armv7m: Raise correct kind of UsageFault for attempts to execute ARM code
[qemu.git] / target / arm / helper.c
blob3f4211b5723df8259777f0179bdcbcfd214a8bb9
1 #include "qemu/osdep.h"
2 #include "trace.h"
3 #include "cpu.h"
4 #include "internals.h"
5 #include "exec/gdbstub.h"
6 #include "exec/helper-proto.h"
7 #include "qemu/host-utils.h"
8 #include "sysemu/arch_init.h"
9 #include "sysemu/sysemu.h"
10 #include "qemu/bitops.h"
11 #include "qemu/crc32c.h"
12 #include "exec/exec-all.h"
13 #include "exec/cpu_ldst.h"
14 #include "arm_ldst.h"
15 #include <zlib.h> /* For crc32 */
16 #include "exec/semihost.h"
17 #include "sysemu/kvm.h"
19 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
21 #ifndef CONFIG_USER_ONLY
22 static bool get_phys_addr(CPUARMState *env, target_ulong address,
23 int access_type, ARMMMUIdx mmu_idx,
24 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
25 target_ulong *page_size, uint32_t *fsr,
26 ARMMMUFaultInfo *fi);
28 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
29 int access_type, ARMMMUIdx mmu_idx,
30 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
31 target_ulong *page_size_ptr, uint32_t *fsr,
32 ARMMMUFaultInfo *fi);
34 /* Definitions for the PMCCNTR and PMCR registers */
35 #define PMCRD 0x8
36 #define PMCRC 0x4
37 #define PMCRE 0x1
38 #endif
40 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
42 int nregs;
44 /* VFP data registers are always little-endian. */
45 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
46 if (reg < nregs) {
47 stfq_le_p(buf, env->vfp.regs[reg]);
48 return 8;
50 if (arm_feature(env, ARM_FEATURE_NEON)) {
51 /* Aliases for Q regs. */
52 nregs += 16;
53 if (reg < nregs) {
54 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
55 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
56 return 16;
59 switch (reg - nregs) {
60 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
61 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
62 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
64 return 0;
67 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
69 int nregs;
71 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
72 if (reg < nregs) {
73 env->vfp.regs[reg] = ldfq_le_p(buf);
74 return 8;
76 if (arm_feature(env, ARM_FEATURE_NEON)) {
77 nregs += 16;
78 if (reg < nregs) {
79 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
80 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
81 return 16;
84 switch (reg - nregs) {
85 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
86 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
87 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
89 return 0;
92 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
94 switch (reg) {
95 case 0 ... 31:
96 /* 128 bit FP register */
97 stfq_le_p(buf, env->vfp.regs[reg * 2]);
98 stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
99 return 16;
100 case 32:
101 /* FPSR */
102 stl_p(buf, vfp_get_fpsr(env));
103 return 4;
104 case 33:
105 /* FPCR */
106 stl_p(buf, vfp_get_fpcr(env));
107 return 4;
108 default:
109 return 0;
113 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
115 switch (reg) {
116 case 0 ... 31:
117 /* 128 bit FP register */
118 env->vfp.regs[reg * 2] = ldfq_le_p(buf);
119 env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
120 return 16;
121 case 32:
122 /* FPSR */
123 vfp_set_fpsr(env, ldl_p(buf));
124 return 4;
125 case 33:
126 /* FPCR */
127 vfp_set_fpcr(env, ldl_p(buf));
128 return 4;
129 default:
130 return 0;
134 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
136 assert(ri->fieldoffset);
137 if (cpreg_field_is_64bit(ri)) {
138 return CPREG_FIELD64(env, ri);
139 } else {
140 return CPREG_FIELD32(env, ri);
144 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
145 uint64_t value)
147 assert(ri->fieldoffset);
148 if (cpreg_field_is_64bit(ri)) {
149 CPREG_FIELD64(env, ri) = value;
150 } else {
151 CPREG_FIELD32(env, ri) = value;
155 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
157 return (char *)env + ri->fieldoffset;
160 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
162 /* Raw read of a coprocessor register (as needed for migration, etc). */
163 if (ri->type & ARM_CP_CONST) {
164 return ri->resetvalue;
165 } else if (ri->raw_readfn) {
166 return ri->raw_readfn(env, ri);
167 } else if (ri->readfn) {
168 return ri->readfn(env, ri);
169 } else {
170 return raw_read(env, ri);
174 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
175 uint64_t v)
177 /* Raw write of a coprocessor register (as needed for migration, etc).
178 * Note that constant registers are treated as write-ignored; the
179 * caller should check for success by whether a readback gives the
180 * value written.
182 if (ri->type & ARM_CP_CONST) {
183 return;
184 } else if (ri->raw_writefn) {
185 ri->raw_writefn(env, ri, v);
186 } else if (ri->writefn) {
187 ri->writefn(env, ri, v);
188 } else {
189 raw_write(env, ri, v);
193 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
195 /* Return true if the regdef would cause an assertion if you called
196 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
197 * program bug for it not to have the NO_RAW flag).
198 * NB that returning false here doesn't necessarily mean that calling
199 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
200 * read/write access functions which are safe for raw use" from "has
201 * read/write access functions which have side effects but has forgotten
202 * to provide raw access functions".
203 * The tests here line up with the conditions in read/write_raw_cp_reg()
204 * and assertions in raw_read()/raw_write().
206 if ((ri->type & ARM_CP_CONST) ||
207 ri->fieldoffset ||
208 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
209 return false;
211 return true;
214 bool write_cpustate_to_list(ARMCPU *cpu)
216 /* Write the coprocessor state from cpu->env to the (index,value) list. */
217 int i;
218 bool ok = true;
220 for (i = 0; i < cpu->cpreg_array_len; i++) {
221 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
222 const ARMCPRegInfo *ri;
224 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
225 if (!ri) {
226 ok = false;
227 continue;
229 if (ri->type & ARM_CP_NO_RAW) {
230 continue;
232 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
234 return ok;
237 bool write_list_to_cpustate(ARMCPU *cpu)
239 int i;
240 bool ok = true;
242 for (i = 0; i < cpu->cpreg_array_len; i++) {
243 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
244 uint64_t v = cpu->cpreg_values[i];
245 const ARMCPRegInfo *ri;
247 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
248 if (!ri) {
249 ok = false;
250 continue;
252 if (ri->type & ARM_CP_NO_RAW) {
253 continue;
255 /* Write value and confirm it reads back as written
256 * (to catch read-only registers and partially read-only
257 * registers where the incoming migration value doesn't match)
259 write_raw_cp_reg(&cpu->env, ri, v);
260 if (read_raw_cp_reg(&cpu->env, ri) != v) {
261 ok = false;
264 return ok;
267 static void add_cpreg_to_list(gpointer key, gpointer opaque)
269 ARMCPU *cpu = opaque;
270 uint64_t regidx;
271 const ARMCPRegInfo *ri;
273 regidx = *(uint32_t *)key;
274 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
276 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
277 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
278 /* The value array need not be initialized at this point */
279 cpu->cpreg_array_len++;
283 static void count_cpreg(gpointer key, gpointer opaque)
285 ARMCPU *cpu = opaque;
286 uint64_t regidx;
287 const ARMCPRegInfo *ri;
289 regidx = *(uint32_t *)key;
290 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
292 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
293 cpu->cpreg_array_len++;
297 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
299 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
300 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
302 if (aidx > bidx) {
303 return 1;
305 if (aidx < bidx) {
306 return -1;
308 return 0;
311 void init_cpreg_list(ARMCPU *cpu)
313 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
314 * Note that we require cpreg_tuples[] to be sorted by key ID.
316 GList *keys;
317 int arraylen;
319 keys = g_hash_table_get_keys(cpu->cp_regs);
320 keys = g_list_sort(keys, cpreg_key_compare);
322 cpu->cpreg_array_len = 0;
324 g_list_foreach(keys, count_cpreg, cpu);
326 arraylen = cpu->cpreg_array_len;
327 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
328 cpu->cpreg_values = g_new(uint64_t, arraylen);
329 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
330 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
331 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
332 cpu->cpreg_array_len = 0;
334 g_list_foreach(keys, add_cpreg_to_list, cpu);
336 assert(cpu->cpreg_array_len == arraylen);
338 g_list_free(keys);
342 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
343 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
345 * access_el3_aa32ns: Used to check AArch32 register views.
346 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
348 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
349 const ARMCPRegInfo *ri,
350 bool isread)
352 bool secure = arm_is_secure_below_el3(env);
354 assert(!arm_el_is_aa64(env, 3));
355 if (secure) {
356 return CP_ACCESS_TRAP_UNCATEGORIZED;
358 return CP_ACCESS_OK;
361 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
362 const ARMCPRegInfo *ri,
363 bool isread)
365 if (!arm_el_is_aa64(env, 3)) {
366 return access_el3_aa32ns(env, ri, isread);
368 return CP_ACCESS_OK;
371 /* Some secure-only AArch32 registers trap to EL3 if used from
372 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
373 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
374 * We assume that the .access field is set to PL1_RW.
376 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
377 const ARMCPRegInfo *ri,
378 bool isread)
380 if (arm_current_el(env) == 3) {
381 return CP_ACCESS_OK;
383 if (arm_is_secure_below_el3(env)) {
384 return CP_ACCESS_TRAP_EL3;
386 /* This will be EL1 NS and EL2 NS, which just UNDEF */
387 return CP_ACCESS_TRAP_UNCATEGORIZED;
390 /* Check for traps to "powerdown debug" registers, which are controlled
391 * by MDCR.TDOSA
393 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
394 bool isread)
396 int el = arm_current_el(env);
398 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA)
399 && !arm_is_secure_below_el3(env)) {
400 return CP_ACCESS_TRAP_EL2;
402 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
403 return CP_ACCESS_TRAP_EL3;
405 return CP_ACCESS_OK;
408 /* Check for traps to "debug ROM" registers, which are controlled
409 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
411 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
412 bool isread)
414 int el = arm_current_el(env);
416 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA)
417 && !arm_is_secure_below_el3(env)) {
418 return CP_ACCESS_TRAP_EL2;
420 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
421 return CP_ACCESS_TRAP_EL3;
423 return CP_ACCESS_OK;
426 /* Check for traps to general debug registers, which are controlled
427 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
429 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
430 bool isread)
432 int el = arm_current_el(env);
434 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA)
435 && !arm_is_secure_below_el3(env)) {
436 return CP_ACCESS_TRAP_EL2;
438 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
439 return CP_ACCESS_TRAP_EL3;
441 return CP_ACCESS_OK;
444 /* Check for traps to performance monitor registers, which are controlled
445 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
447 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
448 bool isread)
450 int el = arm_current_el(env);
452 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
453 && !arm_is_secure_below_el3(env)) {
454 return CP_ACCESS_TRAP_EL2;
456 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
457 return CP_ACCESS_TRAP_EL3;
459 return CP_ACCESS_OK;
462 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
464 ARMCPU *cpu = arm_env_get_cpu(env);
466 raw_write(env, ri, value);
467 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
470 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
472 ARMCPU *cpu = arm_env_get_cpu(env);
474 if (raw_read(env, ri) != value) {
475 /* Unlike real hardware the qemu TLB uses virtual addresses,
476 * not modified virtual addresses, so this causes a TLB flush.
