but Linux
4934 * arch/arm/mach-pxa/sleep.S expects two instructions following
4935 * an MMU enable to execute from cache. Imitate this behaviour.
4937 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
4939 define_one_arm_cp_reg(cpu, &sctlr);
4943 ARMCPU *cpu_arm_init(const char *cpu_model)
4945 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model));
4948 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
4950 CPUState *cs = CPU(cpu);
4951 CPUARMState *env = &cpu->env;
4953 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
4954 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
4955 aarch64_fpu_gdb_set_reg,
4956 34, "aarch64-fpu.xml", 0);
4957 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
4958 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
4959 51, "arm-neon.xml", 0);
4960 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
4961 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
4962 35, "arm-vfp3.xml", 0);
4963 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
4964 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
4965 19, "arm-vfp.xml", 0);
4969 /* Sort alphabetically by type name, except for "any". */
4970 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
4972 ObjectClass *class_a = (ObjectClass *)a;
4973 ObjectClass *class_b = (ObjectClass *)b;
4974 const char *name_a, *name_b;
4976 name_a = object_class_get_name(class_a);
4977 name_b = object_class_get_name(class_b);
4978 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
4979 return 1;
4980 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
4981 return -1;
4982 } else {
4983 return strcmp(name_a, name_b);
4987 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
4989 ObjectClass *oc = data;
4990 CPUListState *s = user_data;
4991 const char *typename;
4992 char *name;
4994 typename = object_class_get_name(oc);
4995 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
4996 (*s->cpu_fprintf)(s->file, " %s\n",
4997 name);
4998 g_free(name);
5001 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
5003 CPUListState s = {
5004 .file = f,
5005 .cpu_fprintf = cpu_fprintf,
5007 GSList *list;
5009 list = object_class_get_list(TYPE_ARM_CPU, false);
5010 list = g_slist_sort(list, arm_cpu_list_compare);
5011 (*cpu_fprintf)(f, "Available CPUs:\n");
5012 g_slist_foreach(list, arm_cpu_list_entry, &s);
5013 g_slist_free(list);
5014 #ifdef CONFIG_KVM
5015 /* The 'host' CPU type is dynamically registered only if KVM is
5016 * enabled, so we have to special-case it here:
5018 (*cpu_fprintf)(f, " host (only available in KVM mode)\n");
5019 #endif
5022 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
5024 ObjectClass *oc = data;
5025 CpuDefinitionInfoList **cpu_list = user_data;
5026 CpuDefinitionInfoList *entry;
5027 CpuDefinitionInfo *info;
5028 const char *typename;
5030 typename = object_class_get_name(oc);
5031 info = g_malloc0(sizeof(*info));
5032 info->name = g_strndup(typename,
5033 strlen(typename) - strlen("-" TYPE_ARM_CPU));
5035 entry = g_malloc0(sizeof(*entry));
5036 entry->value = info;
5037 entry->next = *cpu_list;
5038 *cpu_list = entry;
5041 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
5043 CpuDefinitionInfoList *cpu_list = NULL;
5044 GSList *list;
5046 list = object_class_get_list(TYPE_ARM_CPU, false);
5047 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
5048 g_slist_free(list);
5050 return cpu_list;
5053 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
5054 void *opaque, int state, int secstate,
5055 int crm, int opc1, int opc2)
5057 /* Private utility function for define_one_arm_cp_reg_with_opaque():
5058 * add a single reginfo struct to the hash table.
5060 uint32_t *key = g_new(uint32_t, 1);
5061 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
5062 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
5063 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
5065 /* Reset the secure state to the specific incoming state. This is
5066 * necessary as the register may have been defined with both states.
5068 r2->secure = secstate;
5070 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5071 /* Register is banked (using both entries in array).
5072 * Overwriting fieldoffset as the array is only used to define
5073 * banked registers but later only fieldoffset is used.
5075 r2->fieldoffset = r->bank_fieldoffsets[ns];
5078 if (state == ARM_CP_STATE_AA32) {
5079 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5080 /* If the register is banked then we don't need to migrate or
5081 * reset the 32-bit instance in certain cases:
5083 * 1) If the register has both 32-bit and 64-bit instances then we
5084 * can count on the 64-bit instance taking care of the
5085 * non-secure bank.
5086 * 2) If ARMv8 is enabled then we can count on a 64-bit version
5087 * taking care of the secure bank. This requires that separate
5088 * 32 and 64-bit definitions are provided.
5090 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
5091 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
5092 r2->type |= ARM_CP_ALIAS;
5094 } else if ((secstate != r->secure) && !ns) {
5095 /* The register is not banked so we only want to allow migration of
5096 * the non-secure instance.
5098 r2->type |= ARM_CP_ALIAS;
5101 if (r->state == ARM_CP_STATE_BOTH) {
5102 /* We assume it is a cp15 register if the .cp field is left unset.
5104 if (r2->cp == 0) {
5105 r2->cp = 15;
5108 #ifdef HOST_WORDS_BIGENDIAN
5109 if (r2->fieldoffset) {
5110 r2->fieldoffset += sizeof(uint32_t);
5112 #endif
5115 if (state == ARM_CP_STATE_AA64) {
5116 /* To allow abbreviation of ARMCPRegInfo
5117 * definitions, we treat cp == 0 as equivalent to
5118 * the value for "standard guest-visible sysreg".
5119 * STATE_BOTH definitions are also always "standard
5120 * sysreg" in their AArch64 view (the .cp value may
5121 * be non-zero for the benefit of the AArch32 view).
5123 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
5124 r2->cp = CP_REG_ARM64_SYSREG_CP;
5126 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
5127 r2->opc0, opc1, opc2);
5128 } else {
5129 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
5131 if (opaque) {
5132 r2->opaque = opaque;
5134 /* reginfo passed to helpers is correct for the actual access,
5135 * and is never ARM_CP_STATE_BOTH:
5137 r2->state = state;
5138 /* Make sure reginfo passed to helpers for wildcarded regs
5139 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
5141 r2->crm = crm;
5142 r2->opc1 = opc1;
5143 r2->opc2 = opc2;
5144 /* By convention, for wildcarded registers only the first
5145 * entry is used for migration; the others are marked as
5146 * ALIAS so we don't try to transfer the register
5147 * multiple times. Special registers (ie NOP/WFI) are
5148 * never migratable and not even raw-accessible.
5150 if ((r->type & ARM_CP_SPECIAL)) {
5151 r2->type |= ARM_CP_NO_RAW;
5153 if (((r->crm == CP_ANY) && crm != 0) ||
5154 ((r->opc1 == CP_ANY) && opc1 != 0) ||
5155 ((r->opc2 == CP_ANY) && opc2 != 0)) {
5156 r2->type |= ARM_CP_ALIAS;
5159 /* Check that raw accesses are either forbidden or handled. Note that
5160 * we can't assert this earlier because the setup of fieldoffset for
5161 * banked registers has to be done first.
5163 if (!(r2->type & ARM_CP_NO_RAW)) {
5164 assert(!raw_accessors_invalid(r2));
5167 /* Overriding of an existing definition must be explicitly
5168 * requested.
5170 if (!(r->type & ARM_CP_OVERRIDE)) {
5171 ARMCPRegInfo *oldreg;
5172 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
5173 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
5174 fprintf(stderr, "Register redefined: cp=%d %d bit "
5175 "crn=%d crm=%d opc1=%d opc2=%d, "
5176 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
5177 r2->crn, r2->crm, r2->opc1, r2->opc2,
5178 oldreg->name, r2->name);
5179 g_assert_not_reached();
5182 g_hash_table_insert(cpu->cp_regs, key, r2);
5186 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
5187 const ARMCPRegInfo *r, void *opaque)
5189 /* Define implementations of coprocessor registers.
5190 * We store these in a hashtable because typically
5191 * there are less than 150 registers in a space which
5192 * is 16*16*16*8*8 = 262144 in size.
5193 * Wildcarding is supported for the crm, opc1 and opc2 fields.
5194 * If a register is defined twice then the second definition is
5195 * used, so this can be used to define some generic registers and
5196 * then override them with implementation specific variations.
5197 * At least one of the original and the second definition should
5198 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
5199 * against accidental use.
5201 * The state field defines whether the register is to be
5202 * visible in the AArch32 or AArch64 execution state. If the
5203 * state is set to ARM_CP_STATE_BOTH then we synthesise a
5204 * reginfo structure for the AArch32 view, which sees the lower
5205 * 32 bits of the 64 bit register.
5207 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
5208 * be wildcarded. AArch64 registers are always considered to be 64
5209 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
5210 * the register, if any.
5212 int crm, opc1, opc2, state;
5213 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
5214 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
5215 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
5216 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
5217 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
5218 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
5219 /* 64 bit registers have only CRm and Opc1 fields */
5220 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
5221 /* op0 only exists in the AArch64 encodings */
5222 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
5223 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
5224 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
5225 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
5226 * encodes a minimum access level for the register. We roll this
5227 * runtime check into our general permission check code, so check
5228 * here that the reginfo's specified permissions are strict enough
5229 * to encompass the generic architectural permission check.
5231 if (r->state != ARM_CP_STATE_AA32) {
5232 int mask = 0;
5233 switch (r->opc1) {
5234 case 0: case 1: case 2:
5235 /* min_EL EL1 */
5236 mask = PL1_RW;
5237 break;
5238 case 3:
5239 /* min_EL EL0 */
5240 mask = PL0_RW;
5241 break;
5242 case 4:
5243 /* min_EL EL2 */
5244 mask = PL2_RW;
5245 break;
5246 case 5:
5247 /* unallocated encoding, so not possible */
5248 assert(false);
5249 break;
5250 case 6:
5251 /* min_EL EL3 */
5252 mask = PL3_RW;
5253 break;
5254 case 7:
5255 /* min_EL EL1, secure mode only (we don't check the latter) */
5256 mask = PL1_RW;
5257 break;
5258 default:
5259 /* broken reginfo with out-of-range opc1 */
5260 assert(false);
5261 break;
5263 /* assert our permissions are not too lax (stricter is fine) */
5264 assert((r->access & ~mask) == 0);
5267 /* Check that the register definition has enough info to handle
5268 * reads and writes if they are permitted.
5270 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
5271 if (r->access & PL3_R) {
5272 assert((r->fieldoffset ||
5273 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5274 r->readfn);
5276 if (r->access & PL3_W) {
5277 assert((r->fieldoffset ||
5278 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5279 r->writefn);
5282 /* Bad type field probably means missing sentinel at end of reg list */
5283 assert(cptype_valid(r->type));
5284 for (crm = crmmin; crm <= crmmax; crm++) {
5285 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
5286 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
5287 for (state = ARM_CP_STATE_AA32;
5288 state <= ARM_CP_STATE_AA64; state++) {
5289 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
5290 continue;
5292 if (state == ARM_CP_STATE_AA32) {
5293 /* Under AArch32 CP registers can be common
5294 * (same for secure and non-secure world) or banked.
5296 switch (r->secure) {
5297 case ARM_CP_SECSTATE_S:
5298 case ARM_CP_SECSTATE_NS:
5299 add_cpreg_to_hashtable(cpu, r, opaque, state,
5300 r->secure, crm, opc1, opc2);
5301 break;
5302 default:
5303 add_cpreg_to_hashtable(cpu, r, opaque, state,
5304 ARM_CP_SECSTATE_S,
5305 crm, opc1, opc2);
5306 add_cpreg_to_hashtable(cpu, r, opaque, state,
5307 ARM_CP_SECSTATE_NS,
5308 crm, opc1, opc2);
5309 break;
5311 } else {
5312 /* AArch64 registers get mapped to non-secure instance
5313 * of AArch32 */
5314 add_cpreg_to_hashtable(cpu, r, opaque, state,
5315 ARM_CP_SECSTATE_NS,
5316 crm, opc1, opc2);
5324 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
5325 const ARMCPRegInfo *regs, void *opaque)
5327 /* Define a whole list of registers */
5328 const ARMCPRegInfo *r;
5329 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
5330 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
5334 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
5336 return g_hash_table_lookup(cpregs, &encoded_cp);
5339 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
5340 uint64_t value)
5342 /* Helper coprocessor write function for write-ignore registers */
5345 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
5347 /* Helper coprocessor write function for read-as-zero registers */
5348 return 0;
5351 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
5353 /* Helper coprocessor reset function for do-nothing-on-reset registers */
5356 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
5358 /* Return true if it is not valid for us to switch to
5359 * this CPU mode (ie all the UNPREDICTABLE cases in
5360 * the ARM ARM CPSRWriteByInstr pseudocode).
5363 /* Changes to or from Hyp via MSR and CPS are illegal. */
5364 if (write_type == CPSRWriteByInstr &&
5365 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
5366 mode == ARM_CPU_MODE_HYP)) {
5367 return 1;
5370 switch (mode) {
5371 case ARM_CPU_MODE_USR:
5372 return 0;
5373 case ARM_CPU_MODE_SYS:
5374 case ARM_CPU_MODE_SVC:
5375 case ARM_CPU_MODE_ABT:
5376 case ARM_CPU_MODE_UND:
5377 case ARM_CPU_MODE_IRQ:
5378 case ARM_CPU_MODE_FIQ:
5379 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
5380 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
5382 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
5383 * and CPS are treated as illegal mode changes.
5385 if (write_type == CPSRWriteByInstr &&
5386 (env->cp15.hcr_el2 & HCR_TGE) &&
5387 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
5388 !arm_is_secure_below_el3(env)) {
5389 return 1;
5391 return 0;
5392 case ARM_CPU_MODE_HYP:
5393 return !arm_feature(env, ARM_FEATURE_EL2)
5394 || arm_current_el(env) < 2 || arm_is_secure(env);
5395 case ARM_CPU_MODE_MON:
5396 return arm_current_el(env) < 3;
5397 default:
5398 return 1;
5402 uint32_t cpsr_read(CPUARMState *env)
5404 int ZF;
5405 ZF = (env->ZF == 0);
5406 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
5407 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
5408 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
5409 | ((env->condexec_bits & 0xfc) << 8)
5410 | (env->GE << 16) | (env->daif & CPSR_AIF);
5413 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
5414 CPSRWriteType write_type)
5416 uint32_t changed_daif;
5418 if (mask & CPSR_NZCV) {
5419 env->ZF = (~val) & CPSR_Z;
5420 env->NF = val;
5421 env->CF = (val >> 29) & 1;
5422 env->VF = (val << 3) & 0x80000000;
5424 if (mask & CPSR_Q)
5425 env->QF = ((val & CPSR_Q) != 0);
5426 if (mask & CPSR_T)
5427 env->thumb = ((val & CPSR_T) != 0);
5428 if (mask & CPSR_IT_0_1) {
5429 env->condexec_bits &= ~3;
5430 env->condexec_bits |= (val >> 25) & 3;
5432 if (mask & CPSR_IT_2_7) {
5433 env->condexec_bits &= 3;
5434 env->condexec_bits |= (val >> 8) & 0xfc;
5436 if (mask & CPSR_GE) {
5437 env->GE = (val >> 16) & 0xf;
5440 /* In a V7 implementation that includes the security extensions but does
5441 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
5442 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
5443 * bits respectively.
5445 * In a V8 implementation, it is permitted for privileged software to
5446 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
5448 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
5449 arm_feature(env, ARM_FEATURE_EL3) &&
5450 !arm_feature(env, ARM_FEATURE_EL2) &&
5451 !arm_is_secure(env)) {
5453 changed_daif = (env->daif ^ val) & mask;
5455 if (changed_daif & CPSR_A) {
5456 /* Check to see if we are allowed to change the masking of async
5457 * abort exceptions from a non-secure state.
5459 if (!(env->cp15.scr_el3 & SCR_AW)) {
5460 qemu_log_mask(LOG_GUEST_ERROR,
5461 "Ignoring attempt to switch CPSR_A flag from "
5462 "non-secure world with SCR.AW bit clear\n");
5463 mask &= ~CPSR_A;
5467 if (changed_daif & CPSR_F) {
5468 /* Check to see if we are allowed to change the masking of FIQ
5469 * exceptions from a non-secure state.
5471 if (!(env->cp15.scr_el3 & SCR_FW)) {
5472 qemu_log_mask(LOG_GUEST_ERROR,
5473 "Ignoring attempt to switch CPSR_F flag from "
5474 "non-secure world with SCR.FW bit clear\n");
5475 mask &= ~CPSR_F;
5478 /* Check whether non-maskable FIQ (NMFI) support is enabled.
