xive2: Add a get_config() handler for the router configuration
[qemu.git] / hw / intc / xive.c
blobb8e4c7294d592a63f49edb0da51cc5fd67d9872f
1 /*
2 * QEMU PowerPC XIVE interrupt controller model
4 * Copyright (c) 2017-2018, IBM Corporation.
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
8 */
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/module.h"
13 #include "qapi/error.h"
14 #include "target/ppc/cpu.h"
15 #include "sysemu/cpus.h"
16 #include "sysemu/dma.h"
17 #include "sysemu/reset.h"
18 #include "hw/qdev-properties.h"
19 #include "migration/vmstate.h"
20 #include "monitor/monitor.h"
21 #include "hw/irq.h"
22 #include "hw/ppc/xive.h"
23 #include "hw/ppc/xive_regs.h"
24 #include "trace.h"
27 * XIVE Thread Interrupt Management context
31 * Convert an Interrupt Pending Buffer (IPB) register to a Pending
32 * Interrupt Priority Register (PIPR), which contains the priority of
33 * the most favored pending notification.
35 static uint8_t ipb_to_pipr(uint8_t ibp)
37 return ibp ? clz32((uint32_t)ibp << 24) : 0xff;
40 static uint8_t exception_mask(uint8_t ring)
42 switch (ring) {
43 case TM_QW1_OS:
44 return TM_QW1_NSR_EO;
45 case TM_QW3_HV_PHYS:
46 return TM_QW3_NSR_HE;
47 default:
48 g_assert_not_reached();
52 static qemu_irq xive_tctx_output(XiveTCTX *tctx, uint8_t ring)
54 switch (ring) {
55 case TM_QW0_USER:
56 return 0; /* Not supported */
57 case TM_QW1_OS:
58 return tctx->os_output;
59 case TM_QW2_HV_POOL:
60 case TM_QW3_HV_PHYS:
61 return tctx->hv_output;
62 default:
63 return 0;
67 static uint64_t xive_tctx_accept(XiveTCTX *tctx, uint8_t ring)
69 uint8_t *regs = &tctx->regs[ring];
70 uint8_t nsr = regs[TM_NSR];
71 uint8_t mask = exception_mask(ring);
73 qemu_irq_lower(xive_tctx_output(tctx, ring));
75 if (regs[TM_NSR] & mask) {
76 uint8_t cppr = regs[TM_PIPR];
78 regs[TM_CPPR] = cppr;
80 /* Reset the pending buffer bit */
81 regs[TM_IPB] &= ~xive_priority_to_ipb(cppr);
82 regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
84 /* Drop Exception bit */
85 regs[TM_NSR] &= ~mask;
87 trace_xive_tctx_accept(tctx->cs->cpu_index, ring,
88 regs[TM_IPB], regs[TM_PIPR],
89 regs[TM_CPPR], regs[TM_NSR]);
92 return (nsr << 8) | regs[TM_CPPR];
95 static void xive_tctx_notify(XiveTCTX *tctx, uint8_t ring)
97 uint8_t *regs = &tctx->regs[ring];
99 if (regs[TM_PIPR] < regs[TM_CPPR]) {
100 switch (ring) {
101 case TM_QW1_OS:
102 regs[TM_NSR] |= TM_QW1_NSR_EO;
103 break;
104 case TM_QW3_HV_PHYS:
105 regs[TM_NSR] |= (TM_QW3_NSR_HE_PHYS << 6);
106 break;
107 default:
108 g_assert_not_reached();
110 trace_xive_tctx_notify(tctx->cs->cpu_index, ring,
111 regs[TM_IPB], regs[TM_PIPR],
112 regs[TM_CPPR], regs[TM_NSR]);
113 qemu_irq_raise(xive_tctx_output(tctx, ring));
117 static void xive_tctx_set_cppr(XiveTCTX *tctx, uint8_t ring, uint8_t cppr)
119 uint8_t *regs = &tctx->regs[ring];
121 trace_xive_tctx_set_cppr(tctx->cs->cpu_index, ring,
122 regs[TM_IPB], regs[TM_PIPR],
123 cppr, regs[TM_NSR]);
125 if (cppr > XIVE_PRIORITY_MAX) {
126 cppr = 0xff;
129 tctx->regs[ring + TM_CPPR] = cppr;
131 /* CPPR has changed, check if we need to raise a pending exception */
132 xive_tctx_notify(tctx, ring);
135 void xive_tctx_ipb_update(XiveTCTX *tctx, uint8_t ring, uint8_t ipb)
137 uint8_t *regs = &tctx->regs[ring];
139 regs[TM_IPB] |= ipb;
140 regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
141 xive_tctx_notify(tctx, ring);
145 * XIVE Thread Interrupt Management Area (TIMA)
148 static void xive_tm_set_hv_cppr(XivePresenter *xptr, XiveTCTX *tctx,
149 hwaddr offset, uint64_t value, unsigned size)
151 xive_tctx_set_cppr(tctx, TM_QW3_HV_PHYS, value & 0xff);
154 static uint64_t xive_tm_ack_hv_reg(XivePresenter *xptr, XiveTCTX *tctx,
155 hwaddr offset, unsigned size)
157 return xive_tctx_accept(tctx, TM_QW3_HV_PHYS);
160 static uint64_t xive_tm_pull_pool_ctx(XivePresenter *xptr, XiveTCTX *tctx,
161 hwaddr offset, unsigned size)
163 uint32_t qw2w2_prev = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
164 uint32_t qw2w2;
166 qw2w2 = xive_set_field32(TM_QW2W2_VP, qw2w2_prev, 0);
167 memcpy(&tctx->regs[TM_QW2_HV_POOL + TM_WORD2], &qw2w2, 4);
168 return qw2w2;
171 static void xive_tm_vt_push(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
172 uint64_t value, unsigned size)
174 tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] = value & 0xff;
177 static uint64_t xive_tm_vt_poll(XivePresenter *xptr, XiveTCTX *tctx,
178 hwaddr offset, unsigned size)
180 return tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] & 0xff;
184 * Define an access map for each page of the TIMA that we will use in
185 * the memory region ops to filter values when doing loads and stores
186 * of raw registers values
188 * Registers accessibility bits :
190 * 0x0 - no access
191 * 0x1 - write only
192 * 0x2 - read only
193 * 0x3 - read/write
196 static const uint8_t xive_tm_hw_view[] = {
197 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */
198 3, 3, 3, 3, 3, 3, 0, 2, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-1 OS */
199 0, 0, 3, 3, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-2 POOL */
200 3, 3, 3, 3, 0, 3, 0, 2, 3, 0, 0, 3, 3, 3, 3, 0, /* QW-3 PHYS */
203 static const uint8_t xive_tm_hv_view[] = {
204 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */
205 3, 3, 3, 3, 3, 3, 0, 2, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-1 OS */
206 0, 0, 3, 3, 0, 0, 0, 0, 0, 3, 3, 3, 0, 0, 0, 0, /* QW-2 POOL */
207 3, 3, 3, 3, 0, 3, 0, 2, 3, 0, 0, 3, 0, 0, 0, 0, /* QW-3 PHYS */
210 static const uint8_t xive_tm_os_view[] = {
211 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */
212 2, 3, 2, 2, 2, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-1 OS */
213 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-2 POOL */
214 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-3 PHYS */
217 static const uint8_t xive_tm_user_view[] = {
218 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-0 User */
219 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-1 OS */
220 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-2 POOL */
221 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-3 PHYS */
225 * Overall TIMA access map for the thread interrupt management context
226 * registers
228 static const uint8_t *xive_tm_views[] = {
229 [XIVE_TM_HW_PAGE] = xive_tm_hw_view,
230 [XIVE_TM_HV_PAGE] = xive_tm_hv_view,
231 [XIVE_TM_OS_PAGE] = xive_tm_os_view,
232 [XIVE_TM_USER_PAGE] = xive_tm_user_view,
236 * Computes a register access mask for a given offset in the TIMA
238 static uint64_t xive_tm_mask(hwaddr offset, unsigned size, bool write)
240 uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
241 uint8_t reg_offset = offset & 0x3F;
242 uint8_t reg_mask = write ? 0x1 : 0x2;
243 uint64_t mask = 0x0;
244 int i;
246 for (i = 0; i < size; i++) {
247 if (xive_tm_views[page_offset][reg_offset + i] & reg_mask) {
248 mask |= (uint64_t) 0xff << (8 * (size - i - 1));
252 return mask;
255 static void xive_tm_raw_write(XiveTCTX *tctx, hwaddr offset, uint64_t value,
256 unsigned size)
258 uint8_t ring_offset = offset & 0x30;
259 uint8_t reg_offset = offset & 0x3F;
260 uint64_t mask = xive_tm_mask(offset, size, true);
261 int i;
264 * Only 4 or 8 bytes stores are allowed and the User ring is
265 * excluded
267 if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
268 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA @%"
269 HWADDR_PRIx"\n", offset);
270 return;
274 * Use the register offset for the raw values and filter out
275 * reserved values
277 for (i = 0; i < size; i++) {
278 uint8_t byte_mask = (mask >> (8 * (size - i - 1)));
279 if (byte_mask) {
280 tctx->regs[reg_offset + i] = (value >> (8 * (size - i - 1))) &
281 byte_mask;
286 static uint64_t xive_tm_raw_read(XiveTCTX *tctx, hwaddr offset, unsigned size)
288 uint8_t ring_offset = offset & 0x30;
289 uint8_t reg_offset = offset & 0x3F;
290 uint64_t mask = xive_tm_mask(offset, size, false);
291 uint64_t ret;
292 int i;
295 * Only 4 or 8 bytes loads are allowed and the User ring is
296 * excluded
298 if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
299 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access at TIMA @%"
300 HWADDR_PRIx"\n", offset);
301 return -1;
304 /* Use the register offset for the raw values */
305 ret = 0;
306 for (i = 0; i < size; i++) {
307 ret |= (uint64_t) tctx->regs[reg_offset + i] << (8 * (size - i - 1));
310 /* filter out reserved values */
311 return ret & mask;
315 * The TM context is mapped twice within each page. Stores and loads
316 * to the first mapping below 2K write and read the specified values
317 * without modification. The second mapping above 2K performs specific
318 * state changes (side effects) in addition to setting/returning the
319 * interrupt management area context of the processor thread.