478 tlb_flush(CPU(cpu));
479 raw_write(env, ri, value);
483 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
484 uint64_t value)
486 ARMCPU *cpu = arm_env_get_cpu(env);
488 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU)
489 && !extended_addresses_enabled(env)) {
490 /* For VMSA (when not using the LPAE long descriptor page table
491 * format) this register includes the ASID, so do a TLB flush.
492 * For PMSA it is purely a process ID and no action is needed.
494 tlb_flush(CPU(cpu));
496 raw_write(env, ri, value);
499 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
500 uint64_t value)
502 /* Invalidate all (TLBIALL) */
503 ARMCPU *cpu = arm_env_get_cpu(env);
505 tlb_flush(CPU(cpu));
508 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
509 uint64_t value)
511 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
512 ARMCPU *cpu = arm_env_get_cpu(env);
514 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
517 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
518 uint64_t value)
520 /* Invalidate by ASID (TLBIASID) */
521 ARMCPU *cpu = arm_env_get_cpu(env);
523 tlb_flush(CPU(cpu));
526 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
527 uint64_t value)
529 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
530 ARMCPU *cpu = arm_env_get_cpu(env);
532 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
535 /* IS variants of TLB operations must affect all cores */
536 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
537 uint64_t value)
539 CPUState *cs = ENV_GET_CPU(env);
541 tlb_flush_all_cpus_synced(cs);
544 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
545 uint64_t value)
547 CPUState *cs = ENV_GET_CPU(env);
549 tlb_flush_all_cpus_synced(cs);
552 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
553 uint64_t value)
555 CPUState *cs = ENV_GET_CPU(env);
557 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
560 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
561 uint64_t value)
563 CPUState *cs = ENV_GET_CPU(env);
565 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
568 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
569 uint64_t value)
571 CPUState *cs = ENV_GET_CPU(env);
573 tlb_flush_by_mmuidx(cs,
574 (1 << ARMMMUIdx_S12NSE1) |
575 (1 << ARMMMUIdx_S12NSE0) |
576 (1 << ARMMMUIdx_S2NS));
579 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
580 uint64_t value)
582 CPUState *cs = ENV_GET_CPU(env);
584 tlb_flush_by_mmuidx_all_cpus_synced(cs,
585 (1 << ARMMMUIdx_S12NSE1) |
586 (1 << ARMMMUIdx_S12NSE0) |
587 (1 << ARMMMUIdx_S2NS));
590 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
591 uint64_t value)
593 /* Invalidate by IPA. This has to invalidate any structures that
594 * contain only stage 2 translation information, but does not need
595 * to apply to structures that contain combined stage 1 and stage 2
596 * translation information.
597 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
599 CPUState *cs = ENV_GET_CPU(env);
600 uint64_t pageaddr;
602 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
603 return;
606 pageaddr = sextract64(value << 12, 0, 40);
608 tlb_flush_page_by_mmuidx(cs, pageaddr, (1 << ARMMMUIdx_S2NS));
611 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
612 uint64_t value)
614 CPUState *cs = ENV_GET_CPU(env);
615 uint64_t pageaddr;
617 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
618 return;
621 pageaddr = sextract64(value << 12, 0, 40);
623 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
624 (1 << ARMMMUIdx_S2NS));
627 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
628 uint64_t value)
630 CPUState *cs = ENV_GET_CPU(env);
632 tlb_flush_by_mmuidx(cs, (1 << ARMMMUIdx_S1E2));
635 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
636 uint64_t value)
638 CPUState *cs = ENV_GET_CPU(env);
640 tlb_flush_by_mmuidx_all_cpus_synced(cs, (1 << ARMMMUIdx_S1E2));
643 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
644 uint64_t value)
646 CPUState *cs = ENV_GET_CPU(env);
647 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
649 tlb_flush_page_by_mmuidx(cs, pageaddr, (1 << ARMMMUIdx_S1E2));
652 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
653 uint64_t value)
655 CPUState *cs = ENV_GET_CPU(env);
656 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
658 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
659 (1 << ARMMMUIdx_S1E2));
662 static const ARMCPRegInfo cp_reginfo[] = {
663 /* Define the secure and non-secure FCSE identifier CP registers
664 * separately because there is no secure bank in V8 (no _EL3). This allows
665 * the secure register to be properly reset and migrated. There is also no
666 * v8 EL1 version of the register so the non-secure instance stands alone.
668 { .name = "FCSEIDR(NS)",
669 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
670 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
671 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
672 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
673 { .name = "FCSEIDR(S)",
674 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
675 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
676 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
677 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
678 /* Define the secure and non-secure context identifier CP registers
679 * separately because there is no secure bank in V8 (no _EL3). This allows
680 * the secure register to be properly reset and migrated. In the
681 * non-secure case, the 32-bit register will have reset and migration
682 * disabled during registration as it is handled by the 64-bit instance.
684 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
685 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
686 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
687 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
688 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
689 { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
690 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
691 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
692 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
693 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
694 REGINFO_SENTINEL
697 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
698 /* NB: Some of these registers exist in v8 but with more precise
699 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
701 /* MMU Domain access control / MPU write buffer control */
702 { .name = "DACR",
703 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
704 .access = PL1_RW, .resetvalue = 0,
705 .writefn = dacr_write, .raw_writefn = raw_write,
706 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
707 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
708 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
709 * For v6 and v5, these mappings are overly broad.
711 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
712 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
713 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
714 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
715 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
716 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
717 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
718 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
719 /* Cache maintenance ops; some of this space may be overridden later. */
720 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
721 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
722 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
723 REGINFO_SENTINEL
726 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
727 /* Not all pre-v6 cores implemented this WFI, so this is slightly
728 * over-broad.
730 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
731 .access = PL1_W, .type = ARM_CP_WFI },
732 REGINFO_SENTINEL
735 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
736 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
737 * is UNPREDICTABLE; we choose to NOP as most implementations do).
739 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
740 .access = PL1_W, .type = ARM_CP_WFI },
741 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
742 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
743 * OMAPCP will override this space.
745 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
746 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
747 .resetvalue = 0 },
748 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
749 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
750 .resetvalue = 0 },
751 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
752 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
753 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
754 .resetvalue = 0 },
755 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
756 * implementing it as RAZ means the "debug architecture version" bits
757 * will read as a reserved value, which should cause Linux to not try
758 * to use the debug hardware.
760 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
761 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
762 /* MMU TLB control. Note that the wildcarding means we cover not just
763 * the unified TLB ops but also the dside/iside/inner-shareable variants.
765 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
766 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
767 .type = ARM_CP_NO_RAW },
768 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
769 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
770 .type = ARM_CP_NO_RAW },
771 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
772 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
773 .type = ARM_CP_NO_RAW },
774 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
775 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
776 .type = ARM_CP_NO_RAW },
777 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
778 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
779 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
780 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
781 REGINFO_SENTINEL
784 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
785 uint64_t value)
787 uint32_t mask = 0;
789 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
790 if (!arm_feature(env, ARM_FEATURE_V8)) {
791 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
792 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
793 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
795 if (arm_feature(env, ARM_FEATURE_VFP)) {
796 /* VFP coprocessor: cp10 & cp11 [23:20] */
797 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
799 if (!arm_feature(env, ARM_FEATURE_NEON)) {
800 /* ASEDIS [31] bit is RAO/WI */
801 value |= (1 << 31);
804 /* VFPv3 and upwards with NEON implement 32 double precision
805 * registers (D0-D31).
807 if (!arm_feature(env, ARM_FEATURE_NEON) ||
808 !arm_feature(env, ARM_FEATURE_VFP3)) {
809 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
810 value |= (1 << 30);
813 value &= mask;
815 env->cp15.cpacr_el1 = value;
818 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
819 bool isread)
821 if (arm_feature(env, ARM_FEATURE_V8)) {
822 /* Check if CPACR accesses are to be trapped to EL2 */
823 if (arm_current_el(env) == 1 &&
824 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
825 return CP_ACCESS_TRAP_EL2;
826 /* Check if CPACR accesses are to be trapped to EL3 */
827 } else if (arm_current_el(env) < 3 &&
828 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
829 return CP_ACCESS_TRAP_EL3;
833 return CP_ACCESS_OK;
836 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
837 bool isread)
839 /* Check if CPTR accesses are set to trap to EL3 */
840 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
841 return CP_ACCESS_TRAP_EL3;
844 return CP_ACCESS_OK;
847 static const ARMCPRegInfo v6_cp_reginfo[] = {
848 /* prefetch by MVA in v6, NOP in v7 */
849 { .name = "MVA_prefetch",
850 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
851 .access = PL1_W, .type = ARM_CP_NOP },
852 /* We need to break the TB after ISB to execute self-modifying code
853 * correctly and also to take any pending interrupts immediately.
854 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
856 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
857 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
858 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
859 .access = PL0_W, .type = ARM_CP_NOP },
860 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
861 .access = PL0_W, .type = ARM_CP_NOP },
862 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
863 .access = PL1_RW,
864 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
865 offsetof(CPUARMState, cp15.ifar_ns) },
866 .resetvalue = 0, },
867 /* Watchpoint Fault Address Register : should actually only be present
868 * for 1136, 1176, 11MPCore.
870 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
871 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
872 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
873 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
874 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
875 .resetvalue = 0, .writefn = cpacr_write },
876 REGINFO_SENTINEL
879 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
880 bool isread)
882 /* Performance monitor registers user accessibility is controlled
883 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
884 * trapping to EL2 or EL3 for other accesses.
886 int el = arm_current_el(env);
888 if (el == 0 && !env->cp15.c9_pmuserenr) {
889 return CP_ACCESS_TRAP;
891 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
892 && !arm_is_secure_below_el3(env)) {
893 return CP_ACCESS_TRAP_EL2;
895 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
896 return CP_ACCESS_TRAP_EL3;
899 return CP_ACCESS_OK;
902 #ifndef CONFIG_USER_ONLY
904 static inline bool arm_ccnt_enabled(CPUARMState *env)
906 /* This does not support checking PMCCFILTR_EL0 register */
908 if (!(env->cp15.c9_pmcr & PMCRE)) {
909 return false;
912 return true;
915 void pmccntr_sync(CPUARMState *env)
917 uint64_t temp_ticks;
919 temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
920 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
922 if (env->cp15.c9_pmcr & PMCRD) {
923 /* Increment once every 64 processor clock cycles */
924 temp_ticks /= 64;
927 if (arm_ccnt_enabled(env)) {
928 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
932 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
933 uint64_t value)
935 pmccntr_sync(env);
937 if (value & PMCRC) {
938 /* The counter has been reset */
939 env->cp15.c15_ccnt = 0;
942 /* only the DP, X, D and E bits are writable */
943 env->cp15.c9_pmcr &= ~0x39;
944 env->cp15.c9_pmcr |= (value & 0x39);
946 pmccntr_sync(env);
949 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
951 uint64_t total_ticks;
953 if (!arm_ccnt_enabled(env)) {
954 /* Counter is disabled, do not change value */
955 return env->cp15.c15_ccnt;
958 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
959 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
961 if (env->cp15.c9_pmcr & PMCRD) {
962 /* Increment once every 64 processor clock cycles */
963 total_ticks /= 64;
965 return total_ticks - env->cp15.c15_ccnt;
968 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
969 uint64_t value)
971 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
972 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
973 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
974 * accessed.
