Add hard build dependency on glib
[qemu.git] / target-sparc / op_helper.c
blob3b7f9cab5d29204e667030d6fe527b4c7dda2cdc
1 #include "exec.h"
2 #include "host-utils.h"
3 #include "helper.h"
4 #include "sysemu.h"
6 //#define DEBUG_MMU
7 //#define DEBUG_MXCC
8 //#define DEBUG_UNALIGNED
9 //#define DEBUG_UNASSIGNED
10 //#define DEBUG_ASI
11 //#define DEBUG_PCALL
12 //#define DEBUG_PSTATE
13 //#define DEBUG_CACHE_CONTROL
15 #ifdef DEBUG_MMU
16 #define DPRINTF_MMU(fmt, ...) \
17 do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
18 #else
19 #define DPRINTF_MMU(fmt, ...) do {} while (0)
20 #endif
22 #ifdef DEBUG_MXCC
23 #define DPRINTF_MXCC(fmt, ...) \
24 do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
25 #else
26 #define DPRINTF_MXCC(fmt, ...) do {} while (0)
27 #endif
29 #ifdef DEBUG_ASI
30 #define DPRINTF_ASI(fmt, ...) \
31 do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
32 #endif
34 #ifdef DEBUG_PSTATE
35 #define DPRINTF_PSTATE(fmt, ...) \
36 do { printf("PSTATE: " fmt , ## __VA_ARGS__); } while (0)
37 #else
38 #define DPRINTF_PSTATE(fmt, ...) do {} while (0)
39 #endif
41 #ifdef DEBUG_CACHE_CONTROL
42 #define DPRINTF_CACHE_CONTROL(fmt, ...) \
43 do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0)
44 #else
45 #define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0)
46 #endif
48 #ifdef TARGET_SPARC64
49 #ifndef TARGET_ABI32
50 #define AM_CHECK(env1) ((env1)->pstate & PS_AM)
51 #else
52 #define AM_CHECK(env1) (1)
53 #endif
54 #endif
56 #define DT0 (env->dt0)
57 #define DT1 (env->dt1)
58 #define QT0 (env->qt0)
59 #define QT1 (env->qt1)
61 /* Leon3 cache control */
63 /* Cache control: emulate the behavior of cache control registers but without
64 any effect on the emulated */
66 #define CACHE_STATE_MASK 0x3
67 #define CACHE_DISABLED 0x0
68 #define CACHE_FROZEN 0x1
69 #define CACHE_ENABLED 0x3
71 /* Cache Control register fields */
73 #define CACHE_CTRL_IF (1 << 4) /* Instruction Cache Freeze on Interrupt */
74 #define CACHE_CTRL_DF (1 << 5) /* Data Cache Freeze on Interrupt */
75 #define CACHE_CTRL_DP (1 << 14) /* Data cache flush pending */
76 #define CACHE_CTRL_IP (1 << 15) /* Instruction cache flush pending */
77 #define CACHE_CTRL_IB (1 << 16) /* Instruction burst fetch */
78 #define CACHE_CTRL_FI (1 << 21) /* Flush Instruction cache (Write only) */
79 #define CACHE_CTRL_FD (1 << 22) /* Flush Data cache (Write only) */
80 #define CACHE_CTRL_DS (1 << 23) /* Data cache snoop enable */
82 #if !defined(CONFIG_USER_ONLY)
83 static void do_unassigned_access(target_phys_addr_t addr, int is_write,
84 int is_exec, int is_asi, int size);
85 #else
86 #ifdef TARGET_SPARC64
87 static void do_unassigned_access(target_ulong addr, int is_write, int is_exec,
88 int is_asi, int size);
89 #endif
90 #endif
92 #if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
93 // Calculates TSB pointer value for fault page size 8k or 64k
94 static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register,
95 uint64_t tag_access_register,
96 int page_size)
98 uint64_t tsb_base = tsb_register & ~0x1fffULL;
99 int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
100 int tsb_size = tsb_register & 0xf;
102 // discard lower 13 bits which hold tag access context
103 uint64_t tag_access_va = tag_access_register & ~0x1fffULL;
105 // now reorder bits
106 uint64_t tsb_base_mask = ~0x1fffULL;
107 uint64_t va = tag_access_va;
109 // move va bits to correct position
110 if (page_size == 8*1024) {
111 va >>= 9;
112 } else if (page_size == 64*1024) {
113 va >>= 12;
116 if (tsb_size) {
117 tsb_base_mask <<= tsb_size;
120 // calculate tsb_base mask and adjust va if split is in use
121 if (tsb_split) {
122 if (page_size == 8*1024) {
123 va &= ~(1ULL << (13 + tsb_size));
124 } else if (page_size == 64*1024) {
125 va |= (1ULL << (13 + tsb_size));
127 tsb_base_mask <<= 1;
130 return ((tsb_base & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
133 // Calculates tag target register value by reordering bits
134 // in tag access register
135 static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
137 return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
140 static void replace_tlb_entry(SparcTLBEntry *tlb,
141 uint64_t tlb_tag, uint64_t tlb_tte,
142 CPUState *env1)
144 target_ulong mask, size, va, offset;
146 // flush page range if translation is valid
147 if (TTE_IS_VALID(tlb->tte)) {
149 mask = 0xffffffffffffe000ULL;
150 mask <<= 3 * ((tlb->tte >> 61) & 3);
151 size = ~mask + 1;
153 va = tlb->tag & mask;
155 for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
156 tlb_flush_page(env1, va + offset);
160 tlb->tag = tlb_tag;
161 tlb->tte = tlb_tte;
164 static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
165 const char* strmmu, CPUState *env1)
167 unsigned int i;
168 target_ulong mask;
169 uint64_t context;
171 int is_demap_context = (demap_addr >> 6) & 1;
173 // demap context
174 switch ((demap_addr >> 4) & 3) {
175 case 0: // primary
176 context = env1->dmmu.mmu_primary_context;
177 break;
178 case 1: // secondary
179 context = env1->dmmu.mmu_secondary_context;
180 break;
181 case 2: // nucleus
182 context = 0;
183 break;
184 case 3: // reserved
185 default:
186 return;
189 for (i = 0; i < 64; i++) {
190 if (TTE_IS_VALID(tlb[i].tte)) {
192 if (is_demap_context) {
193 // will remove non-global entries matching context value
194 if (TTE_IS_GLOBAL(tlb[i].tte) ||
195 !tlb_compare_context(&tlb[i], context)) {
196 continue;
198 } else {
199 // demap page
200 // will remove any entry matching VA
201 mask = 0xffffffffffffe000ULL;
202 mask <<= 3 * ((tlb[i].tte >> 61) & 3);
204 if (!compare_masked(demap_addr, tlb[i].tag, mask)) {
205 continue;
208 // entry should be global or matching context value
209 if (!TTE_IS_GLOBAL(tlb[i].tte) &&
210 !tlb_compare_context(&tlb[i], context)) {
211 continue;
215 replace_tlb_entry(&tlb[i], 0, 0, env1);
216 #ifdef DEBUG_MMU
217 DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
218 dump_mmu(stdout, fprintf, env1);
219 #endif
224 static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
225 uint64_t tlb_tag, uint64_t tlb_tte,
226 const char* strmmu, CPUState *env1)
228 unsigned int i, replace_used;
230 // Try replacing invalid entry
231 for (i = 0; i < 64; i++) {
232 if (!TTE_IS_VALID(tlb[i].tte)) {
233 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
234 #ifdef DEBUG_MMU
235 DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
236 dump_mmu(stdout, fprintf, env1);
237 #endif
238 return;
242 // All entries are valid, try replacing unlocked entry
244 for (replace_used = 0; replace_used < 2; ++replace_used) {
246 // Used entries are not replaced on first pass
248 for (i = 0; i < 64; i++) {
249 if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
251 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
252 #ifdef DEBUG_MMU
253 DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
254 strmmu, (replace_used?"used":"unused"), i);
255 dump_mmu(stdout, fprintf, env1);
256 #endif
257 return;
261 // Now reset used bit and search for unused entries again
263 for (i = 0; i < 64; i++) {
264 TTE_SET_UNUSED(tlb[i].tte);
268 #ifdef DEBUG_MMU
269 DPRINTF_MMU("%s lru replacement failed: no entries available\n", strmmu);
270 #endif
271 // error state?
274 #endif
276 static inline target_ulong address_mask(CPUState *env1, target_ulong addr)
278 #ifdef TARGET_SPARC64
279 if (AM_CHECK(env1))
280 addr &= 0xffffffffULL;
281 #endif
282 return addr;
285 /* returns true if access using this ASI is to have address translated by MMU
286 otherwise access is to raw physical address */
287 static inline int is_translating_asi(int asi)
289 #ifdef TARGET_SPARC64
290 /* Ultrasparc IIi translating asi
291 - note this list is defined by cpu implementation
293 switch (asi) {
294 case 0x04 ... 0x11:
295 case 0x16 ... 0x19:
296 case 0x1E ... 0x1F:
297 case 0x24 ... 0x2C:
298 case 0x70 ... 0x73:
299 case 0x78 ... 0x79:
300 case 0x80 ... 0xFF:
301 return 1;
303 default:
304 return 0;
306 #else
307 /* TODO: check sparc32 bits */
308 return 0;
309 #endif
312 static inline target_ulong asi_address_mask(CPUState *env1,
313 int asi, target_ulong addr)
315 if (is_translating_asi(asi)) {
316 return address_mask(env, addr);
317 } else {
318 return addr;
322 static void raise_exception(int tt)
324 env->exception_index = tt;
325 cpu_loop_exit(env);
328 void HELPER(raise_exception)(int tt)
330 raise_exception(tt);
333 void helper_shutdown(void)
335 #if !defined(CONFIG_USER_ONLY)
336 qemu_system_shutdown_request();
337 #endif
340 void helper_check_align(target_ulong addr, uint32_t align)
342 if (addr & align) {
343 #ifdef DEBUG_UNALIGNED
344 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
345 "\n", addr, env->pc);
346 #endif
347 raise_exception(TT_UNALIGNED);
351 #define F_HELPER(name, p) void helper_f##name##p(void)
353 #define F_BINOP(name) \
354 float32 helper_f ## name ## s (float32 src1, float32 src2) \
356 return float32_ ## name (src1, src2, &env->fp_status); \
358 F_HELPER(name, d) \
360 DT0 = float64_ ## name (DT0, DT1, &env->fp_status); \
362 F_HELPER(name, q) \
364 QT0 = float128_ ## name (QT0, QT1, &env->fp_status); \
367 F_BINOP(add);
368 F_BINOP(sub);
369 F_BINOP(mul);
370 F_BINOP(div);
371 #undef F_BINOP
373 void helper_fsmuld(float32 src1, float32 src2)
375 DT0 = float64_mul(float32_to_float64(src1, &env->fp_status),
376 float32_to_float64(src2, &env->fp_status),
377 &env->fp_status);
380 void helper_fdmulq(void)
382 QT0 = float128_mul(float64_to_float128(DT0, &env->fp_status),
383 float64_to_float128(DT1, &env->fp_status),
384 &env->fp_status);
387 float32 helper_fnegs(float32 src)
389 return float32_chs(src);
392 #ifdef TARGET_SPARC64
393 F_HELPER(neg, d)
395 DT0 = float64_chs(DT1);
398 F_HELPER(neg, q)
400 QT0 = float128_chs(QT1);
402 #endif
404 /* Integer to float conversion. */
405 float32 helper_fitos(int32_t src)
407 return int32_to_float32(src, &env->fp_status);
410 void helper_fitod(int32_t src)
412 DT0 = int32_to_float64(src, &env->fp_status);
415 void helper_fitoq(int32_t src)
417 QT0 = int32_to_float128(src, &env->fp_status);
420 #ifdef TARGET_SPARC64
421 float32 helper_fxtos(void)
423 return int64_to_float32(*((int64_t *)&DT1), &env->fp_status);
426 F_HELPER(xto, d)
428 DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status);
431 F_HELPER(xto, q)
433 QT0 = int64_to_float128(*((int64_t *)&DT1), &env->fp_status);
435 #endif
436 #undef F_HELPER
438 /* floating point conversion */
439 float32 helper_fdtos(void)
441 return float64_to_float32(DT1, &env->fp_status);
444 void helper_fstod(float32 src)
446 DT0 = float32_to_float64(src, &env->fp_status);
449 float32 helper_fqtos(void)
451 return float128_to_float32(QT1, &env->fp_status);
454 void helper_fstoq(float32 src)
456 QT0 = float32_to_float128(src, &env->fp_status);
459 void helper_fqtod(void)
461 DT0 = float128_to_float64(QT1, &env->fp_status);
464 void helper_fdtoq(void)
466 QT0 = float64_to_float128(DT1, &env->fp_status);
469 /* Float to integer conversion. */
470 int32_t helper_fstoi(float32 src)
472 return float32_to_int32_round_to_zero(src, &env->fp_status);
475 int32_t helper_fdtoi(void)
477 return float64_to_int32_round_to_zero(DT1, &env->fp_status);
480 int32_t helper_fqtoi(void)
482 return float128_to_int32_round_to_zero(QT1, &env->fp_status);
485 #ifdef TARGET_SPARC64
486 void helper_fstox(float32 src)
488 *((int64_t *)&DT0) = float32_to_int64_round_to_zero(src, &env->fp_status);
491 void helper_fdtox(void)
493 *((int64_t *)&DT0) = float64_to_int64_round_to_zero(DT1, &env->fp_status);
496 void helper_fqtox(void)
498 *((int64_t *)&DT0) = float128_to_int64_round_to_zero(QT1, &env->fp_status);
501 void helper_faligndata(void)
503 uint64_t tmp;
505 tmp = (*((uint64_t *)&DT0)) << ((env->gsr & 7) * 8);
506 /* on many architectures a shift of 64 does nothing */
507 if ((env->gsr & 7) != 0) {
508 tmp |= (*((uint64_t *)&DT1)) >> (64 - (env->gsr & 7) * 8);
510 *((uint64_t *)&DT0) = tmp;
513 #ifdef HOST_WORDS_BIGENDIAN
514 #define VIS_B64(n) b[7 - (n)]
515 #define VIS_W64(n) w[3 - (n)]
516 #define VIS_SW64(n) sw[3 - (n)]
517 #define VIS_L64(n) l[1 - (n)]
518 #define VIS_B32(n) b[3 - (n)]
519 #define VIS_W32(n) w[1 - (n)]
520 #else
521 #define VIS_B64(n) b[n]
522 #define VIS_W64(n) w[n]
523 #define VIS_SW64(n) sw[n]
524 #define VIS_L64(n) l[n]
525 #define VIS_B32(n) b[n]
526 #define VIS_W32(n) w[n]
527 #endif
529 typedef union {
530 uint8_t b[8];
531 uint16_t w[4];
532 int16_t sw[4];
533 uint32_t l[2];
534 uint64_t ll;
535 float64 d;
536 } vis64;
538 typedef union {
539 uint8_t b[4];
540 uint16_t w[2];
541 uint32_t l;
542 float32 f;
543 } vis32;
545 void helper_fpmerge(void)
547 vis64 s, d;
549 s.d = DT0;
550 d.d = DT1;
552 // Reverse calculation order to handle overlap
553 d.VIS_B64(7) = s.VIS_B64(3);
554 d.VIS_B64(6) = d.VIS_B64(3);
555 d.VIS_B64(5) = s.VIS_B64(2);
556 d.VIS_B64(4) = d.VIS_B64(2);
557 d.VIS_B64(3) = s.VIS_B64(1);
558 d.VIS_B64(2) = d.VIS_B64(1);
559 d.VIS_B64(1) = s.VIS_B64(0);
560 //d.VIS_B64(0) = d.VIS_B64(0);
562 DT0 = d.d;
565 void helper_fmul8x16(void)
567 vis64 s, d;
568 uint32_t tmp;
570 s.d = DT0;
571 d.d = DT1;
573 #define PMUL(r) \
574 tmp = (int32_t)d.VIS_SW64(r) * (int32_t)s.VIS_B64(r); \
575 if ((tmp & 0xff) > 0x7f) \
576 tmp += 0x100; \
577 d.VIS_W64(r) = tmp >> 8;
579 PMUL(0);
580 PMUL(1);
581 PMUL(2);
582 PMUL(3);
583 #undef PMUL
585 DT0 = d.d;