321 static uint64_t xive_tm_ack_os_reg(XivePresenter *xptr, XiveTCTX *tctx,
322 hwaddr offset, unsigned size)
324 return xive_tctx_accept(tctx, TM_QW1_OS);
327 static void xive_tm_set_os_cppr(XivePresenter *xptr, XiveTCTX *tctx,
328 hwaddr offset, uint64_t value, unsigned size)
330 xive_tctx_set_cppr(tctx, TM_QW1_OS, value & 0xff);
334 * Adjust the IPB to allow a CPU to process event queues of other
335 * priorities during one physical interrupt cycle.
337 static void xive_tm_set_os_pending(XivePresenter *xptr, XiveTCTX *tctx,
338 hwaddr offset, uint64_t value, unsigned size)
340 xive_tctx_ipb_update(tctx, TM_QW1_OS, xive_priority_to_ipb(value & 0xff));
343 static void xive_os_cam_decode(uint32_t cam, uint8_t *nvt_blk,
344 uint32_t *nvt_idx, bool *vo)
346 if (nvt_blk) {
347 *nvt_blk = xive_nvt_blk(cam);
349 if (nvt_idx) {
350 *nvt_idx = xive_nvt_idx(cam);
352 if (vo) {
353 *vo = !!(cam & TM_QW1W2_VO);
357 static uint32_t xive_tctx_get_os_cam(XiveTCTX *tctx, uint8_t *nvt_blk,
358 uint32_t *nvt_idx, bool *vo)
360 uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
361 uint32_t cam = be32_to_cpu(qw1w2);
363 xive_os_cam_decode(cam, nvt_blk, nvt_idx, vo);
364 return qw1w2;
367 static void xive_tctx_set_os_cam(XiveTCTX *tctx, uint32_t qw1w2)
369 memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &qw1w2, 4);
372 static uint64_t xive_tm_pull_os_ctx(XivePresenter *xptr, XiveTCTX *tctx,
373 hwaddr offset, unsigned size)
375 uint32_t qw1w2;
376 uint32_t qw1w2_new;
377 uint8_t nvt_blk;
378 uint32_t nvt_idx;
379 bool vo;
381 qw1w2 = xive_tctx_get_os_cam(tctx, &nvt_blk, &nvt_idx, &vo);
383 if (!vo) {
384 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: pulling invalid NVT %x/%x !?\n",
385 nvt_blk, nvt_idx);
388 /* Invalidate CAM line */
389 qw1w2_new = xive_set_field32(TM_QW1W2_VO, qw1w2, 0);
390 xive_tctx_set_os_cam(tctx, qw1w2_new);
391 return qw1w2;
394 static void xive_tctx_need_resend(XiveRouter *xrtr, XiveTCTX *tctx,
395 uint8_t nvt_blk, uint32_t nvt_idx)
397 XiveNVT nvt;
398 uint8_t ipb;
401 * Grab the associated NVT to pull the pending bits, and merge
402 * them with the IPB of the thread interrupt context registers
404 if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) {
405 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid NVT %x/%x\n",
406 nvt_blk, nvt_idx);
407 return;
410 ipb = xive_get_field32(NVT_W4_IPB, nvt.w4);
412 if (ipb) {
413 /* Reset the NVT value */
414 nvt.w4 = xive_set_field32(NVT_W4_IPB, nvt.w4, 0);
415 xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4);
417 /* Merge in current context */
418 xive_tctx_ipb_update(tctx, TM_QW1_OS, ipb);
423 * Updating the OS CAM line can trigger a resend of interrupt
425 static void xive_tm_push_os_ctx(XivePresenter *xptr, XiveTCTX *tctx,
426 hwaddr offset, uint64_t value, unsigned size)
428 uint32_t cam = value;
429 uint32_t qw1w2 = cpu_to_be32(cam);
430 uint8_t nvt_blk;
431 uint32_t nvt_idx;
432 bool vo;
434 xive_os_cam_decode(cam, &nvt_blk, &nvt_idx, &vo);
436 /* First update the registers */
437 xive_tctx_set_os_cam(tctx, qw1w2);
439 /* Check the interrupt pending bits */
440 if (vo) {
441 xive_tctx_need_resend(XIVE_ROUTER(xptr), tctx, nvt_blk, nvt_idx);
446 * Define a mapping of "special" operations depending on the TIMA page
447 * offset and the size of the operation.
449 typedef struct XiveTmOp {
450 uint8_t page_offset;
451 uint32_t op_offset;
452 unsigned size;
453 void (*write_handler)(XivePresenter *xptr, XiveTCTX *tctx,
454 hwaddr offset,
455 uint64_t value, unsigned size);
456 uint64_t (*read_handler)(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
457 unsigned size);
458 } XiveTmOp;
460 static const XiveTmOp xive_tm_operations[] = {
462 * MMIOs below 2K : raw values and special operations without side
463 * effects
465 { XIVE_TM_OS_PAGE, TM_QW1_OS + TM_CPPR, 1, xive_tm_set_os_cppr, NULL },
466 { XIVE_TM_HV_PAGE, TM_QW1_OS + TM_WORD2, 4, xive_tm_push_os_ctx, NULL },
467 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_CPPR, 1, xive_tm_set_hv_cppr, NULL },
468 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, xive_tm_vt_push, NULL },
469 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, NULL, xive_tm_vt_poll },
471 /* MMIOs above 2K : special operations with side effects */
472 { XIVE_TM_OS_PAGE, TM_SPC_ACK_OS_REG, 2, NULL, xive_tm_ack_os_reg },
473 { XIVE_TM_OS_PAGE, TM_SPC_SET_OS_PENDING, 1, xive_tm_set_os_pending, NULL },
474 { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX, 4, NULL, xive_tm_pull_os_ctx },
475 { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX, 8, NULL, xive_tm_pull_os_ctx },
476 { XIVE_TM_HV_PAGE, TM_SPC_ACK_HV_REG, 2, NULL, xive_tm_ack_hv_reg },
477 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 4, NULL, xive_tm_pull_pool_ctx },
478 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 8, NULL, xive_tm_pull_pool_ctx },
481 static const XiveTmOp *xive_tm_find_op(hwaddr offset, unsigned size, bool write)
483 uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
484 uint32_t op_offset = offset & 0xFFF;
485 int i;
487 for (i = 0; i < ARRAY_SIZE(xive_tm_operations); i++) {
488 const XiveTmOp *xto = &xive_tm_operations[i];
490 /* Accesses done from a more privileged TIMA page is allowed */
491 if (xto->page_offset >= page_offset &&
492 xto->op_offset == op_offset &&
493 xto->size == size &&
494 ((write && xto->write_handler) || (!write && xto->read_handler))) {
495 return xto;
498 return NULL;
502 * TIMA MMIO handlers
504 void xive_tctx_tm_write(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
505 uint64_t value, unsigned size)
507 const XiveTmOp *xto;
509 trace_xive_tctx_tm_write(offset, size, value);
512 * TODO: check V bit in Q[0-3]W2
516 * First, check for special operations in the 2K region
518 if (offset & 0x800) {
519 xto = xive_tm_find_op(offset, size, true);
520 if (!xto) {
521 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA "
522 "@%"HWADDR_PRIx"\n", offset);
523 } else {
524 xto->write_handler(xptr, tctx, offset, value, size);
526 return;
530 * Then, for special operations in the region below 2K.