5479 * If this bit is set software is not allowed to mask
5480 * FIQs, but is allowed to set CPSR_F to 0.
5482 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
5483 (val & CPSR_F)) {
5484 qemu_log_mask(LOG_GUEST_ERROR,
5485 "Ignoring attempt to enable CPSR_F flag "
5486 "(non-maskable FIQ [NMFI] support enabled)\n");
5487 mask &= ~CPSR_F;
5492 env->daif &= ~(CPSR_AIF & mask);
5493 env->daif |= val & CPSR_AIF & mask;
5495 if (write_type != CPSRWriteRaw &&
5496 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
5497 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
5498 /* Note that we can only get here in USR mode if this is a
5499 * gdb stub write; for this case we follow the architectural
5500 * behaviour for guest writes in USR mode of ignoring an attempt
5501 * to switch mode. (Those are caught by translate.c for writes
5502 * triggered by guest instructions.)
5504 mask &= ~CPSR_M;
5505 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
5506 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
5507 * v7, and has defined behaviour in v8:
5508 * + leave CPSR.M untouched
5509 * + allow changes to the other CPSR fields
5510 * + set PSTATE.IL
5511 * For user changes via the GDB stub, we don't set PSTATE.IL,
5512 * as this would be unnecessarily harsh for a user error.
5514 mask &= ~CPSR_M;
5515 if (write_type != CPSRWriteByGDBStub &&
5516 arm_feature(env, ARM_FEATURE_V8)) {
5517 mask |= CPSR_IL;
5518 val |= CPSR_IL;
5520 } else {
5521 switch_mode(env, val & CPSR_M);
5524 mask &= ~CACHED_CPSR_BITS;
5525 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
5528 /* Sign/zero extend */
5529 uint32_t HELPER(sxtb16)(uint32_t x)
5531 uint32_t res;
5532 res = (uint16_t)(int8_t)x;
5533 res |= (uint32_t)(int8_t)(x >> 16) << 16;
5534 return res;
5537 uint32_t HELPER(uxtb16)(uint32_t x)
5539 uint32_t res;
5540 res = (uint16_t)(uint8_t)x;
5541 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
5542 return res;
5545 uint32_t HELPER(clz)(uint32_t x)
5547 return clz32(x);
5550 int32_t HELPER(sdiv)(int32_t num, int32_t den)
5552 if (den == 0)
5553 return 0;
5554 if (num == INT_MIN && den == -1)
5555 return INT_MIN;
5556 return num / den;
5559 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
5561 if (den == 0)
5562 return 0;
5563 return num / den;
5566 uint32_t HELPER(rbit)(uint32_t x)
5568 return revbit32(x);
5571 #if defined(CONFIG_USER_ONLY)
5573 /* These should probably raise undefined insn exceptions. */
5574 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
5576 ARMCPU *cpu = arm_env_get_cpu(env);
5578 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
5581 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
5583 ARMCPU *cpu = arm_env_get_cpu(env);
5585 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
5586 return 0;
5589 void switch_mode(CPUARMState *env, int mode)
5591 ARMCPU *cpu = arm_env_get_cpu(env);
5593 if (mode != ARM_CPU_MODE_USR) {
5594 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
5598 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5599 uint32_t cur_el, bool secure)
5601 return 1;
5604 void aarch64_sync_64_to_32(CPUARMState *env)
5606 g_assert_not_reached();
5609 #else
5611 void switch_mode(CPUARMState *env, int mode)
5613 int old_mode;
5614 int i;
5616 old_mode = env->uncached_cpsr & CPSR_M;
5617 if (mode == old_mode)
5618 return;
5620 if (old_mode == ARM_CPU_MODE_FIQ) {
5621 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
5622 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
5623 } else if (mode == ARM_CPU_MODE_FIQ) {
5624 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
5625 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
5628 i = bank_number(old_mode);
5629 env->banked_r13[i] = env->regs[13];
5630 env->banked_r14[i] = env->regs[14];
5631 env->banked_spsr[i] = env->spsr;
5633 i = bank_number(mode);
5634 env->regs[13] = env->banked_r13[i];
5635 env->regs[14] = env->banked_r14[i];
5636 env->spsr = env->banked_spsr[i];
5639 /* Physical Interrupt Target EL Lookup Table
5641 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
5643 * The below multi-dimensional table is used for looking up the target
5644 * exception level given numerous condition criteria. Specifically, the
5645 * target EL is based on SCR and HCR routing controls as well as the
5646 * currently executing EL and secure state.
5648 * Dimensions:
5649 * target_el_table[2][2][2][2][2][4]
5650 * | | | | | +--- Current EL
5651 * | | | | +------ Non-secure(0)/Secure(1)
5652 * | | | +--------- HCR mask override
5653 * | | +------------ SCR exec state control
5654 * | +--------------- SCR mask override
5655 * +------------------ 32-bit(0)/64-bit(1) EL3
5657 * The table values are as such:
5658 * 0-3 = EL0-EL3
5659 * -1 = Cannot occur
5661 * The ARM ARM target EL table includes entries indicating that an "exception
5662 * is not taken". The two cases where this is applicable are:
5663 * 1) An exception is taken from EL3 but the SCR does not have the exception
5664 * routed to EL3.
5665 * 2) An exception is taken from EL2 but the HCR does not have the exception
5666 * routed to EL2.
5667 * In these two cases, the below table contain a target of EL1. This value is
5668 * returned as it is expected that the consumer of the table data will check
5669 * for "target EL >= current EL" to ensure the exception is not taken.
5671 * SCR HCR
5672 * 64 EA AMO From
5673 * BIT IRQ IMO Non-secure Secure
5674 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
5676 static const int8_t target_el_table[2][2][2][2][2][4] = {
5677 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5678 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
5679 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5680 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
5681 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5682 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
5683 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5684 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
5685 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
5686 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
5687 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
5688 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
5689 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5690 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
5691 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5692 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
5696 * Determine the target EL for physical exceptions
5698 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5699 uint32_t cur_el, bool secure)
5701 CPUARMState *env = cs->env_ptr;
5702 int rw;
5703 int scr;
5704 int hcr;
5705 int target_el;
5706 /* Is the highest EL AArch64? */
5707 int is64 = arm_feature(env, ARM_FEATURE_AARCH64);
5709 if (arm_feature(env, ARM_FEATURE_EL3)) {
5710 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
5711 } else {
5712 /* Either EL2 is the highest EL (and so the EL2 register width
5713 * is given by is64); or there is no EL2 or EL3, in which case
5714 * the value of 'rw' does not affect the table lookup anyway.
5716 rw = is64;
5719 switch (excp_idx) {
5720 case EXCP_IRQ:
5721 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
5722 hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
5723 break;
5724 case EXCP_FIQ:
5725 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
5726 hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
5727 break;
5728 default:
5729 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
5730 hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
5731 break;
5734 /* If HCR.TGE is set then HCR is treated as being 1 */
5735 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
5737 /* Perform a table-lookup for the target EL given the current state */
5738 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
5740 assert(target_el > 0);
5742 return target_el;
5745 static void v7m_push(CPUARMState *env, uint32_t val)
5747 CPUState *cs = CPU(arm_env_get_cpu(env));
5749 env->regs[13] -= 4;
5750 stl_phys(cs->as, env->regs[13], val);
5753 static uint32_t v7m_pop(CPUARMState *env)
5755 CPUState *cs = CPU(arm_env_get_cpu(env));
5756 uint32_t val;
5758 val = ldl_phys(cs->as, env->regs[13]);
5759 env->regs[13] += 4;
5760 return val;
5763 /* Switch to V7M main or process stack pointer. */
5764 static void switch_v7m_sp(CPUARMState *env, int process)
5766 uint32_t tmp;
5767 if (env->v7m.current_sp != process) {
5768 tmp = env->v7m.other_sp;
5769 env->v7m.other_sp = env->regs[13];
5770 env->regs[13] = tmp;
5771 env->v7m.current_sp = process;
5775 static void do_v7m_exception_exit(CPUARMState *env)
5777 uint32_t type;
5778 uint32_t xpsr;
5780 type = env->regs[15];
5781 if (env->v7m.exception != 0)
5782 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
5784 /* Switch to the target stack. */
5785 switch_v7m_sp(env, (type & 4) != 0);
5786 /* Pop registers. */
5787 env->regs[0] = v7m_pop(env);
5788 env->regs[1] = v7m_pop(env);
5789 env->regs[2] = v7m_pop(env);
5790 env->regs[3] = v7m_pop(env);
5791 env->regs[12] = v7m_pop(env);
5792 env->regs[14] = v7m_pop(env);
5793 env->regs[15] = v7m_pop(env);
5794 if (env->regs[15] & 1) {
5795 qemu_log_mask(LOG_GUEST_ERROR,
5796 "M profile return from interrupt with misaligned "
5797 "PC is UNPREDICTABLE\n");
5798 /* Actual hardware seems to ignore the lsbit, and there are several
5799 * RTOSes out there which incorrectly assume the r15 in the stack
5800 * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
5802 env->regs[15] &= ~1U;
5804 xpsr = v7m_pop(env);
5805 xpsr_write(env, xpsr, 0xfffffdff);
5806 /* Undo stack alignment. */
5807 if (xpsr & 0x200)
5808 env->regs[13] |= 4;
5809 /* ??? The exception return type specifies Thread/Handler mode. However
5810 this is also implied by the xPSR value. Not sure what to do
5811 if there is a mismatch. */
5812 /* ??? Likewise for mismatches between the CONTROL register and the stack
5813 pointer. */
5816 void arm_v7m_cpu_do_interrupt(CPUState *cs)
5818 ARMCPU *cpu = ARM_CPU(cs);
5819 CPUARMState *env = &cpu->env;
5820 uint32_t xpsr = xpsr_read(env);
5821 uint32_t lr;
5822 uint32_t addr;
5824 arm_log_exception(cs->exception_index);
5826 lr = 0xfffffff1;
5827 if (env->v7m.current_sp)
5828 lr |= 4;
5829 if (env->v7m.exception == 0)
5830 lr |= 8;
5832 /* For exceptions we just mark as pending on the NVIC, and let that
5833 handle it. */
5834 /* TODO: Need to escalate if the current priority is higher than the
5835 one we're raising. */
5836 switch (cs->exception_index) {
5837 case EXCP_UDEF:
5838 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
5839 return;
5840 case EXCP_SWI:
5841 /* The PC already points to the next instruction. */
5842 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
5843 return;
5844 case EXCP_PREFETCH_ABORT:
5845 case EXCP_DATA_ABORT:
5846 /* TODO: if we implemented the MPU registers, this is where we
5847 * should set the MMFAR, etc from exception.fsr and exception.vaddress.
5849 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
5850 return;
5851 case EXCP_BKPT:
5852 if (semihosting_enabled()) {
5853 int nr;
5854 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
5855 if (nr == 0xab) {
5856 env->regs[15] += 2;
5857 qemu_log_mask(CPU_LOG_INT,
5858 "...handling as semihosting call 0x%x\n",
5859 env->regs[0]);
5860 env->regs[0] = do_arm_semihosting(env);
5861 return;
5864 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
5865 return;
5866 case EXCP_IRQ:
5867 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
5868 break;
5869 case EXCP_EXCEPTION_EXIT:
5870 do_v7m_exception_exit(env);
5871 return;
5872 default:
5873 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
5874 return; /* Never happens. Keep compiler happy. */
5877 /* Align stack pointer. */
5878 /* ??? Should only do this if Configuration Control Register
5879 STACKALIGN bit is set. */
5880 if (env->regs[13] & 4) {
5881 env->regs[13] -= 4;
5882 xpsr |= 0x200;
5884 /* Switch to the handler mode. */
5885 v7m_push(env, xpsr);
5886 v7m_push(env, env->regs[15]);
5887 v7m_push(env, env->regs[14]);
5888 v7m_push(env, env->regs[12]);
5889 v7m_push(env, env->regs[3]);
5890 v7m_push(env, env->regs[2]);
5891 v7m_push(env, env->regs[1]);
5892 v7m_push(env, env->regs[0]);
5893 switch_v7m_sp(env, 0);
5894 /* Clear IT bits */
5895 env->condexec_bits = 0;
5896 env->regs[14] = lr;
5897 addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4);
5898 env->regs[15] = addr & 0xfffffffe;
5899 env->thumb = addr & 1;
5902 /* Function used to synchronize QEMU's AArch64 register set with AArch32
5903 * register set. This is necessary when switching between AArch32 and AArch64
5904 * execution state.
5906 void aarch64_sync_32_to_64(CPUARMState *env)
5908 int i;
5909 uint32_t mode = env->uncached_cpsr & CPSR_M;
5911 /* We can blanket copy R[0:7] to X[0:7] */
5912 for (i = 0; i < 8; i++) {
5913 env->xregs[i] = env->regs[i];
5916 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
5917 * Otherwise, they come from the banked user regs.
5919 if (mode == ARM_CPU_MODE_FIQ) {
5920 for (i = 8; i < 13; i++) {
5921 env->xregs[i] = env->usr_regs[i - 8];
5923 } else {
5924 for (i = 8; i < 13; i++) {
5925 env->xregs[i] = env->regs[i];
5929 /* Registers x13-x23 are the various mode SP and FP registers. Registers
5930 * r13 and r14 are only copied if we are in that mode, otherwise we copy
5931 * from the mode banked register.
5933 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
5934 env->xregs[13] = env->regs[13];
5935 env->xregs[14] = env->regs[14];
5936 } else {
5937 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
5938 /* HYP is an exception in that it is copied from r14 */
5939 if (mode == ARM_CPU_MODE_HYP) {
5940 env->xregs[14] = env->regs[14];
5941 } else {
5942 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
5946 if (mode == ARM_CPU_MODE_HYP) {
5947 env->xregs[15] = env->regs[13];
5948 } else {
5949 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
5952 if (mode == ARM_CPU_MODE_IRQ) {
5953 env->xregs[16] = env->regs[14];
5954 env->xregs[17] = env->regs[13];
5955 } else {
5956 env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
5957 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
5960 if (mode == ARM_CPU_MODE_SVC) {
5961 env->xregs[18] = env->regs[14];
5962 env->xregs[19] = env->regs[13];
5963 } else {
5964 env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
5965 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
5968 if (mode == ARM_CPU_MODE_ABT) {
5969 env->xregs[20] = env->regs[14];
5970 env->xregs[21] = env->regs[13];
5971 } else {
5972 env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
5973 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
5976 if (mode == ARM_CPU_MODE_UND) {
5977 env->xregs[22] = env->regs[14];
5978 env->xregs[23] = env->regs[13];
5979 } else {
5980 env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
5981 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
5984 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
5985 * mode, then we can copy from r8-r14. Otherwise, we copy from the
5986 * FIQ bank for r8-r14.
5988 if (mode == ARM_CPU_MODE_FIQ) {
5989 for (i = 24; i < 31; i++) {
5990 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
5992 } else {
5993 for (i = 24; i < 29; i++) {
5994 env->xregs[i] = env->fiq_regs[i - 24];
5996 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
5997 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
6000 env->pc = env->regs[15];
6003 /* Function used to synchronize QEMU's AArch32 register set with AArch64
6004 * register set. This is necessary when switching between AArch32 and AArch64
6005 * execution state.
6007 void aarch64_sync_64_to_32(CPUARMState *env)
6009 int i;
6010 uint32_t mode = env->uncached_cpsr & CPSR_M;
6012 /* We can blanket copy X[0:7] to R[0:7] */
6013 for (i = 0; i < 8; i++) {
6014 env->regs[i] = env->xregs[i];
6017 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
6018 * Otherwise, we copy x8-x12 into the banked user regs.
6020 if (mode == ARM_CPU_MODE_FIQ) {
6021 for (i = 8; i < 13; i++) {
6022 env->usr_regs[i - 8] = env->xregs[i];
6024 } else {
6025 for (i = 8; i < 13; i++) {
6026 env->regs[i] = env->xregs[i];
6030 /* Registers r13 & r14 depend on the current mode.
6031 * If we are in a given mode, we copy the corresponding x registers to r13
6032 * and r14. Otherwise, we copy the x register to the banked r13 and r14
6033 * for the mode.