976 env->cp15.c9_pmselr = value & 0x1f;
979 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
980 uint64_t value)
982 uint64_t total_ticks;
984 if (!arm_ccnt_enabled(env)) {
985 /* Counter is disabled, set the absolute value */
986 env->cp15.c15_ccnt = value;
987 return;
990 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
991 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
993 if (env->cp15.c9_pmcr & PMCRD) {
994 /* Increment once every 64 processor clock cycles */
995 total_ticks /= 64;
997 env->cp15.c15_ccnt = total_ticks - value;
1000 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1001 uint64_t value)
1003 uint64_t cur_val = pmccntr_read(env, NULL);
1005 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1008 #else /* CONFIG_USER_ONLY */
1010 void pmccntr_sync(CPUARMState *env)
1014 #endif
1016 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1017 uint64_t value)
1019 pmccntr_sync(env);
1020 env->cp15.pmccfiltr_el0 = value & 0x7E000000;
1021 pmccntr_sync(env);
1024 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1025 uint64_t value)
1027 value &= (1 << 31);
1028 env->cp15.c9_pmcnten |= value;
1031 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1032 uint64_t value)
1034 value &= (1 << 31);
1035 env->cp15.c9_pmcnten &= ~value;
1038 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1039 uint64_t value)
1041 env->cp15.c9_pmovsr &= ~value;
1044 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1045 uint64_t value)
1047 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1048 * PMSELR value is equal to or greater than the number of implemented
1049 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1051 if (env->cp15.c9_pmselr == 0x1f) {
1052 pmccfiltr_write(env, ri, value);
1056 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1058 /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1059 * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write().
1061 if (env->cp15.c9_pmselr == 0x1f) {
1062 return env->cp15.pmccfiltr_el0;
1063 } else {
1064 return 0;
1068 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1069 uint64_t value)
1071 env->cp15.c9_pmuserenr = value & 1;
1074 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1075 uint64_t value)
1077 /* We have no event counters so only the C bit can be changed */
1078 value &= (1 << 31);
1079 env->cp15.c9_pminten |= value;
1082 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1083 uint64_t value)
1085 value &= (1 << 31);
1086 env->cp15.c9_pminten &= ~value;
1089 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1090 uint64_t value)
1092 /* Note that even though the AArch64 view of this register has bits
1093 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1094 * architectural requirements for bits which are RES0 only in some
1095 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1096 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1098 raw_write(env, ri, value & ~0x1FULL);
1101 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1103 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
1104 * For bits that vary between AArch32/64, code needs to check the
1105 * current execution mode before directly using the feature bit.
1107 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
1109 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1110 valid_mask &= ~SCR_HCE;
1112 /* On ARMv7, SMD (or SCD as it is called in v7) is only
1113 * supported if EL2 exists. The bit is UNK/SBZP when
1114 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1115 * when EL2 is unavailable.
1116 * On ARMv8, this bit is always available.
1118 if (arm_feature(env, ARM_FEATURE_V7) &&
1119 !arm_feature(env, ARM_FEATURE_V8)) {
1120 valid_mask &= ~SCR_SMD;
1124 /* Clear all-context RES0 bits. */
1125 value &= valid_mask;
1126 raw_write(env, ri, value);
1129 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1131 ARMCPU *cpu = arm_env_get_cpu(env);
1133 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1134 * bank
1136 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1137 ri->secure & ARM_CP_SECSTATE_S);
1139 return cpu->ccsidr[index];
1142 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1143 uint64_t value)
1145 raw_write(env, ri, value & 0xf);
1148 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1150 CPUState *cs = ENV_GET_CPU(env);
1151 uint64_t ret = 0;
1153 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1154 ret |= CPSR_I;
1156 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1157 ret |= CPSR_F;
1159 /* External aborts are not possible in QEMU so A bit is always clear */
1160 return ret;
1163 static const ARMCPRegInfo v7_cp_reginfo[] = {
1164 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1165 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1166 .access = PL1_W, .type = ARM_CP_NOP },
1167 /* Performance monitors are implementation defined in v7,
1168 * but with an ARM recommended set of registers, which we
1169 * follow (although we don't actually implement any counters)
1171 * Performance registers fall into three categories:
1172 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1173 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1174 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1175 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1176 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1178 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1179 .access = PL0_RW, .type = ARM_CP_ALIAS,
1180 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1181 .writefn = pmcntenset_write,
1182 .accessfn = pmreg_access,
1183 .raw_writefn = raw_write },
1184 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1185 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1186 .access = PL0_RW, .accessfn = pmreg_access,
1187 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1188 .writefn = pmcntenset_write, .raw_writefn = raw_write },
1189 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1190 .access = PL0_RW,
1191 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1192 .accessfn = pmreg_access,
1193 .writefn = pmcntenclr_write,
1194 .type = ARM_CP_ALIAS },
1195 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1196 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1197 .access = PL0_RW, .accessfn = pmreg_access,
1198 .type = ARM_CP_ALIAS,
1199 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1200 .writefn = pmcntenclr_write },
1201 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1202 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1203 .accessfn = pmreg_access,
1204 .writefn = pmovsr_write,
1205 .raw_writefn = raw_write },
1206 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1207 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1208 .access = PL0_RW, .accessfn = pmreg_access,
1209 .type = ARM_CP_ALIAS,
1210 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1211 .writefn = pmovsr_write,
1212 .raw_writefn = raw_write },
1213 /* Unimplemented so WI. */
1214 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1215 .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP },
1216 #ifndef CONFIG_USER_ONLY
1217 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1218 .access = PL0_RW, .type = ARM_CP_ALIAS,
1219 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
1220 .accessfn = pmreg_access, .writefn = pmselr_write,
1221 .raw_writefn = raw_write},
1222 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1223 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
1224 .access = PL0_RW, .accessfn = pmreg_access,
1225 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1226 .writefn = pmselr_write, .raw_writefn = raw_write, },
1227 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1228 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
1229 .readfn = pmccntr_read, .writefn = pmccntr_write32,
1230 .accessfn = pmreg_access },
1231 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1232 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1233 .access = PL0_RW, .accessfn = pmreg_access,
1234 .type = ARM_CP_IO,
1235 .readfn = pmccntr_read, .writefn = pmccntr_write, },
1236 #endif
1237 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1238 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
1239 .writefn = pmccfiltr_write,
1240 .access = PL0_RW, .accessfn = pmreg_access,
1241 .type = ARM_CP_IO,
1242 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1243 .resetvalue = 0, },
1244 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1245 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1246 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1247 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
1248 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
1249 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1250 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1251 /* Unimplemented, RAZ/WI. */
1252 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1253 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1254 .accessfn = pmreg_access },
1255 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1256 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
1257 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1258 .resetvalue = 0,
1259 .writefn = pmuserenr_write, .raw_writefn = raw_write },
1260 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
1261 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
1262 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1263 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1264 .resetvalue = 0,
1265 .writefn = pmuserenr_write, .raw_writefn = raw_write },
1266 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1267 .access = PL1_RW, .accessfn = access_tpm,
1268 .type = ARM_CP_ALIAS,
1269 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
1270 .resetvalue = 0,
1271 .writefn = pmintenset_write, .raw_writefn = raw_write },
1272 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
1273 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
1274 .access = PL1_RW, .accessfn = access_tpm,
1275 .type = ARM_CP_IO,
1276 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1277 .writefn = pmintenset_write, .raw_writefn = raw_write,
1278 .resetvalue = 0x0 },
1279 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
1280 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1281 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1282 .writefn = pmintenclr_write, },
1283 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
1284 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
1285 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1286 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1287 .writefn = pmintenclr_write },
1288 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
1289 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
1290 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
1291 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
1292 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
1293 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1294 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1295 offsetof(CPUARMState, cp15.csselr_ns) } },
1296 /* Auxiliary ID register: this actually has an IMPDEF value but for now
1297 * just RAZ for all cores:
1299 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1300 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
1301 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1302 /* Auxiliary fault status registers: these also are IMPDEF, and we
1303 * choose to RAZ/WI for all cores.
1305 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1306 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1307 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1308 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1309 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1310 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1311 /* MAIR can just read-as-written because we don't implement caches
1312 * and so don't need to care about memory attributes.
1314 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1315 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
1316 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
1317 .resetvalue = 0 },
1318 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
1319 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
1320 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
1321 .resetvalue = 0 },
1322 /* For non-long-descriptor page tables these are PRRR and NMRR;
1323 * regardless they still act as reads-as-written for QEMU.
1325 /* MAIR0/1 are defined separately from their 64-bit counterpart which
1326 * allows them to assign the correct fieldoffset based on the endianness
1327 * handled in the field definitions.
1329 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
1330 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
1331 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1332 offsetof(CPUARMState, cp15.mair0_ns) },
1333 .resetfn = arm_cp_reset_ignore },
1334 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
1335 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
1336 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1337 offsetof(CPUARMState, cp15.mair1_ns) },
1338 .resetfn = arm_cp_reset_ignore },
1339 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1340 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1341 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1342 /* 32 bit ITLB invalidates */
1343 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1344 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1345 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1346 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1347 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1348 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1349 /* 32 bit DTLB invalidates */
1350 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1351 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1352 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1353 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1354 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1355 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1356 /* 32 bit TLB invalidates */
1357 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1358 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1359 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1360 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1361 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1362 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1363 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1364 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1365 REGINFO_SENTINEL
1368 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1369 /* 32 bit TLB invalidates, Inner Shareable */
1370 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1371 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1372 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1373 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1374 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1375 .type = ARM_CP_NO_RAW, .access = PL1_W,
1376 .writefn = tlbiasid_is_write },
1377 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1378 .type = ARM_CP_NO_RAW, .access = PL1_W,
1379 .writefn = tlbimvaa_is_write },
1380 REGINFO_SENTINEL
1383 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1384 uint64_t value)
1386 value &= 1;
1387 env->teecr = value;
1390 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1391 bool isread)
1393 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1394 return CP_ACCESS_TRAP;
1396 return CP_ACCESS_OK;
1399 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1400 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1401 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1402 .resetvalue = 0,
1403 .writefn = teecr_write },
1404 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1405 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1406 .accessfn = teehbr_access, .resetvalue = 0 },
1407 REGINFO_SENTINEL
1410 static const ARMCPRegInfo v6k_cp_reginfo[] = {
1411 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1412 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1413 .access = PL0_RW,
1414 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1415 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1416 .access = PL0_RW,
1417 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1418 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1419 .resetfn = arm_cp_reset_ignore },
1420 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1421 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1422 .access = PL0_R|PL1_W,
1423 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1424 .resetvalue = 0},
1425 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1426 .access = PL0_R|PL1_W,
1427 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1428 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1429 .resetfn = arm_cp_reset_ignore },
1430 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1431 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1432 .access = PL1_RW,
1433 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1434 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1435 .access = PL1_RW,
1436 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1437 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1438 .resetvalue = 0 },
1439 REGINFO_SENTINEL
1442 #ifndef CONFIG_USER_ONLY
1444 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
1445 bool isread)
1447 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
1448 * Writable only at the highest implemented exception level.