588 void helper_fmul8x16al(void)
590 vis64 s, d;
591 uint32_t tmp;
593 s.d = DT0;
594 d.d = DT1;
596 #define PMUL(r) \
597 tmp = (int32_t)d.VIS_SW64(1) * (int32_t)s.VIS_B64(r); \
598 if ((tmp & 0xff) > 0x7f) \
599 tmp += 0x100; \
600 d.VIS_W64(r) = tmp >> 8;
602 PMUL(0);
603 PMUL(1);
604 PMUL(2);
605 PMUL(3);
606 #undef PMUL
608 DT0 = d.d;
611 void helper_fmul8x16au(void)
613 vis64 s, d;
614 uint32_t tmp;
616 s.d = DT0;
617 d.d = DT1;
619 #define PMUL(r) \
620 tmp = (int32_t)d.VIS_SW64(0) * (int32_t)s.VIS_B64(r); \
621 if ((tmp & 0xff) > 0x7f) \
622 tmp += 0x100; \
623 d.VIS_W64(r) = tmp >> 8;
625 PMUL(0);
626 PMUL(1);
627 PMUL(2);
628 PMUL(3);
629 #undef PMUL
631 DT0 = d.d;
634 void helper_fmul8sux16(void)
636 vis64 s, d;
637 uint32_t tmp;
639 s.d = DT0;
640 d.d = DT1;
642 #define PMUL(r) \
643 tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
644 if ((tmp & 0xff) > 0x7f) \
645 tmp += 0x100; \
646 d.VIS_W64(r) = tmp >> 8;
648 PMUL(0);
649 PMUL(1);
650 PMUL(2);
651 PMUL(3);
652 #undef PMUL
654 DT0 = d.d;
657 void helper_fmul8ulx16(void)
659 vis64 s, d;
660 uint32_t tmp;
662 s.d = DT0;
663 d.d = DT1;
665 #define PMUL(r) \
666 tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
667 if ((tmp & 0xff) > 0x7f) \
668 tmp += 0x100; \
669 d.VIS_W64(r) = tmp >> 8;
671 PMUL(0);
672 PMUL(1);
673 PMUL(2);
674 PMUL(3);
675 #undef PMUL
677 DT0 = d.d;
680 void helper_fmuld8sux16(void)
682 vis64 s, d;
683 uint32_t tmp;
685 s.d = DT0;
686 d.d = DT1;
688 #define PMUL(r) \
689 tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
690 if ((tmp & 0xff) > 0x7f) \
691 tmp += 0x100; \
692 d.VIS_L64(r) = tmp;
694 // Reverse calculation order to handle overlap
695 PMUL(1);
696 PMUL(0);
697 #undef PMUL
699 DT0 = d.d;
702 void helper_fmuld8ulx16(void)
704 vis64 s, d;
705 uint32_t tmp;
707 s.d = DT0;
708 d.d = DT1;
710 #define PMUL(r) \
711 tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
712 if ((tmp & 0xff) > 0x7f) \
713 tmp += 0x100; \
714 d.VIS_L64(r) = tmp;
716 // Reverse calculation order to handle overlap
717 PMUL(1);
718 PMUL(0);
719 #undef PMUL
721 DT0 = d.d;
724 void helper_fexpand(void)
726 vis32 s;
727 vis64 d;
729 s.l = (uint32_t)(*(uint64_t *)&DT0 & 0xffffffff);
730 d.d = DT1;
731 d.VIS_W64(0) = s.VIS_B32(0) << 4;
732 d.VIS_W64(1) = s.VIS_B32(1) << 4;
733 d.VIS_W64(2) = s.VIS_B32(2) << 4;
734 d.VIS_W64(3) = s.VIS_B32(3) << 4;
736 DT0 = d.d;
739 #define VIS_HELPER(name, F) \
740 void name##16(void) \
742 vis64 s, d; \
744 s.d = DT0; \
745 d.d = DT1; \
747 d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0)); \
748 d.VIS_W64(1) = F(d.VIS_W64(1), s.VIS_W64(1)); \
749 d.VIS_W64(2) = F(d.VIS_W64(2), s.VIS_W64(2)); \
750 d.VIS_W64(3) = F(d.VIS_W64(3), s.VIS_W64(3)); \
752 DT0 = d.d; \
755 uint32_t name##16s(uint32_t src1, uint32_t src2) \
757 vis32 s, d; \
759 s.l = src1; \
760 d.l = src2; \
762 d.VIS_W32(0) = F(d.VIS_W32(0), s.VIS_W32(0)); \
763 d.VIS_W32(1) = F(d.VIS_W32(1), s.VIS_W32(1)); \
765 return d.l; \
768 void name##32(void) \
770 vis64 s, d; \
772 s.d = DT0; \
773 d.d = DT1; \
775 d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0)); \
776 d.VIS_L64(1) = F(d.VIS_L64(1), s.VIS_L64(1)); \
778 DT0 = d.d; \
781 uint32_t name##32s(uint32_t src1, uint32_t src2) \
783 vis32 s, d; \
785 s.l = src1; \
786 d.l = src2; \
788 d.l = F(d.l, s.l); \
790 return d.l; \
793 #define FADD(a, b) ((a) + (b))
794 #define FSUB(a, b) ((a) - (b))
795 VIS_HELPER(helper_fpadd, FADD)
796 VIS_HELPER(helper_fpsub, FSUB)
798 #define VIS_CMPHELPER(name, F) \
799 uint64_t name##16(void) \
801 vis64 s, d; \
803 s.d = DT0; \
804 d.d = DT1; \
806 d.VIS_W64(0) = F(s.VIS_W64(0), d.VIS_W64(0)) ? 1 : 0; \
807 d.VIS_W64(0) |= F(s.VIS_W64(1), d.VIS_W64(1)) ? 2 : 0; \
808 d.VIS_W64(0) |= F(s.VIS_W64(2), d.VIS_W64(2)) ? 4 : 0; \
809 d.VIS_W64(0) |= F(s.VIS_W64(3), d.VIS_W64(3)) ? 8 : 0; \
810 d.VIS_W64(1) = d.VIS_W64(2) = d.VIS_W64(3) = 0; \
812 return d.ll; \
815 uint64_t name##32(void) \
817 vis64 s, d; \
819 s.d = DT0; \
820 d.d = DT1; \
822 d.VIS_L64(0) = F(s.VIS_L64(0), d.VIS_L64(0)) ? 1 : 0; \
823 d.VIS_L64(0) |= F(s.VIS_L64(1), d.VIS_L64(1)) ? 2 : 0; \
824 d.VIS_L64(1) = 0; \
826 return d.ll; \
829 #define FCMPGT(a, b) ((a) > (b))
830 #define FCMPEQ(a, b) ((a) == (b))
831 #define FCMPLE(a, b) ((a) <= (b))
832 #define FCMPNE(a, b) ((a) != (b))
834 VIS_CMPHELPER(helper_fcmpgt, FCMPGT)
835 VIS_CMPHELPER(helper_fcmpeq, FCMPEQ)
836 VIS_CMPHELPER(helper_fcmple, FCMPLE)
837 VIS_CMPHELPER(helper_fcmpne, FCMPNE)
838 #endif
840 void helper_check_ieee_exceptions(void)
842 target_ulong status;
844 status = get_float_exception_flags(&env->fp_status);
845 if (status) {
846 /* Copy IEEE 754 flags into FSR */
847 if (status & float_flag_invalid)
848 env->fsr |= FSR_NVC;
849 if (status & float_flag_overflow)
850 env->fsr |= FSR_OFC;
851 if (status & float_flag_underflow)
852 env->fsr |= FSR_UFC;
853 if (status & float_flag_divbyzero)
854 env->fsr |= FSR_DZC;
855 if (status & float_flag_inexact)
856 env->fsr |= FSR_NXC;
858 if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23)) {
859 /* Unmasked exception, generate a trap */
860 env->fsr |= FSR_FTT_IEEE_EXCP;
861 raise_exception(TT_FP_EXCP);
862 } else {
863 /* Accumulate exceptions */
864 env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
869 void helper_clear_float_exceptions(void)
871 set_float_exception_flags(0, &env->fp_status);
874 float32 helper_fabss(float32 src)
876 return float32_abs(src);
879 #ifdef TARGET_SPARC64
880 void helper_fabsd(void)
882 DT0 = float64_abs(DT1);
885 void helper_fabsq(void)
887 QT0 = float128_abs(QT1);
889 #endif
891 float32 helper_fsqrts(float32 src)
893 return float32_sqrt(src, &env->fp_status);
896 void helper_fsqrtd(void)
898 DT0 = float64_sqrt(DT1, &env->fp_status);
901 void helper_fsqrtq(void)
903 QT0 = float128_sqrt(QT1, &env->fp_status);
906 #define GEN_FCMP(name, size, reg1, reg2, FS, E) \
907 void glue(helper_, name) (void) \
909 env->fsr &= FSR_FTT_NMASK; \
910 if (E && (glue(size, _is_any_nan)(reg1) || \
911 glue(size, _is_any_nan)(reg2)) && \
912 (env->fsr & FSR_NVM)) { \
913 env->fsr |= FSR_NVC; \
914 env->fsr |= FSR_FTT_IEEE_EXCP; \
915 raise_exception(TT_FP_EXCP); \
917 switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) { \
918 case float_relation_unordered: \
919 if ((env->fsr & FSR_NVM)) { \
920 env->fsr |= FSR_NVC; \
921 env->fsr |= FSR_FTT_IEEE_EXCP; \
922 raise_exception(TT_FP_EXCP); \
923 } else { \
924 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
925 env->fsr |= (FSR_FCC1 | FSR_FCC0) << FS; \
926 env->fsr |= FSR_NVA; \
928 break; \
929 case float_relation_less: \
930 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
931 env->fsr |= FSR_FCC0 << FS; \
932 break; \
933 case float_relation_greater: \
934 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
935 env->fsr |= FSR_FCC1 << FS; \
936 break; \
937 default: \
938 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
939 break; \
942 #define GEN_FCMPS(name, size, FS, E) \
943 void glue(helper_, name)(float32 src1, float32 src2) \
945 env->fsr &= FSR_FTT_NMASK; \
946 if (E && (glue(size, _is_any_nan)(src1) || \
947 glue(size, _is_any_nan)(src2)) && \
948 (env->fsr & FSR_NVM)) { \
949 env->fsr |= FSR_NVC; \
950 env->fsr |= FSR_FTT_IEEE_EXCP; \
951 raise_exception(TT_FP_EXCP); \
953 switch (glue(size, _compare) (src1, src2, &env->fp_status)) { \
954 case float_relation_unordered: \
955 if ((env->fsr & FSR_NVM)) { \
956 env->fsr |= FSR_NVC; \
957 env->fsr |= FSR_FTT_IEEE_EXCP; \
958 raise_exception(TT_FP_EXCP); \
959 } else { \
960 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
961 env->fsr |= (FSR_FCC1 | FSR_FCC0) << FS; \
962 env->fsr |= FSR_NVA; \
964 break; \
965 case float_relation_less: \
966 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
967 env->fsr |= FSR_FCC0 << FS; \
968 break; \
969 case float_relation_greater: \
970 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
971 env->fsr |= FSR_FCC1 << FS; \
972 break; \
973 default: \
974 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
975 break; \
979 GEN_FCMPS(fcmps, float32, 0, 0);
980 GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);
982 GEN_FCMPS(fcmpes, float32, 0, 1);
983 GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);
985 GEN_FCMP(fcmpq, float128, QT0, QT1, 0, 0);
986 GEN_FCMP(fcmpeq, float128, QT0, QT1, 0, 1);
988 static uint32_t compute_all_flags(void)
990 return env->psr & PSR_ICC;
993 static uint32_t compute_C_flags(void)
995 return env->psr & PSR_CARRY;
998 static inline uint32_t get_NZ_icc(int32_t dst)
1000 uint32_t ret = 0;
1002 if (dst == 0) {
1003 ret = PSR_ZERO;
1004 } else if (dst < 0) {
1005 ret = PSR_NEG;
1007 return ret;
1010 #ifdef TARGET_SPARC64
1011 static uint32_t compute_all_flags_xcc(void)
1013 return env->xcc & PSR_ICC;
1016 static uint32_t compute_C_flags_xcc(void)
1018 return env->xcc & PSR_CARRY;
1021 static inline uint32_t get_NZ_xcc(target_long dst)
1023 uint32_t ret = 0;
1025 if (!dst) {
1026 ret = PSR_ZERO;
1027 } else if (dst < 0) {
1028 ret = PSR_NEG;
1030 return ret;
1032 #endif
1034 static inline uint32_t get_V_div_icc(target_ulong src2)
1036 uint32_t ret = 0;
1038 if (src2 != 0) {
1039 ret = PSR_OVF;
1041 return ret;
1044 static uint32_t compute_all_div(void)
1046 uint32_t ret;
1048 ret = get_NZ_icc(CC_DST);
1049 ret |= get_V_div_icc(CC_SRC2);
1050 return ret;
1053 static uint32_t compute_C_div(void)
1055 return 0;
1058 static inline uint32_t get_C_add_icc(uint32_t dst, uint32_t src1)
1060 uint32_t ret = 0;
1062 if (dst < src1) {
1063 ret = PSR_CARRY;
1065 return ret;
1068 static inline uint32_t get_C_addx_icc(uint32_t dst, uint32_t src1,
1069 uint32_t src2)
1071 uint32_t ret = 0;
1073 if (((src1 & src2) | (~dst & (src1 | src2))) & (1U << 31)) {
1074 ret = PSR_CARRY;
1076 return ret;
1079 static inline uint32_t get_V_add_icc(uint32_t dst, uint32_t src1,
1080 uint32_t src2)
1082 uint32_t ret = 0;
1084 if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1U << 31)) {
1085 ret = PSR_OVF;
1087 return ret;
1090 #ifdef TARGET_SPARC64
1091 static inline uint32_t get_C_add_xcc(target_ulong dst, target_ulong src1)
1093 uint32_t ret = 0;
1095 if (dst < src1) {
1096 ret = PSR_CARRY;
1098 return ret;
1101 static inline uint32_t get_C_addx_xcc(target_ulong dst, target_ulong src1,
1102 target_ulong src2)
1104 uint32_t ret = 0;
1106 if (((src1 & src2) | (~dst & (src1 | src2))) & (1ULL << 63)) {
1107 ret = PSR_CARRY;
1109 return ret;
1112 static inline uint32_t get_V_add_xcc(target_ulong dst, target_ulong src1,
1113 target_ulong src2)
1115 uint32_t ret = 0;
1117 if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1ULL << 63)) {
1118 ret = PSR_OVF;
1120 return ret;
1123 static uint32_t compute_all_add_xcc(void)
1125 uint32_t ret;
1127 ret = get_NZ_xcc(CC_DST);
1128 ret |= get_C_add_xcc(CC_DST, CC_SRC);
1129 ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2);
1130 return ret;
1133 static uint32_t compute_C_add_xcc(void)
1135 return get_C_add_xcc(CC_DST, CC_SRC);
1137 #endif
1139 static uint32_t compute_all_add(void)
1141 uint32_t ret;
1143 ret = get_NZ_icc(CC_DST);
1144 ret |= get_C_add_icc(CC_DST, CC_SRC);
1145 ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
1146 return ret;
1149 static uint32_t compute_C_add(void)
1151 return get_C_add_icc(CC_DST, CC_SRC);
1154 #ifdef TARGET_SPARC64
1155 static uint32_t compute_all_addx_xcc(void)
1157 uint32_t ret;
1159 ret = get_NZ_xcc(CC_DST);
1160 ret |= get_C_addx_xcc(CC_DST, CC_SRC, CC_SRC2);
1161 ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2);
1162 return ret;
1165 static uint32_t compute_C_addx_xcc(void)
1167 uint32_t ret;
1169 ret = get_C_addx_xcc(CC_DST, CC_SRC, CC_SRC2);
1170 return ret;
1172 #endif
1174 static uint32_t compute_all_addx(void)
1176 uint32_t ret;
1178 ret = get_NZ_icc(CC_DST);
1179 ret |= get_C_addx_icc(CC_DST, CC_SRC, CC_SRC2);
1180 ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
1181 return ret;
1184 static uint32_t compute_C_addx(void)
1186 uint32_t ret;
1188 ret = get_C_addx_icc(CC_DST, CC_SRC, CC_SRC2);
1189 return ret;
1192 static inline uint32_t get_V_tag_icc(target_ulong src1, target_ulong src2)
1194 uint32_t ret = 0;
1196 if ((src1 | src2) & 0x3) {
1197 ret = PSR_OVF;
1199 return ret;
1202 static uint32_t compute_all_tadd(void)
1204 uint32_t ret;
1206 ret = get_NZ_icc(CC_DST);
1207 ret |= get_C_add_icc(CC_DST, CC_SRC);
1208 ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
1209 ret |= get_V_tag_icc(CC_SRC, CC_SRC2);
1210 return ret;
1213 static uint32_t compute_all_taddtv(void)
1215 uint32_t ret;
1217 ret = get_NZ_icc(CC_DST);
1218 ret |= get_C_add_icc(CC_DST, CC_SRC);
1219 return ret;
1222 static inline uint32_t get_C_sub_icc(uint32_t src1, uint32_t src2)
1224 uint32_t ret = 0;
1226 if (src1 < src2) {
1227 ret = PSR_CARRY;
1229 return ret;
1232 static inline uint32_t get_C_subx_icc(uint32_t dst, uint32_t src1,
1233 uint32_t src2)
1235 uint32_t ret = 0;
1237 if (((~src1 & src2) | (dst & (~src1 | src2))) & (1U << 31)) {
1238 ret = PSR_CARRY;
1240 return ret;
1243 static inline uint32_t get_V_sub_icc(uint32_t dst, uint32_t src1,
1244 uint32_t src2)
1246 uint32_t ret = 0;
1248 if (((src1 ^ src2) & (src1 ^ dst)) & (1U << 31)) {
1249 ret = PSR_OVF;
1251 return ret;
1255 #ifdef TARGET_SPARC64
1256 static inline uint32_t get_C_sub_xcc(target_ulong src1, target_ulong src2)
1258 uint32_t ret = 0;
1260 if (src1 < src2) {