6035 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
6036 env->regs[13] = env->xregs[13];
6037 env->regs[14] = env->xregs[14];
6038 } else {
6039 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
6041 /* HYP is an exception in that it does not have its own banked r14 but
6042 * shares the USR r14
6044 if (mode == ARM_CPU_MODE_HYP) {
6045 env->regs[14] = env->xregs[14];
6046 } else {
6047 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
6051 if (mode == ARM_CPU_MODE_HYP) {
6052 env->regs[13] = env->xregs[15];
6053 } else {
6054 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
6057 if (mode == ARM_CPU_MODE_IRQ) {
6058 env->regs[14] = env->xregs[16];
6059 env->regs[13] = env->xregs[17];
6060 } else {
6061 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
6062 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
6065 if (mode == ARM_CPU_MODE_SVC) {
6066 env->regs[14] = env->xregs[18];
6067 env->regs[13] = env->xregs[19];
6068 } else {
6069 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
6070 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
6073 if (mode == ARM_CPU_MODE_ABT) {
6074 env->regs[14] = env->xregs[20];
6075 env->regs[13] = env->xregs[21];
6076 } else {
6077 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
6078 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
6081 if (mode == ARM_CPU_MODE_UND) {
6082 env->regs[14] = env->xregs[22];
6083 env->regs[13] = env->xregs[23];
6084 } else {
6085 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
6086 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
6089 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
6090 * mode, then we can copy to r8-r14. Otherwise, we copy to the
6091 * FIQ bank for r8-r14.
6093 if (mode == ARM_CPU_MODE_FIQ) {
6094 for (i = 24; i < 31; i++) {
6095 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
6097 } else {
6098 for (i = 24; i < 29; i++) {
6099 env->fiq_regs[i - 24] = env->xregs[i];
6101 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
6102 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
6105 env->regs[15] = env->pc;
6108 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
6110 ARMCPU *cpu = ARM_CPU(cs);
6111 CPUARMState *env = &cpu->env;
6112 uint32_t addr;
6113 uint32_t mask;
6114 int new_mode;
6115 uint32_t offset;
6116 uint32_t moe;
6118 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
6119 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
6120 case EC_BREAKPOINT:
6121 case EC_BREAKPOINT_SAME_EL:
6122 moe = 1;
6123 break;
6124 case EC_WATCHPOINT:
6125 case EC_WATCHPOINT_SAME_EL:
6126 moe = 10;
6127 break;
6128 case EC_AA32_BKPT:
6129 moe = 3;
6130 break;
6131 case EC_VECTORCATCH:
6132 moe = 5;
6133 break;
6134 default:
6135 moe = 0;
6136 break;
6139 if (moe) {
6140 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
6143 /* TODO: Vectored interrupt controller. */
6144 switch (cs->exception_index) {
6145 case EXCP_UDEF:
6146 new_mode = ARM_CPU_MODE_UND;
6147 addr = 0x04;
6148 mask = CPSR_I;
6149 if (env->thumb)
6150 offset = 2;
6151 else
6152 offset = 4;
6153 break;
6154 case EXCP_SWI:
6155 new_mode = ARM_CPU_MODE_SVC;
6156 addr = 0x08;
6157 mask = CPSR_I;
6158 /* The PC already points to the next instruction. */
6159 offset = 0;
6160 break;
6161 case EXCP_BKPT:
6162 env->exception.fsr = 2;
6163 /* Fall through to prefetch abort. */
6164 case EXCP_PREFETCH_ABORT:
6165 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
6166 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
6167 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
6168 env->exception.fsr, (uint32_t)env->exception.vaddress);
6169 new_mode = ARM_CPU_MODE_ABT;
6170 addr = 0x0c;
6171 mask = CPSR_A | CPSR_I;
6172 offset = 4;
6173 break;
6174 case EXCP_DATA_ABORT:
6175 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
6176 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
6177 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
6178 env->exception.fsr,
6179 (uint32_t)env->exception.vaddress);
6180 new_mode = ARM_CPU_MODE_ABT;
6181 addr = 0x10;
6182 mask = CPSR_A | CPSR_I;
6183 offset = 8;
6184 break;
6185 case EXCP_IRQ:
6186 new_mode = ARM_CPU_MODE_IRQ;
6187 addr = 0x18;
6188 /* Disable IRQ and imprecise data aborts. */
6189 mask = CPSR_A | CPSR_I;
6190 offset = 4;
6191 if (env->cp15.scr_el3 & SCR_IRQ) {
6192 /* IRQ routed to monitor mode */
6193 new_mode = ARM_CPU_MODE_MON;
6194 mask |= CPSR_F;
6196 break;
6197 case EXCP_FIQ:
6198 new_mode = ARM_CPU_MODE_FIQ;
6199 addr = 0x1c;
6200 /* Disable FIQ, IRQ and imprecise data aborts. */
6201 mask = CPSR_A | CPSR_I | CPSR_F;
6202 if (env->cp15.scr_el3 & SCR_FIQ) {
6203 /* FIQ routed to monitor mode */
6204 new_mode = ARM_CPU_MODE_MON;
6206 offset = 4;
6207 break;
6208 case EXCP_SMC:
6209 new_mode = ARM_CPU_MODE_MON;
6210 addr = 0x08;
6211 mask = CPSR_A | CPSR_I | CPSR_F;
6212 offset = 0;
6213 break;
6214 default:
6215 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
6216 return; /* Never happens. Keep compiler happy. */
6219 if (new_mode == ARM_CPU_MODE_MON) {
6220 addr += env->cp15.mvbar;
6221 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
6222 /* High vectors. When enabled, base address cannot be remapped. */
6223 addr += 0xffff0000;
6224 } else {
6225 /* ARM v7 architectures provide a vector base address register to remap
6226 * the interrupt vector table.
6227 * This register is only followed in non-monitor mode, and is banked.
6228 * Note: only bits 31:5 are valid.
6230 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
6233 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
6234 env->cp15.scr_el3 &= ~SCR_NS;
6237 switch_mode (env, new_mode);
6238 /* For exceptions taken to AArch32 we must clear the SS bit in both
6239 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
6241 env->uncached_cpsr &= ~PSTATE_SS;
6242 env->spsr = cpsr_read(env);
6243 /* Clear IT bits. */
6244 env->condexec_bits = 0;
6245 /* Switch to the new mode, and to the correct instruction set. */
6246 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
6247 /* Set new mode endianness */
6248 env->uncached_cpsr &= ~CPSR_E;
6249 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
6250 env->uncached_cpsr |= ~CPSR_E;
6252 env->daif |= mask;
6253 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
6254 * and we should just guard the thumb mode on V4 */
6255 if (arm_feature(env, ARM_FEATURE_V4T)) {
6256 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
6258 env->regs[14] = env->regs[15] + offset;
6259 env->regs[15] = addr;
6262 /* Handle exception entry to a target EL which is using AArch64 */
6263 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
6265 ARMCPU *cpu = ARM_CPU(cs);
6266 CPUARMState *env = &cpu->env;
6267 unsigned int new_el = env->exception.target_el;
6268 target_ulong addr = env->cp15.vbar_el[new_el];
6269 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
6271 if (arm_current_el(env) < new_el) {
6272 /* Entry vector offset depends on whether the implemented EL
6273 * immediately lower than the target level is using AArch32 or AArch64
6275 bool is_aa64;
6277 switch (new_el) {
6278 case 3:
6279 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
6280 break;
6281 case 2:
6282 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
6283 break;
6284 case 1:
6285 is_aa64 = is_a64(env);
6286 break;
6287 default:
6288 g_assert_not_reached();
6291 if (is_aa64) {
6292 addr += 0x400;
6293 } else {
6294 addr += 0x600;
6296 } else if (pstate_read(env) & PSTATE_SP) {
6297 addr += 0x200;
6300 switch (cs->exception_index) {
6301 case EXCP_PREFETCH_ABORT:
6302 case EXCP_DATA_ABORT:
6303 env->cp15.far_el[new_el] = env->exception.vaddress;
6304 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
6305 env->cp15.far_el[new_el]);
6306 /* fall through */
6307 case EXCP_BKPT:
6308 case EXCP_UDEF:
6309 case EXCP_SWI:
6310 case EXCP_HVC:
6311 case EXCP_HYP_TRAP:
6312 case EXCP_SMC:
6313 env->cp15.esr_el[new_el] = env->exception.syndrome;
6314 break;
6315 case EXCP_IRQ:
6316 case EXCP_VIRQ:
6317 addr += 0x80;
6318 break;
6319 case EXCP_FIQ:
6320 case EXCP_VFIQ:
6321 addr += 0x100;
6322 break;
6323 case EXCP_SEMIHOST:
6324 qemu_log_mask(CPU_LOG_INT,
6325 "...handling as semihosting call 0x%" PRIx64 "\n",
6326 env->xregs[0]);
6327 env->xregs[0] = do_arm_semihosting(env);
6328 return;
6329 default:
6330 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
6333 if (is_a64(env)) {
6334 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
6335 aarch64_save_sp(env, arm_current_el(env));
6336 env->elr_el[new_el] = env->pc;
6337 } else {
6338 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
6339 if (!env->thumb) {
6340 env->cp15.esr_el[new_el] |= 1 << 25;
6342 env->elr_el[new_el] = env->regs[15];
6344 aarch64_sync_32_to_64(env);
6346 env->condexec_bits = 0;
6348 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
6349 env->elr_el[new_el]);
6351 pstate_write(env, PSTATE_DAIF | new_mode);
6352 env->aarch64 = 1;
6353 aarch64_restore_sp(env, new_el);
6355 env->pc = addr;
6357 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
6358 new_el, env->pc, pstate_read(env));
6361 static inline bool check_for_semihosting(CPUState *cs)
6363 /* Check whether this exception is a semihosting call; if so
6364 * then handle it and return true; otherwise return false.
6366 ARMCPU *cpu = ARM_CPU(cs);
6367 CPUARMState *env = &cpu->env;
6369 if (is_a64(env)) {
6370 if (cs->exception_index == EXCP_SEMIHOST) {
6371 /* This is always the 64-bit semihosting exception.
6372 * The "is this usermode" and "is semihosting enabled"
6373 * checks have been done at translate time.
6375 qemu_log_mask(CPU_LOG_INT,
6376 "...handling as semihosting call 0x%" PRIx64 "\n",
6377 env->xregs[0]);
6378 env->xregs[0] = do_arm_semihosting(env);
6379 return true;
6381 return false;
6382 } else {
6383 uint32_t imm;
6385 /* Only intercept calls from privileged modes, to provide some
6386 * semblance of security.
6388 if (!semihosting_enabled() ||
6389 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR)) {
6390 return false;
6393 switch (cs->exception_index) {
6394 case EXCP_SWI:
6395 /* Check for semihosting interrupt. */
6396 if (env->thumb) {
6397 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
6398 & 0xff;
6399 if (imm == 0xab) {
6400 break;
6402 } else {
6403 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
6404 & 0xffffff;
6405 if (imm == 0x123456) {
6406 break;
6409 return false;
6410 case EXCP_BKPT:
6411 /* See if this is a semihosting syscall. */
6412 if (env->thumb) {
6413 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
6414 & 0xff;
6415 if (imm == 0xab) {
6416 env->regs[15] += 2;
6417 break;
6420 return false;
6421 default:
6422 return false;
6425 qemu_log_mask(CPU_LOG_INT,
6426 "...handling as semihosting call 0x%x\n",
6427 env->regs[0]);
6428 env->regs[0] = do_arm_semihosting(env);
6429 return true;
6433 /* Handle a CPU exception for A and R profile CPUs.
6434 * Do any appropriate logging, handle PSCI calls, and then hand off
6435 * to the AArch64-entry or AArch32-entry function depending on the
6436 * target exception level's register width.
6438 void arm_cpu_do_interrupt(CPUState *cs)
6440 ARMCPU *cpu = ARM_CPU(cs);
6441 CPUARMState *env = &cpu->env;
6442 unsigned int new_el = env->exception.target_el;
6444 assert(!IS_M(env));
6446 arm_log_exception(cs->exception_index);
6447 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
6448 new_el);
6449 if (qemu_loglevel_mask(CPU_LOG_INT)
6450 && !excp_is_internal(cs->exception_index)) {
6451 qemu_log_mask(CPU_LOG_INT, "...with ESR %x/0x%" PRIx32 "\n",
6452 env->exception.syndrome >> ARM_EL_EC_SHIFT,
6453 env->exception.syndrome);
6456 if (arm_is_psci_call(cpu, cs->exception_index)) {
6457 arm_handle_psci_call(cpu);
6458 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
6459 return;
6462 /* Semihosting semantics depend on the register width of the
6463 * code that caused the exception, not the target exception level,
6464 * so must be handled here.
6466 if (check_for_semihosting(cs)) {
6467 return;
6470 assert(!excp_is_internal(cs->exception_index));
6471 if (arm_el_is_aa64(env, new_el)) {
6472 arm_cpu_do_interrupt_aarch64(cs);
6473 } else {
6474 arm_cpu_do_interrupt_aarch32(cs);
6477 if (!kvm_enabled()) {
6478 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
6482 /* Return the exception level which controls this address translation regime */
6483 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
6485 switch (mmu_idx) {
6486 case ARMMMUIdx_S2NS:
6487 case ARMMMUIdx_S1E2:
6488 return 2;
6489 case ARMMMUIdx_S1E3:
6490 return 3;
6491 case ARMMMUIdx_S1SE0:
6492 return arm_el_is_aa64(env, 3) ? 1 : 3;
6493 case ARMMMUIdx_S1SE1:
6494 case ARMMMUIdx_S1NSE0:
6495 case ARMMMUIdx_S1NSE1:
6496 return 1;
6497 default:
6498 g_assert_not_reached();
6502 /* Return true if this address translation regime is secure */
6503 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
6505 switch (mmu_idx) {
6506 case ARMMMUIdx_S12NSE0:
6507 case ARMMMUIdx_S12NSE1:
6508 case ARMMMUIdx_S1NSE0:
6509 case ARMMMUIdx_S1NSE1:
6510 case ARMMMUIdx_S1E2:
6511 case ARMMMUIdx_S2NS:
6512 return false;
6513 case ARMMMUIdx_S1E3:
6514 case ARMMMUIdx_S1SE0:
6515 case ARMMMUIdx_S1SE1:
6516 return true;
6517 default:
6518 g_assert_not_reached();
6522 /* Return the SCTLR value which controls this address translation regime */
6523 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
6525 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
6528 /* Return true if the specified stage of address translation is disabled */
6529 static inline bool regime_translation_disabled(CPUARMState *env,
6530 ARMMMUIdx mmu_idx)
6532 if (mmu_idx == ARMMMUIdx_S2NS) {
6533 return (env->cp15.hcr_el2 & HCR_VM) == 0;
6535 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
6538 static inline bool regime_translation_big_endian(CPUARMState *env,
6539 ARMMMUIdx mmu_idx)
6541 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
6544 /* Return the TCR controlling this translation regime */
6545 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
6547 if (mmu_idx == ARMMMUIdx_S2NS) {
6548 return &env->cp15.vtcr_el2;
6550 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
6553 /* Return the TTBR associated with this translation regime */
6554 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
6555 int ttbrn)
6557 if (mmu_idx == ARMMMUIdx_S2NS) {
6558 return env->cp15.vttbr_el2;
6560 if (ttbrn == 0) {
6561 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
6562 } else {
6563 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
6567 /* Return true if the translation regime is using LPAE format page tables */
6568 static inline bool regime_using_lpae_format(CPUARMState *env,
6569 ARMMMUIdx mmu_idx)
6571 int el = regime_el(env, mmu_idx);
6572 if (el == 2 || arm_el_is_aa64(env, el)) {
6573 return true;
6575 if (arm_feature(env, ARM_FEATURE_LPAE)
6576 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
6577 return true;
6579 return false;
6582 /* Returns true if the stage 1 translation regime is using LPAE format page
6583 * tables. Used when raising alignment exceptions, whose FSR changes depending
6584 * on whether the long or short descriptor format is in use. */
6585 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
6587 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
6588 mmu_idx += ARMMMUIdx_S1NSE0;
6591 return regime_using_lpae_format(env, mmu_idx);
6594 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
6596 switch (mmu_idx) {
6597 case ARMMMUIdx_S1SE0:
6598 case ARMMMUIdx_S1NSE0:
6599 return true;
6600 default:
6601 return false;
6602 case ARMMMUIdx_S12NSE0:
6603 case ARMMMUIdx_S12NSE1:
6604 g_assert_not_reached();
6608 /* Translate section/page access permissions to page
6609 * R/W protection flags
6611 * @env: CPUARMState
6612 * @mmu_idx: MMU index indicating required translation regime
6613 * @ap: The 3-bit access permissions (AP[2:0])
6614 * @domain_prot: The 2-bit domain access permissions
6616 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
6617 int ap, int domain_prot)
6619 bool is_user = regime_is_user(env, mmu_idx);
6621 if (domain_prot == 3) {
6622 return PAGE_READ | PAGE_WRITE;
6625 switch (ap) {
6626 case 0:
6627 if (arm_feature(env, ARM_FEATURE_V7)) {
6628 return 0;
6630 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
6631 case SCTLR_S:
6632 return is_user ? 0 : PAGE_READ;
6633 case SCTLR_R:
6634 return PAGE_READ;
6635 default:
6636 return 0;
6638 case 1:
6639 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
6640 case 2:
6641 if (is_user) {
6642 return PAGE_READ;
6643 } else {
6644 return PAGE_READ | PAGE_WRITE;
6646 case 3:
6647 return PAGE_READ | PAGE_WRITE;
6648 case 4: /* Reserved. */
6649 return 0;
6650 case 5:
6651 return is_user ? 0 : PAGE_READ;
6652 case 6:
6653 return PAGE_READ;
6654 case 7:
6655 if (!arm_feature(env, ARM_FEATURE_V6K)) {
6656 return 0;
6658 return PAGE_READ;
6659 default:
6660 g_assert_not_reached();
6664 /* Translate section/page access permissions to page
6665 * R/W protection flags.