532 xto = xive_tm_find_op(offset, size, true);
533 if (xto) {
534 xto->write_handler(xptr, tctx, offset, value, size);
535 return;
539 * Finish with raw access to the register values
541 xive_tm_raw_write(tctx, offset, value, size);
544 uint64_t xive_tctx_tm_read(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
545 unsigned size)
547 const XiveTmOp *xto;
548 uint64_t ret;
551 * TODO: check V bit in Q[0-3]W2
555 * First, check for special operations in the 2K region
557 if (offset & 0x800) {
558 xto = xive_tm_find_op(offset, size, false);
559 if (!xto) {
560 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access to TIMA"
561 "@%"HWADDR_PRIx"\n", offset);
562 return -1;
564 ret = xto->read_handler(xptr, tctx, offset, size);
565 goto out;
569 * Then, for special operations in the region below 2K.
571 xto = xive_tm_find_op(offset, size, false);
572 if (xto) {
573 ret = xto->read_handler(xptr, tctx, offset, size);
574 goto out;
578 * Finish with raw access to the register values
580 ret = xive_tm_raw_read(tctx, offset, size);
581 out:
582 trace_xive_tctx_tm_read(offset, size, ret);
583 return ret;
586 static char *xive_tctx_ring_print(uint8_t *ring)
588 uint32_t w2 = xive_tctx_word2(ring);
590 return g_strdup_printf("%02x %02x %02x %02x %02x "
591 "%02x %02x %02x %08x",
592 ring[TM_NSR], ring[TM_CPPR], ring[TM_IPB], ring[TM_LSMFB],
593 ring[TM_ACK_CNT], ring[TM_INC], ring[TM_AGE], ring[TM_PIPR],
594 be32_to_cpu(w2));
597 static const char * const xive_tctx_ring_names[] = {
598 "USER", "OS", "POOL", "PHYS",
602 * kvm_irqchip_in_kernel() will cause the compiler to turn this
603 * info a nop if CONFIG_KVM isn't defined.
605 #define xive_in_kernel(xptr) \
606 (kvm_irqchip_in_kernel() && \
607 ({ \
608 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr); \
609 xpc->in_kernel ? xpc->in_kernel(xptr) : false; \
612 void xive_tctx_pic_print_info(XiveTCTX *tctx, Monitor *mon)
614 int cpu_index;
615 int i;
617 /* Skip partially initialized vCPUs. This can happen on sPAPR when vCPUs
618 * are hot plugged or unplugged.
620 if (!tctx) {
621 return;
624 cpu_index = tctx->cs ? tctx->cs->cpu_index : -1;
626 if (xive_in_kernel(tctx->xptr)) {
627 Error *local_err = NULL;
629 kvmppc_xive_cpu_synchronize_state(tctx, &local_err);
630 if (local_err) {
631 error_report_err(local_err);
632 return;
636 monitor_printf(mon, "CPU[%04x]: QW NSR CPPR IPB LSMFB ACK# INC AGE PIPR"
637 " W2\n", cpu_index);
639 for (i = 0; i < XIVE_TM_RING_COUNT; i++) {
640 char *s = xive_tctx_ring_print(&tctx->regs[i * XIVE_TM_RING_SIZE]);
641 monitor_printf(mon, "CPU[%04x]: %4s %s\n", cpu_index,
642 xive_tctx_ring_names[i], s);
643 g_free(s);
647 void xive_tctx_reset(XiveTCTX *tctx)
649 memset(tctx->regs, 0, sizeof(tctx->regs));
651 /* Set some defaults */
652 tctx->regs[TM_QW1_OS + TM_LSMFB] = 0xFF;
653 tctx->regs[TM_QW1_OS + TM_ACK_CNT] = 0xFF;
654 tctx->regs[TM_QW1_OS + TM_AGE] = 0xFF;
657 * Initialize PIPR to 0xFF to avoid phantom interrupts when the
658 * CPPR is first set.
660 tctx->regs[TM_QW1_OS + TM_PIPR] =
661 ipb_to_pipr(tctx->regs[TM_QW1_OS + TM_IPB]);
662 tctx->regs[TM_QW3_HV_PHYS + TM_PIPR] =
663 ipb_to_pipr(tctx->regs[TM_QW3_HV_PHYS + TM_IPB]);
666 static void xive_tctx_realize(DeviceState *dev, Error **errp)
668 XiveTCTX *tctx = XIVE_TCTX(dev);
669 PowerPCCPU *cpu;
670 CPUPPCState *env;
672 assert(tctx->cs);
673 assert(tctx->xptr);
675 cpu = POWERPC_CPU(tctx->cs);
676 env = &cpu->env;
677 switch (PPC_INPUT(env)) {
678 case PPC_FLAGS_INPUT_POWER9:
679 tctx->hv_output = env->irq_inputs[POWER9_INPUT_HINT];
680 tctx->os_output = env->irq_inputs[POWER9_INPUT_INT];
681 break;
683 default:
684 error_setg(errp, "XIVE interrupt controller does not support "
685 "this CPU bus model");
686 return;
689 /* Connect the presenter to the VCPU (required for CPU hotplug) */
690 if (xive_in_kernel(tctx->xptr)) {
691 if (kvmppc_xive_cpu_connect(tctx, errp) < 0) {
692 return;
697 static int vmstate_xive_tctx_pre_save(void *opaque)
699 XiveTCTX *tctx = XIVE_TCTX(opaque);
700 Error *local_err = NULL;
701 int ret;
703 if (xive_in_kernel(tctx->xptr)) {
704 ret = kvmppc_xive_cpu_get_state(tctx, &local_err);
705 if (ret < 0) {
706 error_report_err(local_err);
707 return ret;
711 return 0;
714 static int vmstate_xive_tctx_post_load(void *opaque, int version_id)
716 XiveTCTX *tctx = XIVE_TCTX(opaque);
717 Error *local_err = NULL;
718 int ret;
720 if (xive_in_kernel(tctx->xptr)) {
722 * Required for hotplugged CPU, for which the state comes
723 * after all states of the machine.
725 ret = kvmppc_xive_cpu_set_state(tctx, &local_err);
726 if (ret < 0) {
727 error_report_err(local_err);
728 return ret;
732 return 0;
735 static const VMStateDescription vmstate_xive_tctx = {
736 .name = TYPE_XIVE_TCTX,
737 .version_id = 1,
738 .minimum_version_id = 1,
739 .pre_save = vmstate_xive_tctx_pre_save,
740 .post_load = vmstate_xive_tctx_post_load,
741 .fields = (VMStateField[]) {
742 VMSTATE_BUFFER(regs, XiveTCTX),
743 VMSTATE_END_OF_LIST()
747 static Property xive_tctx_properties[] = {
748 DEFINE_PROP_LINK("cpu", XiveTCTX, cs, TYPE_CPU, CPUState *),
749 DEFINE_PROP_LINK("presenter", XiveTCTX, xptr, TYPE_XIVE_PRESENTER,
750 XivePresenter *),
751 DEFINE_PROP_END_OF_LIST(),
754 static void xive_tctx_class_init(ObjectClass *klass, void *data)
756 DeviceClass *dc = DEVICE_CLASS(klass);
758 dc->desc = "XIVE Interrupt Thread Context";
759 dc->realize = xive_tctx_realize;
760 dc->vmsd = &vmstate_xive_tctx;
761 device_class_set_props(dc, xive_tctx_properties);
763 * Reason: part of XIVE interrupt controller, needs to be wired up
764 * by xive_tctx_create().