1261 ret = PSR_CARRY;
1263 return ret;
1266 static inline uint32_t get_C_subx_xcc(target_ulong dst, target_ulong src1,
1267 target_ulong src2)
1269 uint32_t ret = 0;
1271 if (((~src1 & src2) | (dst & (~src1 | src2))) & (1ULL << 63)) {
1272 ret = PSR_CARRY;
1274 return ret;
1277 static inline uint32_t get_V_sub_xcc(target_ulong dst, target_ulong src1,
1278 target_ulong src2)
1280 uint32_t ret = 0;
1282 if (((src1 ^ src2) & (src1 ^ dst)) & (1ULL << 63)) {
1283 ret = PSR_OVF;
1285 return ret;
1288 static uint32_t compute_all_sub_xcc(void)
1290 uint32_t ret;
1292 ret = get_NZ_xcc(CC_DST);
1293 ret |= get_C_sub_xcc(CC_SRC, CC_SRC2);
1294 ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2);
1295 return ret;
1298 static uint32_t compute_C_sub_xcc(void)
1300 return get_C_sub_xcc(CC_SRC, CC_SRC2);
1302 #endif
1304 static uint32_t compute_all_sub(void)
1306 uint32_t ret;
1308 ret = get_NZ_icc(CC_DST);
1309 ret |= get_C_sub_icc(CC_SRC, CC_SRC2);
1310 ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1311 return ret;
1314 static uint32_t compute_C_sub(void)
1316 return get_C_sub_icc(CC_SRC, CC_SRC2);
1319 #ifdef TARGET_SPARC64
1320 static uint32_t compute_all_subx_xcc(void)
1322 uint32_t ret;
1324 ret = get_NZ_xcc(CC_DST);
1325 ret |= get_C_subx_xcc(CC_DST, CC_SRC, CC_SRC2);
1326 ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2);
1327 return ret;
1330 static uint32_t compute_C_subx_xcc(void)
1332 uint32_t ret;
1334 ret = get_C_subx_xcc(CC_DST, CC_SRC, CC_SRC2);
1335 return ret;
1337 #endif
1339 static uint32_t compute_all_subx(void)
1341 uint32_t ret;
1343 ret = get_NZ_icc(CC_DST);
1344 ret |= get_C_subx_icc(CC_DST, CC_SRC, CC_SRC2);
1345 ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1346 return ret;
1349 static uint32_t compute_C_subx(void)
1351 uint32_t ret;
1353 ret = get_C_subx_icc(CC_DST, CC_SRC, CC_SRC2);
1354 return ret;
1357 static uint32_t compute_all_tsub(void)
1359 uint32_t ret;
1361 ret = get_NZ_icc(CC_DST);
1362 ret |= get_C_sub_icc(CC_SRC, CC_SRC2);
1363 ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1364 ret |= get_V_tag_icc(CC_SRC, CC_SRC2);
1365 return ret;
1368 static uint32_t compute_all_tsubtv(void)
1370 uint32_t ret;
1372 ret = get_NZ_icc(CC_DST);
1373 ret |= get_C_sub_icc(CC_SRC, CC_SRC2);
1374 return ret;
1377 static uint32_t compute_all_logic(void)
1379 return get_NZ_icc(CC_DST);
1382 static uint32_t compute_C_logic(void)
1384 return 0;
1387 #ifdef TARGET_SPARC64
1388 static uint32_t compute_all_logic_xcc(void)
1390 return get_NZ_xcc(CC_DST);
1392 #endif
1394 typedef struct CCTable {
1395 uint32_t (*compute_all)(void); /* return all the flags */
1396 uint32_t (*compute_c)(void); /* return the C flag */
1397 } CCTable;
1399 static const CCTable icc_table[CC_OP_NB] = {
1400 /* CC_OP_DYNAMIC should never happen */
1401 [CC_OP_FLAGS] = { compute_all_flags, compute_C_flags },
1402 [CC_OP_DIV] = { compute_all_div, compute_C_div },
1403 [CC_OP_ADD] = { compute_all_add, compute_C_add },
1404 [CC_OP_ADDX] = { compute_all_addx, compute_C_addx },
1405 [CC_OP_TADD] = { compute_all_tadd, compute_C_add },
1406 [CC_OP_TADDTV] = { compute_all_taddtv, compute_C_add },
1407 [CC_OP_SUB] = { compute_all_sub, compute_C_sub },
1408 [CC_OP_SUBX] = { compute_all_subx, compute_C_subx },
1409 [CC_OP_TSUB] = { compute_all_tsub, compute_C_sub },
1410 [CC_OP_TSUBTV] = { compute_all_tsubtv, compute_C_sub },
1411 [CC_OP_LOGIC] = { compute_all_logic, compute_C_logic },
1414 #ifdef TARGET_SPARC64
1415 static const CCTable xcc_table[CC_OP_NB] = {
1416 /* CC_OP_DYNAMIC should never happen */
1417 [CC_OP_FLAGS] = { compute_all_flags_xcc, compute_C_flags_xcc },
1418 [CC_OP_DIV] = { compute_all_logic_xcc, compute_C_logic },
1419 [CC_OP_ADD] = { compute_all_add_xcc, compute_C_add_xcc },
1420 [CC_OP_ADDX] = { compute_all_addx_xcc, compute_C_addx_xcc },
1421 [CC_OP_TADD] = { compute_all_add_xcc, compute_C_add_xcc },
1422 [CC_OP_TADDTV] = { compute_all_add_xcc, compute_C_add_xcc },
1423 [CC_OP_SUB] = { compute_all_sub_xcc, compute_C_sub_xcc },
1424 [CC_OP_SUBX] = { compute_all_subx_xcc, compute_C_subx_xcc },
1425 [CC_OP_TSUB] = { compute_all_sub_xcc, compute_C_sub_xcc },
1426 [CC_OP_TSUBTV] = { compute_all_sub_xcc, compute_C_sub_xcc },
1427 [CC_OP_LOGIC] = { compute_all_logic_xcc, compute_C_logic },
1429 #endif
1431 void helper_compute_psr(void)
1433 uint32_t new_psr;
1435 new_psr = icc_table[CC_OP].compute_all();
1436 env->psr = new_psr;
1437 #ifdef TARGET_SPARC64
1438 new_psr = xcc_table[CC_OP].compute_all();
1439 env->xcc = new_psr;
1440 #endif
1441 CC_OP = CC_OP_FLAGS;
1444 uint32_t helper_compute_C_icc(void)
1446 uint32_t ret;
1448 ret = icc_table[CC_OP].compute_c() >> PSR_CARRY_SHIFT;
1449 return ret;
1452 static inline void memcpy32(target_ulong *dst, const target_ulong *src)
1454 dst[0] = src[0];
1455 dst[1] = src[1];
1456 dst[2] = src[2];
1457 dst[3] = src[3];
1458 dst[4] = src[4];
1459 dst[5] = src[5];
1460 dst[6] = src[6];
1461 dst[7] = src[7];
1464 static void set_cwp(int new_cwp)
1466 /* put the modified wrap registers at their proper location */
1467 if (env->cwp == env->nwindows - 1) {
1468 memcpy32(env->regbase, env->regbase + env->nwindows * 16);
1470 env->cwp = new_cwp;
1472 /* put the wrap registers at their temporary location */
1473 if (new_cwp == env->nwindows - 1) {
1474 memcpy32(env->regbase + env->nwindows * 16, env->regbase);
1476 env->regwptr = env->regbase + (new_cwp * 16);
1479 void cpu_set_cwp(CPUState *env1, int new_cwp)
1481 CPUState *saved_env;
1483 saved_env = env;
1484 env = env1;
1485 set_cwp(new_cwp);
1486 env = saved_env;
1489 static target_ulong get_psr(void)
1491 helper_compute_psr();
1493 #if !defined (TARGET_SPARC64)
1494 return env->version | (env->psr & PSR_ICC) |
1495 (env->psref? PSR_EF : 0) |
1496 (env->psrpil << 8) |
1497 (env->psrs? PSR_S : 0) |
1498 (env->psrps? PSR_PS : 0) |
1499 (env->psret? PSR_ET : 0) | env->cwp;
1500 #else
1501 return env->psr & PSR_ICC;
1502 #endif
1505 target_ulong cpu_get_psr(CPUState *env1)
1507 CPUState *saved_env;
1508 target_ulong ret;
1510 saved_env = env;
1511 env = env1;
1512 ret = get_psr();
1513 env = saved_env;
1514 return ret;
1517 static void put_psr(target_ulong val)
1519 env->psr = val & PSR_ICC;
1520 #if !defined (TARGET_SPARC64)
1521 env->psref = (val & PSR_EF)? 1 : 0;
1522 env->psrpil = (val & PSR_PIL) >> 8;
1523 #endif
1524 #if ((!defined (TARGET_SPARC64)) && !defined(CONFIG_USER_ONLY))
1525 cpu_check_irqs(env);
1526 #endif
1527 #if !defined (TARGET_SPARC64)
1528 env->psrs = (val & PSR_S)? 1 : 0;
1529 env->psrps = (val & PSR_PS)? 1 : 0;
1530 env->psret = (val & PSR_ET)? 1 : 0;
1531 set_cwp(val & PSR_CWP);
1532 #endif
1533 env->cc_op = CC_OP_FLAGS;
1536 void cpu_put_psr(CPUState *env1, target_ulong val)
1538 CPUState *saved_env;
1540 saved_env = env;
1541 env = env1;
1542 put_psr(val);
1543 env = saved_env;
1546 static int cwp_inc(int cwp)
1548 if (unlikely(cwp >= env->nwindows)) {
1549 cwp -= env->nwindows;
1551 return cwp;
1554 int cpu_cwp_inc(CPUState *env1, int cwp)
1556 CPUState *saved_env;
1557 target_ulong ret;
1559 saved_env = env;
1560 env = env1;
1561 ret = cwp_inc(cwp);
1562 env = saved_env;
1563 return ret;
1566 static int cwp_dec(int cwp)
1568 if (unlikely(cwp < 0)) {
1569 cwp += env->nwindows;
1571 return cwp;
1574 int cpu_cwp_dec(CPUState *env1, int cwp)
1576 CPUState *saved_env;
1577 target_ulong ret;
1579 saved_env = env;
1580 env = env1;
1581 ret = cwp_dec(cwp);
1582 env = saved_env;
1583 return ret;
1586 #ifdef TARGET_SPARC64
1587 GEN_FCMPS(fcmps_fcc1, float32, 22, 0);
1588 GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);
1589 GEN_FCMP(fcmpq_fcc1, float128, QT0, QT1, 22, 0);
1591 GEN_FCMPS(fcmps_fcc2, float32, 24, 0);
1592 GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);
1593 GEN_FCMP(fcmpq_fcc2, float128, QT0, QT1, 24, 0);
1595 GEN_FCMPS(fcmps_fcc3, float32, 26, 0);
1596 GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);
1597 GEN_FCMP(fcmpq_fcc3, float128, QT0, QT1, 26, 0);
1599 GEN_FCMPS(fcmpes_fcc1, float32, 22, 1);
1600 GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);
1601 GEN_FCMP(fcmpeq_fcc1, float128, QT0, QT1, 22, 1);
1603 GEN_FCMPS(fcmpes_fcc2, float32, 24, 1);
1604 GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);
1605 GEN_FCMP(fcmpeq_fcc2, float128, QT0, QT1, 24, 1);
1607 GEN_FCMPS(fcmpes_fcc3, float32, 26, 1);
1608 GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
1609 GEN_FCMP(fcmpeq_fcc3, float128, QT0, QT1, 26, 1);
1610 #endif
1611 #undef GEN_FCMPS
1613 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
1614 defined(DEBUG_MXCC)
1615 static void dump_mxcc(CPUState *env)
1617 printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1618 "\n",
1619 env->mxccdata[0], env->mxccdata[1],
1620 env->mxccdata[2], env->mxccdata[3]);
1621 printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1622 "\n"
1623 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1624 "\n",
1625 env->mxccregs[0], env->mxccregs[1],
1626 env->mxccregs[2], env->mxccregs[3],
1627 env->mxccregs[4], env->mxccregs[5],
1628 env->mxccregs[6], env->mxccregs[7]);
1630 #endif
1632 #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
1633 && defined(DEBUG_ASI)
1634 static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
1635 uint64_t r1)
1637 switch (size)
1639 case 1:
1640 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
1641 addr, asi, r1 & 0xff);
1642 break;
1643 case 2:
1644 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
1645 addr, asi, r1 & 0xffff);
1646 break;
1647 case 4:
1648 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
1649 addr, asi, r1 & 0xffffffff);
1650 break;
1651 case 8:
1652 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
1653 addr, asi, r1);
1654 break;
1657 #endif
1659 #ifndef TARGET_SPARC64
1660 #ifndef CONFIG_USER_ONLY
1663 /* Leon3 cache control */
1665 static void leon3_cache_control_int(void)
1667 uint32_t state = 0;
1669 if (env->cache_control & CACHE_CTRL_IF) {
1670 /* Instruction cache state */
1671 state = env->cache_control & CACHE_STATE_MASK;
1672 if (state == CACHE_ENABLED) {
1673 state = CACHE_FROZEN;
1674 DPRINTF_CACHE_CONTROL("Instruction cache: freeze\n");
1677 env->cache_control &= ~CACHE_STATE_MASK;
1678 env->cache_control |= state;
1681 if (env->cache_control & CACHE_CTRL_DF) {
1682 /* Data cache state */
1683 state = (env->cache_control >> 2) & CACHE_STATE_MASK;
1684 if (state == CACHE_ENABLED) {
1685 state = CACHE_FROZEN;
1686 DPRINTF_CACHE_CONTROL("Data cache: freeze\n");
1689 env->cache_control &= ~(CACHE_STATE_MASK << 2);
1690 env->cache_control |= (state << 2);
1694 static void leon3_cache_control_st(target_ulong addr, uint64_t val, int size)
1696 DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64 ", size:%d\n",
1697 addr, val, size);
1699 if (size != 4) {
1700 DPRINTF_CACHE_CONTROL("32bits only\n");
1701 return;
1704 switch (addr) {
1705 case 0x00: /* Cache control */
1707 /* These values must always be read as zeros */
1708 val &= ~CACHE_CTRL_FD;
1709 val &= ~CACHE_CTRL_FI;
1710 val &= ~CACHE_CTRL_IB;
1711 val &= ~CACHE_CTRL_IP;
1712 val &= ~CACHE_CTRL_DP;
1714 env->cache_control = val;
1715 break;
1716 case 0x04: /* Instruction cache configuration */
1717 case 0x08: /* Data cache configuration */
1718 /* Read Only */
1719 break;
1720 default:
1721 DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr);
1722 break;
1726 static uint64_t leon3_cache_control_ld(target_ulong addr, int size)
1728 uint64_t ret = 0;
1730 if (size != 4) {
1731 DPRINTF_CACHE_CONTROL("32bits only\n");
1732 return 0;
1735 switch (addr) {
1736 case 0x00: /* Cache control */
1737 ret = env->cache_control;
1738 break;
1740 /* Configuration registers are read and only always keep those
1741 predefined values */
1743 case 0x04: /* Instruction cache configuration */
1744 ret = 0x10220000;
1745 break;
1746 case 0x08: /* Data cache configuration */
1747 ret = 0x18220000;
1748 break;
1749 default:
1750 DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr);
1751 break;
1753 DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64 ", size:%d\n",
1754 addr, ret, size);
1755 return ret;
1758 void leon3_irq_manager(void *irq_manager, int intno)
1760 leon3_irq_ack(irq_manager, intno);
1761 leon3_cache_control_int();
1764 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
1766 uint64_t ret = 0;
1767 #if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
1768 uint32_t last_addr = addr;
1769 #endif
1771 helper_check_align(addr, size - 1);
1772 switch (asi) {
1773 case 2: /* SuperSparc MXCC registers and Leon3 cache control */
1774 switch (addr) {
1775 case 0x00: /* Leon3 Cache Control */
1776 case 0x08: /* Leon3 Instruction Cache config */
1777 case 0x0C: /* Leon3 Date Cache config */
1778 if (env->def->features & CPU_FEATURE_CACHE_CTRL) {
1779 ret = leon3_cache_control_ld(addr, size);
1781 break;
1782 case 0x01c00a00: /* MXCC control register */
1783 if (size == 8)
1784 ret = env->mxccregs[3];
1785 else
1786 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1787 size);
1788 break;
1789 case 0x01c00a04: /* MXCC control register */
1790 if (size == 4)
1791 ret = env->mxccregs[3];
1792 else
1793 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1794 size);
1795 break;
1796 case 0x01c00c00: /* Module reset register */
1797 if (size == 8) {
1798 ret = env->mxccregs[5];
1799 // should we do something here?