6667 * @ap: The 2-bit simple AP (AP[2:1])
6668 * @is_user: TRUE if accessing from PL0
6670 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
6672 switch (ap) {
6673 case 0:
6674 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
6675 case 1:
6676 return PAGE_READ | PAGE_WRITE;
6677 case 2:
6678 return is_user ? 0 : PAGE_READ;
6679 case 3:
6680 return PAGE_READ;
6681 default:
6682 g_assert_not_reached();
6686 static inline int
6687 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
6689 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
6692 /* Translate S2 section/page access permissions to protection flags
6694 * @env: CPUARMState
6695 * @s2ap: The 2-bit stage2 access permissions (S2AP)
6696 * @xn: XN (execute-never) bit
6698 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
6700 int prot = 0;
6702 if (s2ap & 1) {
6703 prot |= PAGE_READ;
6705 if (s2ap & 2) {
6706 prot |= PAGE_WRITE;
6708 if (!xn) {
6709 prot |= PAGE_EXEC;
6711 return prot;
6714 /* Translate section/page access permissions to protection flags
6716 * @env: CPUARMState
6717 * @mmu_idx: MMU index indicating required translation regime
6718 * @is_aa64: TRUE if AArch64
6719 * @ap: The 2-bit simple AP (AP[2:1])
6720 * @ns: NS (non-secure) bit
6721 * @xn: XN (execute-never) bit
6722 * @pxn: PXN (privileged execute-never) bit
6724 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
6725 int ap, int ns, int xn, int pxn)
6727 bool is_user = regime_is_user(env, mmu_idx);
6728 int prot_rw, user_rw;
6729 bool have_wxn;
6730 int wxn = 0;
6732 assert(mmu_idx != ARMMMUIdx_S2NS);
6734 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
6735 if (is_user) {
6736 prot_rw = user_rw;
6737 } else {
6738 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
6741 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
6742 return prot_rw;
6745 /* TODO have_wxn should be replaced with
6746 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
6747 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
6748 * compatible processors have EL2, which is required for [U]WXN.
6750 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
6752 if (have_wxn) {
6753 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
6756 if (is_aa64) {
6757 switch (regime_el(env, mmu_idx)) {
6758 case 1:
6759 if (!is_user) {
6760 xn = pxn || (user_rw & PAGE_WRITE);
6762 break;
6763 case 2:
6764 case 3:
6765 break;
6767 } else if (arm_feature(env, ARM_FEATURE_V7)) {
6768 switch (regime_el(env, mmu_idx)) {
6769 case 1:
6770 case 3:
6771 if (is_user) {
6772 xn = xn || !(user_rw & PAGE_READ);
6773 } else {
6774 int uwxn = 0;
6775 if (have_wxn) {
6776 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
6778 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
6779 (uwxn && (user_rw & PAGE_WRITE));
6781 break;
6782 case 2:
6783 break;
6785 } else {
6786 xn = wxn = 0;
6789 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
6790 return prot_rw;
6792 return prot_rw | PAGE_EXEC;
6795 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
6796 uint32_t *table, uint32_t address)
6798 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
6799 TCR *tcr = regime_tcr(env, mmu_idx);
6801 if (address & tcr->mask) {
6802 if (tcr->raw_tcr & TTBCR_PD1) {
6803 /* Translation table walk disabled for TTBR1 */
6804 return false;
6806 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
6807 } else {
6808 if (tcr->raw_tcr & TTBCR_PD0) {
6809 /* Translation table walk disabled for TTBR0 */
6810 return false;
6812 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
6814 *table |= (address >> 18) & 0x3ffc;
6815 return true;
6818 /* Translate a S1 pagetable walk through S2 if needed. */
6819 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
6820 hwaddr addr, MemTxAttrs txattrs,
6821 uint32_t *fsr,
6822 ARMMMUFaultInfo *fi)
6824 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
6825 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
6826 target_ulong s2size;
6827 hwaddr s2pa;
6828 int s2prot;
6829 int ret;
6831 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
6832 &txattrs, &s2prot, &s2size, fsr, fi);
6833 if (ret) {
6834 fi->s2addr = addr;
6835 fi->stage2 = true;
6836 fi->s1ptw = true;
6837 return ~0;
6839 addr = s2pa;
6841 return addr;
6844 /* All loads done in the course of a page table walk go through here.
6845 * TODO: rather than ignoring errors from physical memory reads (which
6846 * are external aborts in ARM terminology) we should propagate this
6847 * error out so that we can turn it into a Data Abort if this walk
6848 * was being done for a CPU load/store or an address translation instruction
6849 * (but not if it was for a debug access).
6851 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
6852 ARMMMUIdx mmu_idx, uint32_t *fsr,
6853 ARMMMUFaultInfo *fi)
6855 ARMCPU *cpu = ARM_CPU(cs);
6856 CPUARMState *env = &cpu->env;
6857 MemTxAttrs attrs = {};
6858 AddressSpace *as;
6860 attrs.secure = is_secure;
6861 as = arm_addressspace(cs, attrs);
6862 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
6863 if (fi->s1ptw) {
6864 return 0;
6866 if (regime_translation_big_endian(env, mmu_idx)) {
6867 return address_space_ldl_be(as, addr, attrs, NULL);
6868 } else {
6869 return address_space_ldl_le(as, addr, attrs, NULL);
6873 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
6874 ARMMMUIdx mmu_idx, uint32_t *fsr,
6875 ARMMMUFaultInfo *fi)
6877 ARMCPU *cpu = ARM_CPU(cs);
6878 CPUARMState *env = &cpu->env;
6879 MemTxAttrs attrs = {};
6880 AddressSpace *as;
6882 attrs.secure = is_secure;
6883 as = arm_addressspace(cs, attrs);
6884 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
6885 if (fi->s1ptw) {
6886 return 0;
6888 if (regime_translation_big_endian(env, mmu_idx)) {
6889 return address_space_ldq_be(as, addr, attrs, NULL);
6890 } else {
6891 return address_space_ldq_le(as, addr, attrs, NULL);
6895 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
6896 int access_type, ARMMMUIdx mmu_idx,
6897 hwaddr *phys_ptr, int *prot,
6898 target_ulong *page_size, uint32_t *fsr,
6899 ARMMMUFaultInfo *fi)
6901 CPUState *cs = CPU(arm_env_get_cpu(env));
6902 int code;
6903 uint32_t table;
6904 uint32_t desc;
6905 int type;
6906 int ap;
6907 int domain = 0;
6908 int domain_prot;
6909 hwaddr phys_addr;
6910 uint32_t dacr;
6912 /* Pagetable walk. */
6913 /* Lookup l1 descriptor. */
6914 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
6915 /* Section translation fault if page walk is disabled by PD0 or PD1 */
6916 code = 5;
6917 goto do_fault;
6919 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
6920 mmu_idx, fsr, fi);
6921 type = (desc & 3);
6922 domain = (desc >> 5) & 0x0f;
6923 if (regime_el(env, mmu_idx) == 1) {
6924 dacr = env->cp15.dacr_ns;
6925 } else {
6926 dacr = env->cp15.dacr_s;
6928 domain_prot = (dacr >> (domain * 2)) & 3;
6929 if (type == 0) {
6930 /* Section translation fault. */
6931 code = 5;
6932 goto do_fault;
6934 if (domain_prot == 0 || domain_prot == 2) {
6935 if (type == 2)
6936 code = 9; /* Section domain fault. */
6937 else
6938 code = 11; /* Page domain fault. */
6939 goto do_fault;
6941 if (type == 2) {
6942 /* 1Mb section. */
6943 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
6944 ap = (desc >> 10) & 3;
6945 code = 13;
6946 *page_size = 1024 * 1024;
6947 } else {
6948 /* Lookup l2 entry. */
6949 if (type == 1) {
6950 /* Coarse pagetable. */
6951 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
6952 } else {
6953 /* Fine pagetable. */
6954 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
6956 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
6957 mmu_idx, fsr, fi);
6958 switch (desc & 3) {
6959 case 0: /* Page translation fault. */
6960 code = 7;
6961 goto do_fault;
6962 case 1: /* 64k page. */
6963 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
6964 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
6965 *page_size = 0x10000;
6966 break;
6967 case 2: /* 4k page. */
6968 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
6969 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
6970 *page_size = 0x1000;
6971 break;
6972 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
6973 if (type == 1) {
6974 /* ARMv6/XScale extended small page format */
6975 if (arm_feature(env, ARM_FEATURE_XSCALE)
6976 || arm_feature(env, ARM_FEATURE_V6)) {
6977 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
6978 *page_size = 0x1000;
6979 } else {
6980 /* UNPREDICTABLE in ARMv5; we choose to take a
6981 * page translation fault.
6983 code = 7;
6984 goto do_fault;
6986 } else {
6987 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
6988 *page_size = 0x400;
6990 ap = (desc >> 4) & 3;
6991 break;
6992 default:
6993 /* Never happens, but compiler isn't smart enough to tell. */
6994 abort();
6996 code = 15;
6998 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
6999 *prot |= *prot ? PAGE_EXEC : 0;
7000 if (!(*prot & (1 << access_type))) {
7001 /* Access permission fault. */
7002 goto do_fault;
7004 *phys_ptr = phys_addr;
7005 return false;
7006 do_fault:
7007 *fsr = code | (domain << 4);
7008 return true;
7011 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
7012 int access_type, ARMMMUIdx mmu_idx,
7013 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
7014 target_ulong *page_size, uint32_t *fsr,
7015 ARMMMUFaultInfo *fi)
7017 CPUState *cs = CPU(arm_env_get_cpu(env));
7018 int code;
7019 uint32_t table;
7020 uint32_t desc;
7021 uint32_t xn;
7022 uint32_t pxn = 0;
7023 int type;
7024 int ap;
7025 int domain = 0;
7026 int domain_prot;
7027 hwaddr phys_addr;
7028 uint32_t dacr;
7029 bool ns;
7031 /* Pagetable walk. */
7032 /* Lookup l1 descriptor. */
7033 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
7034 /* Section translation fault if page walk is disabled by PD0 or PD1 */
7035 code = 5;
7036 goto do_fault;
7038 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7039 mmu_idx, fsr, fi);
7040 type = (desc & 3);
7041 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
7042 /* Section translation fault, or attempt to use the encoding
7043 * which is Reserved on implementations without PXN.
7045 code = 5;
7046 goto do_fault;
7048 if ((type == 1) || !(desc & (1 << 18))) {
7049 /* Page or Section. */
7050 domain = (desc >> 5) & 0x0f;
7052 if (regime_el(env, mmu_idx) == 1) {
7053 dacr = env->cp15.dacr_ns;
7054 } else {
7055 dacr = env->cp15.dacr_s;
7057 domain_prot = (dacr >> (domain * 2)) & 3;
7058 if (domain_prot == 0 || domain_prot == 2) {
7059 if (type != 1) {
7060 code = 9; /* Section domain fault. */
7061 } else {
7062 code = 11; /* Page domain fault. */
7064 goto do_fault;
7066 if (type != 1) {
7067 if (desc & (1 << 18)) {
7068 /* Supersection. */
7069 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
7070 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
7071 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
7072 *page_size = 0x1000000;
7073 } else {
7074 /* Section. */
7075 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
7076 *page_size = 0x100000;
7078 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
7079 xn = desc & (1 << 4);
7080 pxn = desc & 1;
7081 code = 13;
7082 ns = extract32(desc, 19, 1);
7083 } else {
7084 if (arm_feature(env, ARM_FEATURE_PXN)) {
7085 pxn = (desc >> 2) & 1;
7087 ns = extract32(desc, 3, 1);
7088 /* Lookup l2 entry. */
7089 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
7090 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7091 mmu_idx, fsr, fi);
7092 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
7093 switch (desc & 3) {
7094 case 0: /* Page translation fault. */
7095 code = 7;
7096 goto do_fault;
7097 case 1: /* 64k page. */
7098 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
7099 xn = desc & (1 << 15);
7100 *page_size = 0x10000;
7101 break;
7102 case 2: case 3: /* 4k page. */
7103 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
7104 xn = desc & 1;
7105 *page_size = 0x1000;
7106 break;
7107 default:
7108 /* Never happens, but compiler isn't smart enough to tell. */
7109 abort();
7111 code = 15;
7113 if (domain_prot == 3) {
7114 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
7115 } else {
7116 if (pxn && !regime_is_user(env, mmu_idx)) {
7117 xn = 1;
7119 if (xn && access_type == 2)
7120 goto do_fault;
7122 if (arm_feature(env, ARM_FEATURE_V6K) &&
7123 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
7124 /* The simplified model uses AP[0] as an access control bit. */
7125 if ((ap & 1) == 0) {
7126 /* Access flag fault. */
7127 code = (code == 15) ? 6 : 3;
7128 goto do_fault;
7130 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
7131 } else {
7132 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
7134 if (*prot && !xn) {
7135 *prot |= PAGE_EXEC;
7137 if (!(*prot & (1 << access_type))) {
7138 /* Access permission fault. */
7139 goto do_fault;
7142 if (ns) {
7143 /* The NS bit will (as required by the architecture) have no effect if
7144 * the CPU doesn't support TZ or this is a non-secure translation
7145 * regime, because the attribute will already be non-secure.
7147 attrs->secure = false;
7149 *phys_ptr = phys_addr;
7150 return false;
7151 do_fault:
7152 *fsr = code | (domain << 4);
7153 return true;
7156 /* Fault type for long-descriptor MMU fault reporting; this corresponds
7157 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
7159 typedef enum {
7160 translation_fault = 1,
7161 access_fault = 2,
7162 permission_fault = 3,
7163 } MMUFaultType;
7166 * check_s2_mmu_setup
7167 * @cpu: ARMCPU
7168 * @is_aa64: True if the translation regime is in AArch64 state
7169 * @startlevel: Suggested starting level
7170 * @inputsize: Bitsize of IPAs
7171 * @stride: Page-table stride (See the ARM ARM)
7173 * Returns true if the suggested S2 translation parameters are OK and
7174 * false otherwise.