766 dc->user_creatable = false;
769 static const TypeInfo xive_tctx_info = {
770 .name = TYPE_XIVE_TCTX,
771 .parent = TYPE_DEVICE,
772 .instance_size = sizeof(XiveTCTX),
773 .class_init = xive_tctx_class_init,
776 Object *xive_tctx_create(Object *cpu, XivePresenter *xptr, Error **errp)
778 Object *obj;
780 obj = object_new(TYPE_XIVE_TCTX);
781 object_property_add_child(cpu, TYPE_XIVE_TCTX, obj);
782 object_unref(obj);
783 object_property_set_link(obj, "cpu", cpu, &error_abort);
784 object_property_set_link(obj, "presenter", OBJECT(xptr), &error_abort);
785 if (!qdev_realize(DEVICE(obj), NULL, errp)) {
786 object_unparent(obj);
787 return NULL;
789 return obj;
792 void xive_tctx_destroy(XiveTCTX *tctx)
794 Object *obj = OBJECT(tctx);
796 object_unparent(obj);
800 * XIVE ESB helpers
803 uint8_t xive_esb_set(uint8_t *pq, uint8_t value)
805 uint8_t old_pq = *pq & 0x3;
807 *pq &= ~0x3;
808 *pq |= value & 0x3;
810 return old_pq;
813 bool xive_esb_trigger(uint8_t *pq)
815 uint8_t old_pq = *pq & 0x3;
817 switch (old_pq) {
818 case XIVE_ESB_RESET:
819 xive_esb_set(pq, XIVE_ESB_PENDING);
820 return true;
821 case XIVE_ESB_PENDING:
822 case XIVE_ESB_QUEUED:
823 xive_esb_set(pq, XIVE_ESB_QUEUED);
824 return false;
825 case XIVE_ESB_OFF:
826 xive_esb_set(pq, XIVE_ESB_OFF);
827 return false;
828 default:
829 g_assert_not_reached();
833 bool xive_esb_eoi(uint8_t *pq)
835 uint8_t old_pq = *pq & 0x3;
837 switch (old_pq) {
838 case XIVE_ESB_RESET:
839 case XIVE_ESB_PENDING:
840 xive_esb_set(pq, XIVE_ESB_RESET);
841 return false;
842 case XIVE_ESB_QUEUED:
843 xive_esb_set(pq, XIVE_ESB_PENDING);
844 return true;
845 case XIVE_ESB_OFF:
846 xive_esb_set(pq, XIVE_ESB_OFF);
847 return false;
848 default:
849 g_assert_not_reached();
854 * XIVE Interrupt Source (or IVSE)
857 uint8_t xive_source_esb_get(XiveSource *xsrc, uint32_t srcno)
859 assert(srcno < xsrc->nr_irqs);
861 return xsrc->status[srcno] & 0x3;
864 uint8_t xive_source_esb_set(XiveSource *xsrc, uint32_t srcno, uint8_t pq)
866 assert(srcno < xsrc->nr_irqs);
868 return xive_esb_set(&xsrc->status[srcno], pq);
872 * Returns whether the event notification should be forwarded.
874 static bool xive_source_lsi_trigger(XiveSource *xsrc, uint32_t srcno)
876 uint8_t old_pq = xive_source_esb_get(xsrc, srcno);
878 xive_source_set_asserted(xsrc, srcno, true);
880 switch (old_pq) {
881 case XIVE_ESB_RESET:
882 xive_source_esb_set(xsrc, srcno, XIVE_ESB_PENDING);
883 return true;
884 default:
885 return false;
890 * Sources can be configured with PQ offloading in which case the check
891 * on the PQ state bits of MSIs is disabled
893 static bool xive_source_esb_disabled(XiveSource *xsrc, uint32_t srcno)
895 return (xsrc->esb_flags & XIVE_SRC_PQ_DISABLE) &&
896 !xive_source_irq_is_lsi(xsrc, srcno);
900 * Returns whether the event notification should be forwarded.
902 static bool xive_source_esb_trigger(XiveSource *xsrc, uint32_t srcno)
904 bool ret;
906 assert(srcno < xsrc->nr_irqs);
908 if (xive_source_esb_disabled(xsrc, srcno)) {
909 return true;
912 ret = xive_esb_trigger(&xsrc->status[srcno]);
914 if (xive_source_irq_is_lsi(xsrc, srcno) &&
915 xive_source_esb_get(xsrc, srcno) == XIVE_ESB_QUEUED) {
916 qemu_log_mask(LOG_GUEST_ERROR,
917 "XIVE: queued an event on LSI IRQ %d\n", srcno);
920 return ret;
924 * Returns whether the event notification should be forwarded.
926 static bool xive_source_esb_eoi(XiveSource *xsrc, uint32_t srcno)
928 bool ret;
930 assert(srcno < xsrc->nr_irqs);
932 if (xive_source_esb_disabled(xsrc, srcno)) {
933 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid EOI for IRQ %d\n", srcno);
934 return false;
937 ret = xive_esb_eoi(&xsrc->status[srcno]);
940 * LSI sources do not set the Q bit but they can still be
941 * asserted, in which case we should forward a new event
942 * notification
944 if (xive_source_irq_is_lsi(xsrc, srcno) &&
945 xive_source_is_asserted(xsrc, srcno)) {
946 ret = xive_source_lsi_trigger(xsrc, srcno);
949 return ret;
953 * Forward the source event notification to the Router
955 static void xive_source_notify(XiveSource *xsrc, int srcno)
957 XiveNotifierClass *xnc = XIVE_NOTIFIER_GET_CLASS(xsrc->xive);
958 bool pq_checked = !xive_source_esb_disabled(xsrc, srcno);
960 if (xnc->notify) {
961 xnc->notify(xsrc->xive, srcno, pq_checked);
966 * In a two pages ESB MMIO setting, even page is the trigger page, odd
967 * page is for management
969 static inline bool addr_is_even(hwaddr addr, uint32_t shift)
971 return !((addr >> shift) & 1);
974 static inline bool xive_source_is_trigger_page(XiveSource *xsrc, hwaddr addr)
976 return xive_source_esb_has_2page(xsrc) &&
977 addr_is_even(addr, xsrc->esb_shift - 1);
981 * ESB MMIO loads
982 * Trigger page Management/EOI page
984 * ESB MMIO setting 2 pages 1 or 2 pages
986 * 0x000 .. 0x3FF -1 EOI and return 0|1
987 * 0x400 .. 0x7FF -1 EOI and return 0|1
988 * 0x800 .. 0xBFF -1 return PQ
989 * 0xC00 .. 0xCFF -1 return PQ and atomically PQ=00
990 * 0xD00 .. 0xDFF -1 return PQ and atomically PQ=01
991 * 0xE00 .. 0xDFF -1 return PQ and atomically PQ=10
992 * 0xF00 .. 0xDFF -1 return PQ and atomically PQ=11
994 static uint64_t xive_source_esb_read(void *opaque, hwaddr addr, unsigned size)
996 XiveSource *xsrc = XIVE_SOURCE(opaque);
997 uint32_t offset = addr & 0xFFF;
998 uint32_t srcno = addr >> xsrc->esb_shift;
999 uint64_t ret = -1;
1001 /* In a two pages ESB MMIO setting, trigger page should not be read */
1002 if (xive_source_is_trigger_page(xsrc, addr)) {
1003 qemu_log_mask(LOG_GUEST_ERROR,
1004 "XIVE: invalid load on IRQ %d trigger page at "
1005 "0x%"HWADDR_PRIx"\n", srcno, addr);
1006 return -1;
1009 switch (offset) {
1010 case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
1011 ret = xive_source_esb_eoi(xsrc, srcno);
1013 /* Forward the source event notification for routing */
1014 if (ret) {
1015 xive_source_notify(xsrc, srcno);
1017 break;
1019 case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
1020 ret = xive_source_esb_get(xsrc, srcno);
1021 break;
1023 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
1024 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
1025 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
1026 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
1027 ret = xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
1028 break;
1029 default:
1030 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB load addr %x\n",
1031 offset);
1034 trace_xive_source_esb_read(addr, srcno, ret);
1036 return ret;
1040 * ESB MMIO stores
1041 * Trigger page Management/EOI page
1043 * ESB MMIO setting 2 pages 1 or 2 pages
1045 * 0x000 .. 0x3FF Trigger Trigger
1046 * 0x400 .. 0x7FF Trigger EOI
1047 * 0x800 .. 0xBFF Trigger undefined
1048 * 0xC00 .. 0xCFF Trigger PQ=00
1049 * 0xD00 .. 0xDFF Trigger PQ=01
1050 * 0xE00 .. 0xDFF Trigger PQ=10
1051 * 0xF00 .. 0xDFF Trigger PQ=11
1053 static void xive_source_esb_write(void *opaque, hwaddr addr,
1054 uint64_t value, unsigned size)
1056 XiveSource *xsrc = XIVE_SOURCE(opaque);
1057 uint32_t offset = addr & 0xFFF;
1058 uint32_t srcno = addr >> xsrc->esb_shift;
1059 bool notify = false;
1061 trace_xive_source_esb_write(addr, srcno, value);
1063 /* In a two pages ESB MMIO setting, trigger page only triggers */
1064 if (xive_source_is_trigger_page(xsrc, addr)) {
1065 notify = xive_source_esb_trigger(xsrc, srcno);
1066 goto out;
1069 switch (offset) {
1070 case 0 ... 0x3FF:
1071 notify = xive_source_esb_trigger(xsrc, srcno);
1072 break;
1074 case XIVE_ESB_STORE_EOI ... XIVE_ESB_STORE_EOI + 0x3FF:
1075 if (!(xsrc->esb_flags & XIVE_SRC_STORE_EOI)) {
1076 qemu_log_mask(LOG_GUEST_ERROR,
1077 "XIVE: invalid Store EOI for IRQ %d\n", srcno);
1078 return;
1081 notify = xive_source_esb_eoi(xsrc, srcno);
1082 break;
1085 * This is an internal offset used to inject triggers when the PQ
1086 * state bits are not controlled locally. Such as for LSIs when
1087 * under ABT mode.