1800 } else
1801 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1802 size);
1803 break;
1804 case 0x01c00f00: /* MBus port address register */
1805 if (size == 8)
1806 ret = env->mxccregs[7];
1807 else
1808 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1809 size);
1810 break;
1811 default:
1812 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
1813 size);
1814 break;
1816 DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
1817 "addr = %08x -> ret = %" PRIx64 ","
1818 "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
1819 #ifdef DEBUG_MXCC
1820 dump_mxcc(env);
1821 #endif
1822 break;
1823 case 3: /* MMU probe */
1825 int mmulev;
1827 mmulev = (addr >> 8) & 15;
1828 if (mmulev > 4)
1829 ret = 0;
1830 else
1831 ret = mmu_probe(env, addr, mmulev);
1832 DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
1833 addr, mmulev, ret);
1835 break;
1836 case 4: /* read MMU regs */
1838 int reg = (addr >> 8) & 0x1f;
1840 ret = env->mmuregs[reg];
1841 if (reg == 3) /* Fault status cleared on read */
1842 env->mmuregs[3] = 0;
1843 else if (reg == 0x13) /* Fault status read */
1844 ret = env->mmuregs[3];
1845 else if (reg == 0x14) /* Fault address read */
1846 ret = env->mmuregs[4];
1847 DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
1849 break;
1850 case 5: // Turbosparc ITLB Diagnostic
1851 case 6: // Turbosparc DTLB Diagnostic
1852 case 7: // Turbosparc IOTLB Diagnostic
1853 break;
1854 case 9: /* Supervisor code access */
1855 switch(size) {
1856 case 1:
1857 ret = ldub_code(addr);
1858 break;
1859 case 2:
1860 ret = lduw_code(addr);
1861 break;
1862 default:
1863 case 4:
1864 ret = ldl_code(addr);
1865 break;
1866 case 8:
1867 ret = ldq_code(addr);
1868 break;
1870 break;
1871 case 0xa: /* User data access */
1872 switch(size) {
1873 case 1:
1874 ret = ldub_user(addr);
1875 break;
1876 case 2:
1877 ret = lduw_user(addr);
1878 break;
1879 default:
1880 case 4:
1881 ret = ldl_user(addr);
1882 break;
1883 case 8:
1884 ret = ldq_user(addr);
1885 break;
1887 break;
1888 case 0xb: /* Supervisor data access */
1889 switch(size) {
1890 case 1:
1891 ret = ldub_kernel(addr);
1892 break;
1893 case 2:
1894 ret = lduw_kernel(addr);
1895 break;
1896 default:
1897 case 4:
1898 ret = ldl_kernel(addr);
1899 break;
1900 case 8:
1901 ret = ldq_kernel(addr);
1902 break;
1904 break;
1905 case 0xc: /* I-cache tag */
1906 case 0xd: /* I-cache data */
1907 case 0xe: /* D-cache tag */
1908 case 0xf: /* D-cache data */
1909 break;
1910 case 0x20: /* MMU passthrough */
1911 switch(size) {
1912 case 1:
1913 ret = ldub_phys(addr);
1914 break;
1915 case 2:
1916 ret = lduw_phys(addr);
1917 break;
1918 default:
1919 case 4:
1920 ret = ldl_phys(addr);
1921 break;
1922 case 8:
1923 ret = ldq_phys(addr);
1924 break;
1926 break;
1927 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1928 switch(size) {
1929 case 1:
1930 ret = ldub_phys((target_phys_addr_t)addr
1931 | ((target_phys_addr_t)(asi & 0xf) << 32));
1932 break;
1933 case 2:
1934 ret = lduw_phys((target_phys_addr_t)addr
1935 | ((target_phys_addr_t)(asi & 0xf) << 32));
1936 break;
1937 default:
1938 case 4:
1939 ret = ldl_phys((target_phys_addr_t)addr
1940 | ((target_phys_addr_t)(asi & 0xf) << 32));
1941 break;
1942 case 8:
1943 ret = ldq_phys((target_phys_addr_t)addr
1944 | ((target_phys_addr_t)(asi & 0xf) << 32));
1945 break;
1947 break;
1948 case 0x30: // Turbosparc secondary cache diagnostic
1949 case 0x31: // Turbosparc RAM snoop
1950 case 0x32: // Turbosparc page table descriptor diagnostic
1951 case 0x39: /* data cache diagnostic register */
1952 ret = 0;
1953 break;
1954 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
1956 int reg = (addr >> 8) & 3;
1958 switch(reg) {
1959 case 0: /* Breakpoint Value (Addr) */
1960 ret = env->mmubpregs[reg];
1961 break;
1962 case 1: /* Breakpoint Mask */
1963 ret = env->mmubpregs[reg];
1964 break;
1965 case 2: /* Breakpoint Control */
1966 ret = env->mmubpregs[reg];
1967 break;
1968 case 3: /* Breakpoint Status */
1969 ret = env->mmubpregs[reg];
1970 env->mmubpregs[reg] = 0ULL;
1971 break;
1973 DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
1974 ret);
1976 break;
1977 case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
1978 ret = env->mmubpctrv;
1979 break;
1980 case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
1981 ret = env->mmubpctrc;
1982 break;
1983 case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
1984 ret = env->mmubpctrs;
1985 break;
1986 case 0x4c: /* SuperSPARC MMU Breakpoint Action */
1987 ret = env->mmubpaction;
1988 break;
1989 case 8: /* User code access, XXX */
1990 default:
1991 do_unassigned_access(addr, 0, 0, asi, size);
1992 ret = 0;
1993 break;
1995 if (sign) {
1996 switch(size) {
1997 case 1:
1998 ret = (int8_t) ret;
1999 break;
2000 case 2:
2001 ret = (int16_t) ret;
2002 break;
2003 case 4:
2004 ret = (int32_t) ret;
2005 break;
2006 default:
2007 break;
2010 #ifdef DEBUG_ASI
2011 dump_asi("read ", last_addr, asi, size, ret);
2012 #endif
2013 return ret;
2016 void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
2018 helper_check_align(addr, size - 1);
2019 switch(asi) {
2020 case 2: /* SuperSparc MXCC registers and Leon3 cache control */
2021 switch (addr) {
2022 case 0x00: /* Leon3 Cache Control */
2023 case 0x08: /* Leon3 Instruction Cache config */
2024 case 0x0C: /* Leon3 Date Cache config */
2025 if (env->def->features & CPU_FEATURE_CACHE_CTRL) {
2026 leon3_cache_control_st(addr, val, size);
2028 break;
2030 case 0x01c00000: /* MXCC stream data register 0 */
2031 if (size == 8)
2032 env->mxccdata[0] = val;
2033 else
2034 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2035 size);
2036 break;
2037 case 0x01c00008: /* MXCC stream data register 1 */
2038 if (size == 8)
2039 env->mxccdata[1] = val;
2040 else
2041 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2042 size);
2043 break;
2044 case 0x01c00010: /* MXCC stream data register 2 */
2045 if (size == 8)
2046 env->mxccdata[2] = val;
2047 else
2048 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2049 size);
2050 break;
2051 case 0x01c00018: /* MXCC stream data register 3 */
2052 if (size == 8)
2053 env->mxccdata[3] = val;
2054 else
2055 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2056 size);
2057 break;
2058 case 0x01c00100: /* MXCC stream source */
2059 if (size == 8)
2060 env->mxccregs[0] = val;
2061 else
2062 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2063 size);
2064 env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
2066 env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
2068 env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
2069 16);
2070 env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
2071 24);
2072 break;
2073 case 0x01c00200: /* MXCC stream destination */
2074 if (size == 8)
2075 env->mxccregs[1] = val;
2076 else
2077 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2078 size);
2079 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 0,
2080 env->mxccdata[0]);
2081 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 8,
2082 env->mxccdata[1]);
2083 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16,
2084 env->mxccdata[2]);
2085 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24,
2086 env->mxccdata[3]);
2087 break;
2088 case 0x01c00a00: /* MXCC control register */
2089 if (size == 8)
2090 env->mxccregs[3] = val;
2091 else
2092 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2093 size);
2094 break;
2095 case 0x01c00a04: /* MXCC control register */
2096 if (size == 4)
2097 env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
2098 | val;
2099 else
2100 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2101 size);
2102 break;
2103 case 0x01c00e00: /* MXCC error register */
2104 // writing a 1 bit clears the error
2105 if (size == 8)
2106 env->mxccregs[6] &= ~val;
2107 else
2108 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2109 size);
2110 break;
2111 case 0x01c00f00: /* MBus port address register */
2112 if (size == 8)
2113 env->mxccregs[7] = val;
2114 else
2115 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2116 size);
2117 break;
2118 default:
2119 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
2120 size);
2121 break;
2123 DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
2124 asi, size, addr, val);
2125 #ifdef DEBUG_MXCC
2126 dump_mxcc(env);
2127 #endif
2128 break;
2129 case 3: /* MMU flush */
2131 int mmulev;
2133 mmulev = (addr >> 8) & 15;
2134 DPRINTF_MMU("mmu flush level %d\n", mmulev);
2135 switch (mmulev) {
2136 case 0: // flush page
2137 tlb_flush_page(env, addr & 0xfffff000);
2138 break;
2139 case 1: // flush segment (256k)
2140 case 2: // flush region (16M)
2141 case 3: // flush context (4G)
2142 case 4: // flush entire
2143 tlb_flush(env, 1);
2144 break;
2145 default:
2146 break;
2148 #ifdef DEBUG_MMU
2149 dump_mmu(stdout, fprintf, env);
2150 #endif
2152 break;
2153 case 4: /* write MMU regs */
2155 int reg = (addr >> 8) & 0x1f;
2156 uint32_t oldreg;
2158 oldreg = env->mmuregs[reg];
2159 switch(reg) {
2160 case 0: // Control Register
2161 env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
2162 (val & 0x00ffffff);
2163 // Mappings generated during no-fault mode or MMU
2164 // disabled mode are invalid in normal mode
2165 if ((oldreg & (MMU_E | MMU_NF | env->def->mmu_bm)) !=
2166 (env->mmuregs[reg] & (MMU_E | MMU_NF | env->def->mmu_bm)))
2167 tlb_flush(env, 1);
2168 break;
2169 case 1: // Context Table Pointer Register
2170 env->mmuregs[reg] = val & env->def->mmu_ctpr_mask;
2171 break;
2172 case 2: // Context Register
2173 env->mmuregs[reg] = val & env->def->mmu_cxr_mask;
2174 if (oldreg != env->mmuregs[reg]) {
2175 /* we flush when the MMU context changes because
2176 QEMU has no MMU context support */
2177 tlb_flush(env, 1);
2179 break;
2180 case 3: // Synchronous Fault Status Register with Clear
2181 case 4: // Synchronous Fault Address Register
2182 break;
2183 case 0x10: // TLB Replacement Control Register
2184 env->mmuregs[reg] = val & env->def->mmu_trcr_mask;
2185 break;
2186 case 0x13: // Synchronous Fault Status Register with Read and Clear
2187 env->mmuregs[3] = val & env->def->mmu_sfsr_mask;
2188 break;
2189 case 0x14: // Synchronous Fault Address Register
2190 env->mmuregs[4] = val;
2191 break;
2192 default:
2193 env->mmuregs[reg] = val;
2194 break;
2196 if (oldreg != env->mmuregs[reg]) {
2197 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
2198 reg, oldreg, env->mmuregs[reg]);
2200 #ifdef DEBUG_MMU
2201 dump_mmu(stdout, fprintf, env);
2202 #endif
2204 break;
2205 case 5: // Turbosparc ITLB Diagnostic
2206 case 6: // Turbosparc DTLB Diagnostic
2207 case 7: // Turbosparc IOTLB Diagnostic
2208 break;
2209 case 0xa: /* User data access */
2210 switch(size) {
2211 case 1:
2212 stb_user(addr, val);
2213 break;
2214 case 2:
2215 stw_user(addr, val);
2216 break;
2217 default:
2218 case 4:
2219 stl_user(addr, val);
2220 break;
2221 case 8:
2222 stq_user(addr, val);
2223 break;
2225 break;
2226 case 0xb: /* Supervisor data access */
2227 switch(size) {
2228 case 1:
2229 stb_kernel(addr, val);
2230 break;
2231 case 2:
2232 stw_kernel(addr, val);
2233 break;
2234 default:
2235 case 4:
2236 stl_kernel(addr, val);
2237 break;
2238 case 8:
2239 stq_kernel(addr, val);
2240 break;
2242 break;
2243 case 0xc: /* I-cache tag */
2244 case 0xd: /* I-cache data */
2245 case 0xe: /* D-cache tag */
2246 case 0xf: /* D-cache data */
2247 case 0x10: /* I/D-cache flush page */
2248 case 0x11: /* I/D-cache flush segment */
2249 case 0x12: /* I/D-cache flush region */
2250 case 0x13: /* I/D-cache flush context */
2251 case 0x14: /* I/D-cache flush user */
2252 break;
2253 case 0x17: /* Block copy, sta access */
2255 // val = src
2256 // addr = dst
2257 // copy 32 bytes
2258 unsigned int i;
2259 uint32_t src = val & ~3, dst = addr & ~3, temp;
2261 for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
2262 temp = ldl_kernel(src);
2263 stl_kernel(dst, temp);
2266 break;
2267 case 0x1f: /* Block fill, stda access */
2269 // addr = dst
2270 // fill 32 bytes with val
2271 unsigned int i;
2272 uint32_t dst = addr & 7;
2274 for (i = 0; i < 32; i += 8, dst += 8)
2275 stq_kernel(dst, val);
2277 break;
2278 case 0x20: /* MMU passthrough */
2280 switch(size) {
2281 case 1:
2282 stb_phys(addr, val);
2283 break;
2284 case 2:
2285 stw_phys(addr, val);
2286 break;
2287 case 4:
2288 default:
2289 stl_phys(addr, val);
2290 break;
2291 case 8:
2292 stq_phys(addr, val);
2293 break;
2296 break;
2297 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
2299 switch(size) {
2300 case 1:
2301 stb_phys((target_phys_addr_t)addr
2302 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
2303 break;
2304 case 2:
2305 stw_phys((target_phys_addr_t)addr
2306 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
2307 break;
2308 case 4:
2309 default:
2310 stl_phys((target_phys_addr_t)addr
2311 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
2312 break;
2313 case 8:
2314 stq_phys((target_phys_addr_t)addr
2315 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
2316 break;
2319 break;
2320 case 0x30: // store buffer tags or Turbosparc secondary cache diagnostic
2321 case 0x31: // store buffer data, Ross RT620 I-cache flush or
2322 // Turbosparc snoop RAM
2323 case 0x32: // store buffer control or Turbosparc page table
2324 // descriptor diagnostic
2325 case 0x36: /* I-cache flash clear */
2326 case 0x37: /* D-cache flash clear */
2327 break;
2328 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
2330 int reg = (addr >> 8) & 3;
2332 switch(reg) {
2333 case 0: /* Breakpoint Value (Addr) */
2334 env->mmubpregs[reg] = (val & 0xfffffffffULL);
2335 break;
2336 case 1: /* Breakpoint Mask */
2337 env->mmubpregs[reg] = (val & 0xfffffffffULL);
2338 break;
2339 case 2: /* Breakpoint Control */
2340 env->mmubpregs[reg] = (val & 0x7fULL);
2341 break;
2342 case 3: /* Breakpoint Status */
2343 env->mmubpregs[reg] = (val & 0xfULL);
2344 break;
2346 DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
2347 env->mmuregs[reg]);
2349 break;
2350 case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
2351 env->mmubpctrv = val & 0xffffffff;
2352 break;
2353 case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
2354 env->mmubpctrc = val & 0x3;
2355 break;
2356 case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
2357 env->mmubpctrs = val & 0x3;
2358 break;
2359 case 0x4c: /* SuperSPARC MMU Breakpoint Action */
2360 env->mmubpaction = val & 0x1fff;
2361 break;
2362 case 8: /* User code access, XXX */
2363 case 9: /* Supervisor code access, XXX */
2364 default:
2365 do_unassigned_access(addr, 1, 0, asi, size);
2366 break;
2368 #ifdef DEBUG_ASI
2369 dump_asi("write", addr, asi, size, val);
2370 #endif
2373 #endif /* CONFIG_USER_ONLY */
2374 #else /* TARGET_SPARC64 */
2376 #ifdef CONFIG_USER_ONLY
2377 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
2379 uint64_t ret = 0;
2380 #if defined(DEBUG_ASI)
2381 target_ulong last_addr = addr;
2382 #endif
2384 if (asi < 0x80)
2385 raise_exception(TT_PRIV_ACT);
2387 helper_check_align(addr, size - 1);
2388 addr = asi_address_mask(env, asi, addr);
2390 switch (asi) {
2391 case 0x82: // Primary no-fault
2392 case 0x8a: // Primary no-fault LE
2393 if (page_check_range(addr, size, PAGE_READ) == -1) {
2394 #ifdef DEBUG_ASI
2395 dump_asi("read ", last_addr, asi, size, ret);
2396 #endif
2397 return 0;
2399 // Fall through
2400 case 0x80: // Primary
2401 case 0x88: // Primary LE
2403 switch(size) {
2404 case 1:
2405 ret = ldub_raw(addr);
2406 break;
2407 case 2:
2408 ret = lduw_raw(addr);
2409 break;
2410 case 4:
2411 ret = ldl_raw(addr);
2412 break;
2413 default:
2414 case 8:
2415 ret = ldq_raw(addr);
2416 break;
2419 break;
2420 case 0x83: // Secondary no-fault
2421 case 0x8b: // Secondary no-fault LE
2422 if (page_check_range(addr, size, PAGE_READ) == -1) {
2423 #ifdef DEBUG_ASI
2424 dump_asi("read ", last_addr, asi, size, ret);
2425 #endif
2426 return 0;
2428 // Fall through
2429 case 0x81: // Secondary
2430 case 0x89: // Secondary LE
2431 // XXX
2432 break;
2433 default:
2434 break;
2437 /* Convert from little endian */
2438 switch (asi) {
2439 case 0x88: // Primary LE
2440 case 0x89: // Secondary LE
2441 case 0x8a: // Primary no-fault LE
2442 case 0x8b: // Secondary no-fault LE
2443 switch(size) {
2444 case 2:
2445 ret = bswap16(ret);
2446 break;
2447 case 4:
2448 ret = bswap32(ret);
2449 break;
2450 case 8:
2451 ret = bswap64(ret);
2452 break;
2453 default:
2454 break;
2456 default:
2457 break;
2460 /* Convert to signed number */
2461 if (sign) {
2462 switch(size) {
2463 case 1:
2464 ret = (int8_t) ret;
2465 break;
2466 case 2:
2467 ret = (int16_t) ret;
2468 break;
2469 case 4:
2470 ret = (int32_t) ret;
2471 break;
2472 default:
2473 break;
2476 #ifdef DEBUG_ASI
2477 dump_asi("read ", last_addr, asi, size, ret);
2478 #endif
2479 return ret;
2482 void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
2484 #ifdef DEBUG_ASI
2485 dump_asi("write", addr, asi, size, val);
2486 #endif
2487 if (asi < 0x80)
2488 raise_exception(TT_PRIV_ACT);
2490 helper_check_align(addr, size - 1);
2491 addr = asi_address_mask(env, asi, addr);
2493 /* Convert to little endian */
2494 switch (asi) {
2495 case 0x88: // Primary LE
2496 case 0x89: // Secondary LE
2497 switch(size) {
2498 case 2:
2499 val = bswap16(val);
2500 break;
2501 case 4:
2502 val = bswap32(val);
2503 break;
2504 case 8:
2505 val = bswap64(val);
2506 break;
2507 default:
2508 break;
2510 default:
2511 break;
2514 switch(asi) {
2515 case 0x80: // Primary
2516 case 0x88: // Primary LE
2518 switch(size) {
2519 case 1:
2520 stb_raw(addr, val);
2521 break;
2522 case 2:
2523 stw_raw(addr, val);
2524 break;
2525 case 4:
2526 stl_raw(addr, val);
2527 break;
2528 case 8:
2529 default:
2530 stq_raw(addr, val);
2531 break;
2534 break;
2535 case 0x81: // Secondary
2536 case 0x89: // Secondary LE
2537 // XXX
2538 return;
2540 case 0x82: // Primary no-fault, RO
2541 case 0x83: // Secondary no-fault, RO
2542 case 0x8a: // Primary no-fault LE, RO
2543 case 0x8b: // Secondary no-fault LE, RO
2544 default:
2545 do_unassigned_access(addr, 1, 0, 1, size);
2546 return;
2550 #else /* CONFIG_USER_ONLY */
2552 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
2554 uint64_t ret = 0;
2555 #if defined(DEBUG_ASI)
2556 target_ulong last_addr = addr;
2557 #endif
2559 asi &= 0xff;
2561 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2562 || (cpu_has_hypervisor(env)
2563 && asi >= 0x30 && asi < 0x80
2564 && !(env->hpstate & HS_PRIV)))
2565 raise_exception(TT_PRIV_ACT);
2567 helper_check_align(addr, size - 1);
2568 addr = asi_address_mask(env, asi, addr);
2570 switch (asi) {
2571 case 0x82: // Primary no-fault
2572 case 0x8a: // Primary no-fault LE
2573 case 0x83: // Secondary no-fault
2574 case 0x8b: // Secondary no-fault LE
2576 /* secondary space access has lowest asi bit equal to 1 */
2577 int access_mmu_idx = ( asi & 1 ) ? MMU_KERNEL_IDX
2578 : MMU_KERNEL_SECONDARY_IDX;
2580 if (cpu_get_phys_page_nofault(env, addr, access_mmu_idx) == -1ULL) {
2581 #ifdef DEBUG_ASI
2582 dump_asi("read ", last_addr, asi, size, ret);
2583 #endif
2584 return 0;
2587 // Fall through
2588 case 0x10: // As if user primary
2589 case 0x11: // As if user secondary
2590 case 0x18: // As if user primary LE
2591 case 0x19: // As if user secondary LE
2592 case 0x80: // Primary
2593 case 0x81: // Secondary
2594 case 0x88: // Primary LE
2595 case 0x89: // Secondary LE
2596 case 0xe2: // UA2007 Primary block init
2597 case 0xe3: // UA2007 Secondary block init
2598 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
2599 if (cpu_hypervisor_mode(env)) {
2600 switch(size) {
2601 case 1:
2602 ret = ldub_hypv(addr);
2603 break;
2604 case 2:
2605 ret = lduw_hypv(addr);
2606 break;
2607 case 4:
2608 ret = ldl_hypv(addr);
2609 break;
2610 default:
2611 case 8:
2612 ret = ldq_hypv(addr);
2613 break;
2615 } else {
2616 /* secondary space access has lowest asi bit equal to 1 */
2617 if (asi & 1) {
2618 switch(size) {
2619 case 1:
2620 ret = ldub_kernel_secondary(addr);
2621 break;
2622 case 2:
2623 ret = lduw_kernel_secondary(addr);
2624 break;
2625 case 4:
2626 ret = ldl_kernel_secondary(addr);
2627 break;
2628 default:
2629 case 8:
2630 ret = ldq_kernel_secondary(addr);
2631 break;
2633 } else {
2634 switch(size) {
2635 case 1:
2636 ret = ldub_kernel(addr);
2637 break;
2638 case 2:
2639 ret = lduw_kernel(addr);
2640 break;
2641 case 4:
2642 ret = ldl_kernel(addr);
2643 break;
2644 default:
2645 case 8:
2646 ret = ldq_kernel(addr);
2647 break;
2651 } else {
2652 /* secondary space access has lowest asi bit equal to 1 */
2653 if (asi & 1) {
2654 switch(size) {
2655 case 1:
2656 ret = ldub_user_secondary(addr);
2657 break;
2658 case 2:
2659 ret = lduw_user_secondary(addr);
2660 break;
2661 case 4:
2662 ret = ldl_user_secondary(addr);
2663 break;
2664 default:
2665 case 8:
2666 ret = ldq_user_secondary(addr);
2667 break;
2669 } else {
2670 switch(size) {
2671 case 1:
2672 ret = ldub_user(addr);
2673 break;
2674 case 2:
2675 ret = lduw_user(addr);
2676 break;
2677 case 4:
2678 ret = ldl_user(addr);
2679 break;
2680 default:
2681 case 8:
2682 ret = ldq_user(addr);
2683 break;
2687 break;
2688 case 0x14: // Bypass
2689 case 0x15: // Bypass, non-cacheable
2690 case 0x1c: // Bypass LE
2691 case 0x1d: // Bypass, non-cacheable LE
2693 switch(size) {
2694 case 1:
2695 ret = ldub_phys(addr);
2696 break;
2697 case 2:
2698 ret = lduw_phys(addr);
2699 break;
2700 case 4:
2701 ret = ldl_phys(addr);
2702 break;
2703 default:
2704 case 8:
2705 ret = ldq_phys(addr);
2706 break;
2708 break;
2710 case 0x24: // Nucleus quad LDD 128 bit atomic
2711 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2712 // Only ldda allowed
2713 raise_exception(TT_ILL_INSN);
2714 return 0;
2715 case 0x04: // Nucleus
2716 case 0x0c: // Nucleus Little Endian (LE)
2718 switch(size) {
2719 case 1:
2720 ret = ldub_nucleus(addr);
2721 break;
2722 case 2:
2723 ret = lduw_nucleus(addr);
2724 break;
2725 case 4:
2726 ret = ldl_nucleus(addr);
2727 break;
2728 default:
2729 case 8:
2730 ret = ldq_nucleus(addr);
2731 break;
2733 break;
2735 case 0x4a: // UPA config
2736 // XXX
2737 break;
2738 case 0x45: // LSU
2739 ret = env->lsu;
2740 break;
2741 case 0x50: // I-MMU regs
2743 int reg = (addr >> 3) & 0xf;
2745 if (reg == 0) {
2746 // I-TSB Tag Target register
2747 ret = ultrasparc_tag_target(env->immu.tag_access);
2748 } else {
2749 ret = env->immuregs[reg];
2752 break;
2754 case 0x51: // I-MMU 8k TSB pointer
2756 // env->immuregs[5] holds I-MMU TSB register value
2757 // env->immuregs[6] holds I-MMU Tag Access register value
2758 ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
2759 8*1024);
2760 break;
2762 case 0x52: // I-MMU 64k TSB pointer
2764 // env->immuregs[5] holds I-MMU TSB register value
2765 // env->immuregs[6] holds I-MMU Tag Access register value
2766 ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
2767 64*1024);
2768 break;
2770 case 0x55: // I-MMU data access
2772 int reg = (addr >> 3) & 0x3f;
2774 ret = env->itlb[reg].tte;
2775 break;
2777 case 0x56: // I-MMU tag read
2779 int reg = (addr >> 3) & 0x3f;
2781 ret = env->itlb[reg].tag;
2782 break;
2784 case 0x58: // D-MMU regs
2786 int reg = (addr >> 3) & 0xf;
2788 if (reg == 0) {
2789 // D-TSB Tag Target register
2790 ret = ultrasparc_tag_target(env->dmmu.tag_access);
2791 } else {
2792 ret = env->dmmuregs[reg];
2794 break;
2796 case 0x59: // D-MMU 8k TSB pointer
2798 // env->dmmuregs[5] holds D-MMU TSB register value
2799 // env->dmmuregs[6] holds D-MMU Tag Access register value
2800 ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
2801 8*1024);
2802 break;
2804 case 0x5a: // D-MMU 64k TSB pointer
2806 // env->dmmuregs[5] holds D-MMU TSB register value
2807 // env->dmmuregs[6] holds D-MMU Tag Access register value
2808 ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
2809 64*1024);
2810 break;
2812 case 0x5d: // D-MMU data access
2814 int reg = (addr >> 3) & 0x3f;
2816 ret = env->dtlb[reg].tte;
2817 break;
2819 case 0x5e: // D-MMU tag read
2821 int reg = (addr >> 3) & 0x3f;
2823 ret = env->dtlb[reg].tag;
2824 break;
2826 case 0x46: // D-cache data
2827 case 0x47: // D-cache tag access
2828 case 0x4b: // E-cache error enable
2829 case 0x4c: // E-cache asynchronous fault status
2830 case 0x4d: // E-cache asynchronous fault address
2831 case 0x4e: // E-cache tag data
2832 case 0x66: // I-cache instruction access
2833 case 0x67: // I-cache tag access
2834 case 0x6e: // I-cache predecode
2835 case 0x6f: // I-cache LRU etc.