1450 int el = arm_current_el(env);
1452 switch (el) {
1453 case 0:
1454 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
1455 return CP_ACCESS_TRAP;
1457 break;
1458 case 1:
1459 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
1460 arm_is_secure_below_el3(env)) {
1461 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
1462 return CP_ACCESS_TRAP_UNCATEGORIZED;
1464 break;
1465 case 2:
1466 case 3:
1467 break;
1470 if (!isread && el < arm_highest_el(env)) {
1471 return CP_ACCESS_TRAP_UNCATEGORIZED;
1474 return CP_ACCESS_OK;
1477 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
1478 bool isread)
1480 unsigned int cur_el = arm_current_el(env);
1481 bool secure = arm_is_secure(env);
1483 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1484 if (cur_el == 0 &&
1485 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1486 return CP_ACCESS_TRAP;
1489 if (arm_feature(env, ARM_FEATURE_EL2) &&
1490 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1491 !extract32(env->cp15.cnthctl_el2, 0, 1)) {
1492 return CP_ACCESS_TRAP_EL2;
1494 return CP_ACCESS_OK;
1497 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
1498 bool isread)
1500 unsigned int cur_el = arm_current_el(env);
1501 bool secure = arm_is_secure(env);
1503 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1504 * EL0[PV]TEN is zero.
1506 if (cur_el == 0 &&
1507 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1508 return CP_ACCESS_TRAP;
1511 if (arm_feature(env, ARM_FEATURE_EL2) &&
1512 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1513 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
1514 return CP_ACCESS_TRAP_EL2;
1516 return CP_ACCESS_OK;
1519 static CPAccessResult gt_pct_access(CPUARMState *env,
1520 const ARMCPRegInfo *ri,
1521 bool isread)
1523 return gt_counter_access(env, GTIMER_PHYS, isread);
1526 static CPAccessResult gt_vct_access(CPUARMState *env,
1527 const ARMCPRegInfo *ri,
1528 bool isread)
1530 return gt_counter_access(env, GTIMER_VIRT, isread);
1533 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1534 bool isread)
1536 return gt_timer_access(env, GTIMER_PHYS, isread);
1539 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1540 bool isread)
1542 return gt_timer_access(env, GTIMER_VIRT, isread);
1545 static CPAccessResult gt_stimer_access(CPUARMState *env,
1546 const ARMCPRegInfo *ri,
1547 bool isread)
1549 /* The AArch64 register view of the secure physical timer is
1550 * always accessible from EL3, and configurably accessible from
1551 * Secure EL1.
1553 switch (arm_current_el(env)) {
1554 case 1:
1555 if (!arm_is_secure(env)) {
1556 return CP_ACCESS_TRAP;
1558 if (!(env->cp15.scr_el3 & SCR_ST)) {
1559 return CP_ACCESS_TRAP_EL3;
1561 return CP_ACCESS_OK;
1562 case 0:
1563 case 2:
1564 return CP_ACCESS_TRAP;
1565 case 3:
1566 return CP_ACCESS_OK;
1567 default:
1568 g_assert_not_reached();
1572 static uint64_t gt_get_countervalue(CPUARMState *env)
1574 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1577 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1579 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1581 if (gt->ctl & 1) {
1582 /* Timer enabled: calculate and set current ISTATUS, irq, and
1583 * reset timer to when ISTATUS next has to change
1585 uint64_t offset = timeridx == GTIMER_VIRT ?
1586 cpu->env.cp15.cntvoff_el2 : 0;
1587 uint64_t count = gt_get_countervalue(&cpu->env);
1588 /* Note that this must be unsigned 64 bit arithmetic: */
1589 int istatus = count - offset >= gt->cval;
1590 uint64_t nexttick;
1591 int irqstate;
1593 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1595 irqstate = (istatus && !(gt->ctl & 2));
1596 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1598 if (istatus) {
1599 /* Next transition is when count rolls back over to zero */
1600 nexttick = UINT64_MAX;
1601 } else {
1602 /* Next transition is when we hit cval */
1603 nexttick = gt->cval + offset;
1605 /* Note that the desired next expiry time might be beyond the
1606 * signed-64-bit range of a QEMUTimer -- in this case we just
1607 * set the timer for as far in the future as possible. When the
1608 * timer expires we will reset the timer for any remaining period.
1610 if (nexttick > INT64_MAX / GTIMER_SCALE) {
1611 nexttick = INT64_MAX / GTIMER_SCALE;
1613 timer_mod(cpu->gt_timer[timeridx], nexttick);
1614 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
1615 } else {
1616 /* Timer disabled: ISTATUS and timer output always clear */
1617 gt->ctl &= ~4;
1618 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1619 timer_del(cpu->gt_timer[timeridx]);
1620 trace_arm_gt_recalc_disabled(timeridx);
1624 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
1625 int timeridx)
1627 ARMCPU *cpu = arm_env_get_cpu(env);
1629 timer_del(cpu->gt_timer[timeridx]);
1632 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1634 return gt_get_countervalue(env);
1637 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1639 return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
1642 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1643 int timeridx,
1644 uint64_t value)
1646 trace_arm_gt_cval_write(timeridx, value);
1647 env->cp15.c14_timer[timeridx].cval = value;
1648 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1651 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
1652 int timeridx)
1654 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1656 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
1657 (gt_get_countervalue(env) - offset));
1660 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1661 int timeridx,
1662 uint64_t value)
1664 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1666 trace_arm_gt_tval_write(timeridx, value);
1667 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
1668 sextract64(value, 0, 32);
1669 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1672 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1673 int timeridx,
1674 uint64_t value)
1676 ARMCPU *cpu = arm_env_get_cpu(env);
1677 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1679 trace_arm_gt_ctl_write(timeridx, value);
1680 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1681 if ((oldval ^ value) & 1) {
1682 /* Enable toggled */
1683 gt_recalc_timer(cpu, timeridx);
1684 } else if ((oldval ^ value) & 2) {
1685 /* IMASK toggled: don't need to recalculate,
1686 * just set the interrupt line based on ISTATUS
1688 int irqstate = (oldval & 4) && !(value & 2);
1690 trace_arm_gt_imask_toggle(timeridx, irqstate);
1691 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1695 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1697 gt_timer_reset(env, ri, GTIMER_PHYS);
1700 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1701 uint64_t value)
1703 gt_cval_write(env, ri, GTIMER_PHYS, value);
1706 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1708 return gt_tval_read(env, ri, GTIMER_PHYS);
1711 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1712 uint64_t value)
1714 gt_tval_write(env, ri, GTIMER_PHYS, value);
1717 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1718 uint64_t value)
1720 gt_ctl_write(env, ri, GTIMER_PHYS, value);
1723 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1725 gt_timer_reset(env, ri, GTIMER_VIRT);
1728 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1729 uint64_t value)
1731 gt_cval_write(env, ri, GTIMER_VIRT, value);
1734 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1736 return gt_tval_read(env, ri, GTIMER_VIRT);
1739 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1740 uint64_t value)
1742 gt_tval_write(env, ri, GTIMER_VIRT, value);
1745 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1746 uint64_t value)
1748 gt_ctl_write(env, ri, GTIMER_VIRT, value);
1751 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
1752 uint64_t value)
1754 ARMCPU *cpu = arm_env_get_cpu(env);
1756 trace_arm_gt_cntvoff_write(value);
1757 raw_write(env, ri, value);
1758 gt_recalc_timer(cpu, GTIMER_VIRT);
1761 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1763 gt_timer_reset(env, ri, GTIMER_HYP);
1766 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1767 uint64_t value)
1769 gt_cval_write(env, ri, GTIMER_HYP, value);
1772 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1774 return gt_tval_read(env, ri, GTIMER_HYP);
1777 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1778 uint64_t value)
1780 gt_tval_write(env, ri, GTIMER_HYP, value);
1783 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1784 uint64_t value)
1786 gt_ctl_write(env, ri, GTIMER_HYP, value);
1789 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1791 gt_timer_reset(env, ri, GTIMER_SEC);
1794 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1795 uint64_t value)
1797 gt_cval_write(env, ri, GTIMER_SEC, value);
1800 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1802 return gt_tval_read(env, ri, GTIMER_SEC);
1805 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1806 uint64_t value)
1808 gt_tval_write(env, ri, GTIMER_SEC, value);
1811 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1812 uint64_t value)
1814 gt_ctl_write(env, ri, GTIMER_SEC, value);
1817 void arm_gt_ptimer_cb(void *opaque)
1819 ARMCPU *cpu = opaque;
1821 gt_recalc_timer(cpu, GTIMER_PHYS);
1824 void arm_gt_vtimer_cb(void *opaque)
1826 ARMCPU *cpu = opaque;
1828 gt_recalc_timer(cpu, GTIMER_VIRT);
1831 void arm_gt_htimer_cb(void *opaque)
1833 ARMCPU *cpu = opaque;
1835 gt_recalc_timer(cpu, GTIMER_HYP);
1838 void arm_gt_stimer_cb(void *opaque)
1840 ARMCPU *cpu = opaque;
1842 gt_recalc_timer(cpu, GTIMER_SEC);
1845 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1846 /* Note that CNTFRQ is purely reads-as-written for the benefit
1847 * of software; writing it doesn't actually change the timer frequency.
1848 * Our reset value matches the fixed frequency we implement the timer at.
1850 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1851 .type = ARM_CP_ALIAS,
1852 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1853 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
1855 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1856 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1857 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1858 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1859 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
1861 /* overall control: mostly access permissions */
1862 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
1863 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1864 .access = PL1_RW,
1865 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1866 .resetvalue = 0,
1868 /* per-timer control */
1869 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1870 .secure = ARM_CP_SECSTATE_NS,
1871 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1872 .accessfn = gt_ptimer_access,
1873 .fieldoffset = offsetoflow32(CPUARMState,
1874 cp15.c14_timer[GTIMER_PHYS].ctl),
1875 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1877 { .name = "CNTP_CTL(S)",
1878 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1879 .secure = ARM_CP_SECSTATE_S,
1880 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1881 .accessfn = gt_ptimer_access,
1882 .fieldoffset = offsetoflow32(CPUARMState,
1883 cp15.c14_timer[GTIMER_SEC].ctl),
1884 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1886 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1887 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1888 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1889 .accessfn = gt_ptimer_access,
1890 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1891 .resetvalue = 0,
1892 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1894 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1895 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1896 .accessfn = gt_vtimer_access,
1897 .fieldoffset = offsetoflow32(CPUARMState,
1898 cp15.c14_timer[GTIMER_VIRT].ctl),
1899 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1901 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1902 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1903 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1904 .accessfn = gt_vtimer_access,
1905 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1906 .resetvalue = 0,
1907 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1909 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1910 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1911 .secure = ARM_CP_SECSTATE_NS,
1912 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1913 .accessfn = gt_ptimer_access,
1914 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1916 { .name = "CNTP_TVAL(S)",
1917 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1918 .secure = ARM_CP_SECSTATE_S,
1919 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1920 .accessfn = gt_ptimer_access,
1921 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
1923 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1924 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
1925 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1926 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
1927 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1929 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
1930 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1931 .accessfn = gt_vtimer_access,
1932 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
1934 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1935 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
1936 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1937 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
1938 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
1940 /* The counter itself */
1941 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
1942 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
1943 .accessfn = gt_pct_access,
1944 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
1946 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
1947 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
1948 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1949 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
1951 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
1952 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
1953 .accessfn = gt_vct_access,
1954 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
1956 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
1957 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
1958 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1959 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
1961 /* Comparison value, indicating when the timer goes off */
1962 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
1963 .secure = ARM_CP_SECSTATE_NS,
1964 .access = PL1_RW | PL0_R,
1965 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1966 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1967 .accessfn = gt_ptimer_access,
1968 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
1970 { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2,
1971 .secure = ARM_CP_SECSTATE_S,
1972 .access = PL1_RW | PL0_R,
1973 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1974 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
1975 .accessfn = gt_ptimer_access,
1976 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
1978 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1979 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
1980 .access = PL1_RW | PL0_R,
1981 .type = ARM_CP_IO,
1982 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1983 .resetvalue = 0, .accessfn = gt_ptimer_access,
1984 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
1986 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
1987 .access = PL1_RW | PL0_R,
1988 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1989 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1990 .accessfn = gt_vtimer_access,
1991 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
1993 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1994 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
1995 .access = PL1_RW | PL0_R,
1996 .type = ARM_CP_IO,
1997 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1998 .resetvalue = 0, .accessfn = gt_vtimer_access,
1999 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2001 /* Secure timer -- this is actually restricted to only EL3
2002 * and configurably Secure-EL1 via the accessfn.