1089 case XIVE_ESB_INJECT ... XIVE_ESB_INJECT + 0x3FF:
1090 notify = true;
1091 break;
1093 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
1094 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
1095 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
1096 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
1097 xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
1098 break;
1100 default:
1101 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr %x\n",
1102 offset);
1103 return;
1106 out:
1107 /* Forward the source event notification for routing */
1108 if (notify) {
1109 xive_source_notify(xsrc, srcno);
1113 static const MemoryRegionOps xive_source_esb_ops = {
1114 .read = xive_source_esb_read,
1115 .write = xive_source_esb_write,
1116 .endianness = DEVICE_BIG_ENDIAN,
1117 .valid = {
1118 .min_access_size = 8,
1119 .max_access_size = 8,
1121 .impl = {
1122 .min_access_size = 8,
1123 .max_access_size = 8,
1127 void xive_source_set_irq(void *opaque, int srcno, int val)
1129 XiveSource *xsrc = XIVE_SOURCE(opaque);
1130 bool notify = false;
1132 if (xive_source_irq_is_lsi(xsrc, srcno)) {
1133 if (val) {
1134 notify = xive_source_lsi_trigger(xsrc, srcno);
1135 } else {
1136 xive_source_set_asserted(xsrc, srcno, false);
1138 } else {
1139 if (val) {
1140 notify = xive_source_esb_trigger(xsrc, srcno);
1144 /* Forward the source event notification for routing */
1145 if (notify) {
1146 xive_source_notify(xsrc, srcno);
1150 void xive_source_pic_print_info(XiveSource *xsrc, uint32_t offset, Monitor *mon)
1152 int i;
1154 for (i = 0; i < xsrc->nr_irqs; i++) {
1155 uint8_t pq = xive_source_esb_get(xsrc, i);
1157 if (pq == XIVE_ESB_OFF) {
1158 continue;
1161 monitor_printf(mon, " %08x %s %c%c%c\n", i + offset,
1162 xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
1163 pq & XIVE_ESB_VAL_P ? 'P' : '-',
1164 pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1165 xive_source_is_asserted(xsrc, i) ? 'A' : ' ');
1169 static void xive_source_reset(void *dev)
1171 XiveSource *xsrc = XIVE_SOURCE(dev);
1173 /* Do not clear the LSI bitmap */
1175 /* PQs are initialized to 0b01 (Q=1) which corresponds to "ints off" */
1176 memset(xsrc->status, XIVE_ESB_OFF, xsrc->nr_irqs);
1179 static void xive_source_realize(DeviceState *dev, Error **errp)
1181 XiveSource *xsrc = XIVE_SOURCE(dev);
1182 size_t esb_len = xive_source_esb_len(xsrc);
1184 assert(xsrc->xive);
1186 if (!xsrc->nr_irqs) {
1187 error_setg(errp, "Number of interrupt needs to be greater than 0");
1188 return;
1191 if (xsrc->esb_shift != XIVE_ESB_4K &&
1192 xsrc->esb_shift != XIVE_ESB_4K_2PAGE &&
1193 xsrc->esb_shift != XIVE_ESB_64K &&
1194 xsrc->esb_shift != XIVE_ESB_64K_2PAGE) {
1195 error_setg(errp, "Invalid ESB shift setting");
1196 return;
1199 xsrc->status = g_malloc0(xsrc->nr_irqs);
1200 xsrc->lsi_map = bitmap_new(xsrc->nr_irqs);
1202 memory_region_init(&xsrc->esb_mmio, OBJECT(xsrc), "xive.esb", esb_len);
1203 memory_region_init_io(&xsrc->esb_mmio_emulated, OBJECT(xsrc),
1204 &xive_source_esb_ops, xsrc, "xive.esb-emulated",
1205 esb_len);
1206 memory_region_add_subregion(&xsrc->esb_mmio, 0, &xsrc->esb_mmio_emulated);
1208 qemu_register_reset(xive_source_reset, dev);
1211 static const VMStateDescription vmstate_xive_source = {
1212 .name = TYPE_XIVE_SOURCE,
1213 .version_id = 1,
1214 .minimum_version_id = 1,
1215 .fields = (VMStateField[]) {
1216 VMSTATE_UINT32_EQUAL(nr_irqs, XiveSource, NULL),
1217 VMSTATE_VBUFFER_UINT32(status, XiveSource, 1, NULL, nr_irqs),
1218 VMSTATE_END_OF_LIST()
1223 * The default XIVE interrupt source setting for the ESB MMIOs is two
1224 * 64k pages without Store EOI, to be in sync with KVM.
1226 static Property xive_source_properties[] = {
1227 DEFINE_PROP_UINT64("flags", XiveSource, esb_flags, 0),
1228 DEFINE_PROP_UINT32("nr-irqs", XiveSource, nr_irqs, 0),
1229 DEFINE_PROP_UINT32("shift", XiveSource, esb_shift, XIVE_ESB_64K_2PAGE),
1230 DEFINE_PROP_LINK("xive", XiveSource, xive, TYPE_XIVE_NOTIFIER,
1231 XiveNotifier *),
1232 DEFINE_PROP_END_OF_LIST(),
1235 static void xive_source_class_init(ObjectClass *klass, void *data)
1237 DeviceClass *dc = DEVICE_CLASS(klass);
1239 dc->desc = "XIVE Interrupt Source";
1240 device_class_set_props(dc, xive_source_properties);
1241 dc->realize = xive_source_realize;
1242 dc->vmsd = &vmstate_xive_source;
1244 * Reason: part of XIVE interrupt controller, needs to be wired up,
1245 * e.g. by spapr_xive_instance_init().