7176 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
7177 int inputsize, int stride)
7179 const int grainsize = stride + 3;
7180 int startsizecheck;
7182 /* Negative levels are never allowed. */
7183 if (level < 0) {
7184 return false;
7187 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
7188 if (startsizecheck < 1 || startsizecheck > stride + 4) {
7189 return false;
7192 if (is_aa64) {
7193 CPUARMState *env = &cpu->env;
7194 unsigned int pamax = arm_pamax(cpu);
7196 switch (stride) {
7197 case 13: /* 64KB Pages. */
7198 if (level == 0 || (level == 1 && pamax <= 42)) {
7199 return false;
7201 break;
7202 case 11: /* 16KB Pages. */
7203 if (level == 0 || (level == 1 && pamax <= 40)) {
7204 return false;
7206 break;
7207 case 9: /* 4KB Pages. */
7208 if (level == 0 && pamax <= 42) {
7209 return false;
7211 break;
7212 default:
7213 g_assert_not_reached();
7216 /* Inputsize checks. */
7217 if (inputsize > pamax &&
7218 (arm_el_is_aa64(env, 1) || inputsize > 40)) {
7219 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
7220 return false;
7222 } else {
7223 /* AArch32 only supports 4KB pages. Assert on that. */
7224 assert(stride == 9);
7226 if (level == 0) {
7227 return false;
7230 return true;
7233 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
7234 int access_type, ARMMMUIdx mmu_idx,
7235 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
7236 target_ulong *page_size_ptr, uint32_t *fsr,
7237 ARMMMUFaultInfo *fi)
7239 ARMCPU *cpu = arm_env_get_cpu(env);
7240 CPUState *cs = CPU(cpu);
7241 /* Read an LPAE long-descriptor translation table. */
7242 MMUFaultType fault_type = translation_fault;
7243 uint32_t level;
7244 uint32_t epd = 0;
7245 int32_t t0sz, t1sz;
7246 uint32_t tg;
7247 uint64_t ttbr;
7248 int ttbr_select;
7249 hwaddr descaddr, descmask;
7250 uint32_t tableattrs;
7251 target_ulong page_size;
7252 uint32_t attrs;
7253 int32_t stride = 9;
7254 int32_t va_size;
7255 int inputsize;
7256 int32_t tbi = 0;
7257 TCR *tcr = regime_tcr(env, mmu_idx);
7258 int ap, ns, xn, pxn;
7259 uint32_t el = regime_el(env, mmu_idx);
7260 bool ttbr1_valid = true;
7261 uint64_t descaddrmask;
7263 /* TODO:
7264 * This code does not handle the different format TCR for VTCR_EL2.
7265 * This code also does not support shareability levels.
7266 * Attribute and permission bit handling should also be checked when adding
7267 * support for those page table walks.
7269 if (arm_el_is_aa64(env, el)) {
7270 level = 0;
7271 va_size = 64;
7272 if (el > 1) {
7273 if (mmu_idx != ARMMMUIdx_S2NS) {
7274 tbi = extract64(tcr->raw_tcr, 20, 1);
7276 } else {
7277 if (extract64(address, 55, 1)) {
7278 tbi = extract64(tcr->raw_tcr, 38, 1);
7279 } else {
7280 tbi = extract64(tcr->raw_tcr, 37, 1);
7283 tbi *= 8;
7285 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
7286 * invalid.
7288 if (el > 1) {
7289 ttbr1_valid = false;
7291 } else {
7292 level = 1;
7293 va_size = 32;
7294 /* There is no TTBR1 for EL2 */
7295 if (el == 2) {
7296 ttbr1_valid = false;
7300 /* Determine whether this address is in the region controlled by
7301 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
7302 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
7303 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
7305 if (va_size == 64) {
7306 /* AArch64 translation. */
7307 t0sz = extract32(tcr->raw_tcr, 0, 6);
7308 t0sz = MIN(t0sz, 39);
7309 t0sz = MAX(t0sz, 16);
7310 } else if (mmu_idx != ARMMMUIdx_S2NS) {
7311 /* AArch32 stage 1 translation. */
7312 t0sz = extract32(tcr->raw_tcr, 0, 3);
7313 } else {
7314 /* AArch32 stage 2 translation. */
7315 bool sext = extract32(tcr->raw_tcr, 4, 1);
7316 bool sign = extract32(tcr->raw_tcr, 3, 1);
7317 t0sz = sextract32(tcr->raw_tcr, 0, 4);
7319 /* If the sign-extend bit is not the same as t0sz[3], the result
7320 * is unpredictable. Flag this as a guest error. */
7321 if (sign != sext) {
7322 qemu_log_mask(LOG_GUEST_ERROR,
7323 "AArch32: VTCR.S / VTCR.T0SZ[3] missmatch\n");
7326 t1sz = extract32(tcr->raw_tcr, 16, 6);
7327 if (va_size == 64) {
7328 t1sz = MIN(t1sz, 39);
7329 t1sz = MAX(t1sz, 16);
7331 if (t0sz && !extract64(address, va_size - t0sz, t0sz - tbi)) {
7332 /* there is a ttbr0 region and we are in it (high bits all zero) */
7333 ttbr_select = 0;
7334 } else if (ttbr1_valid && t1sz &&
7335 !extract64(~address, va_size - t1sz, t1sz - tbi)) {
7336 /* there is a ttbr1 region and we are in it (high bits all one) */
7337 ttbr_select = 1;
7338 } else if (!t0sz) {
7339 /* ttbr0 region is "everything not in the ttbr1 region" */
7340 ttbr_select = 0;
7341 } else if (!t1sz && ttbr1_valid) {
7342 /* ttbr1 region is "everything not in the ttbr0 region" */
7343 ttbr_select = 1;
7344 } else {
7345 /* in the gap between the two regions, this is a Translation fault */
7346 fault_type = translation_fault;
7347 goto do_fault;
7350 /* Note that QEMU ignores shareability and cacheability attributes,
7351 * so we don't need to do anything with the SH, ORGN, IRGN fields
7352 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
7353 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
7354 * implement any ASID-like capability so we can ignore it (instead
7355 * we will always flush the TLB any time the ASID is changed).
7357 if (ttbr_select == 0) {
7358 ttbr = regime_ttbr(env, mmu_idx, 0);
7359 if (el < 2) {
7360 epd = extract32(tcr->raw_tcr, 7, 1);
7362 inputsize = va_size - t0sz;
7364 tg = extract32(tcr->raw_tcr, 14, 2);
7365 if (tg == 1) { /* 64KB pages */
7366 stride = 13;
7368 if (tg == 2) { /* 16KB pages */
7369 stride = 11;
7371 } else {
7372 /* We should only be here if TTBR1 is valid */
7373 assert(ttbr1_valid);
7375 ttbr = regime_ttbr(env, mmu_idx, 1);
7376 epd = extract32(tcr->raw_tcr, 23, 1);
7377 inputsize = va_size - t1sz;
7379 tg = extract32(tcr->raw_tcr, 30, 2);
7380 if (tg == 3) { /* 64KB pages */
7381 stride = 13;
7383 if (tg == 1) { /* 16KB pages */
7384 stride = 11;
7388 /* Here we should have set up all the parameters for the translation:
7389 * va_size, inputsize, ttbr, epd, stride, tbi
7392 if (epd) {
7393 /* Translation table walk disabled => Translation fault on TLB miss
7394 * Note: This is always 0 on 64-bit EL2 and EL3.
7396 goto do_fault;
7399 if (mmu_idx != ARMMMUIdx_S2NS) {
7400 /* The starting level depends on the virtual address size (which can
7401 * be up to 48 bits) and the translation granule size. It indicates
7402 * the number of strides (stride bits at a time) needed to
7403 * consume the bits of the input address. In the pseudocode this is:
7404 * level = 4 - RoundUp((inputsize - grainsize) / stride)
7405 * where their 'inputsize' is our 'inputsize', 'grainsize' is
7406 * our 'stride + 3' and 'stride' is our 'stride'.
7407 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
7408 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
7409 * = 4 - (inputsize - 4) / stride;
7411 level = 4 - (inputsize - 4) / stride;
7412 } else {
7413 /* For stage 2 translations the starting level is specified by the
7414 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
7416 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
7417 uint32_t startlevel;
7418 bool ok;
7420 if (va_size == 32 || stride == 9) {
7421 /* AArch32 or 4KB pages */
7422 startlevel = 2 - sl0;
7423 } else {
7424 /* 16KB or 64KB pages */
7425 startlevel = 3 - sl0;
7428 /* Check that the starting level is valid. */
7429 ok = check_s2_mmu_setup(cpu, va_size == 64, startlevel,
7430 inputsize, stride);
7431 if (!ok) {
7432 fault_type = translation_fault;
7433 goto do_fault;
7435 level = startlevel;
7438 /* Clear the vaddr bits which aren't part of the within-region address,
7439 * so that we don't have to special case things when calculating the
7440 * first descriptor address.
7442 if (va_size != inputsize) {
7443 address &= (1ULL << inputsize) - 1;
7446 descmask = (1ULL << (stride + 3)) - 1;
7448 /* Now we can extract the actual base address from the TTBR */
7449 descaddr = extract64(ttbr, 0, 48);
7450 descaddr &= ~((1ULL << (inputsize - (stride * (4 - level)))) - 1);
7452 /* The address field in the descriptor goes up to bit 39 for ARMv7
7453 * but up to bit 47 for ARMv8.
7455 if (arm_feature(env, ARM_FEATURE_V8)) {
7456 descaddrmask = 0xfffffffff000ULL;
7457 } else {
7458 descaddrmask = 0xfffffff000ULL;
7461 /* Secure accesses start with the page table in secure memory and
7462 * can be downgraded to non-secure at any step. Non-secure accesses
7463 * remain non-secure. We implement this by just ORing in the NSTable/NS
7464 * bits at each step.
7466 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
7467 for (;;) {
7468 uint64_t descriptor;
7469 bool nstable;
7471 descaddr |= (address >> (stride * (4 - level))) & descmask;
7472 descaddr &= ~7ULL;
7473 nstable = extract32(tableattrs, 4, 1);
7474 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fsr, fi);
7475 if (fi->s1ptw) {
7476 goto do_fault;
7479 if (!(descriptor & 1) ||
7480 (!(descriptor & 2) && (level == 3))) {
7481 /* Invalid, or the Reserved level 3 encoding */
7482 goto do_fault;
7484 descaddr = descriptor & descaddrmask;
7486 if ((descriptor & 2) && (level < 3)) {
7487 /* Table entry. The top five bits are attributes which may
7488 * propagate down through lower levels of the table (and
7489 * which are all arranged so that 0 means "no effect", so
7490 * we can gather them up by ORing in the bits at each level).
7492 tableattrs |= extract64(descriptor, 59, 5);
7493 level++;
7494 continue;
7496 /* Block entry at level 1 or 2, or page entry at level 3.
7497 * These are basically the same thing, although the number
7498 * of bits we pull in from the vaddr varies.
7500 page_size = (1ULL << ((stride * (4 - level)) + 3));
7501 descaddr |= (address & (page_size - 1));
7502 /* Extract attributes from the descriptor */
7503 attrs = extract64(descriptor, 2, 10)
7504 | (extract64(descriptor, 52, 12) << 10);
7506 if (mmu_idx == ARMMMUIdx_S2NS) {
7507 /* Stage 2 table descriptors do not include any attribute fields */
7508 break;
7510 /* Merge in attributes from table descriptors */
7511 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
7512 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
7513 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
7514 * means "force PL1 access only", which means forcing AP[1] to 0.
7516 if (extract32(tableattrs, 2, 1)) {
7517 attrs &= ~(1 << 4);
7519 attrs |= nstable << 3; /* NS */
7520 break;
7522 /* Here descaddr is the final physical address, and attributes
7523 * are all in attrs.
7525 fault_type = access_fault;
7526 if ((attrs & (1 << 8)) == 0) {
7527 /* Access flag */
7528 goto do_fault;
7531 ap = extract32(attrs, 4, 2);
7532 xn = extract32(attrs, 12, 1);
7534 if (mmu_idx == ARMMMUIdx_S2NS) {
7535 ns = true;
7536 *prot = get_S2prot(env, ap, xn);
7537 } else {
7538 ns = extract32(attrs, 3, 1);
7539 pxn = extract32(attrs, 11, 1);
7540 *prot = get_S1prot(env, mmu_idx, va_size == 64, ap, ns, xn, pxn);
7543 fault_type = permission_fault;
7544 if (!(*prot & (1 << access_type))) {
7545 goto do_fault;
7548 if (ns) {
7549 /* The NS bit will (as required by the architecture) have no effect if
7550 * the CPU doesn't support TZ or this is a non-secure translation
7551 * regime, because the attribute will already be non-secure.
7553 txattrs->secure = false;
7555 *phys_ptr = descaddr;
7556 *page_size_ptr = page_size;
7557 return false;
7559 do_fault:
7560 /* Long-descriptor format IFSR/DFSR value */
7561 *fsr = (1 << 9) | (fault_type << 2) | level;
7562 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
7563 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
7564 return true;
7567 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
7568 ARMMMUIdx mmu_idx,
7569 int32_t address, int *prot)
7571 *prot = PAGE_READ | PAGE_WRITE;
7572 switch (address) {
7573 case 0xF0000000 ... 0xFFFFFFFF:
7574 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { /* hivecs execing is ok */
7575 *prot |= PAGE_EXEC;
7577 break;
7578 case 0x00000000 ... 0x7FFFFFFF:
7579 *prot |= PAGE_EXEC;
7580 break;
7585 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
7586 int access_type, ARMMMUIdx mmu_idx,
7587 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
7589 ARMCPU *cpu = arm_env_get_cpu(env);
7590 int n;
7591 bool is_user = regime_is_user(env, mmu_idx);
7593 *phys_ptr = address;
7594 *prot = 0;
7596 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
7597 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
7598 } else { /* MPU enabled */
7599 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
7600 /* region search */
7601 uint32_t base = env->pmsav7.drbar[n];
7602 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
7603 uint32_t rmask;
7604 bool srdis = false;
7606 if (!(env->pmsav7.drsr[n] & 0x1)) {
7607 continue;
7610 if (!rsize) {
7611 qemu_log_mask(LOG_GUEST_ERROR, "DRSR.Rsize field can not be 0");
7612 continue;
7614 rsize++;
7615 rmask = (1ull << rsize) - 1;
7617 if (base & rmask) {
7618 qemu_log_mask(LOG_GUEST_ERROR, "DRBAR %" PRIx32 " misaligned "
7619 "to DRSR region size, mask = %" PRIx32,
7620 base, rmask);
7621 continue;
7624 if (address < base || address > base + rmask) {
7625 continue;
7628 /* Region matched */
7630 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
7631 int i, snd;
7632 uint32_t srdis_mask;
7634 rsize -= 3; /* sub region size (power of 2) */
7635 snd = ((address - base) >> rsize) & 0x7;
7636 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
7638 srdis_mask = srdis ? 0x3 : 0x0;
7639 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
7640 /* This will check in groups of 2, 4 and then 8, whether
7641 * the subregion bits are consistent. rsize is incremented
7642 * back up to give the region size, considering consistent
7643 * adjacent subregions as one region. Stop testing if rsize
7644 * is already big enough for an entire QEMU page.