2836 case 0x76: // E-cache tag
2837 case 0x7e: // E-cache tag
2838 break;
2839 case 0x5b: // D-MMU data pointer
2840 case 0x48: // Interrupt dispatch, RO
2841 case 0x49: // Interrupt data receive
2842 case 0x7f: // Incoming interrupt vector, RO
2843 // XXX
2844 break;
2845 case 0x54: // I-MMU data in, WO
2846 case 0x57: // I-MMU demap, WO
2847 case 0x5c: // D-MMU data in, WO
2848 case 0x5f: // D-MMU demap, WO
2849 case 0x77: // Interrupt vector, WO
2850 default:
2851 do_unassigned_access(addr, 0, 0, 1, size);
2852 ret = 0;
2853 break;
2856 /* Convert from little endian */
2857 switch (asi) {
2858 case 0x0c: // Nucleus Little Endian (LE)
2859 case 0x18: // As if user primary LE
2860 case 0x19: // As if user secondary LE
2861 case 0x1c: // Bypass LE
2862 case 0x1d: // Bypass, non-cacheable LE
2863 case 0x88: // Primary LE
2864 case 0x89: // Secondary LE
2865 case 0x8a: // Primary no-fault LE
2866 case 0x8b: // Secondary no-fault LE
2867 switch(size) {
2868 case 2:
2869 ret = bswap16(ret);
2870 break;
2871 case 4:
2872 ret = bswap32(ret);
2873 break;
2874 case 8:
2875 ret = bswap64(ret);
2876 break;
2877 default:
2878 break;
2880 default:
2881 break;
2884 /* Convert to signed number */
2885 if (sign) {
2886 switch(size) {
2887 case 1:
2888 ret = (int8_t) ret;
2889 break;
2890 case 2:
2891 ret = (int16_t) ret;
2892 break;
2893 case 4:
2894 ret = (int32_t) ret;
2895 break;
2896 default:
2897 break;
2900 #ifdef DEBUG_ASI
2901 dump_asi("read ", last_addr, asi, size, ret);
2902 #endif
2903 return ret;
2906 void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
2908 #ifdef DEBUG_ASI
2909 dump_asi("write", addr, asi, size, val);
2910 #endif
2912 asi &= 0xff;
2914 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2915 || (cpu_has_hypervisor(env)
2916 && asi >= 0x30 && asi < 0x80
2917 && !(env->hpstate & HS_PRIV)))
2918 raise_exception(TT_PRIV_ACT);
2920 helper_check_align(addr, size - 1);
2921 addr = asi_address_mask(env, asi, addr);
2923 /* Convert to little endian */
2924 switch (asi) {
2925 case 0x0c: // Nucleus Little Endian (LE)
2926 case 0x18: // As if user primary LE
2927 case 0x19: // As if user secondary LE
2928 case 0x1c: // Bypass LE
2929 case 0x1d: // Bypass, non-cacheable LE
2930 case 0x88: // Primary LE
2931 case 0x89: // Secondary LE
2932 switch(size) {
2933 case 2:
2934 val = bswap16(val);
2935 break;
2936 case 4:
2937 val = bswap32(val);
2938 break;
2939 case 8:
2940 val = bswap64(val);
2941 break;
2942 default:
2943 break;
2945 default:
2946 break;
2949 switch(asi) {
2950 case 0x10: // As if user primary
2951 case 0x11: // As if user secondary
2952 case 0x18: // As if user primary LE
2953 case 0x19: // As if user secondary LE
2954 case 0x80: // Primary
2955 case 0x81: // Secondary
2956 case 0x88: // Primary LE
2957 case 0x89: // Secondary LE
2958 case 0xe2: // UA2007 Primary block init
2959 case 0xe3: // UA2007 Secondary block init
2960 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
2961 if (cpu_hypervisor_mode(env)) {
2962 switch(size) {
2963 case 1:
2964 stb_hypv(addr, val);
2965 break;
2966 case 2:
2967 stw_hypv(addr, val);
2968 break;
2969 case 4:
2970 stl_hypv(addr, val);
2971 break;
2972 case 8:
2973 default:
2974 stq_hypv(addr, val);
2975 break;
2977 } else {
2978 /* secondary space access has lowest asi bit equal to 1 */
2979 if (asi & 1) {
2980 switch(size) {
2981 case 1:
2982 stb_kernel_secondary(addr, val);
2983 break;
2984 case 2:
2985 stw_kernel_secondary(addr, val);
2986 break;
2987 case 4:
2988 stl_kernel_secondary(addr, val);
2989 break;
2990 case 8:
2991 default:
2992 stq_kernel_secondary(addr, val);
2993 break;
2995 } else {
2996 switch(size) {
2997 case 1:
2998 stb_kernel(addr, val);
2999 break;
3000 case 2:
3001 stw_kernel(addr, val);
3002 break;
3003 case 4:
3004 stl_kernel(addr, val);
3005 break;
3006 case 8:
3007 default:
3008 stq_kernel(addr, val);
3009 break;
3013 } else {
3014 /* secondary space access has lowest asi bit equal to 1 */
3015 if (asi & 1) {
3016 switch(size) {
3017 case 1:
3018 stb_user_secondary(addr, val);
3019 break;
3020 case 2:
3021 stw_user_secondary(addr, val);
3022 break;
3023 case 4:
3024 stl_user_secondary(addr, val);
3025 break;
3026 case 8:
3027 default:
3028 stq_user_secondary(addr, val);
3029 break;
3031 } else {
3032 switch(size) {
3033 case 1:
3034 stb_user(addr, val);
3035 break;
3036 case 2:
3037 stw_user(addr, val);
3038 break;
3039 case 4:
3040 stl_user(addr, val);
3041 break;
3042 case 8:
3043 default:
3044 stq_user(addr, val);
3045 break;
3049 break;
3050 case 0x14: // Bypass
3051 case 0x15: // Bypass, non-cacheable
3052 case 0x1c: // Bypass LE
3053 case 0x1d: // Bypass, non-cacheable LE
3055 switch(size) {
3056 case 1:
3057 stb_phys(addr, val);
3058 break;
3059 case 2:
3060 stw_phys(addr, val);
3061 break;
3062 case 4:
3063 stl_phys(addr, val);
3064 break;
3065 case 8:
3066 default:
3067 stq_phys(addr, val);
3068 break;
3071 return;
3072 case 0x24: // Nucleus quad LDD 128 bit atomic
3073 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
3074 // Only ldda allowed
3075 raise_exception(TT_ILL_INSN);
3076 return;
3077 case 0x04: // Nucleus
3078 case 0x0c: // Nucleus Little Endian (LE)
3080 switch(size) {
3081 case 1:
3082 stb_nucleus(addr, val);
3083 break;
3084 case 2:
3085 stw_nucleus(addr, val);
3086 break;
3087 case 4:
3088 stl_nucleus(addr, val);
3089 break;
3090 default:
3091 case 8:
3092 stq_nucleus(addr, val);
3093 break;
3095 break;
3098 case 0x4a: // UPA config
3099 // XXX
3100 return;
3101 case 0x45: // LSU
3103 uint64_t oldreg;
3105 oldreg = env->lsu;
3106 env->lsu = val & (DMMU_E | IMMU_E);
3107 // Mappings generated during D/I MMU disabled mode are
3108 // invalid in normal mode
3109 if (oldreg != env->lsu) {
3110 DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n",
3111 oldreg, env->lsu);
3112 #ifdef DEBUG_MMU
3113 dump_mmu(stdout, fprintf, env1);
3114 #endif
3115 tlb_flush(env, 1);
3117 return;
3119 case 0x50: // I-MMU regs
3121 int reg = (addr >> 3) & 0xf;
3122 uint64_t oldreg;
3124 oldreg = env->immuregs[reg];
3125 switch(reg) {
3126 case 0: // RO
3127 return;
3128 case 1: // Not in I-MMU
3129 case 2:
3130 return;
3131 case 3: // SFSR
3132 if ((val & 1) == 0)
3133 val = 0; // Clear SFSR
3134 env->immu.sfsr = val;
3135 break;
3136 case 4: // RO
3137 return;
3138 case 5: // TSB access
3139 DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
3140 PRIx64 "\n", env->immu.tsb, val);
3141 env->immu.tsb = val;
3142 break;
3143 case 6: // Tag access
3144 env->immu.tag_access = val;
3145 break;
3146 case 7:
3147 case 8:
3148 return;
3149 default:
3150 break;
3153 if (oldreg != env->immuregs[reg]) {
3154 DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
3155 PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
3157 #ifdef DEBUG_MMU
3158 dump_mmu(stdout, fprintf, env);
3159 #endif
3160 return;
3162 case 0x54: // I-MMU data in
3163 replace_tlb_1bit_lru(env->itlb, env->immu.tag_access, val, "immu", env);
3164 return;
3165 case 0x55: // I-MMU data access
3167 // TODO: auto demap
3169 unsigned int i = (addr >> 3) & 0x3f;
3171 replace_tlb_entry(&env->itlb[i], env->immu.tag_access, val, env);
3173 #ifdef DEBUG_MMU
3174 DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
3175 dump_mmu(stdout, fprintf, env);
3176 #endif
3177 return;
3179 case 0x57: // I-MMU demap
3180 demap_tlb(env->itlb, addr, "immu", env);
3181 return;
3182 case 0x58: // D-MMU regs
3184 int reg = (addr >> 3) & 0xf;
3185 uint64_t oldreg;
3187 oldreg = env->dmmuregs[reg];
3188 switch(reg) {
3189 case 0: // RO
3190 case 4:
3191 return;
3192 case 3: // SFSR
3193 if ((val & 1) == 0) {
3194 val = 0; // Clear SFSR, Fault address
3195 env->dmmu.sfar = 0;
3197 env->dmmu.sfsr = val;
3198 break;
3199 case 1: // Primary context
3200 env->dmmu.mmu_primary_context = val;
3201 /* can be optimized to only flush MMU_USER_IDX
3202 and MMU_KERNEL_IDX entries */
3203 tlb_flush(env, 1);
3204 break;
3205 case 2: // Secondary context
3206 env->dmmu.mmu_secondary_context = val;
3207 /* can be optimized to only flush MMU_USER_SECONDARY_IDX
3208 and MMU_KERNEL_SECONDARY_IDX entries */
3209 tlb_flush(env, 1);
3210 break;
3211 case 5: // TSB access
3212 DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
3213 PRIx64 "\n", env->dmmu.tsb, val);
3214 env->dmmu.tsb = val;
3215 break;
3216 case 6: // Tag access
3217 env->dmmu.tag_access = val;
3218 break;
3219 case 7: // Virtual Watchpoint
3220 case 8: // Physical Watchpoint
3221 default:
3222 env->dmmuregs[reg] = val;
3223 break;
3226 if (oldreg != env->dmmuregs[reg]) {
3227 DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
3228 PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
3230 #ifdef DEBUG_MMU
3231 dump_mmu(stdout, fprintf, env);
3232 #endif
3233 return;
3235 case 0x5c: // D-MMU data in
3236 replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access, val, "dmmu", env);
3237 return;
3238 case 0x5d: // D-MMU data access
3240 unsigned int i = (addr >> 3) & 0x3f;
3242 replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access, val, env);
3244 #ifdef DEBUG_MMU
3245 DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
3246 dump_mmu(stdout, fprintf, env);
3247 #endif
3248 return;
3250 case 0x5f: // D-MMU demap
3251 demap_tlb(env->dtlb, addr, "dmmu", env);
3252 return;
3253 case 0x49: // Interrupt data receive
3254 // XXX
3255 return;
3256 case 0x46: // D-cache data
3257 case 0x47: // D-cache tag access
3258 case 0x4b: // E-cache error enable
3259 case 0x4c: // E-cache asynchronous fault status
3260 case 0x4d: // E-cache asynchronous fault address
3261 case 0x4e: // E-cache tag data
3262 case 0x66: // I-cache instruction access
3263 case 0x67: // I-cache tag access
3264 case 0x6e: // I-cache predecode
3265 case 0x6f: // I-cache LRU etc.