2004 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2005 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2006 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2007 .accessfn = gt_stimer_access,
2008 .readfn = gt_sec_tval_read,
2009 .writefn = gt_sec_tval_write,
2010 .resetfn = gt_sec_timer_reset,
2012 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2013 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2014 .type = ARM_CP_IO, .access = PL1_RW,
2015 .accessfn = gt_stimer_access,
2016 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2017 .resetvalue = 0,
2018 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2020 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2021 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2022 .type = ARM_CP_IO, .access = PL1_RW,
2023 .accessfn = gt_stimer_access,
2024 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2025 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2027 REGINFO_SENTINEL
2030 #else
2031 /* In user-mode none of the generic timer registers are accessible,
2032 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
2033 * so instead just don't register any of them.
2035 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2036 REGINFO_SENTINEL
2039 #endif
2041 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2043 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2044 raw_write(env, ri, value);
2045 } else if (arm_feature(env, ARM_FEATURE_V7)) {
2046 raw_write(env, ri, value & 0xfffff6ff);
2047 } else {
2048 raw_write(env, ri, value & 0xfffff1ff);
2052 #ifndef CONFIG_USER_ONLY
2053 /* get_phys_addr() isn't present for user-mode-only targets */
2055 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2056 bool isread)
2058 if (ri->opc2 & 4) {
2059 /* The ATS12NSO* operations must trap to EL3 if executed in
2060 * Secure EL1 (which can only happen if EL3 is AArch64).
2061 * They are simply UNDEF if executed from NS EL1.
2062 * They function normally from EL2 or EL3.
2064 if (arm_current_el(env) == 1) {
2065 if (arm_is_secure_below_el3(env)) {
2066 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2068 return CP_ACCESS_TRAP_UNCATEGORIZED;
2071 return CP_ACCESS_OK;
2074 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2075 int access_type, ARMMMUIdx mmu_idx)
2077 hwaddr phys_addr;
2078 target_ulong page_size;
2079 int prot;
2080 uint32_t fsr;
2081 bool ret;
2082 uint64_t par64;
2083 MemTxAttrs attrs = {};
2084 ARMMMUFaultInfo fi = {};
2086 ret = get_phys_addr(env, value, access_type, mmu_idx,
2087 &phys_addr, &attrs, &prot, &page_size, &fsr, &fi);
2088 if (extended_addresses_enabled(env)) {
2089 /* fsr is a DFSR/IFSR value for the long descriptor
2090 * translation table format, but with WnR always clear.
2091 * Convert it to a 64-bit PAR.
2093 par64 = (1 << 11); /* LPAE bit always set */
2094 if (!ret) {
2095 par64 |= phys_addr & ~0xfffULL;
2096 if (!attrs.secure) {
2097 par64 |= (1 << 9); /* NS */
2099 /* We don't set the ATTR or SH fields in the PAR. */
2100 } else {
2101 par64 |= 1; /* F */
2102 par64 |= (fsr & 0x3f) << 1; /* FS */
2103 /* Note that S2WLK and FSTAGE are always zero, because we don't
2104 * implement virtualization and therefore there can't be a stage 2
2105 * fault.
2108 } else {
2109 /* fsr is a DFSR/IFSR value for the short descriptor
2110 * translation table format (with WnR always clear).
2111 * Convert it to a 32-bit PAR.
2113 if (!ret) {
2114 /* We do not set any attribute bits in the PAR */
2115 if (page_size == (1 << 24)
2116 && arm_feature(env, ARM_FEATURE_V7)) {
2117 par64 = (phys_addr & 0xff000000) | (1 << 1);
2118 } else {
2119 par64 = phys_addr & 0xfffff000;
2121 if (!attrs.secure) {
2122 par64 |= (1 << 9); /* NS */
2124 } else {
2125 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
2126 ((fsr & 0xf) << 1) | 1;
2129 return par64;
2132 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2134 int access_type = ri->opc2 & 1;
2135 uint64_t par64;
2136 ARMMMUIdx mmu_idx;
2137 int el = arm_current_el(env);
2138 bool secure = arm_is_secure_below_el3(env);
2140 switch (ri->opc2 & 6) {
2141 case 0:
2142 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
2143 switch (el) {
2144 case 3:
2145 mmu_idx = ARMMMUIdx_S1E3;
2146 break;
2147 case 2:
2148 mmu_idx = ARMMMUIdx_S1NSE1;
2149 break;
2150 case 1:
2151 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2152 break;
2153 default:
2154 g_assert_not_reached();
2156 break;
2157 case 2:
2158 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
2159 switch (el) {
2160 case 3:
2161 mmu_idx = ARMMMUIdx_S1SE0;
2162 break;
2163 case 2:
2164 mmu_idx = ARMMMUIdx_S1NSE0;
2165 break;
2166 case 1:
2167 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2168 break;
2169 default:
2170 g_assert_not_reached();
2172 break;
2173 case 4:
2174 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
2175 mmu_idx = ARMMMUIdx_S12NSE1;
2176 break;
2177 case 6:
2178 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
2179 mmu_idx = ARMMMUIdx_S12NSE0;
2180 break;
2181 default:
2182 g_assert_not_reached();
2185 par64 = do_ats_write(env, value, access_type, mmu_idx);
2187 A32_BANKED_CURRENT_REG_SET(env, par, par64);
2190 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
2191 uint64_t value)
2193 int access_type = ri->opc2 & 1;
2194 uint64_t par64;
2196 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);
2198 A32_BANKED_CURRENT_REG_SET(env, par, par64);
2201 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
2202 bool isread)
2204 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
2205 return CP_ACCESS_TRAP;
2207 return CP_ACCESS_OK;
2210 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
2211 uint64_t value)
2213 int access_type = ri->opc2 & 1;
2214 ARMMMUIdx mmu_idx;
2215 int secure = arm_is_secure_below_el3(env);
2217 switch (ri->opc2 & 6) {
2218 case 0:
2219 switch (ri->opc1) {
2220 case 0: /* AT S1E1R, AT S1E1W */
2221 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2222 break;
2223 case 4: /* AT S1E2R, AT S1E2W */
2224 mmu_idx = ARMMMUIdx_S1E2;
2225 break;
2226 case 6: /* AT S1E3R, AT S1E3W */
2227 mmu_idx = ARMMMUIdx_S1E3;
2228 break;
2229 default:
2230 g_assert_not_reached();
2232 break;
2233 case 2: /* AT S1E0R, AT S1E0W */
2234 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2235 break;
2236 case 4: /* AT S12E1R, AT S12E1W */
2237 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
2238 break;
2239 case 6: /* AT S12E0R, AT S12E0W */
2240 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
2241 break;
2242 default:
2243 g_assert_not_reached();
2246 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
2248 #endif
2250 static const ARMCPRegInfo vapa_cp_reginfo[] = {
2251 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
2252 .access = PL1_RW, .resetvalue = 0,
2253 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
2254 offsetoflow32(CPUARMState, cp15.par_ns) },
2255 .writefn = par_write },
2256 #ifndef CONFIG_USER_ONLY
2257 /* This underdecoding is safe because the reginfo is NO_RAW. */
2258 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
2259 .access = PL1_W, .accessfn = ats_access,
2260 .writefn = ats_write, .type = ARM_CP_NO_RAW },
2261 #endif
2262 REGINFO_SENTINEL
2265 /* Return basic MPU access permission bits. */
2266 static uint32_t simple_mpu_ap_bits(uint32_t val)
2268 uint32_t ret;
2269 uint32_t mask;
2270 int i;
2271 ret = 0;
2272 mask = 3;
2273 for (i = 0; i < 16; i += 2) {
2274 ret |= (val >> i) & mask;
2275 mask <<= 2;
2277 return ret;
2280 /* Pad basic MPU access permission bits to extended format. */
2281 static uint32_t extended_mpu_ap_bits(uint32_t val)
2283 uint32_t ret;
2284 uint32_t mask;
2285 int i;
2286 ret = 0;
2287 mask = 3;
2288 for (i = 0; i < 16; i += 2) {
2289 ret |= (val & mask) << i;
2290 mask <<= 2;
2292 return ret;
2295 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2296 uint64_t value)
2298 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
2301 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2303 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
2306 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2307 uint64_t value)
2309 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
2312 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2314 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
2317 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
2319 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2321 if (!u32p) {
2322 return 0;
2325 u32p += env->cp15.c6_rgnr;
2326 return *u32p;
2329 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
2330 uint64_t value)
2332 ARMCPU *cpu = arm_env_get_cpu(env);
2333 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2335 if (!u32p) {
2336 return;
2339 u32p += env->cp15.c6_rgnr;
2340 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
2341 *u32p = value;
2344 static void pmsav7_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2346 ARMCPU *cpu = arm_env_get_cpu(env);
2347 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2349 if (!u32p) {
2350 return;
2353 memset(u32p, 0, sizeof(*u32p) * cpu->pmsav7_dregion);
2356 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2357 uint64_t value)
2359 ARMCPU *cpu = arm_env_get_cpu(env);
2360 uint32_t nrgs = cpu->pmsav7_dregion;
2362 if (value >= nrgs) {
2363 qemu_log_mask(LOG_GUEST_ERROR,
2364 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2365 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
2366 return;
2369 raw_write(env, ri, value);
2372 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
2373 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
2374 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2375 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
2376 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2377 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
2378 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2379 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
2380 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2381 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
2382 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2383 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
2384 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2385 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
2386 .access = PL1_RW,
2387 .fieldoffset = offsetof(CPUARMState, cp15.c6_rgnr),
2388 .writefn = pmsav7_rgnr_write },
2389 REGINFO_SENTINEL
2392 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
2393 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2394 .access = PL1_RW, .type = ARM_CP_ALIAS,
2395 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2396 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
2397 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2398 .access = PL1_RW, .type = ARM_CP_ALIAS,
2399 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2400 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
2401 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
2402 .access = PL1_RW,
2403 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2404 .resetvalue = 0, },
2405 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
2406 .access = PL1_RW,
2407 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2408 .resetvalue = 0, },
2409 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2410 .access = PL1_RW,
2411 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
2412 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
2413 .access = PL1_RW,
2414 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
2415 /* Protection region base and size registers */
2416 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
2417 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2418 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
2419 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
2420 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2421 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
2422 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
2423 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2424 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
2425 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
2426 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2427 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
2428 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
2429 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2430 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
2431 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
2432 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2433 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
2434 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
2435 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2436 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
2437 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
2438 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2439 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
2440 REGINFO_SENTINEL
2443 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
2444 uint64_t value)
2446 TCR *tcr = raw_ptr(env, ri);
2447 int maskshift = extract32(value, 0, 3);
2449 if (!arm_feature(env, ARM_FEATURE_V8)) {
2450 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
2451 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2452 * using Long-desciptor translation table format */
2453 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
2454 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
2455 /* In an implementation that includes the Security Extensions
2456 * TTBCR has additional fields PD0 [4] and PD1 [5] for
2457 * Short-descriptor translation table format.