7646 int snd_rounded = snd & ~(i - 1);
7647 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
7648 snd_rounded + 8, i);
7649 if (srdis_mask ^ srdis_multi) {
7650 break;
7652 srdis_mask = (srdis_mask << i) | srdis_mask;
7653 rsize++;
7656 if (rsize < TARGET_PAGE_BITS) {
7657 qemu_log_mask(LOG_UNIMP, "No support for MPU (sub)region"
7658 "alignment of %" PRIu32 " bits. Minimum is %d\n",
7659 rsize, TARGET_PAGE_BITS);
7660 continue;
7662 if (srdis) {
7663 continue;
7665 break;
7668 if (n == -1) { /* no hits */
7669 if (cpu->pmsav7_dregion &&
7670 (is_user || !(regime_sctlr(env, mmu_idx) & SCTLR_BR))) {
7671 /* background fault */
7672 *fsr = 0;
7673 return true;
7675 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
7676 } else { /* a MPU hit! */
7677 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
7679 if (is_user) { /* User mode AP bit decoding */
7680 switch (ap) {
7681 case 0:
7682 case 1:
7683 case 5:
7684 break; /* no access */
7685 case 3:
7686 *prot |= PAGE_WRITE;
7687 /* fall through */
7688 case 2:
7689 case 6:
7690 *prot |= PAGE_READ | PAGE_EXEC;
7691 break;
7692 default:
7693 qemu_log_mask(LOG_GUEST_ERROR,
7694 "Bad value for AP bits in DRACR %"
7695 PRIx32 "\n", ap);
7697 } else { /* Priv. mode AP bits decoding */
7698 switch (ap) {
7699 case 0:
7700 break; /* no access */
7701 case 1:
7702 case 2:
7703 case 3:
7704 *prot |= PAGE_WRITE;
7705 /* fall through */
7706 case 5:
7707 case 6:
7708 *prot |= PAGE_READ | PAGE_EXEC;
7709 break;
7710 default:
7711 qemu_log_mask(LOG_GUEST_ERROR,
7712 "Bad value for AP bits in DRACR %"
7713 PRIx32 "\n", ap);
7717 /* execute never */
7718 if (env->pmsav7.dracr[n] & (1 << 12)) {
7719 *prot &= ~PAGE_EXEC;
7724 *fsr = 0x00d; /* Permission fault */
7725 return !(*prot & (1 << access_type));
7728 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
7729 int access_type, ARMMMUIdx mmu_idx,
7730 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
7732 int n;
7733 uint32_t mask;
7734 uint32_t base;
7735 bool is_user = regime_is_user(env, mmu_idx);
7737 *phys_ptr = address;
7738 for (n = 7; n >= 0; n--) {
7739 base = env->cp15.c6_region[n];
7740 if ((base & 1) == 0) {
7741 continue;
7743 mask = 1 << ((base >> 1) & 0x1f);
7744 /* Keep this shift separate from the above to avoid an
7745 (undefined) << 32. */
7746 mask = (mask << 1) - 1;
7747 if (((base ^ address) & ~mask) == 0) {
7748 break;
7751 if (n < 0) {
7752 *fsr = 2;
7753 return true;
7756 if (access_type == 2) {
7757 mask = env->cp15.pmsav5_insn_ap;
7758 } else {
7759 mask = env->cp15.pmsav5_data_ap;
7761 mask = (mask >> (n * 4)) & 0xf;
7762 switch (mask) {
7763 case 0:
7764 *fsr = 1;
7765 return true;
7766 case 1:
7767 if (is_user) {
7768 *fsr = 1;
7769 return true;
7771 *prot = PAGE_READ | PAGE_WRITE;
7772 break;
7773 case 2:
7774 *prot = PAGE_READ;
7775 if (!is_user) {
7776 *prot |= PAGE_WRITE;
7778 break;
7779 case 3:
7780 *prot = PAGE_READ | PAGE_WRITE;
7781 break;
7782 case 5:
7783 if (is_user) {
7784 *fsr = 1;
7785 return true;
7787 *prot = PAGE_READ;
7788 break;
7789 case 6:
7790 *prot = PAGE_READ;
7791 break;
7792 default:
7793 /* Bad permission. */
7794 *fsr = 1;
7795 return true;
7797 *prot |= PAGE_EXEC;
7798 return false;
7801 /* get_phys_addr - get the physical address for this virtual address
7803 * Find the physical address corresponding to the given virtual address,
7804 * by doing a translation table walk on MMU based systems or using the
7805 * MPU state on MPU based systems.
7807 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
7808 * prot and page_size may not be filled in, and the populated fsr value provides
7809 * information on why the translation aborted, in the format of a
7810 * DFSR/IFSR fault register, with the following caveats:
7811 * * we honour the short vs long DFSR format differences.
7812 * * the WnR bit is never set (the caller must do this).
7813 * * for PSMAv5 based systems we don't bother to return a full FSR format
7814 * value.
7816 * @env: CPUARMState
7817 * @address: virtual address to get physical address for
7818 * @access_type: 0 for read, 1 for write, 2 for execute
7819 * @mmu_idx: MMU index indicating required translation regime
7820 * @phys_ptr: set to the physical address corresponding to the virtual address
7821 * @attrs: set to the memory transaction attributes to use
7822 * @prot: set to the permissions for the page containing phys_ptr
7823 * @page_size: set to the size of the page containing phys_ptr
7824 * @fsr: set to the DFSR/IFSR value on failure
7826 static bool get_phys_addr(CPUARMState *env, target_ulong address,
7827 int access_type, ARMMMUIdx mmu_idx,
7828 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
7829 target_ulong *page_size, uint32_t *fsr,
7830 ARMMMUFaultInfo *fi)
7832 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
7833 /* Call ourselves recursively to do the stage 1 and then stage 2
7834 * translations.
7836 if (arm_feature(env, ARM_FEATURE_EL2)) {
7837 hwaddr ipa;
7838 int s2_prot;
7839 int ret;
7841 ret = get_phys_addr(env, address, access_type,
7842 mmu_idx + ARMMMUIdx_S1NSE0, &ipa, attrs,
7843 prot, page_size, fsr, fi);
7845 /* If S1 fails or S2 is disabled, return early. */
7846 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
7847 *phys_ptr = ipa;
7848 return ret;
7851 /* S1 is done. Now do S2 translation. */
7852 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
7853 phys_ptr, attrs, &s2_prot,
7854 page_size, fsr, fi);
7855 fi->s2addr = ipa;
7856 /* Combine the S1 and S2 perms. */
7857 *prot &= s2_prot;
7858 return ret;
7859 } else {
7861 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
7863 mmu_idx += ARMMMUIdx_S1NSE0;
7867 /* The page table entries may downgrade secure to non-secure, but
7868 * cannot upgrade an non-secure translation regime's attributes
7869 * to secure.
7871 attrs->secure = regime_is_secure(env, mmu_idx);
7872 attrs->user = regime_is_user(env, mmu_idx);
7874 /* Fast Context Switch Extension. This doesn't exist at all in v8.
7875 * In v7 and earlier it affects all stage 1 translations.
7877 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
7878 && !arm_feature(env, ARM_FEATURE_V8)) {
7879 if (regime_el(env, mmu_idx) == 3) {
7880 address += env->cp15.fcseidr_s;
7881 } else {
7882 address += env->cp15.fcseidr_ns;
7886 /* pmsav7 has special handling for when MPU is disabled so call it before
7887 * the common MMU/MPU disabled check below.
7889 if (arm_feature(env, ARM_FEATURE_MPU) &&
7890 arm_feature(env, ARM_FEATURE_V7)) {
7891 *page_size = TARGET_PAGE_SIZE;
7892 return get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
7893 phys_ptr, prot, fsr);
7896 if (regime_translation_disabled(env, mmu_idx)) {
7897 /* MMU/MPU disabled. */
7898 *phys_ptr = address;
7899 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
7900 *page_size = TARGET_PAGE_SIZE;
7901 return 0;
7904 if (arm_feature(env, ARM_FEATURE_MPU)) {
7905 /* Pre-v7 MPU */
7906 *page_size = TARGET_PAGE_SIZE;
7907 return get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
7908 phys_ptr, prot, fsr);
7911 if (regime_using_lpae_format(env, mmu_idx)) {
7912 return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr,
7913 attrs, prot, page_size, fsr, fi);
7914 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
7915 return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr,
7916 attrs, prot, page_size, fsr, fi);
7917 } else {
7918 return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr,
7919 prot, page_size, fsr, fi);
7923 /* Walk the page table and (if the mapping exists) add the page
7924 * to the TLB. Return false on success, or true on failure. Populate
7925 * fsr with ARM DFSR/IFSR fault register format value on failure.
7927 bool arm_tlb_fill(CPUState *cs, vaddr address,
7928 int access_type, int mmu_idx, uint32_t *fsr,
7929 ARMMMUFaultInfo *fi)
7931 ARMCPU *cpu = ARM_CPU(cs);
7932 CPUARMState *env = &cpu->env;
7933 hwaddr phys_addr;
7934 target_ulong page_size;
7935 int prot;
7936 int ret;
7937 MemTxAttrs attrs = {};
7939 ret = get_phys_addr(env, address, access_type, mmu_idx, &phys_addr,
7940 &attrs, &prot, &page_size, fsr, fi);
7941 if (!ret) {
7942 /* Map a single [sub]page. */
7943 phys_addr &= TARGET_PAGE_MASK;
7944 address &= TARGET_PAGE_MASK;
7945 tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
7946 prot, mmu_idx, page_size);
7947 return 0;
7950 return ret;
7953 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
7954 MemTxAttrs *attrs)
7956 ARMCPU *cpu = ARM_CPU(cs);
7957 CPUARMState *env = &cpu->env;
7958 hwaddr phys_addr;
7959 target_ulong page_size;
7960 int prot;
7961 bool ret;
7962 uint32_t fsr;
7963 ARMMMUFaultInfo fi = {};
7965 *attrs = (MemTxAttrs) {};
7967 ret = get_phys_addr(env, addr, 0, cpu_mmu_index(env, false), &phys_addr,
7968 attrs, &prot, &page_size, &fsr, &fi);
7970 if (ret) {
7971 return -1;
7973 return phys_addr;
7976 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
7978 ARMCPU *cpu = arm_env_get_cpu(env);
7980 switch (reg) {
7981 case 0: /* APSR */
7982 return xpsr_read(env) & 0xf8000000;
7983 case 1: /* IAPSR */
7984 return xpsr_read(env) & 0xf80001ff;
7985 case 2: /* EAPSR */
7986 return xpsr_read(env) & 0xff00fc00;
7987 case 3: /* xPSR */
7988 return xpsr_read(env) & 0xff00fdff;
7989 case 5: /* IPSR */
7990 return xpsr_read(env) & 0x000001ff;
7991 case 6: /* EPSR */
7992 return xpsr_read(env) & 0x0700fc00;
7993 case 7: /* IEPSR */
7994 return xpsr_read(env) & 0x0700edff;
7995 case 8: /* MSP */
7996 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
7997 case 9: /* PSP */
7998 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
7999 case 16: /* PRIMASK */
8000 return (env->daif & PSTATE_I) != 0;
8001 case 17: /* BASEPRI */
8002 case 18: /* BASEPRI_MAX */
8003 return env->v7m.basepri;
8004 case 19: /* FAULTMASK */
8005 return (env->daif & PSTATE_F) != 0;
8006 case 20: /* CONTROL */
8007 return env->v7m.control;
8008 default:
8009 /* ??? For debugging only. */
8010 cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg);
8011 return 0;
8015 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
8017 ARMCPU *cpu = arm_env_get_cpu(env);
8019 switch (reg) {
8020 case 0: /* APSR */
8021 xpsr_write(env, val, 0xf8000000);
8022 break;
8023 case 1: /* IAPSR */
8024 xpsr_write(env, val, 0xf8000000);
8025 break;
8026 case 2: /* EAPSR */
8027 xpsr_write(env, val, 0xfe00fc00);
8028 break;
8029 case 3: /* xPSR */
8030 xpsr_write(env, val, 0xfe00fc00);
8031 break;
8032 case 5: /* IPSR */
8033 /* IPSR bits are readonly. */
8034 break;
8035 case 6: /* EPSR */
8036 xpsr_write(env, val, 0x0600fc00);
8037 break;
8038 case 7: /* IEPSR */
8039 xpsr_write(env, val, 0x0600fc00);
8040 break;
8041 case 8: /* MSP */
8042 if (env->v7m.current_sp)
8043 env->v7m.other_sp = val;
8044 else
8045 env->regs[13] = val;
8046 break;
8047 case 9: /* PSP */
8048 if (env->v7m.current_sp)
8049 env->regs[13] = val;
8050 else
8051 env->v7m.other_sp = val;
8052 break;
8053 case 16: /* PRIMASK */
8054 if (val & 1) {
8055 env->daif |= PSTATE_I;
8056 } else {
8057 env->daif &= ~PSTATE_I;
8059 break;
8060 case 17: /* BASEPRI */
8061 env->v7m.basepri = val & 0xff;
8062 break;
8063 case 18: /* BASEPRI_MAX */
8064 val &= 0xff;
8065 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
8066 env->v7m.basepri = val;
8067 break;
8068 case 19: /* FAULTMASK */
8069 if (val & 1) {
8070 env->daif |= PSTATE_F;
8071 } else {
8072 env->daif &= ~PSTATE_F;
8074 break;
8075 case 20: /* CONTROL */
8076 env->v7m.control = val & 3;
8077 switch_v7m_sp(env, (val & 2) != 0);
8078 break;
8079 default:
8080 /* ??? For debugging only. */
8081 cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg);
8082 return;
8086 #endif
8088 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
8090 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
8091 * Note that we do not implement the (architecturally mandated)
8092 * alignment fault for attempts to use this on Device memory
8093 * (which matches the usual QEMU behaviour of not implementing either
8094 * alignment faults or any memory attribute handling).
8097 ARMCPU *cpu = arm_env_get_cpu(env);
8098 uint64_t blocklen = 4 << cpu->dcz_blocksize;
8099 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
8101 #ifndef CONFIG_USER_ONLY
8103 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
8104 * the block size so we might have to do more than one TLB lookup.
8105 * We know that in fact for any v8 CPU the page size is at least 4K
8106 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
8107 * 1K as an artefact of legacy v5 subpage support being present in the
8108 * same QEMU executable.
8110 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
8111 void *hostaddr[maxidx];
8112 int try, i;
8113 unsigned mmu_idx = cpu_mmu_index(env, false);
8114 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
8116 for (try = 0; try < 2; try++) {
8118 for (i = 0; i < maxidx; i++) {
8119 hostaddr[i] = tlb_vaddr_to_host(env,
8120 vaddr + TARGET_PAGE_SIZE * i,
8121 1, mmu_idx);
8122 if (!hostaddr[i]) {
8123 break;
8126 if (i == maxidx) {
8127 /* If it's all in the TLB it's fair game for just writing to;
8128 * we know we don't need to update dirty status, etc.
8130 for (i = 0; i < maxidx - 1; i++) {
8131 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
8133 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
8134 return;
8136 /* OK, try a store and see if we can populate the tlb. This
8137 * might cause an exception if the memory isn't writable,
8138 * in which case we will longjmp out of here. We must for
8139 * this purpose use the actual register value passed to us
8140 * so that we get the fault address right.
8142 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETRA());
8143 /* Now we can populate the other TLB entries, if any */
8144 for (i = 0; i < maxidx; i++) {
8145 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
8146 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
8147 helper_ret_stb_mmu(env, va, 0, oi, GETRA());
8152 /* Slow path (probably attempt to do this to an I/O device or
8153 * similar, or clearing of a block of code we have translations
8154 * cached for). Just do a series of byte writes as the architecture
8155 * demands. It's not worth trying to use a cpu_physical_memory_map(),
8156 * memset(), unmap() sequence here because:
8157 * + we'd need to account for the blocksize being larger than a page
8158 * + the direct-RAM access case is almost always going to be dealt
8159 * with in the fastpath code above, so there's no speed benefit
8160 * + we would have to deal with the map returning NULL because the
8161 * bounce buffer was in use
8163 for (i = 0; i < blocklen; i++) {
8164 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETRA());
8167 #else
8168 memset(g2h(vaddr), 0, blocklen);
8169 #endif
8172 /* Note that signed overflow is undefined in C. The following routines are
8173 careful to use unsigned types where modulo arithmetic is required.