1247 dc->user_creatable = false;
1250 static const TypeInfo xive_source_info = {
1251 .name = TYPE_XIVE_SOURCE,
1252 .parent = TYPE_DEVICE,
1253 .instance_size = sizeof(XiveSource),
1254 .class_init = xive_source_class_init,
1258 * XiveEND helpers
1261 void xive_end_queue_pic_print_info(XiveEND *end, uint32_t width, Monitor *mon)
1263 uint64_t qaddr_base = xive_end_qaddr(end);
1264 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1265 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1266 uint32_t qentries = 1 << (qsize + 10);
1267 int i;
1270 * print out the [ (qindex - (width - 1)) .. (qindex + 1)] window
1272 monitor_printf(mon, " [ ");
1273 qindex = (qindex - (width - 1)) & (qentries - 1);
1274 for (i = 0; i < width; i++) {
1275 uint64_t qaddr = qaddr_base + (qindex << 2);
1276 uint32_t qdata = -1;
1278 if (dma_memory_read(&address_space_memory, qaddr,
1279 &qdata, sizeof(qdata), MEMTXATTRS_UNSPECIFIED)) {
1280 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to read EQ @0x%"
1281 HWADDR_PRIx "\n", qaddr);
1282 return;
1284 monitor_printf(mon, "%s%08x ", i == width - 1 ? "^" : "",
1285 be32_to_cpu(qdata));
1286 qindex = (qindex + 1) & (qentries - 1);
1288 monitor_printf(mon, "]");
1291 void xive_end_pic_print_info(XiveEND *end, uint32_t end_idx, Monitor *mon)
1293 uint64_t qaddr_base = xive_end_qaddr(end);
1294 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1295 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1296 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1297 uint32_t qentries = 1 << (qsize + 10);
1299 uint32_t nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6);
1300 uint32_t nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6);
1301 uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
1302 uint8_t pq;
1304 if (!xive_end_is_valid(end)) {
1305 return;
1308 pq = xive_get_field32(END_W1_ESn, end->w1);
1310 monitor_printf(mon, " %08x %c%c %c%c%c%c%c%c%c%c prio:%d nvt:%02x/%04x",
1311 end_idx,
1312 pq & XIVE_ESB_VAL_P ? 'P' : '-',
1313 pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1314 xive_end_is_valid(end) ? 'v' : '-',
1315 xive_end_is_enqueue(end) ? 'q' : '-',
1316 xive_end_is_notify(end) ? 'n' : '-',
1317 xive_end_is_backlog(end) ? 'b' : '-',
1318 xive_end_is_escalate(end) ? 'e' : '-',
1319 xive_end_is_uncond_escalation(end) ? 'u' : '-',
1320 xive_end_is_silent_escalation(end) ? 's' : '-',
1321 xive_end_is_firmware(end) ? 'f' : '-',
1322 priority, nvt_blk, nvt_idx);
1324 if (qaddr_base) {
1325 monitor_printf(mon, " eq:@%08"PRIx64"% 6d/%5d ^%d",
1326 qaddr_base, qindex, qentries, qgen);
1327 xive_end_queue_pic_print_info(end, 6, mon);
1329 monitor_printf(mon, "\n");
1332 static void xive_end_enqueue(XiveEND *end, uint32_t data)
1334 uint64_t qaddr_base = xive_end_qaddr(end);
1335 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1336 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1337 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1339 uint64_t qaddr = qaddr_base + (qindex << 2);
1340 uint32_t qdata = cpu_to_be32((qgen << 31) | (data & 0x7fffffff));
1341 uint32_t qentries = 1 << (qsize + 10);
1343 if (dma_memory_write(&address_space_memory, qaddr,
1344 &qdata, sizeof(qdata), MEMTXATTRS_UNSPECIFIED)) {
1345 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to write END data @0x%"
1346 HWADDR_PRIx "\n", qaddr);
1347 return;
1350 qindex = (qindex + 1) & (qentries - 1);
1351 if (qindex == 0) {
1352 qgen ^= 1;
1353 end->w1 = xive_set_field32(END_W1_GENERATION, end->w1, qgen);
1355 end->w1 = xive_set_field32(END_W1_PAGE_OFF, end->w1, qindex);
1358 void xive_end_eas_pic_print_info(XiveEND *end, uint32_t end_idx,
1359 Monitor *mon)
1361 XiveEAS *eas = (XiveEAS *) &end->w4;
1362 uint8_t pq;
1364 if (!xive_end_is_escalate(end)) {
1365 return;
1368 pq = xive_get_field32(END_W1_ESe, end->w1);
1370 monitor_printf(mon, " %08x %c%c %c%c end:%02x/%04x data:%08x\n",
1371 end_idx,
1372 pq & XIVE_ESB_VAL_P ? 'P' : '-',
1373 pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1374 xive_eas_is_valid(eas) ? 'V' : ' ',
1375 xive_eas_is_masked(eas) ? 'M' : ' ',
1376 (uint8_t) xive_get_field64(EAS_END_BLOCK, eas->w),
1377 (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
1378 (uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
1382 * XIVE Router (aka. Virtualization Controller or IVRE)
1385 int xive_router_get_eas(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx,
1386 XiveEAS *eas)
1388 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1390 return xrc->get_eas(xrtr, eas_blk, eas_idx, eas);
1393 static
1394 int xive_router_get_pq(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx,
1395 uint8_t *pq)
1397 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1399 return xrc->get_pq(xrtr, eas_blk, eas_idx, pq);
1402 static
1403 int xive_router_set_pq(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx,
1404 uint8_t *pq)
1406 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1408 return xrc->set_pq(xrtr, eas_blk, eas_idx, pq);
1411 int xive_router_get_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1412 XiveEND *end)
1414 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1416 return xrc->get_end(xrtr, end_blk, end_idx, end);
1419 int xive_router_write_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1420 XiveEND *end, uint8_t word_number)
1422 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1424 return xrc->write_end(xrtr, end_blk, end_idx, end, word_number);
1427 int xive_router_get_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1428 XiveNVT *nvt)
1430 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1432 return xrc->get_nvt(xrtr, nvt_blk, nvt_idx, nvt);
1435 int xive_router_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1436 XiveNVT *nvt, uint8_t word_number)
1438 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1440 return xrc->write_nvt(xrtr, nvt_blk, nvt_idx, nvt, word_number);
1443 static int xive_router_get_block_id(XiveRouter *xrtr)
1445 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1447 return xrc->get_block_id(xrtr);
1450 static void xive_router_realize(DeviceState *dev, Error **errp)
1452 XiveRouter *xrtr = XIVE_ROUTER(dev);
1454 assert(xrtr->xfb);
1458 * Encode the HW CAM line in the block group mode format :
1460 * chip << 19 | 0000000 0 0001 thread (7Bit)
1462 static uint32_t xive_tctx_hw_cam_line(XivePresenter *xptr, XiveTCTX *tctx)
1464 CPUPPCState *env = &POWERPC_CPU(tctx->cs)->env;
1465 uint32_t pir = env->spr_cb[SPR_PIR].default_value;
1466 uint8_t blk = xive_router_get_block_id(XIVE_ROUTER(xptr));
1468 return xive_nvt_cam_line(blk, 1 << 7 | (pir & 0x7f));
1472 * The thread context register words are in big-endian format.
1474 int xive_presenter_tctx_match(XivePresenter *xptr, XiveTCTX *tctx,
1475 uint8_t format,
1476 uint8_t nvt_blk, uint32_t nvt_idx,
1477 bool cam_ignore, uint32_t logic_serv)
1479 uint32_t cam = xive_nvt_cam_line(nvt_blk, nvt_idx);
1480 uint32_t qw3w2 = xive_tctx_word2(&tctx->regs[TM_QW3_HV_PHYS]);
1481 uint32_t qw2w2 = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
1482 uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
1483 uint32_t qw0w2 = xive_tctx_word2(&tctx->regs[TM_QW0_USER]);
1486 * TODO (PowerNV): ignore mode. The low order bits of the NVT
1487 * identifier are ignored in the "CAM" match.
1490 if (format == 0) {
1491 if (cam_ignore == true) {
1493 * F=0 & i=1: Logical server notification (bits ignored at
1494 * the end of the NVT identifier)
1496 qemu_log_mask(LOG_UNIMP, "XIVE: no support for LS NVT %x/%x\n",
1497 nvt_blk, nvt_idx);
1498 return -1;
1501 /* F=0 & i=0: Specific NVT notification */
1503 /* PHYS ring */
1504 if ((be32_to_cpu(qw3w2) & TM_QW3W2_VT) &&
1505 cam == xive_tctx_hw_cam_line(xptr, tctx)) {
1506 return TM_QW3_HV_PHYS;
1509 /* HV POOL ring */
1510 if ((be32_to_cpu(qw2w2) & TM_QW2W2_VP) &&
1511 cam == xive_get_field32(TM_QW2W2_POOL_CAM, qw2w2)) {
1512 return TM_QW2_HV_POOL;
1515 /* OS ring */
1516 if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1517 cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) {
1518 return TM_QW1_OS;
1520 } else {
1521 /* F=1 : User level Event-Based Branch (EBB) notification */
1523 /* USER ring */
1524 if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1525 (cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) &&
1526 (be32_to_cpu(qw0w2) & TM_QW0W2_VU) &&
1527 (logic_serv == xive_get_field32(TM_QW0W2_LOGIC_SERV, qw0w2))) {
1528 return TM_QW0_USER;
1531 return -1;
1535 * This is our simple Xive Presenter Engine model. It is merged in the
1536 * Router as it does not require an extra object.