3266 case 0x76: // E-cache tag
3267 case 0x7e: // E-cache tag
3268 return;
3269 case 0x51: // I-MMU 8k TSB pointer, RO
3270 case 0x52: // I-MMU 64k TSB pointer, RO
3271 case 0x56: // I-MMU tag read, RO
3272 case 0x59: // D-MMU 8k TSB pointer, RO
3273 case 0x5a: // D-MMU 64k TSB pointer, RO
3274 case 0x5b: // D-MMU data pointer, RO
3275 case 0x5e: // D-MMU tag read, RO
3276 case 0x48: // Interrupt dispatch, RO
3277 case 0x7f: // Incoming interrupt vector, RO
3278 case 0x82: // Primary no-fault, RO
3279 case 0x83: // Secondary no-fault, RO
3280 case 0x8a: // Primary no-fault LE, RO
3281 case 0x8b: // Secondary no-fault LE, RO
3282 default:
3283 do_unassigned_access(addr, 1, 0, 1, size);
3284 return;
3287 #endif /* CONFIG_USER_ONLY */
3289 void helper_ldda_asi(target_ulong addr, int asi, int rd)
3291 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
3292 || (cpu_has_hypervisor(env)
3293 && asi >= 0x30 && asi < 0x80
3294 && !(env->hpstate & HS_PRIV)))
3295 raise_exception(TT_PRIV_ACT);
3297 addr = asi_address_mask(env, asi, addr);
3299 switch (asi) {
3300 #if !defined(CONFIG_USER_ONLY)
3301 case 0x24: // Nucleus quad LDD 128 bit atomic
3302 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
3303 helper_check_align(addr, 0xf);
3304 if (rd == 0) {
3305 env->gregs[1] = ldq_nucleus(addr + 8);
3306 if (asi == 0x2c)
3307 bswap64s(&env->gregs[1]);
3308 } else if (rd < 8) {
3309 env->gregs[rd] = ldq_nucleus(addr);
3310 env->gregs[rd + 1] = ldq_nucleus(addr + 8);
3311 if (asi == 0x2c) {
3312 bswap64s(&env->gregs[rd]);
3313 bswap64s(&env->gregs[rd + 1]);
3315 } else {
3316 env->regwptr[rd] = ldq_nucleus(addr);
3317 env->regwptr[rd + 1] = ldq_nucleus(addr + 8);
3318 if (asi == 0x2c) {
3319 bswap64s(&env->regwptr[rd]);
3320 bswap64s(&env->regwptr[rd + 1]);
3323 break;
3324 #endif
3325 default:
3326 helper_check_align(addr, 0x3);
3327 if (rd == 0)
3328 env->gregs[1] = helper_ld_asi(addr + 4, asi, 4, 0);
3329 else if (rd < 8) {
3330 env->gregs[rd] = helper_ld_asi(addr, asi, 4, 0);
3331 env->gregs[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
3332 } else {
3333 env->regwptr[rd] = helper_ld_asi(addr, asi, 4, 0);
3334 env->regwptr[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
3336 break;
3340 void helper_ldf_asi(target_ulong addr, int asi, int size, int rd)
3342 unsigned int i;
3343 CPU_DoubleU u;
3345 helper_check_align(addr, 3);
3346 addr = asi_address_mask(env, asi, addr);
3348 switch (asi) {
3349 case 0xf0: /* UA2007/JPS1 Block load primary */
3350 case 0xf1: /* UA2007/JPS1 Block load secondary */
3351 case 0xf8: /* UA2007/JPS1 Block load primary LE */
3352 case 0xf9: /* UA2007/JPS1 Block load secondary LE */
3353 if (rd & 7) {
3354 raise_exception(TT_ILL_INSN);
3355 return;
3357 helper_check_align(addr, 0x3f);
3358 for (i = 0; i < 16; i++) {
3359 *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x8f, 4,
3361 addr += 4;
3364 return;
3365 case 0x16: /* UA2007 Block load primary, user privilege */
3366 case 0x17: /* UA2007 Block load secondary, user privilege */
3367 case 0x1e: /* UA2007 Block load primary LE, user privilege */
3368 case 0x1f: /* UA2007 Block load secondary LE, user privilege */
3369 case 0x70: /* JPS1 Block load primary, user privilege */
3370 case 0x71: /* JPS1 Block load secondary, user privilege */
3371 case 0x78: /* JPS1 Block load primary LE, user privilege */
3372 case 0x79: /* JPS1 Block load secondary LE, user privilege */
3373 if (rd & 7) {
3374 raise_exception(TT_ILL_INSN);
3375 return;
3377 helper_check_align(addr, 0x3f);
3378 for (i = 0; i < 16; i++) {
3379 *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x19, 4,
3381 addr += 4;
3384 return;
3385 default:
3386 break;
3389 switch(size) {
3390 default:
3391 case 4:
3392 *((uint32_t *)&env->fpr[rd]) = helper_ld_asi(addr, asi, size, 0);
3393 break;
3394 case 8:
3395 u.ll = helper_ld_asi(addr, asi, size, 0);
3396 *((uint32_t *)&env->fpr[rd++]) = u.l.upper;
3397 *((uint32_t *)&env->fpr[rd++]) = u.l.lower;
3398 break;
3399 case 16:
3400 u.ll = helper_ld_asi(addr, asi, 8, 0);
3401 *((uint32_t *)&env->fpr[rd++]) = u.l.upper;
3402 *((uint32_t *)&env->fpr[rd++]) = u.l.lower;
3403 u.ll = helper_ld_asi(addr + 8, asi, 8, 0);
3404 *((uint32_t *)&env->fpr[rd++]) = u.l.upper;
3405 *((uint32_t *)&env->fpr[rd++]) = u.l.lower;
3406 break;
3410 void helper_stf_asi(target_ulong addr, int asi, int size, int rd)
3412 unsigned int i;
3413 target_ulong val = 0;
3414 CPU_DoubleU u;
3416 helper_check_align(addr, 3);
3417 addr = asi_address_mask(env, asi, addr);
3419 switch (asi) {
3420 case 0xe0: /* UA2007/JPS1 Block commit store primary (cache flush) */
3421 case 0xe1: /* UA2007/JPS1 Block commit store secondary (cache flush) */
3422 case 0xf0: /* UA2007/JPS1 Block store primary */
3423 case 0xf1: /* UA2007/JPS1 Block store secondary */
3424 case 0xf8: /* UA2007/JPS1 Block store primary LE */
3425 case 0xf9: /* UA2007/JPS1 Block store secondary LE */
3426 if (rd & 7) {
3427 raise_exception(TT_ILL_INSN);
3428 return;
3430 helper_check_align(addr, 0x3f);
3431 for (i = 0; i < 16; i++) {
3432 val = *(uint32_t *)&env->fpr[rd++];
3433 helper_st_asi(addr, val, asi & 0x8f, 4);
3434 addr += 4;
3437 return;
3438 case 0x16: /* UA2007 Block load primary, user privilege */
3439 case 0x17: /* UA2007 Block load secondary, user privilege */
3440 case 0x1e: /* UA2007 Block load primary LE, user privilege */
3441 case 0x1f: /* UA2007 Block load secondary LE, user privilege */
3442 case 0x70: /* JPS1 Block store primary, user privilege */
3443 case 0x71: /* JPS1 Block store secondary, user privilege */
3444 case 0x78: /* JPS1 Block load primary LE, user privilege */
3445 case 0x79: /* JPS1 Block load secondary LE, user privilege */
3446 if (rd & 7) {
3447 raise_exception(TT_ILL_INSN);
3448 return;
3450 helper_check_align(addr, 0x3f);
3451 for (i = 0; i < 16; i++) {
3452 val = *(uint32_t *)&env->fpr[rd++];
3453 helper_st_asi(addr, val, asi & 0x19, 4);
3454 addr += 4;
3457 return;
3458 default:
3459 break;
3462 switch(size) {
3463 default:
3464 case 4:
3465 helper_st_asi(addr, *(uint32_t *)&env->fpr[rd], asi, size);
3466 break;
3467 case 8:
3468 u.l.upper = *(uint32_t *)&env->fpr[rd++];
3469 u.l.lower = *(uint32_t *)&env->fpr[rd++];
3470 helper_st_asi(addr, u.ll, asi, size);
3471 break;
3472 case 16:
3473 u.l.upper = *(uint32_t *)&env->fpr[rd++];
3474 u.l.lower = *(uint32_t *)&env->fpr[rd++];
3475 helper_st_asi(addr, u.ll, asi, 8);
3476 u.l.upper = *(uint32_t *)&env->fpr[rd++];
3477 u.l.lower = *(uint32_t *)&env->fpr[rd++];
3478 helper_st_asi(addr + 8, u.ll, asi, 8);
3479 break;
3483 target_ulong helper_cas_asi(target_ulong addr, target_ulong val1,
3484 target_ulong val2, uint32_t asi)
3486 target_ulong ret;
3488 val2 &= 0xffffffffUL;
3489 ret = helper_ld_asi(addr, asi, 4, 0);
3490 ret &= 0xffffffffUL;
3491 if (val2 == ret)
3492 helper_st_asi(addr, val1 & 0xffffffffUL, asi, 4);
3493 return ret;
3496 target_ulong helper_casx_asi(target_ulong addr, target_ulong val1,
3497 target_ulong val2, uint32_t asi)
3499 target_ulong ret;
3501 ret = helper_ld_asi(addr, asi, 8, 0);
3502 if (val2 == ret)
3503 helper_st_asi(addr, val1, asi, 8);
3504 return ret;
3506 #endif /* TARGET_SPARC64 */
3508 #ifndef TARGET_SPARC64
3509 void helper_rett(void)
3511 unsigned int cwp;
3513 if (env->psret == 1)
3514 raise_exception(TT_ILL_INSN);
3516 env->psret = 1;
3517 cwp = cwp_inc(env->cwp + 1) ;
3518 if (env->wim & (1 << cwp)) {
3519 raise_exception(TT_WIN_UNF);
3521 set_cwp(cwp);
3522 env->psrs = env->psrps;
3524 #endif
3526 static target_ulong helper_udiv_common(target_ulong a, target_ulong b, int cc)
3528 int overflow = 0;
3529 uint64_t x0;
3530 uint32_t x1;
3532 x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
3533 x1 = (b & 0xffffffff);
3535 if (x1 == 0) {
3536 raise_exception(TT_DIV_ZERO);
3539 x0 = x0 / x1;
3540 if (x0 > 0xffffffff) {
3541 x0 = 0xffffffff;
3542 overflow = 1;
3545 if (cc) {
3546 env->cc_dst = x0;
3547 env->cc_src2 = overflow;
3548 env->cc_op = CC_OP_DIV;
3550 return x0;
3553 target_ulong helper_udiv(target_ulong a, target_ulong b)
3555 return helper_udiv_common(a, b, 0);
3558 target_ulong helper_udiv_cc(target_ulong a, target_ulong b)
3560 return helper_udiv_common(a, b, 1);
3563 static target_ulong helper_sdiv_common(target_ulong a, target_ulong b, int cc)
3565 int overflow = 0;
3566 int64_t x0;
3567 int32_t x1;
3569 x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
3570 x1 = (b & 0xffffffff);
3572 if (x1 == 0) {
3573 raise_exception(TT_DIV_ZERO);
3576 x0 = x0 / x1;
3577 if ((int32_t) x0 != x0) {
3578 x0 = x0 < 0 ? 0x80000000: 0x7fffffff;
3579 overflow = 1;
3582 if (cc) {
3583 env->cc_dst = x0;
3584 env->cc_src2 = overflow;
3585 env->cc_op = CC_OP_DIV;
3587 return x0;
3590 target_ulong helper_sdiv(target_ulong a, target_ulong b)
3592 return helper_sdiv_common(a, b, 0);
3595 target_ulong helper_sdiv_cc(target_ulong a, target_ulong b)
3597 return helper_sdiv_common(a, b, 1);
3600 void helper_stdf(target_ulong addr, int mem_idx)
3602 helper_check_align(addr, 7);
3603 #if !defined(CONFIG_USER_ONLY)
3604 switch (mem_idx) {
3605 case MMU_USER_IDX:
3606 stfq_user(addr, DT0);
3607 break;
3608 case MMU_KERNEL_IDX:
3609 stfq_kernel(addr, DT0);
3610 break;
3611 #ifdef TARGET_SPARC64
3612 case MMU_HYPV_IDX:
3613 stfq_hypv(addr, DT0);
3614 break;
3615 #endif
3616 default:
3617 DPRINTF_MMU("helper_stdf: need to check MMU idx %d\n", mem_idx);
3618 break;
3620 #else
3621 stfq_raw(address_mask(env, addr), DT0);
3622 #endif
3625 void helper_lddf(target_ulong addr, int mem_idx)
3627 helper_check_align(addr, 7);
3628 #if !defined(CONFIG_USER_ONLY)
3629 switch (mem_idx) {
3630 case MMU_USER_IDX:
3631 DT0 = ldfq_user(addr);
3632 break;
3633 case MMU_KERNEL_IDX:
3634 DT0 = ldfq_kernel(addr);
3635 break;
3636 #ifdef TARGET_SPARC64
3637 case MMU_HYPV_IDX:
3638 DT0 = ldfq_hypv(addr);
3639 break;
3640 #endif
3641 default:
3642 DPRINTF_MMU("helper_lddf: need to check MMU idx %d\n", mem_idx);
3643 break;
3645 #else
3646 DT0 = ldfq_raw(address_mask(env, addr));
3647 #endif
3650 void helper_ldqf(target_ulong addr, int mem_idx)
3652 // XXX add 128 bit load
3653 CPU_QuadU u;
3655 helper_check_align(addr, 7);
3656 #if !defined(CONFIG_USER_ONLY)
3657 switch (mem_idx) {
3658 case MMU_USER_IDX:
3659 u.ll.upper = ldq_user(addr);
3660 u.ll.lower = ldq_user(addr + 8);
3661 QT0 = u.q;
3662 break;
3663 case MMU_KERNEL_IDX:
3664 u.ll.upper = ldq_kernel(addr);
3665 u.ll.lower = ldq_kernel(addr + 8);
3666 QT0 = u.q;
3667 break;
3668 #ifdef TARGET_SPARC64
3669 case MMU_HYPV_IDX:
3670 u.ll.upper = ldq_hypv(addr);
3671 u.ll.lower = ldq_hypv(addr + 8);
3672 QT0 = u.q;
3673 break;
3674 #endif
3675 default:
3676 DPRINTF_MMU("helper_ldqf: need to check MMU idx %d\n", mem_idx);
3677 break;
3679 #else
3680 u.ll.upper = ldq_raw(address_mask(env, addr));
3681 u.ll.lower = ldq_raw(address_mask(env, addr + 8));
3682 QT0 = u.q;
3683 #endif
3686 void helper_stqf(target_ulong addr, int mem_idx)
3688 // XXX add 128 bit store
3689 CPU_QuadU u;
3691 helper_check_align(addr, 7);
3692 #if !defined(CONFIG_USER_ONLY)
3693 switch (mem_idx) {
3694 case MMU_USER_IDX:
3695 u.q = QT0;
3696 stq_user(addr, u.ll.upper);
3697 stq_user(addr + 8, u.ll.lower);
3698 break;
3699 case MMU_KERNEL_IDX:
3700 u.q = QT0;
3701 stq_kernel(addr, u.ll.upper);
3702 stq_kernel(addr + 8, u.ll.lower);
3703 break;
3704 #ifdef TARGET_SPARC64
3705 case MMU_HYPV_IDX:
3706 u.q = QT0;
3707 stq_hypv(addr, u.ll.upper);
3708 stq_hypv(addr + 8, u.ll.lower);
3709 break;
3710 #endif
3711 default:
3712 DPRINTF_MMU("helper_stqf: need to check MMU idx %d\n", mem_idx);
3713 break;
3715 #else
3716 u.q = QT0;
3717 stq_raw(address_mask(env, addr), u.ll.upper);
3718 stq_raw(address_mask(env, addr + 8), u.ll.lower);
3719 #endif
3722 static inline void set_fsr(void)
3724 int rnd_mode;
3726 switch (env->fsr & FSR_RD_MASK) {
3727 case FSR_RD_NEAREST:
3728 rnd_mode = float_round_nearest_even;
3729 break;
3730 default:
3731 case FSR_RD_ZERO:
3732 rnd_mode = float_round_to_zero;
3733 break;
3734 case FSR_RD_POS:
3735 rnd_mode = float_round_up;
3736 break;
3737 case FSR_RD_NEG:
3738 rnd_mode = float_round_down;
3739 break;
3741 set_float_rounding_mode(rnd_mode, &env->fp_status);
3744 void helper_ldfsr(uint32_t new_fsr)
3746 env->fsr = (new_fsr & FSR_LDFSR_MASK) | (env->fsr & FSR_LDFSR_OLDMASK);
3747 set_fsr();
3750 #ifdef TARGET_SPARC64
3751 void helper_ldxfsr(uint64_t new_fsr)
3753 env->fsr = (new_fsr & FSR_LDXFSR_MASK) | (env->fsr & FSR_LDXFSR_OLDMASK);
3754 set_fsr();
3756 #endif
3758 void helper_debug(void)
3760 env->exception_index = EXCP_DEBUG;
3761 cpu_loop_exit(env);
3764 #ifndef TARGET_SPARC64
3765 /* XXX: use another pointer for %iN registers to avoid slow wrapping
3766 handling ? */
3767 void helper_save(void)
3769 uint32_t cwp;
3771 cwp = cwp_dec(env->cwp - 1);
3772 if (env->wim & (1 << cwp)) {
3773 raise_exception(TT_WIN_OVF);
3775 set_cwp(cwp);
3778 void helper_restore(void)
3780 uint32_t cwp;
3782 cwp = cwp_inc(env->cwp + 1);
3783 if (env->wim & (1 << cwp)) {
3784 raise_exception(TT_WIN_UNF);
3786 set_cwp(cwp);
3789 void helper_wrpsr(target_ulong new_psr)
3791 if ((new_psr & PSR_CWP) >= env->nwindows) {
3792 raise_exception(TT_ILL_INSN);
3793 } else {
3794 cpu_put_psr(env, new_psr);
3798 target_ulong helper_rdpsr(void)
3800 return get_psr();
3803 #else
3804 /* XXX: use another pointer for %iN registers to avoid slow wrapping
3805 handling ? */
3806 void helper_save(void)
3808 uint32_t cwp;
3810 cwp = cwp_dec(env->cwp - 1);
3811 if (env->cansave == 0) {
3812 raise_exception(TT_SPILL | (env->otherwin != 0 ?
3813 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3814 ((env->wstate & 0x7) << 2)));
3815 } else {
3816 if (env->cleanwin - env->canrestore == 0) {
3817 // XXX Clean windows without trap
3818 raise_exception(TT_CLRWIN);
3819 } else {
3820 env->cansave--;
3821 env->canrestore++;
3822 set_cwp(cwp);
3827 void helper_restore(void)
3829 uint32_t cwp;
3831 cwp = cwp_inc(env->cwp + 1);
3832 if (env->canrestore == 0) {
3833 raise_exception(TT_FILL | (env->otherwin != 0 ?