8174 Failure to do so _will_ break on newer gcc. */
8176 /* Signed saturating arithmetic. */
8178 /* Perform 16-bit signed saturating addition. */
8179 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
8181 uint16_t res;
8183 res = a + b;
8184 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
8185 if (a & 0x8000)
8186 res = 0x8000;
8187 else
8188 res = 0x7fff;
8190 return res;
8193 /* Perform 8-bit signed saturating addition. */
8194 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
8196 uint8_t res;
8198 res = a + b;
8199 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
8200 if (a & 0x80)
8201 res = 0x80;
8202 else
8203 res = 0x7f;
8205 return res;
8208 /* Perform 16-bit signed saturating subtraction. */
8209 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
8211 uint16_t res;
8213 res = a - b;
8214 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
8215 if (a & 0x8000)
8216 res = 0x8000;
8217 else
8218 res = 0x7fff;
8220 return res;
8223 /* Perform 8-bit signed saturating subtraction. */
8224 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
8226 uint8_t res;
8228 res = a - b;
8229 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
8230 if (a & 0x80)
8231 res = 0x80;
8232 else
8233 res = 0x7f;
8235 return res;
8238 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
8239 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
8240 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
8241 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
8242 #define PFX q
8244 #include "op_addsub.h"
8246 /* Unsigned saturating arithmetic. */
8247 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
8249 uint16_t res;
8250 res = a + b;
8251 if (res < a)
8252 res = 0xffff;
8253 return res;
8256 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
8258 if (a > b)
8259 return a - b;
8260 else
8261 return 0;
8264 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
8266 uint8_t res;
8267 res = a + b;
8268 if (res < a)
8269 res = 0xff;
8270 return res;
8273 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
8275 if (a > b)
8276 return a - b;
8277 else
8278 return 0;
8281 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
8282 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
8283 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
8284 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
8285 #define PFX uq
8287 #include "op_addsub.h"
8289 /* Signed modulo arithmetic. */
8290 #define SARITH16(a, b, n, op) do { \
8291 int32_t sum; \
8292 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
8293 RESULT(sum, n, 16); \
8294 if (sum >= 0) \
8295 ge |= 3 << (n * 2); \
8296 } while(0)
8298 #define SARITH8(a, b, n, op) do { \
8299 int32_t sum; \
8300 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
8301 RESULT(sum, n, 8); \
8302 if (sum >= 0) \
8303 ge |= 1 << n; \
8304 } while(0)
8307 #define ADD16(a, b, n) SARITH16(a, b, n, +)
8308 #define SUB16(a, b, n) SARITH16(a, b, n, -)
8309 #define ADD8(a, b, n) SARITH8(a, b, n, +)
8310 #define SUB8(a, b, n) SARITH8(a, b, n, -)
8311 #define PFX s
8312 #define ARITH_GE
8314 #include "op_addsub.h"
8316 /* Unsigned modulo arithmetic. */
8317 #define ADD16(a, b, n) do { \
8318 uint32_t sum; \
8319 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
8320 RESULT(sum, n, 16); \
8321 if ((sum >> 16) == 1) \
8322 ge |= 3 << (n * 2); \
8323 } while(0)
8325 #define ADD8(a, b, n) do { \
8326 uint32_t sum; \
8327 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
8328 RESULT(sum, n, 8); \
8329 if ((sum >> 8) == 1) \
8330 ge |= 1 << n; \
8331 } while(0)
8333 #define SUB16(a, b, n) do { \
8334 uint32_t sum; \
8335 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
8336 RESULT(sum, n, 16); \
8337 if ((sum >> 16) == 0) \
8338 ge |= 3 << (n * 2); \
8339 } while(0)
8341 #define SUB8(a, b, n) do { \
8342 uint32_t sum; \
8343 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
8344 RESULT(sum, n, 8); \
8345 if ((sum >> 8) == 0) \
8346 ge |= 1 << n; \
8347 } while(0)
8349 #define PFX u
8350 #define ARITH_GE
8352 #include "op_addsub.h"
8354 /* Halved signed arithmetic. */
8355 #define ADD16(a, b, n) \
8356 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
8357 #define SUB16(a, b, n) \
8358 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
8359 #define ADD8(a, b, n) \
8360 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
8361 #define SUB8(a, b, n) \
8362 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
8363 #define PFX sh
8365 #include "op_addsub.h"
8367 /* Halved unsigned arithmetic. */
8368 #define ADD16(a, b, n) \
8369 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
8370 #define SUB16(a, b, n) \
8371 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
8372 #define ADD8(a, b, n) \
8373 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
8374 #define SUB8(a, b, n) \
8375 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
8376 #define PFX uh
8378 #include "op_addsub.h"
8380 static inline uint8_t do_usad(uint8_t a, uint8_t b)
8382 if (a > b)
8383 return a - b;
8384 else
8385 return b - a;
8388 /* Unsigned sum of absolute byte differences. */
8389 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
8391 uint32_t sum;
8392 sum = do_usad(a, b);
8393 sum += do_usad(a >> 8, b >> 8);
8394 sum += do_usad(a >> 16, b >>16);
8395 sum += do_usad(a >> 24, b >> 24);
8396 return sum;
8399 /* For ARMv6 SEL instruction. */
8400 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
8402 uint32_t mask;
8404 mask = 0;
8405 if (flags & 1)
8406 mask |= 0xff;
8407 if (flags & 2)
8408 mask |= 0xff00;
8409 if (flags & 4)
8410 mask |= 0xff0000;
8411 if (flags & 8)
8412 mask |= 0xff000000;
8413 return (a & mask) | (b & ~mask);
8416 /* VFP support. We follow the convention used for VFP instructions:
8417 Single precision routines have a "s" suffix, double precision a
8418 "d" suffix. */
8420 /* Convert host exception flags to vfp form. */
8421 static inline int vfp_exceptbits_from_host(int host_bits)
8423 int target_bits = 0;
8425 if (host_bits & float_flag_invalid)
8426 target_bits |= 1;
8427 if (host_bits & float_flag_divbyzero)
8428 target_bits |= 2;
8429 if (host_bits & float_flag_overflow)
8430 target_bits |= 4;
8431 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
8432 target_bits |= 8;
8433 if (host_bits & float_flag_inexact)
8434 target_bits |= 0x10;
8435 if (host_bits & float_flag_input_denormal)
8436 target_bits |= 0x80;
8437 return target_bits;
8440 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
8442 int i;
8443 uint32_t fpscr;
8445 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
8446 | (env->vfp.vec_len << 16)
8447 | (env->vfp.vec_stride << 20);
8448 i = get_float_exception_flags(&env->vfp.fp_status);
8449 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
8450 fpscr |= vfp_exceptbits_from_host(i);
8451 return fpscr;
8454 uint32_t vfp_get_fpscr(CPUARMState *env)
8456 return HELPER(vfp_get_fpscr)(env);
8459 /* Convert vfp exception flags to target form. */
8460 static inline int vfp_exceptbits_to_host(int target_bits)
8462 int host_bits = 0;
8464 if (target_bits & 1)
8465 host_bits |= float_flag_invalid;
8466 if (target_bits & 2)
8467 host_bits |= float_flag_divbyzero;
8468 if (target_bits & 4)
8469 host_bits |= float_flag_overflow;
8470 if (target_bits & 8)
8471 host_bits |= float_flag_underflow;
8472 if (target_bits & 0x10)
8473 host_bits |= float_flag_inexact;
8474 if (target_bits & 0x80)
8475 host_bits |= float_flag_input_denormal;
8476 return host_bits;
8479 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
8481 int i;
8482 uint32_t changed;
8484 changed = env->vfp.xregs[ARM_VFP_FPSCR];
8485 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
8486 env->vfp.vec_len = (val >> 16) & 7;
8487 env->vfp.vec_stride = (val >> 20) & 3;
8489 changed ^= val;
8490 if (changed & (3 << 22)) {
8491 i = (val >> 22) & 3;
8492 switch (i) {
8493 case FPROUNDING_TIEEVEN:
8494 i = float_round_nearest_even;
8495 break;
8496 case FPROUNDING_POSINF:
8497 i = float_round_up;
8498 break;
8499 case FPROUNDING_NEGINF:
8500 i = float_round_down;
8501 break;
8502 case FPROUNDING_ZERO:
8503 i = float_round_to_zero;
8504 break;
8506 set_float_rounding_mode(i, &env->vfp.fp_status);
8508 if (changed & (1 << 24)) {
8509 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
8510 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
8512 if (changed & (1 << 25))
8513 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
8515 i = vfp_exceptbits_to_host(val);
8516 set_float_exception_flags(i, &env->vfp.fp_status);
8517 set_float_exception_flags(0, &env->vfp.standard_fp_status);
8520 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
8522 HELPER(vfp_set_fpscr)(env, val);
8525 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
8527 #define VFP_BINOP(name) \
8528 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
8530 float_status *fpst = fpstp; \
8531 return float32_ ## name(a, b, fpst); \
8533 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
8535 float_status *fpst = fpstp; \
8536 return float64_ ## name(a, b, fpst); \
8538 VFP_BINOP(add)
8539 VFP_BINOP(sub)
8540 VFP_BINOP(mul)
8541 VFP_BINOP(div)
8542 VFP_BINOP(min)
8543 VFP_BINOP(max)
8544 VFP_BINOP(minnum)
8545 VFP_BINOP(maxnum)
8546 #undef VFP_BINOP
8548 float32 VFP_HELPER(neg, s)(float32 a)
8550 return float32_chs(a);
8553 float64 VFP_HELPER(neg, d)(float64 a)
8555 return float64_chs(a);
8558 float32 VFP_HELPER(abs, s)(float32 a)
8560 return float32_abs(a);
8563 float64 VFP_HELPER(abs, d)(float64 a)
8565 return float64_abs(a);
8568 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
8570 return float32_sqrt(a, &env->vfp.fp_status);
8573 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
8575 return float64_sqrt(a, &env->vfp.fp_status);
8578 /* XXX: check quiet/signaling case */
8579 #define DO_VFP_cmp(p, type) \
8580 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
8582 uint32_t flags; \
8583 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
8584 case 0: flags = 0x6; break; \
8585 case -1: flags = 0x8; break; \
8586 case 1: flags = 0x2; break; \
8587 default: case 2: flags = 0x3; break; \
8589 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
8590 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
8592 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
8594 uint32_t flags; \
8595 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
8596 case 0: flags = 0x6; break; \
8597 case -1: flags = 0x8; break; \
8598 case 1: flags = 0x2; break; \
8599 default: case 2: flags = 0x3; break; \
8601 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
8602 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
8604 DO_VFP_cmp(s, float32)
8605 DO_VFP_cmp(d, float64)
8606 #undef DO_VFP_cmp
8608 /* Integer to float and float to integer conversions */
8610 #define CONV_ITOF(name, fsz, sign) \
8611 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
8613 float_status *fpst = fpstp; \
8614 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
8617 #define CONV_FTOI(name, fsz, sign, round) \
8618 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
8620 float_status *fpst = fpstp; \
8621 if (float##fsz##_is_any_nan(x)) { \
8622 float_raise(float_flag_invalid, fpst); \
8623 return 0; \
8625 return float##fsz##_to_##sign##int32##round(x, fpst); \
8628 #define FLOAT_CONVS(name, p, fsz, sign) \
8629 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
8630 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
8631 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
8633 FLOAT_CONVS(si, s, 32, )
8634 FLOAT_CONVS(si, d, 64, )
8635 FLOAT_CONVS(ui, s, 32, u)
8636 FLOAT_CONVS(ui, d, 64, u)
8638 #undef CONV_ITOF
8639 #undef CONV_FTOI
8640 #undef FLOAT_CONVS
8642 /* floating point conversion */
8643 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
8645 float64 r = float32_to_float64(x, &env->vfp.fp_status);
8646 /* ARM requires that S<->D conversion of any kind of NaN generates
8647 * a quiet NaN by forcing the most significant frac bit to 1.
8649 return float64_maybe_silence_nan(r);
8652 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
8654 float32 r = float64_to_float32(x, &env->vfp.fp_status);
8655 /* ARM requires that S<->D conversion of any kind of NaN generates
8656 * a quiet NaN by forcing the most significant frac bit to 1.
8658 return float32_maybe_silence_nan(r);
8661 /* VFP3 fixed point conversion. */
8662 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8663 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
8664 void *fpstp) \
8666 float_status *fpst = fpstp; \
8667 float##fsz tmp; \
8668 tmp = itype##_to_##float##fsz(x, fpst); \
8669 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
8672 /* Notice that we want only input-denormal exception flags from the
8673 * scalbn operation: the other possible flags (overflow+inexact if
8674 * we overflow to infinity, output-denormal) aren't correct for the
8675 * complete scale-and-convert operation.
8677 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
8678 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
8679 uint32_t shift, \
8680 void *fpstp) \
8682 float_status *fpst = fpstp; \
8683 int old_exc_flags = get_float_exception_flags(fpst); \
8684 float##fsz tmp; \
8685 if (float##fsz##_is_any_nan(x)) { \
8686 float_raise(float_flag_invalid, fpst); \
8687 return 0; \
8689 tmp = float##fsz##_scalbn(x, shift, fpst); \
8690 old_exc_flags |= get_float_exception_flags(fpst) \
8691 & float_flag_input_denormal; \
8692 set_float_exception_flags(old_exc_flags, fpst); \
8693 return float##fsz##_to_##itype##round(tmp, fpst); \
8696 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
8697 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8698 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
8699 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
8701 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
8702 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8703 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
8705 VFP_CONV_FIX(sh, d, 64, 64, int16)
8706 VFP_CONV_FIX(sl, d, 64, 64, int32)
8707 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
8708 VFP_CONV_FIX(uh, d, 64, 64, uint16)
8709 VFP_CONV_FIX(ul, d, 64, 64, uint32)
8710 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
8711 VFP_CONV_FIX(sh, s, 32, 32, int16)
8712 VFP_CONV_FIX(sl, s, 32, 32, int32)
8713 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
8714 VFP_CONV_FIX(uh, s, 32, 32, uint16)
8715 VFP_CONV_FIX(ul, s, 32, 32, uint32)
8716 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
8717 #undef VFP_CONV_FIX
8718 #undef VFP_CONV_FIX_FLOAT
8719 #undef VFP_CONV_FLOAT_FIX_ROUND
8721 /* Set the current fp rounding mode and return the old one.
8722 * The argument is a softfloat float_round_ value.
8724 uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
8726 float_status *fp_status = &env->vfp.fp_status;
8728 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
8729 set_float_rounding_mode(rmode, fp_status);
8731 return prev_rmode;
8734 /* Set the current fp rounding mode in the standard fp status and return
8735 * the old one. This is for NEON instructions that need to change the
8736 * rounding mode but wish to use the standard FPSCR values for everything
8737 * else. Always set the rounding mode back to the correct value after
8738 * modifying it.
8739 * The argument is a softfloat float_round_ value.
8741 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
8743 float_status *fp_status = &env->vfp.standard_fp_status;
8745 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
8746 set_float_rounding_mode(rmode, fp_status);
8748 return prev_rmode;
8751 /* Half precision conversions. */
8752 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
8754 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
8755 float32 r = float16_to_float32(make_float16(a), ieee, s);
8756 if (ieee) {
8757 return float32_maybe_silence_nan(r);
8759 return r;
8762 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
8764 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
8765 float16 r = float32_to_float16(a, ieee, s);
8766 if (ieee) {
8767 r = float16_maybe_silence_nan(r);
8769 return float16_val(r);
8772 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
8774 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
8777 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
8779 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
8782 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
8784 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
8787 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
8789 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
8792 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
8794 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
8795 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
8796 if (ieee) {
8797 return float64_maybe_silence_nan(r);
8799 return r;
8802 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
8804 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
8805 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
8806 if (ieee) {
8807 r = float16_maybe_silence_nan(r);
8809 return float16_val(r);
8812 #define float32_two make_float32(0x40000000)
8813 #define float32_three make_float32(0x40400000)
8814 #define float32_one_point_five make_float32(0x3fc00000)
8816 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
8818 float_status *s = &env->vfp.standard_fp_status;
8819 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
8820 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
8821 if (!(float32_is_zero(a) || float32_is_zero(b))) {
8822 float_raise(float_flag_input_denormal, s);
8824 return float32_two;
8826 return float32_sub(float32_two, float32_mul(a, b, s), s);
8829 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
8831 float_status *s = &env->vfp.standard_fp_status;
8832 float32 product;
8833 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
8834 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
8835 if (!(float32_is_zero(a) || float32_is_zero(b))) {
8836 float_raise(float_flag_input_denormal, s);
8838 return float32_one_point_five;
8840 product = float32_mul(a, b, s);
8841 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
8844 /* NEON helpers. */
8846 /* Constants 256 and 512 are used in some helpers; we avoid relying on
8847 * int->float conversions at run-time. */
8848 #define float64_256 make_float64(0x4070000000000000LL)
8849 #define float64_512 make_float64(0x4080000000000000LL)
8850 #define float32_maxnorm make_float32(0x7f7fffff)
8851 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
8853 /* Reciprocal functions
8855 * The algorithm that must be used to calculate the estimate
8856 * is specified by the ARM ARM, see FPRecipEstimate()
8859 static float64 recip_estimate(float64 a, float_status *real_fp_status)
8861 /* These calculations mustn't set any fp exception flags,
8862 * so we use a local copy of the fp_status.