1538 * It receives notification requests sent by the IVRE to find one
1539 * matching NVT (or more) dispatched on the processor threads. In case
1540 * of a single NVT notification, the process is abreviated and the
1541 * thread is signaled if a match is found. In case of a logical server
1542 * notification (bits ignored at the end of the NVT identifier), the
1543 * IVPE and IVRE select a winning thread using different filters. This
1544 * involves 2 or 3 exchanges on the PowerBus that the model does not
1545 * support.
1547 * The parameters represent what is sent on the PowerBus
1549 bool xive_presenter_notify(XiveFabric *xfb, uint8_t format,
1550 uint8_t nvt_blk, uint32_t nvt_idx,
1551 bool cam_ignore, uint8_t priority,
1552 uint32_t logic_serv)
1554 XiveFabricClass *xfc = XIVE_FABRIC_GET_CLASS(xfb);
1555 XiveTCTXMatch match = { .tctx = NULL, .ring = 0 };
1556 int count;
1559 * Ask the machine to scan the interrupt controllers for a match
1561 count = xfc->match_nvt(xfb, format, nvt_blk, nvt_idx, cam_ignore,
1562 priority, logic_serv, &match);
1563 if (count < 0) {
1564 return false;
1567 /* handle CPU exception delivery */
1568 if (count) {
1569 trace_xive_presenter_notify(nvt_blk, nvt_idx, match.ring);
1570 xive_tctx_ipb_update(match.tctx, match.ring,
1571 xive_priority_to_ipb(priority));
1574 return !!count;
1578 * Notification using the END ESe/ESn bit (Event State Buffer for
1579 * escalation and notification). Provide further coalescing in the
1580 * Router.
1582 static bool xive_router_end_es_notify(XiveRouter *xrtr, uint8_t end_blk,
1583 uint32_t end_idx, XiveEND *end,
1584 uint32_t end_esmask)
1586 uint8_t pq = xive_get_field32(end_esmask, end->w1);
1587 bool notify = xive_esb_trigger(&pq);
1589 if (pq != xive_get_field32(end_esmask, end->w1)) {
1590 end->w1 = xive_set_field32(end_esmask, end->w1, pq);
1591 xive_router_write_end(xrtr, end_blk, end_idx, end, 1);
1594 /* ESe/n[Q]=1 : end of notification */
1595 return notify;
1599 * An END trigger can come from an event trigger (IPI or HW) or from
1600 * another chip. We don't model the PowerBus but the END trigger
1601 * message has the same parameters than in the function below.
1603 static void xive_router_end_notify(XiveRouter *xrtr, uint8_t end_blk,
1604 uint32_t end_idx, uint32_t end_data)
1606 XiveEND end;
1607 uint8_t priority;
1608 uint8_t format;
1609 uint8_t nvt_blk;
1610 uint32_t nvt_idx;
1611 XiveNVT nvt;
1612 bool found;
1614 /* END cache lookup */
1615 if (xive_router_get_end(xrtr, end_blk, end_idx, &end)) {
1616 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1617 end_idx);
1618 return;
1621 if (!xive_end_is_valid(&end)) {
1622 trace_xive_router_end_notify(end_blk, end_idx, end_data);
1623 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1624 end_blk, end_idx);
1625 return;
1628 if (xive_end_is_enqueue(&end)) {
1629 xive_end_enqueue(&end, end_data);
1630 /* Enqueuing event data modifies the EQ toggle and index */
1631 xive_router_write_end(xrtr, end_blk, end_idx, &end, 1);
1635 * When the END is silent, we skip the notification part.
1637 if (xive_end_is_silent_escalation(&end)) {
1638 goto do_escalation;
1642 * The W7 format depends on the F bit in W6. It defines the type
1643 * of the notification :
1645 * F=0 : single or multiple NVT notification
1646 * F=1 : User level Event-Based Branch (EBB) notification, no
1647 * priority
1649 format = xive_get_field32(END_W6_FORMAT_BIT, end.w6);
1650 priority = xive_get_field32(END_W7_F0_PRIORITY, end.w7);
1652 /* The END is masked */
1653 if (format == 0 && priority == 0xff) {
1654 return;
1658 * Check the END ESn (Event State Buffer for notification) for
1659 * even further coalescing in the Router
1661 if (!xive_end_is_notify(&end)) {
1662 /* ESn[Q]=1 : end of notification */
1663 if (!xive_router_end_es_notify(xrtr, end_blk, end_idx,
1664 &end, END_W1_ESn)) {
1665 return;
1670 * Follows IVPE notification
1672 nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end.w6);
1673 nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end.w6);
1675 /* NVT cache lookup */
1676 if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) {
1677 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: no NVT %x/%x\n",
1678 nvt_blk, nvt_idx);
1679 return;
1682 if (!xive_nvt_is_valid(&nvt)) {
1683 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is invalid\n",
1684 nvt_blk, nvt_idx);
1685 return;
1688 found = xive_presenter_notify(xrtr->xfb, format, nvt_blk, nvt_idx,
1689 xive_get_field32(END_W7_F0_IGNORE, end.w7),
1690 priority,
1691 xive_get_field32(END_W7_F1_LOG_SERVER_ID, end.w7));
1693 /* TODO: Auto EOI. */
1695 if (found) {
1696 return;
1700 * If no matching NVT is dispatched on a HW thread :
1701 * - specific VP: update the NVT structure if backlog is activated
1702 * - logical server : forward request to IVPE (not supported)
1704 if (xive_end_is_backlog(&end)) {
1705 uint8_t ipb;
1707 if (format == 1) {
1708 qemu_log_mask(LOG_GUEST_ERROR,
1709 "XIVE: END %x/%x invalid config: F1 & backlog\n",
1710 end_blk, end_idx);
1711 return;
1714 * Record the IPB in the associated NVT structure for later
1715 * use. The presenter will resend the interrupt when the vCPU
1716 * is dispatched again on a HW thread.