2459 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
2460 } else {
2461 value &= TTBCR_N;
2465 /* Update the masks corresponding to the TCR bank being written
2466 * Note that we always calculate mask and base_mask, but
2467 * they are only used for short-descriptor tables (ie if EAE is 0);
2468 * for long-descriptor tables the TCR fields are used differently
2469 * and the mask and base_mask values are meaningless.
2471 tcr->raw_tcr = value;
2472 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
2473 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
2476 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2477 uint64_t value)
2479 ARMCPU *cpu = arm_env_get_cpu(env);
2481 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2482 /* With LPAE the TTBCR could result in a change of ASID
2483 * via the TTBCR.A1 bit, so do a TLB flush.
2485 tlb_flush(CPU(cpu));
2487 vmsa_ttbcr_raw_write(env, ri, value);
2490 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2492 TCR *tcr = raw_ptr(env, ri);
2494 /* Reset both the TCR as well as the masks corresponding to the bank of
2495 * the TCR being reset.
2497 tcr->raw_tcr = 0;
2498 tcr->mask = 0;
2499 tcr->base_mask = 0xffffc000u;
2502 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2503 uint64_t value)
2505 ARMCPU *cpu = arm_env_get_cpu(env);
2506 TCR *tcr = raw_ptr(env, ri);
2508 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2509 tlb_flush(CPU(cpu));
2510 tcr->raw_tcr = value;
2513 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2514 uint64_t value)
2516 /* 64 bit accesses to the TTBRs can change the ASID and so we
2517 * must flush the TLB.
2519 if (cpreg_field_is_64bit(ri)) {
2520 ARMCPU *cpu = arm_env_get_cpu(env);
2522 tlb_flush(CPU(cpu));
2524 raw_write(env, ri, value);
2527 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2528 uint64_t value)
2530 ARMCPU *cpu = arm_env_get_cpu(env);
2531 CPUState *cs = CPU(cpu);
2533 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
2534 if (raw_read(env, ri) != value) {
2535 tlb_flush_by_mmuidx(cs,
2536 (1 << ARMMMUIdx_S12NSE1) |
2537 (1 << ARMMMUIdx_S12NSE0) |
2538 (1 << ARMMMUIdx_S2NS));
2539 raw_write(env, ri, value);
2543 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
2544 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2545 .access = PL1_RW, .type = ARM_CP_ALIAS,
2546 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
2547 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
2548 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2549 .access = PL1_RW, .resetvalue = 0,
2550 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
2551 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
2552 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
2553 .access = PL1_RW, .resetvalue = 0,
2554 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
2555 offsetof(CPUARMState, cp15.dfar_ns) } },
2556 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
2557 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
2558 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
2559 .resetvalue = 0, },
2560 REGINFO_SENTINEL
2563 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
2564 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
2565 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
2566 .access = PL1_RW,
2567 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
2568 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
2569 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
2570 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2571 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2572 offsetof(CPUARMState, cp15.ttbr0_ns) } },
2573 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
2574 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
2575 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2576 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2577 offsetof(CPUARMState, cp15.ttbr1_ns) } },
2578 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
2579 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2580 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
2581 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
2582 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
2583 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2584 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
2585 .raw_writefn = vmsa_ttbcr_raw_write,
2586 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
2587 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
2588 REGINFO_SENTINEL
2591 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
2592 uint64_t value)
2594 env->cp15.c15_ticonfig = value & 0xe7;
2595 /* The OS_TYPE bit in this register changes the reported CPUID! */
2596 env->cp15.c0_cpuid = (value & (1 << 5)) ?
2597 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
2600 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2601 uint64_t value)
2603 env->cp15.c15_threadid = value & 0xffff;
2606 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
2607 uint64_t value)
2609 /* Wait-for-interrupt (deprecated) */
2610 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
2613 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
2614 uint64_t value)
2616 /* On OMAP there are registers indicating the max/min index of dcache lines
2617 * containing a dirty line; cache flush operations have to reset these.
2619 env->cp15.c15_i_max = 0x000;
2620 env->cp15.c15_i_min = 0xff0;
2623 static const ARMCPRegInfo omap_cp_reginfo[] = {
2624 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
2625 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
2626 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
2627 .resetvalue = 0, },
2628 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2629 .access = PL1_RW, .type = ARM_CP_NOP },
2630 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2631 .access = PL1_RW,
2632 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
2633 .writefn = omap_ticonfig_write },
2634 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
2635 .access = PL1_RW,
2636 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
2637 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
2638 .access = PL1_RW, .resetvalue = 0xff0,
2639 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
2640 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
2641 .access = PL1_RW,
2642 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
2643 .writefn = omap_threadid_write },
2644 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
2645 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2646 .type = ARM_CP_NO_RAW,
2647 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
2648 /* TODO: Peripheral port remap register:
2649 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2650 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2651 * when MMU is off.
2653 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
2654 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
2655 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
2656 .writefn = omap_cachemaint_write },
2657 { .name = "C9", .cp = 15, .crn = 9,
2658 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
2659 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
2660 REGINFO_SENTINEL
2663 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2664 uint64_t value)
2666 env->cp15.c15_cpar = value & 0x3fff;
2669 static const ARMCPRegInfo xscale_cp_reginfo[] = {
2670 { .name = "XSCALE_CPAR",
2671 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2672 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
2673 .writefn = xscale_cpar_write, },
2674 { .name = "XSCALE_AUXCR",
2675 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
2676 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
2677 .resetvalue = 0, },
2678 /* XScale specific cache-lockdown: since we have no cache we NOP these
2679 * and hope the guest does not really rely on cache behaviour.
2681 { .name = "XSCALE_LOCK_ICACHE_LINE",
2682 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2683 .access = PL1_W, .type = ARM_CP_NOP },
2684 { .name = "XSCALE_UNLOCK_ICACHE",
2685 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2686 .access = PL1_W, .type = ARM_CP_NOP },
2687 { .name = "XSCALE_DCACHE_LOCK",
2688 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
2689 .access = PL1_RW, .type = ARM_CP_NOP },
2690 { .name = "XSCALE_UNLOCK_DCACHE",
2691 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
2692 .access = PL1_W, .type = ARM_CP_NOP },
2693 REGINFO_SENTINEL
2696 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2697 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2698 * implementation of this implementation-defined space.
2699 * Ideally this should eventually disappear in favour of actually
2700 * implementing the correct behaviour for all cores.
2702 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2703 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2704 .access = PL1_RW,
2705 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
2706 .resetvalue = 0 },
2707 REGINFO_SENTINEL
2710 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2711 /* Cache status: RAZ because we have no cache so it's always clean */
2712 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
2713 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2714 .resetvalue = 0 },
2715 REGINFO_SENTINEL
2718 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2719 /* We never have a a block transfer operation in progress */
2720 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
2721 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2722 .resetvalue = 0 },
2723 /* The cache ops themselves: these all NOP for QEMU */
2724 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2725 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2726 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2727 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2728 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2729 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2730 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2731 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2732 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2733 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2734 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2735 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2736 REGINFO_SENTINEL
2739 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2740 /* The cache test-and-clean instructions always return (1 << 30)
2741 * to indicate that there are no dirty cache lines.
2743 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
2744 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2745 .resetvalue = (1 << 30) },
2746 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
2747 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2748 .resetvalue = (1 << 30) },
2749 REGINFO_SENTINEL
2752 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2753 /* Ignore ReadBuffer accesses */
2754 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2755 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2756 .access = PL1_RW, .resetvalue = 0,
2757 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
2758 REGINFO_SENTINEL
2761 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2763 ARMCPU *cpu = arm_env_get_cpu(env);
2764 unsigned int cur_el = arm_current_el(env);
2765 bool secure = arm_is_secure(env);
2767 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2768 return env->cp15.vpidr_el2;
2770 return raw_read(env, ri);
2773 static uint64_t mpidr_read_val(CPUARMState *env)
2775 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
2776 uint64_t mpidr = cpu->mp_affinity;
2778 if (arm_feature(env, ARM_FEATURE_V7MP)) {
2779 mpidr |= (1U << 31);
2780 /* Cores which are uniprocessor (non-coherent)
2781 * but still implement the MP extensions set
2782 * bit 30. (For instance, Cortex-R5).
2784 if (cpu->mp_is_up) {
2785 mpidr |= (1u << 30);
2788 return mpidr;
2791 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2793 unsigned int cur_el = arm_current_el(env);
2794 bool secure = arm_is_secure(env);
2796 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2797 return env->cp15.vmpidr_el2;
2799 return mpidr_read_val(env);
2802 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
2803 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
2804 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
2805 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
2806 REGINFO_SENTINEL
2809 static const ARMCPRegInfo lpae_cp_reginfo[] = {
2810 /* NOP AMAIR0/1 */
2811 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
2812 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
2813 .access = PL1_RW, .type = ARM_CP_CONST,
2814 .resetvalue = 0 },
2815 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2816 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
2817 .access = PL1_RW, .type = ARM_CP_CONST,
2818 .resetvalue = 0 },
2819 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
2820 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
2821 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
2822 offsetof(CPUARMState, cp15.par_ns)} },
2823 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
2824 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2825 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2826 offsetof(CPUARMState, cp15.ttbr0_ns) },
2827 .writefn = vmsa_ttbr_write, },
2828 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
2829 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2830 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2831 offsetof(CPUARMState, cp15.ttbr1_ns) },
2832 .writefn = vmsa_ttbr_write, },
2833 REGINFO_SENTINEL
2836 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2838 return vfp_get_fpcr(env);
2841 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2842 uint64_t value)
2844 vfp_set_fpcr(env, value);
2847 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2849 return vfp_get_fpsr(env);
2852 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2853 uint64_t value)
2855 vfp_set_fpsr(env, value);
2858 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
2859 bool isread)
2861 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
2862 return CP_ACCESS_TRAP;
2864 return CP_ACCESS_OK;
2867 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
2868 uint64_t value)
2870 env->daif = value & PSTATE_DAIF;
2873 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
2874 const ARMCPRegInfo *ri,
2875 bool isread)
2877 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2878 * SCTLR_EL1.UCI is set.
2880 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
2881 return CP_ACCESS_TRAP;
2883 return CP_ACCESS_OK;
2886 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2887 * Page D4-1736 (DDI0487A.b)
2890 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2891 uint64_t value)
2893 CPUState *cs = ENV_GET_CPU(env);
2895 if (arm_is_secure_below_el3(env)) {
2896 tlb_flush_by_mmuidx(cs,
2897 (1 << ARMMMUIdx_S1SE1) |
2898 (1 << ARMMMUIdx_S1SE0));
2899 } else {
2900 tlb_flush_by_mmuidx(cs,
2901 (1 << ARMMMUIdx_S12NSE1) |
2902 (1 << ARMMMUIdx_S12NSE0));
2906 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2907 uint64_t value)
2909 CPUState *cs = ENV_GET_CPU(env);
2910 bool sec = arm_is_secure_below_el3(env);
2912 if (sec) {
2913 tlb_flush_by_mmuidx_all_cpus_synced(cs,
2914 (1 << ARMMMUIdx_S1SE1) |
2915 (1 << ARMMMUIdx_S1SE0));
2916 } else {
2917 tlb_flush_by_mmuidx_all_cpus_synced(cs,
2918 (1 << ARMMMUIdx_S12NSE1) |
2919 (1 << ARMMMUIdx_S12NSE0));
2923 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2924 uint64_t value)
2926 /* Note that the 'ALL' scope must invalidate both stage 1 and
2927 * stage 2 translations, whereas most other scopes only invalidate
2928 * stage 1 translations.