3834 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3835 ((env->wstate & 0x7) << 2)));
3836 } else {
3837 env->cansave++;
3838 env->canrestore--;
3839 set_cwp(cwp);
3843 void helper_flushw(void)
3845 if (env->cansave != env->nwindows - 2) {
3846 raise_exception(TT_SPILL | (env->otherwin != 0 ?
3847 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3848 ((env->wstate & 0x7) << 2)));
3852 void helper_saved(void)
3854 env->cansave++;
3855 if (env->otherwin == 0)
3856 env->canrestore--;
3857 else
3858 env->otherwin--;
3861 void helper_restored(void)
3863 env->canrestore++;
3864 if (env->cleanwin < env->nwindows - 1)
3865 env->cleanwin++;
3866 if (env->otherwin == 0)
3867 env->cansave--;
3868 else
3869 env->otherwin--;
3872 static target_ulong get_ccr(void)
3874 target_ulong psr;
3876 psr = get_psr();
3878 return ((env->xcc >> 20) << 4) | ((psr & PSR_ICC) >> 20);
3881 target_ulong cpu_get_ccr(CPUState *env1)
3883 CPUState *saved_env;
3884 target_ulong ret;
3886 saved_env = env;
3887 env = env1;
3888 ret = get_ccr();
3889 env = saved_env;
3890 return ret;
3893 static void put_ccr(target_ulong val)
3895 target_ulong tmp = val;
3897 env->xcc = (tmp >> 4) << 20;
3898 env->psr = (tmp & 0xf) << 20;
3899 CC_OP = CC_OP_FLAGS;
3902 void cpu_put_ccr(CPUState *env1, target_ulong val)
3904 CPUState *saved_env;
3906 saved_env = env;
3907 env = env1;
3908 put_ccr(val);
3909 env = saved_env;
3912 static target_ulong get_cwp64(void)
3914 return env->nwindows - 1 - env->cwp;
3917 target_ulong cpu_get_cwp64(CPUState *env1)
3919 CPUState *saved_env;
3920 target_ulong ret;
3922 saved_env = env;
3923 env = env1;
3924 ret = get_cwp64();
3925 env = saved_env;
3926 return ret;
3929 static void put_cwp64(int cwp)
3931 if (unlikely(cwp >= env->nwindows || cwp < 0)) {
3932 cwp %= env->nwindows;
3934 set_cwp(env->nwindows - 1 - cwp);
3937 void cpu_put_cwp64(CPUState *env1, int cwp)
3939 CPUState *saved_env;
3941 saved_env = env;
3942 env = env1;
3943 put_cwp64(cwp);
3944 env = saved_env;
3947 target_ulong helper_rdccr(void)
3949 return get_ccr();
3952 void helper_wrccr(target_ulong new_ccr)
3954 put_ccr(new_ccr);
3957 // CWP handling is reversed in V9, but we still use the V8 register
3958 // order.
3959 target_ulong helper_rdcwp(void)
3961 return get_cwp64();
3964 void helper_wrcwp(target_ulong new_cwp)
3966 put_cwp64(new_cwp);
3969 // This function uses non-native bit order
3970 #define GET_FIELD(X, FROM, TO) \
3971 ((X) >> (63 - (TO)) & ((1ULL << ((TO) - (FROM) + 1)) - 1))
3973 // This function uses the order in the manuals, i.e. bit 0 is 2^0
3974 #define GET_FIELD_SP(X, FROM, TO) \
3975 GET_FIELD(X, 63 - (TO), 63 - (FROM))
3977 target_ulong helper_array8(target_ulong pixel_addr, target_ulong cubesize)
3979 return (GET_FIELD_SP(pixel_addr, 60, 63) << (17 + 2 * cubesize)) |
3980 (GET_FIELD_SP(pixel_addr, 39, 39 + cubesize - 1) << (17 + cubesize)) |
3981 (GET_FIELD_SP(pixel_addr, 17 + cubesize - 1, 17) << 17) |
3982 (GET_FIELD_SP(pixel_addr, 56, 59) << 13) |
3983 (GET_FIELD_SP(pixel_addr, 35, 38) << 9) |
3984 (GET_FIELD_SP(pixel_addr, 13, 16) << 5) |
3985 (((pixel_addr >> 55) & 1) << 4) |
3986 (GET_FIELD_SP(pixel_addr, 33, 34) << 2) |
3987 GET_FIELD_SP(pixel_addr, 11, 12);
3990 target_ulong helper_alignaddr(target_ulong addr, target_ulong offset)
3992 uint64_t tmp;
3994 tmp = addr + offset;
3995 env->gsr &= ~7ULL;
3996 env->gsr |= tmp & 7ULL;
3997 return tmp & ~7ULL;
4000 target_ulong helper_popc(target_ulong val)
4002 return ctpop64(val);
4005 static inline uint64_t *get_gregset(uint32_t pstate)
4007 switch (pstate) {
4008 default:
4009 DPRINTF_PSTATE("ERROR in get_gregset: active pstate bits=%x%s%s%s\n",
4010 pstate,
4011 (pstate & PS_IG) ? " IG" : "",
4012 (pstate & PS_MG) ? " MG" : "",
4013 (pstate & PS_AG) ? " AG" : "");
4014 /* pass through to normal set of global registers */
4015 case 0:
4016 return env->bgregs;
4017 case PS_AG:
4018 return env->agregs;
4019 case PS_MG:
4020 return env->mgregs;
4021 case PS_IG:
4022 return env->igregs;
4026 static inline void change_pstate(uint32_t new_pstate)
4028 uint32_t pstate_regs, new_pstate_regs;
4029 uint64_t *src, *dst;
4031 if (env->def->features & CPU_FEATURE_GL) {
4032 // PS_AG is not implemented in this case
4033 new_pstate &= ~PS_AG;
4036 pstate_regs = env->pstate & 0xc01;
4037 new_pstate_regs = new_pstate & 0xc01;
4039 if (new_pstate_regs != pstate_regs) {
4040 DPRINTF_PSTATE("change_pstate: switching regs old=%x new=%x\n",
4041 pstate_regs, new_pstate_regs);
4042 // Switch global register bank
4043 src = get_gregset(new_pstate_regs);
4044 dst = get_gregset(pstate_regs);
4045 memcpy32(dst, env->gregs);
4046 memcpy32(env->gregs, src);
4048 else {
4049 DPRINTF_PSTATE("change_pstate: regs new=%x (unchanged)\n",
4050 new_pstate_regs);
4052 env->pstate = new_pstate;
4055 void helper_wrpstate(target_ulong new_state)
4057 change_pstate(new_state & 0xf3f);
4059 #if !defined(CONFIG_USER_ONLY)
4060 if (cpu_interrupts_enabled(env)) {
4061 cpu_check_irqs(env);
4063 #endif
4066 void cpu_change_pstate(CPUState *env1, uint32_t new_pstate)
4068 CPUState *saved_env;
4070 saved_env = env;
4071 env = env1;
4072 change_pstate(new_pstate);
4073 env = saved_env;
4076 void helper_wrpil(target_ulong new_pil)
4078 #if !defined(CONFIG_USER_ONLY)
4079 DPRINTF_PSTATE("helper_wrpil old=%x new=%x\n",
4080 env->psrpil, (uint32_t)new_pil);
4082 env->psrpil = new_pil;
4084 if (cpu_interrupts_enabled(env)) {
4085 cpu_check_irqs(env);
4087 #endif
4090 void helper_done(void)
4092 trap_state* tsptr = cpu_tsptr(env);
4094 env->pc = tsptr->tnpc;
4095 env->npc = tsptr->tnpc + 4;
4096 put_ccr(tsptr->tstate >> 32);
4097 env->asi = (tsptr->tstate >> 24) & 0xff;
4098 change_pstate((tsptr->tstate >> 8) & 0xf3f);
4099 put_cwp64(tsptr->tstate & 0xff);
4100 env->tl--;
4102 DPRINTF_PSTATE("... helper_done tl=%d\n", env->tl);
4104 #if !defined(CONFIG_USER_ONLY)
4105 if (cpu_interrupts_enabled(env)) {
4106 cpu_check_irqs(env);
4108 #endif
4111 void helper_retry(void)
4113 trap_state* tsptr = cpu_tsptr(env);
4115 env->pc = tsptr->tpc;
4116 env->npc = tsptr->tnpc;
4117 put_ccr(tsptr->tstate >> 32);
4118 env->asi = (tsptr->tstate >> 24) & 0xff;
4119 change_pstate((tsptr->tstate >> 8) & 0xf3f);
4120 put_cwp64(tsptr->tstate & 0xff);
4121 env->tl--;
4123 DPRINTF_PSTATE("... helper_retry tl=%d\n", env->tl);
4125 #if !defined(CONFIG_USER_ONLY)
4126 if (cpu_interrupts_enabled(env)) {
4127 cpu_check_irqs(env);
4129 #endif
4132 static void do_modify_softint(const char* operation, uint32_t value)
4134 if (env->softint != value) {
4135 env->softint = value;
4136 DPRINTF_PSTATE(": %s new %08x\n", operation, env->softint);
4137 #if !defined(CONFIG_USER_ONLY)
4138 if (cpu_interrupts_enabled(env)) {
4139 cpu_check_irqs(env);
4141 #endif
4145 void helper_set_softint(uint64_t value)
4147 do_modify_softint("helper_set_softint", env->softint | (uint32_t)value);
4150 void helper_clear_softint(uint64_t value)
4152 do_modify_softint("helper_clear_softint", env->softint & (uint32_t)~value);
4155 void helper_write_softint(uint64_t value)
4157 do_modify_softint("helper_write_softint", (uint32_t)value);
4159 #endif
4161 #ifdef TARGET_SPARC64
4162 trap_state* cpu_tsptr(CPUState* env)
4164 return &env->ts[env->tl & MAXTL_MASK];
4166 #endif
4168 #if !defined(CONFIG_USER_ONLY)
4170 static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
4171 void *retaddr);
4173 #define MMUSUFFIX _mmu
4174 #define ALIGNED_ONLY
4176 #define SHIFT 0
4177 #include "softmmu_template.h"
4179 #define SHIFT 1
4180 #include "softmmu_template.h"
4182 #define SHIFT 2
4183 #include "softmmu_template.h"
4185 #define SHIFT 3
4186 #include "softmmu_template.h"
4188 /* XXX: make it generic ? */
4189 static void cpu_restore_state2(void *retaddr)
4191 TranslationBlock *tb;
4192 unsigned long pc;
4194 if (retaddr) {
4195 /* now we have a real cpu fault */
4196 pc = (unsigned long)retaddr;
4197 tb = tb_find_pc(pc);
4198 if (tb) {
4199 /* the PC is inside the translated code. It means that we have
4200 a virtual CPU fault */
4201 cpu_restore_state(tb, env, pc);
4206 static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
4207 void *retaddr)
4209 #ifdef DEBUG_UNALIGNED
4210 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
4211 "\n", addr, env->pc);
4212 #endif
4213 cpu_restore_state2(retaddr);
4214 raise_exception(TT_UNALIGNED);
4217 /* try to fill the TLB and return an exception if error. If retaddr is
4218 NULL, it means that the function was called in C code (i.e. not
4219 from generated code or from helper.c) */
4220 /* XXX: fix it to restore all registers */
4221 void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
4223 int ret;
4224 CPUState *saved_env;
4226 /* XXX: hack to restore env in all cases, even if not called from
4227 generated code */
4228 saved_env = env;
4229 env = cpu_single_env;
4231 ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
4232 if (ret) {
4233 cpu_restore_state2(retaddr);
4234 cpu_loop_exit(env);
4236 env = saved_env;
4239 #endif /* !CONFIG_USER_ONLY */
4241 #ifndef TARGET_SPARC64
4242 #if !defined(CONFIG_USER_ONLY)
4243 static void do_unassigned_access(target_phys_addr_t addr, int is_write,
4244 int is_exec, int is_asi, int size)
4246 CPUState *saved_env;
4247 int fault_type;
4249 /* XXX: hack to restore env in all cases, even if not called from
4250 generated code */
4251 saved_env = env;
4252 env = cpu_single_env;
4253 #ifdef DEBUG_UNASSIGNED
4254 if (is_asi)
4255 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
4256 " asi 0x%02x from " TARGET_FMT_lx "\n",
4257 is_exec ? "exec" : is_write ? "write" : "read", size,
4258 size == 1 ? "" : "s", addr, is_asi, env->pc);
4259 else
4260 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
4261 " from " TARGET_FMT_lx "\n",
4262 is_exec ? "exec" : is_write ? "write" : "read", size,
4263 size == 1 ? "" : "s", addr, env->pc);
4264 #endif
4265 /* Don't overwrite translation and access faults */
4266 fault_type = (env->mmuregs[3] & 0x1c) >> 2;
4267 if ((fault_type > 4) || (fault_type == 0)) {
4268 env->mmuregs[3] = 0; /* Fault status register */
4269 if (is_asi)
4270 env->mmuregs[3] |= 1 << 16;
4271 if (env->psrs)
4272 env->mmuregs[3] |= 1 << 5;
4273 if (is_exec)
4274 env->mmuregs[3] |= 1 << 6;
4275 if (is_write)
4276 env->mmuregs[3] |= 1 << 7;
4277 env->mmuregs[3] |= (5 << 2) | 2;
4278 /* SuperSPARC will never place instruction fault addresses in the FAR */
4279 if (!is_exec) {
4280 env->mmuregs[4] = addr; /* Fault address register */
4283 /* overflow (same type fault was not read before another fault) */
4284 if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) {
4285 env->mmuregs[3] |= 1;
4288 if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
4289 if (is_exec)
4290 raise_exception(TT_CODE_ACCESS);
4291 else
4292 raise_exception(TT_DATA_ACCESS);
4295 /* flush neverland mappings created during no-fault mode,
4296 so the sequential MMU faults report proper fault types */
4297 if (env->mmuregs[0] & MMU_NF) {
4298 tlb_flush(env, 1);
4301 env = saved_env;
4303 #endif
4304 #else
4305 #if defined(CONFIG_USER_ONLY)
4306 static void do_unassigned_access(target_ulong addr, int is_write, int is_exec,
4307 int is_asi, int size)
4308 #else
4309 static void do_unassigned_access(target_phys_addr_t addr, int is_write,
4310 int is_exec, int is_asi, int size)
4311 #endif
4313 CPUState *saved_env;
4315 /* XXX: hack to restore env in all cases, even if not called from
4316 generated code */
4317 saved_env = env;
4318 env = cpu_single_env;
4320 #ifdef DEBUG_UNASSIGNED
4321 printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
4322 "\n", addr, env->pc);
4323 #endif
4325 if (is_exec)
4326 raise_exception(TT_CODE_ACCESS);
4327 else
4328 raise_exception(TT_DATA_ACCESS);
4330 env = saved_env;
4332 #endif
4335 #ifdef TARGET_SPARC64
4336 void helper_tick_set_count(void *opaque, uint64_t count)
4338 #if !defined(CONFIG_USER_ONLY)
4339 cpu_tick_set_count(opaque, count);
4340 #endif
4343 uint64_t helper_tick_get_count(void *opaque)
4345 #if !defined(CONFIG_USER_ONLY)
4346 return cpu_tick_get_count(opaque);
4347 #else
4348 return 0;
4349 #endif
4352 void helper_tick_set_limit(void *opaque, uint64_t limit)
4354 #if !defined(CONFIG_USER_ONLY)
4355 cpu_tick_set_limit(opaque, limit);
4356 #endif
4358 #endif
4360 #if !defined(CONFIG_USER_ONLY)
4361 void cpu_unassigned_access(CPUState *env1, target_phys_addr_t addr,
4362 int is_write, int is_exec, int is_asi, int size)
4364 env = env1;
4365 do_unassigned_access(addr, is_write, is_exec, is_asi, size);
4367 #endif