1718 ipb = xive_get_field32(NVT_W4_IPB, nvt.w4) |
1719 xive_priority_to_ipb(priority);
1720 nvt.w4 = xive_set_field32(NVT_W4_IPB, nvt.w4, ipb);
1721 xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4);
1724 * On HW, follows a "Broadcast Backlog" to IVPEs
1728 do_escalation:
1730 * If activated, escalate notification using the ESe PQ bits and
1731 * the EAS in w4-5
1733 if (!xive_end_is_escalate(&end)) {
1734 return;
1738 * Check the END ESe (Event State Buffer for escalation) for even
1739 * further coalescing in the Router
1741 if (!xive_end_is_uncond_escalation(&end)) {
1742 /* ESe[Q]=1 : end of notification */
1743 if (!xive_router_end_es_notify(xrtr, end_blk, end_idx,
1744 &end, END_W1_ESe)) {
1745 return;
1749 trace_xive_router_end_escalate(end_blk, end_idx,
1750 (uint8_t) xive_get_field32(END_W4_ESC_END_BLOCK, end.w4),
1751 (uint32_t) xive_get_field32(END_W4_ESC_END_INDEX, end.w4),
1752 (uint32_t) xive_get_field32(END_W5_ESC_END_DATA, end.w5));
1754 * The END trigger becomes an Escalation trigger
1756 xive_router_end_notify(xrtr,
1757 xive_get_field32(END_W4_ESC_END_BLOCK, end.w4),
1758 xive_get_field32(END_W4_ESC_END_INDEX, end.w4),
1759 xive_get_field32(END_W5_ESC_END_DATA, end.w5));
1762 void xive_router_notify(XiveNotifier *xn, uint32_t lisn, bool pq_checked)
1764 XiveRouter *xrtr = XIVE_ROUTER(xn);
1765 uint8_t eas_blk = XIVE_EAS_BLOCK(lisn);
1766 uint32_t eas_idx = XIVE_EAS_INDEX(lisn);
1767 XiveEAS eas;
1769 /* EAS cache lookup */
1770 if (xive_router_get_eas(xrtr, eas_blk, eas_idx, &eas)) {
1771 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN %x\n", lisn);
1772 return;
1775 if (!pq_checked) {
1776 bool notify;
1777 uint8_t pq;
1779 /* PQ cache lookup */
1780 if (xive_router_get_pq(xrtr, eas_blk, eas_idx, &pq)) {
1781 /* Set FIR */
1782 g_assert_not_reached();
1785 notify = xive_esb_trigger(&pq);
1787 if (xive_router_set_pq(xrtr, eas_blk, eas_idx, &pq)) {
1788 /* Set FIR */
1789 g_assert_not_reached();
1792 if (!notify) {
1793 return;
1797 if (!xive_eas_is_valid(&eas)) {
1798 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid LISN %x\n", lisn);
1799 return;
1802 if (xive_eas_is_masked(&eas)) {
1803 /* Notification completed */
1804 return;
1808 * The event trigger becomes an END trigger
1810 xive_router_end_notify(xrtr,
1811 xive_get_field64(EAS_END_BLOCK, eas.w),
1812 xive_get_field64(EAS_END_INDEX, eas.w),
1813 xive_get_field64(EAS_END_DATA, eas.w));
1816 static Property xive_router_properties[] = {
1817 DEFINE_PROP_LINK("xive-fabric", XiveRouter, xfb,
1818 TYPE_XIVE_FABRIC, XiveFabric *),
1819 DEFINE_PROP_END_OF_LIST(),
1822 static void xive_router_class_init(ObjectClass *klass, void *data)
1824 DeviceClass *dc = DEVICE_CLASS(klass);
1825 XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass);
1827 dc->desc = "XIVE Router Engine";
1828 device_class_set_props(dc, xive_router_properties);
1829 /* Parent is SysBusDeviceClass. No need to call its realize hook */
1830 dc->realize = xive_router_realize;
1831 xnc->notify = xive_router_notify;
1834 static const TypeInfo xive_router_info = {
1835 .name = TYPE_XIVE_ROUTER,
1836 .parent = TYPE_SYS_BUS_DEVICE,
1837 .abstract = true,
1838 .instance_size = sizeof(XiveRouter),
1839 .class_size = sizeof(XiveRouterClass),
1840 .class_init = xive_router_class_init,
1841 .interfaces = (InterfaceInfo[]) {
1842 { TYPE_XIVE_NOTIFIER },
1843 { TYPE_XIVE_PRESENTER },
1848 void xive_eas_pic_print_info(XiveEAS *eas, uint32_t lisn, Monitor *mon)
1850 if (!xive_eas_is_valid(eas)) {
1851 return;
1854 monitor_printf(mon, " %08x %s end:%02x/%04x data:%08x\n",
1855 lisn, xive_eas_is_masked(eas) ? "M" : " ",
1856 (uint8_t) xive_get_field64(EAS_END_BLOCK, eas->w),
1857 (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
1858 (uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
1862 * END ESB MMIO loads
1864 static uint64_t xive_end_source_read(void *opaque, hwaddr addr, unsigned size)
1866 XiveENDSource *xsrc = XIVE_END_SOURCE(opaque);
1867 uint32_t offset = addr & 0xFFF;
1868 uint8_t end_blk;
1869 uint32_t end_idx;
1870 XiveEND end;
1871 uint32_t end_esmask;
1872 uint8_t pq;
1873 uint64_t ret = -1;
1876 * The block id should be deduced from the load address on the END
1877 * ESB MMIO but our model only supports a single block per XIVE chip.
1879 end_blk = xive_router_get_block_id(xsrc->xrtr);
1880 end_idx = addr >> (xsrc->esb_shift + 1);
1882 trace_xive_end_source_read(end_blk, end_idx, addr);
1884 if (xive_router_get_end(xsrc->xrtr, end_blk, end_idx, &end)) {
1885 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1886 end_idx);
1887 return -1;
1890 if (!xive_end_is_valid(&end)) {
1891 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1892 end_blk, end_idx);
1893 return -1;
1896 end_esmask = addr_is_even(addr, xsrc->esb_shift) ? END_W1_ESn : END_W1_ESe;
1897 pq = xive_get_field32(end_esmask, end.w1);
1899 switch (offset) {
1900 case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
1901 ret = xive_esb_eoi(&pq);
1903 /* Forward the source event notification for routing ?? */
1904 break;
1906 case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
1907 ret = pq;
1908 break;
1910 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
1911 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
1912 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
1913 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
1914 ret = xive_esb_set(&pq, (offset >> 8) & 0x3);
1915 break;
1916 default:
1917 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid END ESB load addr %d\n",
1918 offset);
1919 return -1;
1922 if (pq != xive_get_field32(end_esmask, end.w1)) {
1923 end.w1 = xive_set_field32(end_esmask, end.w1, pq);
1924 xive_router_write_end(xsrc->xrtr, end_blk, end_idx, &end, 1);
1927 return ret;
1931 * END ESB MMIO stores are invalid
1933 static void xive_end_source_write(void *opaque, hwaddr addr,
1934 uint64_t value, unsigned size)
1936 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr 0x%"
1937 HWADDR_PRIx"\n", addr);
1940 static const MemoryRegionOps xive_end_source_ops = {
1941 .read = xive_end_source_read,
1942 .write = xive_end_source_write,
1943 .endianness = DEVICE_BIG_ENDIAN,
1944 .valid = {
1945 .min_access_size = 8,
1946 .max_access_size = 8,
1948 .impl = {
1949 .min_access_size = 8,
1950 .max_access_size = 8,
1954 static void xive_end_source_realize(DeviceState *dev, Error **errp)
1956 XiveENDSource *xsrc = XIVE_END_SOURCE(dev);
1958 assert(xsrc->xrtr);
1960 if (!xsrc->nr_ends) {
1961 error_setg(errp, "Number of interrupt needs to be greater than 0");
1962 return;
1965 if (xsrc->esb_shift != XIVE_ESB_4K &&
1966 xsrc->esb_shift != XIVE_ESB_64K) {
1967 error_setg(errp, "Invalid ESB shift setting");
1968 return;
1972 * Each END is assigned an even/odd pair of MMIO pages, the even page
1973 * manages the ESn field while the odd page manages the ESe field.
1975 memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc),
1976 &xive_end_source_ops, xsrc, "xive.end",
1977 (1ull << (xsrc->esb_shift + 1)) * xsrc->nr_ends);
1980 static Property xive_end_source_properties[] = {
1981 DEFINE_PROP_UINT32("nr-ends", XiveENDSource, nr_ends, 0),
1982 DEFINE_PROP_UINT32("shift", XiveENDSource, esb_shift, XIVE_ESB_64K),
1983 DEFINE_PROP_LINK("xive", XiveENDSource, xrtr, TYPE_XIVE_ROUTER,
1984 XiveRouter *),
1985 DEFINE_PROP_END_OF_LIST(),
1988 static void xive_end_source_class_init(ObjectClass *klass, void *data)
1990 DeviceClass *dc = DEVICE_CLASS(klass);
1992 dc->desc = "XIVE END Source";
1993 device_class_set_props(dc, xive_end_source_properties);
1994 dc->realize = xive_end_source_realize;
1996 * Reason: part of XIVE interrupt controller, needs to be wired up,
1997 * e.g. by spapr_xive_instance_init().
1999 dc->user_creatable = false;
2002 static const TypeInfo xive_end_source_info = {
2003 .name = TYPE_XIVE_END_SOURCE,
2004 .parent = TYPE_DEVICE,
2005 .instance_size = sizeof(XiveENDSource),
2006 .class_init = xive_end_source_class_init,
2010 * XIVE Notifier
2012 static const TypeInfo xive_notifier_info = {
2013 .name = TYPE_XIVE_NOTIFIER,
2014 .parent = TYPE_INTERFACE,
2015 .class_size = sizeof(XiveNotifierClass),
2019 * XIVE Presenter
2021 static const TypeInfo xive_presenter_info = {
2022 .name = TYPE_XIVE_PRESENTER,
2023 .parent = TYPE_INTERFACE,
2024 .class_size = sizeof(XivePresenterClass),
2028 * XIVE Fabric
2030 static const TypeInfo xive_fabric_info = {
2031 .name = TYPE_XIVE_FABRIC,
2032 .parent = TYPE_INTERFACE,
2033 .class_size = sizeof(XiveFabricClass),
2036 static void xive_register_types(void)
2038 type_register_static(&xive_fabric_info);
2039 type_register_static(&xive_source_info);
2040 type_register_static(&xive_notifier_info);
2041 type_register_static(&xive_presenter_info);
2042 type_register_static(&xive_router_info);
2043 type_register_static(&xive_end_source_info);
2044 type_register_static(&xive_tctx_info);
2047 type_init(xive_register_types)