2930 ARMCPU *cpu = arm_env_get_cpu(env);
2931 CPUState *cs = CPU(cpu);
2933 if (arm_is_secure_below_el3(env)) {
2934 tlb_flush_by_mmuidx(cs,
2935 (1 << ARMMMUIdx_S1SE1) |
2936 (1 << ARMMMUIdx_S1SE0));
2937 } else {
2938 if (arm_feature(env, ARM_FEATURE_EL2)) {
2939 tlb_flush_by_mmuidx(cs,
2940 (1 << ARMMMUIdx_S12NSE1) |
2941 (1 << ARMMMUIdx_S12NSE0) |
2942 (1 << ARMMMUIdx_S2NS));
2943 } else {
2944 tlb_flush_by_mmuidx(cs,
2945 (1 << ARMMMUIdx_S12NSE1) |
2946 (1 << ARMMMUIdx_S12NSE0));
2951 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
2952 uint64_t value)
2954 ARMCPU *cpu = arm_env_get_cpu(env);
2955 CPUState *cs = CPU(cpu);
2957 tlb_flush_by_mmuidx(cs, (1 << ARMMMUIdx_S1E2));
2960 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
2961 uint64_t value)
2963 ARMCPU *cpu = arm_env_get_cpu(env);
2964 CPUState *cs = CPU(cpu);
2966 tlb_flush_by_mmuidx(cs, (1 << ARMMMUIdx_S1E3));
2969 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2970 uint64_t value)
2972 /* Note that the 'ALL' scope must invalidate both stage 1 and
2973 * stage 2 translations, whereas most other scopes only invalidate
2974 * stage 1 translations.
2976 CPUState *cs = ENV_GET_CPU(env);
2977 bool sec = arm_is_secure_below_el3(env);
2978 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
2980 if (sec) {
2981 tlb_flush_by_mmuidx_all_cpus_synced(cs,
2982 (1 << ARMMMUIdx_S1SE1) |
2983 (1 << ARMMMUIdx_S1SE0));
2984 } else if (has_el2) {
2985 tlb_flush_by_mmuidx_all_cpus_synced(cs,
2986 (1 << ARMMMUIdx_S12NSE1) |
2987 (1 << ARMMMUIdx_S12NSE0) |
2988 (1 << ARMMMUIdx_S2NS));
2989 } else {
2990 tlb_flush_by_mmuidx_all_cpus_synced(cs,
2991 (1 << ARMMMUIdx_S12NSE1) |
2992 (1 << ARMMMUIdx_S12NSE0));
2996 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2997 uint64_t value)
2999 CPUState *cs = ENV_GET_CPU(env);
3001 tlb_flush_by_mmuidx_all_cpus_synced(cs, (1 << ARMMMUIdx_S1E2));
3004 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3005 uint64_t value)
3007 CPUState *cs = ENV_GET_CPU(env);
3009 tlb_flush_by_mmuidx_all_cpus_synced(cs, (1 << ARMMMUIdx_S1E3));
3012 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3013 uint64_t value)
3015 /* Invalidate by VA, EL1&0 (AArch64 version).
3016 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
3017 * since we don't support flush-for-specific-ASID-only or
3018 * flush-last-level-only.
3020 ARMCPU *cpu = arm_env_get_cpu(env);
3021 CPUState *cs = CPU(cpu);
3022 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3024 if (arm_is_secure_below_el3(env)) {
3025 tlb_flush_page_by_mmuidx(cs, pageaddr,
3026 (1 << ARMMMUIdx_S1SE1) |
3027 (1 << ARMMMUIdx_S1SE0));
3028 } else {
3029 tlb_flush_page_by_mmuidx(cs, pageaddr,
3030 (1 << ARMMMUIdx_S12NSE1) |
3031 (1 << ARMMMUIdx_S12NSE0));
3035 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3036 uint64_t value)
3038 /* Invalidate by VA, EL2
3039 * Currently handles both VAE2 and VALE2, since we don't support
3040 * flush-last-level-only.
3042 ARMCPU *cpu = arm_env_get_cpu(env);
3043 CPUState *cs = CPU(cpu);
3044 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3046 tlb_flush_page_by_mmuidx(cs, pageaddr, (1 << ARMMMUIdx_S1E2));
3049 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3050 uint64_t value)
3052 /* Invalidate by VA, EL3
3053 * Currently handles both VAE3 and VALE3, since we don't support
3054 * flush-last-level-only.
3056 ARMCPU *cpu = arm_env_get_cpu(env);
3057 CPUState *cs = CPU(cpu);
3058 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3060 tlb_flush_page_by_mmuidx(cs, pageaddr, (1 << ARMMMUIdx_S1E3));
3063 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3064 uint64_t value)
3066 ARMCPU *cpu = arm_env_get_cpu(env);
3067 CPUState *cs = CPU(cpu);
3068 bool sec = arm_is_secure_below_el3(env);
3069 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3071 if (sec) {
3072 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3073 (1 << ARMMMUIdx_S1SE1) |
3074 (1 << ARMMMUIdx_S1SE0));
3075 } else {
3076 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3077 (1 << ARMMMUIdx_S12NSE1) |
3078 (1 << ARMMMUIdx_S12NSE0));
3082 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3083 uint64_t value)
3085 CPUState *cs = ENV_GET_CPU(env);
3086 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3088 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3089 (1 << ARMMMUIdx_S1E2));
3092 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3093 uint64_t value)
3095 CPUState *cs = ENV_GET_CPU(env);
3096 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3098 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3099 (1 << ARMMMUIdx_S1E3));
3102 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3103 uint64_t value)
3105 /* Invalidate by IPA. This has to invalidate any structures that
3106 * contain only stage 2 translation information, but does not need
3107 * to apply to structures that contain combined stage 1 and stage 2
3108 * translation information.
3109 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
3111 ARMCPU *cpu = arm_env_get_cpu(env);
3112 CPUState *cs = CPU(cpu);
3113 uint64_t pageaddr;
3115 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3116 return;
3119 pageaddr = sextract64(value << 12, 0, 48);
3121 tlb_flush_page_by_mmuidx(cs, pageaddr, (1 << ARMMMUIdx_S2NS));
3124 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3125 uint64_t value)
3127 CPUState *cs = ENV_GET_CPU(env);
3128 uint64_t pageaddr;
3130 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3131 return;
3134 pageaddr = sextract64(value << 12, 0, 48);
3136 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3137 (1 << ARMMMUIdx_S2NS));
3140 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
3141 bool isread)
3143 /* We don't implement EL2, so the only control on DC ZVA is the
3144 * bit in the SCTLR which can prohibit access for EL0.
3146 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
3147 return CP_ACCESS_TRAP;
3149 return CP_ACCESS_OK;
3152 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
3154 ARMCPU *cpu = arm_env_get_cpu(env);
3155 int dzp_bit = 1 << 4;
3157 /* DZP indicates whether DC ZVA access is allowed */
3158 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
3159 dzp_bit = 0;
3161 return cpu->dcz_blocksize | dzp_bit;
3164 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
3165 bool isread)
3167 if (!(env->pstate & PSTATE_SP)) {
3168 /* Access to SP_EL0 is undefined if it's being used as
3169 * the stack pointer.
3171 return CP_ACCESS_TRAP_UNCATEGORIZED;
3173 return CP_ACCESS_OK;
3176 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
3178 return env->pstate & PSTATE_SP;
3181 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
3183 update_spsel(env, val);
3186 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3187 uint64_t value)
3189 ARMCPU *cpu = arm_env_get_cpu(env);
3191 if (raw_read(env, ri) == value) {
3192 /* Skip the TLB flush if nothing actually changed; Linux likes
3193 * to do a lot of pointless SCTLR writes.
3195 return;
3198 raw_write(env, ri, value);
3199 /* ??? Lots of these bits are not implemented. */
3200 /* This may enable/disable the MMU, so do a TLB flush. */
3201 tlb_flush(CPU(cpu));
3204 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
3205 bool isread)
3207 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
3208 return CP_ACCESS_TRAP_FP_EL2;
3210 if (env->cp15.cptr_el[3] & CPTR_TFP) {
3211 return CP_ACCESS_TRAP_FP_EL3;
3213 return CP_ACCESS_OK;
3216 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3217 uint64_t value)
3219 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
3222 static const ARMCPRegInfo v8_cp_reginfo[] = {
3223 /* Minimal set of EL0-visible registers. This will need to be expanded
3224 * significantly for system emulation of AArch64 CPUs.