8864 float_status dummy_status = *real_fp_status;
8865 float_status *s = &dummy_status;
8866 /* q = (int)(a * 512.0) */
8867 float64 q = float64_mul(float64_512, a, s);
8868 int64_t q_int = float64_to_int64_round_to_zero(q, s);
8870 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
8871 q = int64_to_float64(q_int, s);
8872 q = float64_add(q, float64_half, s);
8873 q = float64_div(q, float64_512, s);
8874 q = float64_div(float64_one, q, s);
8876 /* s = (int)(256.0 * r + 0.5) */
8877 q = float64_mul(q, float64_256, s);
8878 q = float64_add(q, float64_half, s);
8879 q_int = float64_to_int64_round_to_zero(q, s);
8881 /* return (double)s / 256.0 */
8882 return float64_div(int64_to_float64(q_int, s), float64_256, s);
8885 /* Common wrapper to call recip_estimate */
8886 static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
8888 uint64_t val64 = float64_val(num);
8889 uint64_t frac = extract64(val64, 0, 52);
8890 int64_t exp = extract64(val64, 52, 11);
8891 uint64_t sbit;
8892 float64 scaled, estimate;
8894 /* Generate the scaled number for the estimate function */
8895 if (exp == 0) {
8896 if (extract64(frac, 51, 1) == 0) {
8897 exp = -1;
8898 frac = extract64(frac, 0, 50) << 2;
8899 } else {
8900 frac = extract64(frac, 0, 51) << 1;
8904 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
8905 scaled = make_float64((0x3feULL << 52)
8906 | extract64(frac, 44, 8) << 44);
8908 estimate = recip_estimate(scaled, fpst);
8910 /* Build new result */
8911 val64 = float64_val(estimate);
8912 sbit = 0x8000000000000000ULL & val64;
8913 exp = off - exp;
8914 frac = extract64(val64, 0, 52);
8916 if (exp == 0) {
8917 frac = 1ULL << 51 | extract64(frac, 1, 51);
8918 } else if (exp == -1) {
8919 frac = 1ULL << 50 | extract64(frac, 2, 50);
8920 exp = 0;
8923 return make_float64(sbit | (exp << 52) | frac);
8926 static bool round_to_inf(float_status *fpst, bool sign_bit)
8928 switch (fpst->float_rounding_mode) {
8929 case float_round_nearest_even: /* Round to Nearest */
8930 return true;
8931 case float_round_up: /* Round to +Inf */
8932 return !sign_bit;
8933 case float_round_down: /* Round to -Inf */
8934 return sign_bit;
8935 case float_round_to_zero: /* Round to Zero */
8936 return false;
8939 g_assert_not_reached();
8942 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
8944 float_status *fpst = fpstp;
8945 float32 f32 = float32_squash_input_denormal(input, fpst);
8946 uint32_t f32_val = float32_val(f32);
8947 uint32_t f32_sbit = 0x80000000ULL & f32_val;
8948 int32_t f32_exp = extract32(f32_val, 23, 8);
8949 uint32_t f32_frac = extract32(f32_val, 0, 23);
8950 float64 f64, r64;
8951 uint64_t r64_val;
8952 int64_t r64_exp;
8953 uint64_t r64_frac;
8955 if (float32_is_any_nan(f32)) {
8956 float32 nan = f32;
8957 if (float32_is_signaling_nan(f32)) {
8958 float_raise(float_flag_invalid, fpst);
8959 nan = float32_maybe_silence_nan(f32);
8961 if (fpst->default_nan_mode) {
8962 nan = float32_default_nan;
8964 return nan;
8965 } else if (float32_is_infinity(f32)) {
8966 return float32_set_sign(float32_zero, float32_is_neg(f32));
8967 } else if (float32_is_zero(f32)) {
8968 float_raise(float_flag_divbyzero, fpst);
8969 return float32_set_sign(float32_infinity, float32_is_neg(f32));
8970 } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
8971 /* Abs(value) < 2.0^-128 */
8972 float_raise(float_flag_overflow | float_flag_inexact, fpst);
8973 if (round_to_inf(fpst, f32_sbit)) {
8974 return float32_set_sign(float32_infinity, float32_is_neg(f32));
8975 } else {
8976 return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
8978 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
8979 float_raise(float_flag_underflow, fpst);
8980 return float32_set_sign(float32_zero, float32_is_neg(f32));
8984 f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
8985 r64 = call_recip_estimate(f64, 253, fpst);
8986 r64_val = float64_val(r64);
8987 r64_exp = extract64(r64_val, 52, 11);
8988 r64_frac = extract64(r64_val, 0, 52);
8990 /* result = sign : result_exp<7:0> : fraction<51:29>; */
8991 return make_float32(f32_sbit |
8992 (r64_exp & 0xff) << 23 |
8993 extract64(r64_frac, 29, 24));
8996 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
8998 float_status *fpst = fpstp;
8999 float64 f64 = float64_squash_input_denormal(input, fpst);
9000 uint64_t f64_val = float64_val(f64);
9001 uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
9002 int64_t f64_exp = extract64(f64_val, 52, 11);
9003 float64 r64;
9004 uint64_t r64_val;
9005 int64_t r64_exp;
9006 uint64_t r64_frac;
9008 /* Deal with any special cases */
9009 if (float64_is_any_nan(f64)) {
9010 float64 nan = f64;
9011 if (float64_is_signaling_nan(f64)) {
9012 float_raise(float_flag_invalid, fpst);
9013 nan = float64_maybe_silence_nan(f64);
9015 if (fpst->default_nan_mode) {
9016 nan = float64_default_nan;
9018 return nan;
9019 } else if (float64_is_infinity(f64)) {
9020 return float64_set_sign(float64_zero, float64_is_neg(f64));
9021 } else if (float64_is_zero(f64)) {
9022 float_raise(float_flag_divbyzero, fpst);
9023 return float64_set_sign(float64_infinity, float64_is_neg(f64));
9024 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
9025 /* Abs(value) < 2.0^-1024 */
9026 float_raise(float_flag_overflow | float_flag_inexact, fpst);
9027 if (round_to_inf(fpst, f64_sbit)) {
9028 return float64_set_sign(float64_infinity, float64_is_neg(f64));
9029 } else {
9030 return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
9032 } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
9033 float_raise(float_flag_underflow, fpst);
9034 return float64_set_sign(float64_zero, float64_is_neg(f64));
9037 r64 = call_recip_estimate(f64, 2045, fpst);
9038 r64_val = float64_val(r64);
9039 r64_exp = extract64(r64_val, 52, 11);
9040 r64_frac = extract64(r64_val, 0, 52);
9042 /* result = sign : result_exp<10:0> : fraction<51:0> */
9043 return make_float64(f64_sbit |
9044 ((r64_exp & 0x7ff) << 52) |
9045 r64_frac);
9048 /* The algorithm that must be used to calculate the estimate
9049 * is specified by the ARM ARM.
9051 static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
9053 /* These calculations mustn't set any fp exception flags,
9054 * so we use a local copy of the fp_status.
9056 float_status dummy_status = *real_fp_status;
9057 float_status *s = &dummy_status;
9058 float64 q;
9059 int64_t q_int;
9061 if (float64_lt(a, float64_half, s)) {
9062 /* range 0.25 <= a < 0.5 */
9064 /* a in units of 1/512 rounded down */
9065 /* q0 = (int)(a * 512.0); */
9066 q = float64_mul(float64_512, a, s);
9067 q_int = float64_to_int64_round_to_zero(q, s);
9069 /* reciprocal root r */
9070 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
9071 q = int64_to_float64(q_int, s);
9072 q = float64_add(q, float64_half, s);
9073 q = float64_div(q, float64_512, s);
9074 q = float64_sqrt(q, s);
9075 q = float64_div(float64_one, q, s);
9076 } else {
9077 /* range 0.5 <= a < 1.0 */
9079 /* a in units of 1/256 rounded down */
9080 /* q1 = (int)(a * 256.0); */
9081 q = float64_mul(float64_256, a, s);
9082 int64_t q_int = float64_to_int64_round_to_zero(q, s);
9084 /* reciprocal root r */
9085 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
9086 q = int64_to_float64(q_int, s);
9087 q = float64_add(q, float64_half, s);
9088 q = float64_div(q, float64_256, s);
9089 q = float64_sqrt(q, s);
9090 q = float64_div(float64_one, q, s);
9092 /* r in units of 1/256 rounded to nearest */
9093 /* s = (int)(256.0 * r + 0.5); */
9095 q = float64_mul(q, float64_256,s );
9096 q = float64_add(q, float64_half, s);
9097 q_int = float64_to_int64_round_to_zero(q, s);
9099 /* return (double)s / 256.0;*/
9100 return float64_div(int64_to_float64(q_int, s), float64_256, s);
9103 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
9105 float_status *s = fpstp;
9106 float32 f32 = float32_squash_input_denormal(input, s);
9107 uint32_t val = float32_val(f32);
9108 uint32_t f32_sbit = 0x80000000 & val;
9109 int32_t f32_exp = extract32(val, 23, 8);
9110 uint32_t f32_frac = extract32(val, 0, 23);
9111 uint64_t f64_frac;
9112 uint64_t val64;
9113 int result_exp;
9114 float64 f64;
9116 if (float32_is_any_nan(f32)) {
9117 float32 nan = f32;
9118 if (float32_is_signaling_nan(f32)) {
9119 float_raise(float_flag_invalid, s);
9120 nan = float32_maybe_silence_nan(f32);
9122 if (s->default_nan_mode) {
9123 nan = float32_default_nan;
9125 return nan;
9126 } else if (float32_is_zero(f32)) {
9127 float_raise(float_flag_divbyzero, s);
9128 return float32_set_sign(float32_infinity, float32_is_neg(f32));
9129 } else if (float32_is_neg(f32)) {
9130 float_raise(float_flag_invalid, s);
9131 return float32_default_nan;
9132 } else if (float32_is_infinity(f32)) {
9133 return float32_zero;
9136 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
9137 * preserving the parity of the exponent. */
9139 f64_frac = ((uint64_t) f32_frac) << 29;
9140 if (f32_exp == 0) {
9141 while (extract64(f64_frac, 51, 1) == 0) {
9142 f64_frac = f64_frac << 1;
9143 f32_exp = f32_exp-1;
9145 f64_frac = extract64(f64_frac, 0, 51) << 1;
9148 if (extract64(f32_exp, 0, 1) == 0) {
9149 f64 = make_float64(((uint64_t) f32_sbit) << 32
9150 | (0x3feULL << 52)
9151 | f64_frac);
9152 } else {
9153 f64 = make_float64(((uint64_t) f32_sbit) << 32
9154 | (0x3fdULL << 52)
9155 | f64_frac);
9158 result_exp = (380 - f32_exp) / 2;
9160 f64 = recip_sqrt_estimate(f64, s);
9162 val64 = float64_val(f64);
9164 val = ((result_exp & 0xff) << 23)
9165 | ((val64 >> 29) & 0x7fffff);
9166 return make_float32(val);
9169 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
9171 float_status *s = fpstp;
9172 float64 f64 = float64_squash_input_denormal(input, s);
9173 uint64_t val = float64_val(f64);
9174 uint64_t f64_sbit = 0x8000000000000000ULL & val;
9175 int64_t f64_exp = extract64(val, 52, 11);
9176 uint64_t f64_frac = extract64(val, 0, 52);
9177 int64_t result_exp;
9178 uint64_t result_frac;
9180 if (float64_is_any_nan(f64)) {
9181 float64 nan = f64;
9182 if (float64_is_signaling_nan(f64)) {
9183 float_raise(float_flag_invalid, s);
9184 nan = float64_maybe_silence_nan(f64);
9186 if (s->default_nan_mode) {
9187 nan = float64_default_nan;
9189 return nan;
9190 } else if (float64_is_zero(f64)) {
9191 float_raise(float_flag_divbyzero, s);
9192 return float64_set_sign(float64_infinity, float64_is_neg(f64));
9193 } else if (float64_is_neg(f64)) {
9194 float_raise(float_flag_invalid, s);
9195 return float64_default_nan;
9196 } else if (float64_is_infinity(f64)) {
9197 return float64_zero;
9200 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
9201 * preserving the parity of the exponent. */
9203 if (f64_exp == 0) {
9204 while (extract64(f64_frac, 51, 1) == 0) {
9205 f64_frac = f64_frac << 1;
9206 f64_exp = f64_exp - 1;
9208 f64_frac = extract64(f64_frac, 0, 51) << 1;
9211 if (extract64(f64_exp, 0, 1) == 0) {
9212 f64 = make_float64(f64_sbit
9213 | (0x3feULL << 52)
9214 | f64_frac);
9215 } else {
9216 f64 = make_float64(f64_sbit
9217 | (0x3fdULL << 52)
9218 | f64_frac);
9221 result_exp = (3068 - f64_exp) / 2;
9223 f64 = recip_sqrt_estimate(f64, s);
9225 result_frac = extract64(float64_val(f64), 0, 52);
9227 return make_float64(f64_sbit |
9228 ((result_exp & 0x7ff) << 52) |
9229 result_frac);
9232 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
9234 float_status *s = fpstp;
9235 float64 f64;
9237 if ((a & 0x80000000) == 0) {
9238 return 0xffffffff;
9241 f64 = make_float64((0x3feULL << 52)
9242 | ((int64_t)(a & 0x7fffffff) << 21));
9244 f64 = recip_estimate(f64, s);
9246 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
9249 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
9251 float_status *fpst = fpstp;
9252 float64 f64;
9254 if ((a & 0xc0000000) == 0) {
9255 return 0xffffffff;
9258 if (a & 0x80000000) {
9259 f64 = make_float64((0x3feULL << 52)
9260 | ((uint64_t)(a & 0x7fffffff) << 21));
9261 } else { /* bits 31-30 == '01' */
9262 f64 = make_float64((0x3fdULL << 52)
9263 | ((uint64_t)(a & 0x3fffffff) << 22));
9266 f64 = recip_sqrt_estimate(f64, fpst);
9268 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
9271 /* VFPv4 fused multiply-accumulate */
9272 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
9274 float_status *fpst = fpstp;
9275 return float32_muladd(a, b, c, 0, fpst);
9278 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
9280 float_status *fpst = fpstp;
9281 return float64_muladd(a, b, c, 0, fpst);
9284 /* ARMv8 round to integral */
9285 float32 HELPER(rints_exact)(float32 x, void *fp_status)
9287 return float32_round_to_int(x, fp_status);
9290 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
9292 return float64_round_to_int(x, fp_status);
9295 float32 HELPER(rints)(float32 x, void *fp_status)
9297 int old_flags = get_float_exception_flags(fp_status), new_flags;
9298 float32 ret;
9300 ret = float32_round_to_int(x, fp_status);
9302 /* Suppress any inexact exceptions the conversion produced */
9303 if (!(old_flags & float_flag_inexact)) {
9304 new_flags = get_float_exception_flags(fp_status);
9305 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
9308 return ret;
9311 float64 HELPER(rintd)(float64 x, void *fp_status)
9313 int old_flags = get_float_exception_flags(fp_status), new_flags;
9314 float64 ret;
9316 ret = float64_round_to_int(x, fp_status);
9318 new_flags = get_float_exception_flags(fp_status);
9320 /* Suppress any inexact exceptions the conversion produced */
9321 if (!(old_flags & float_flag_inexact)) {
9322 new_flags = get_float_exception_flags(fp_status);
9323 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
9326 return ret;
9329 /* Convert ARM rounding mode to softfloat */
9330 int arm_rmode_to_sf(int rmode)
9332 switch (rmode) {
9333 case FPROUNDING_TIEAWAY:
9334 rmode = float_round_ties_away;
9335 break;
9336 case FPROUNDING_ODD:
9337 /* FIXME: add support for TIEAWAY and ODD */
9338 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
9339 rmode);
9340 case FPROUNDING_TIEEVEN:
9341 default:
9342 rmode = float_round_nearest_even;
9343 break;
9344 case FPROUNDING_POSINF:
9345 rmode = float_round_up;
9346 break;
9347 case FPROUNDING_NEGINF:
9348 rmode = float_round_down;
9349 break;
9350 case FPROUNDING_ZERO:
9351 rmode = float_round_to_zero;
9352 break;
9354 return rmode;
9357 /* CRC helpers.
9358 * The upper bytes of val (above the number specified by 'bytes') must have
9359 * been zeroed out by the caller.
9361 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
9363 uint8_t buf[4];
9365 stl_le_p(buf, val);
9367 /* zlib crc32 converts the accumulator and output to one's complement. */
9368 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
9371 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
9373 uint8_t buf[4];
9375 stl_le_p(buf, val);
9377 /* Linux crc32c converts the output to one's complement. */
9378 return crc32c(acc, buf, bytes) ^ 0xffffffff;