3226 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
3227 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
3228 .access = PL0_RW, .type = ARM_CP_NZCV },
3229 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
3230 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
3231 .type = ARM_CP_NO_RAW,
3232 .access = PL0_RW, .accessfn = aa64_daif_access,
3233 .fieldoffset = offsetof(CPUARMState, daif),
3234 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
3235 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
3236 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
3237 .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
3238 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
3239 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
3240 .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
3241 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
3242 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
3243 .access = PL0_R, .type = ARM_CP_NO_RAW,
3244 .readfn = aa64_dczid_read },
3245 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
3246 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
3247 .access = PL0_W, .type = ARM_CP_DC_ZVA,
3248 #ifndef CONFIG_USER_ONLY
3249 /* Avoid overhead of an access check that always passes in user-mode */
3250 .accessfn = aa64_zva_access,
3251 #endif
3253 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
3254 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
3255 .access = PL1_R, .type = ARM_CP_CURRENTEL },
3256 /* Cache ops: all NOPs since we don't emulate caches */
3257 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
3258 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3259 .access = PL1_W, .type = ARM_CP_NOP },
3260 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
3261 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3262 .access = PL1_W, .type = ARM_CP_NOP },
3263 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
3264 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
3265 .access = PL0_W, .type = ARM_CP_NOP,
3266 .accessfn = aa64_cacheop_access },
3267 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
3268 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3269 .access = PL1_W, .type = ARM_CP_NOP },
3270 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
3271 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3272 .access = PL1_W, .type = ARM_CP_NOP },
3273 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
3274 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
3275 .access = PL0_W, .type = ARM_CP_NOP,
3276 .accessfn = aa64_cacheop_access },
3277 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
3278 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3279 .access = PL1_W, .type = ARM_CP_NOP },
3280 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
3281 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
3282 .access = PL0_W, .type = ARM_CP_NOP,
3283 .accessfn = aa64_cacheop_access },
3284 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
3285 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
3286 .access = PL0_W, .type = ARM_CP_NOP,
3287 .accessfn = aa64_cacheop_access },
3288 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
3289 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3290 .access = PL1_W, .type = ARM_CP_NOP },
3291 /* TLBI operations */
3292 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
3293 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
3294 .access = PL1_W, .type = ARM_CP_NO_RAW,
3295 .writefn = tlbi_aa64_vmalle1is_write },
3296 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
3297 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
3298 .access = PL1_W, .type = ARM_CP_NO_RAW,
3299 .writefn = tlbi_aa64_vae1is_write },
3300 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
3301 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
3302 .access = PL1_W, .type = ARM_CP_NO_RAW,
3303 .writefn = tlbi_aa64_vmalle1is_write },
3304 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
3305 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
3306 .access = PL1_W, .type = ARM_CP_NO_RAW,
3307 .writefn = tlbi_aa64_vae1is_write },
3308 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
3309 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3310 .access = PL1_W, .type = ARM_CP_NO_RAW,
3311 .writefn = tlbi_aa64_vae1is_write },
3312 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
3313 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3314 .access = PL1_W, .type = ARM_CP_NO_RAW,
3315 .writefn = tlbi_aa64_vae1is_write },
3316 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
3317 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
3318 .access = PL1_W, .type = ARM_CP_NO_RAW,
3319 .writefn = tlbi_aa64_vmalle1_write },
3320 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
3321 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
3322 .access = PL1_W, .type = ARM_CP_NO_RAW,
3323 .writefn = tlbi_aa64_vae1_write },
3324 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
3325 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
3326 .access = PL1_W, .type = ARM_CP_NO_RAW,
3327 .writefn = tlbi_aa64_vmalle1_write },
3328 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
3329 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
3330 .access = PL1_W, .type = ARM_CP_NO_RAW,
3331 .writefn = tlbi_aa64_vae1_write },
3332 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
3333 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3334 .access = PL1_W, .type = ARM_CP_NO_RAW,
3335 .writefn = tlbi_aa64_vae1_write },
3336 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
3337 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3338 .access = PL1_W, .type = ARM_CP_NO_RAW,
3339 .writefn = tlbi_aa64_vae1_write },
3340 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
3341 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3342 .access = PL2_W, .type = ARM_CP_NO_RAW,
3343 .writefn = tlbi_aa64_ipas2e1is_write },
3344 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
3345 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3346 .access = PL2_W, .type = ARM_CP_NO_RAW,
3347 .writefn = tlbi_aa64_ipas2e1is_write },
3348 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
3349 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3350 .access = PL2_W, .type = ARM_CP_NO_RAW,
3351 .writefn = tlbi_aa64_alle1is_write },
3352 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
3353 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
3354 .access = PL2_W, .type = ARM_CP_NO_RAW,
3355 .writefn = tlbi_aa64_alle1is_write },
3356 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
3357 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3358 .access = PL2_W, .type = ARM_CP_NO_RAW,
3359 .writefn = tlbi_aa64_ipas2e1_write },
3360 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
3361 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3362 .access = PL2_W, .type = ARM_CP_NO_RAW,
3363 .writefn = tlbi_aa64_ipas2e1_write },
3364 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
3365 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3366 .access = PL2_W, .type = ARM_CP_NO_RAW,
3367 .writefn = tlbi_aa64_alle1_write },
3368 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
3369 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
3370 .access = PL2_W, .type = ARM_CP_NO_RAW,
3371 .writefn = tlbi_aa64_alle1is_write },
3372 #ifndef CONFIG_USER_ONLY
3373 /* 64 bit address translation operations */
3374 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
3375 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
3376 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3377 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
3378 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
3379 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3380 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
3381 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
3382 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3383 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
3384 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
3385 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3386 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
3387 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
3388 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3389 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
3390 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
3391 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3392 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
3393 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
3394 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3395 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
3396 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
3397 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3398 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3399 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
3400 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
3401 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3402 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
3403 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
3404 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3405 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
3406 .type = ARM_CP_ALIAS,
3407 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
3408 .access = PL1_RW, .resetvalue = 0,
3409 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
3410 .writefn = par_write },
3411 #endif
3412 /* TLB invalidate last level of translation table walk */
3413 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3414 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
3415 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3416 .type = ARM_CP_NO_RAW, .access = PL1_W,
3417 .writefn = tlbimvaa_is_write },
3418 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3419 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
3420 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3421 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
3422 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3423 .type = ARM_CP_NO_RAW, .access = PL2_W,
3424 .writefn = tlbimva_hyp_write },
3425 { .name = "TLBIMVALHIS",
3426 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3427 .type = ARM_CP_NO_RAW, .access = PL2_W,
3428 .writefn = tlbimva_hyp_is_write },
3429 { .name = "TLBIIPAS2",
3430 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3431 .type = ARM_CP_NO_RAW, .access = PL2_W,
3432 .writefn = tlbiipas2_write },
3433 { .name = "TLBIIPAS2IS",
3434 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3435 .type = ARM_CP_NO_RAW, .access = PL2_W,
3436 .writefn = tlbiipas2_is_write },
3437 { .name = "TLBIIPAS2L",
3438 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3439 .type = ARM_CP_NO_RAW, .access = PL2_W,
3440 .writefn = tlbiipas2_write },
3441 { .name = "TLBIIPAS2LIS",
3442 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3443 .type = ARM_CP_NO_RAW, .access = PL2_W,
3444 .writefn = tlbiipas2_is_write },
3445 /* 32 bit cache operations */
3446 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3447 .type = ARM_CP_NOP, .access = PL1_W },
3448 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
3449 .type = ARM_CP_NOP, .access = PL1_W },
3450 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3451 .type = ARM_CP_NOP, .access = PL1_W },
3452 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
3453 .type = ARM_CP_NOP, .access = PL1_W },
3454 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
3455 .type = ARM_CP_NOP, .access = PL1_W },
3456 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
3457 .type = ARM_CP_NOP, .access = PL1_W },
3458 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3459 .type = ARM_CP_NOP, .access = PL1_W },
3460 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3461 .type = ARM_CP_NOP, .access = PL1_W },
3462 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
3463 .type = ARM_CP_NOP, .access = PL1_W },
3464 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3465 .type = ARM_CP_NOP, .access = PL1_W },
3466 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
3467 .type = ARM_CP_NOP, .access = PL1_W },
3468 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
3469 .type = ARM_CP_NOP, .access = PL1_W },
3470 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3471 .type = ARM_CP_NOP, .access = PL1_W },
3472 /* MMU Domain access control / MPU write buffer control */
3473 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
3474 .access = PL1_RW, .resetvalue = 0,
3475 .writefn = dacr_write, .raw_writefn = raw_write,
3476 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
3477 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
3478 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
3479 .type = ARM_CP_ALIAS,
3480 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
3481 .access = PL1_RW,
3482 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
3483 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
3484 .type = ARM_CP_ALIAS,
3485 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
3486 .access = PL1_RW,
3487 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
3488 /* We rely on the access checks not allowing the guest to write to the
3489 * state field when SPSel indicates that it's being used as the stack
3490 * pointer.
3492 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
3493 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
3494 .access = PL1_RW, .accessfn = sp_el0_access,
3495 .type = ARM_CP_ALIAS,
3496 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
3497 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
3498 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
3499 .access = PL2_RW, .type = ARM_CP_ALIAS,
3500 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
3501 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
3502 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
3503 .type = ARM_CP_NO_RAW,
3504 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
3505 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
3506 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
3507 .type = ARM_CP_ALIAS,
3508 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
3509 .access = PL2_RW, .accessfn = fpexc32_access },
3510 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
3511 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
3512 .access = PL2_RW, .resetvalue = 0,
3513 .writefn = dacr_write, .raw_writefn = raw_write,
3514 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
3515 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
3516 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
3517 .access = PL2_RW, .resetvalue = 0,
3518 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
3519 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
3520 .type = ARM_CP_ALIAS,
3521 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
3522 .access = PL2_RW,
3523 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
3524 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
3525 .type = ARM_CP_ALIAS,
3526 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
3527 .access = PL2_RW,
3528 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
3529 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
3530 .type = ARM_CP_ALIAS,
3531 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
3532 .access = PL2_RW,
3533 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
3534 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
3535 .type = ARM_CP_ALIAS,
3536 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
3537 .access = PL2_RW,
3538 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
3539 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
3540 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
3541 .resetvalue = 0,
3542 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
3543 { .name = "SDCR", .type = ARM_CP_ALIAS,
3544 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
3545 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3546 .writefn = sdcr_write,
3547 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
3548 REGINFO_SENTINEL
3551 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
3552 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
3553 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3554 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3555 .access = PL2_RW,
3556 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3557 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3558 .type = ARM_CP_NO_RAW,
3559 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3560 .access = PL2_RW,
3561 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3562 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3563 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3564 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3565 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3566 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3567 .access = PL2_RW, .type = ARM_CP_CONST,
3568 .resetvalue = 0 },
3569 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3570 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3571 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3572 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3573 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3574 .access = PL2_RW, .type = ARM_CP_CONST,
3575 .resetvalue = 0 },
3576 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3577 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3578 .access = PL2_RW, .type = ARM_CP_CONST,
3579 .resetvalue = 0 },
3580 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3581 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3582 .access = PL2_RW, .type = ARM_CP_CONST,
3583 .resetvalue = 0 },
3584 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3585 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3586 .access = PL2_RW, .type = ARM_CP_CONST,
3587 .resetvalue = 0 },
3588 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3589 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3590 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3591 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
3592 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3593 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3594 .type = ARM_CP_CONST, .resetvalue = 0 },
3595 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3596 .cp = 15, .opc1 = 6, .crm = 2,
3597 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3598 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
3599 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3600 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3601 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3602 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3603 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3604 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3605 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3606 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3607 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3608 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3609 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3610 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3611 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3612 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3613 .resetvalue = 0 },
3614 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3615 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3616 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3617 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3618 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3619 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3620 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3621 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3622 .resetvalue = 0 },
3623 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3624 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3625 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3626 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3627 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3628 .resetvalue = 0 },
3629 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3630 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3631 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3632 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3633 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3634 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3635 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3636 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3637 .access = PL2_RW, .accessfn = access_tda,
3638 .type = ARM_CP_CONST, .resetvalue = 0 },
3639 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
3640 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3641 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3642 .type = ARM_CP_CONST, .resetvalue = 0 },
3643 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3644 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3645 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3646 REGINFO_SENTINEL
3649 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3651 ARMCPU *cpu = arm_env_get_cpu(env);
3652 uint64_t valid_mask = HCR_MASK;
3654 if (arm_feature(env, ARM_FEATURE_EL3)) {
3655 valid_mask &= ~HCR_HCD;
3656 } else {
3657 valid_mask &= ~HCR_TSC;
3660 /* Clear RES0 bits. */
3661 value &= valid_mask;
3663 /* These bits change the MMU setup:
3664 * HCR_VM enables stage 2 translation
3665 * HCR_PTW forbids certain page-table setups
3666 * HCR_DC Disables stage1 and enables stage2 translation
3668 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
3669 tlb_flush(CPU(cpu));
3671 raw_write(env, ri, value);
3674 static const ARMCPRegInfo el2_cp_reginfo[] = {
3675 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3676 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3677 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
3678 .writefn = hcr_write },
3679 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
3680 .type = ARM_CP_ALIAS,
3681 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
3682 .access = PL2_RW,
3683 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
3684 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
3685 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
3686 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
3687 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
3688 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
3689 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
3690 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
3691 .type = ARM_CP_ALIAS,
3692 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
3693 .access = PL2_RW,
3694 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
3695 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3696 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3697 .access = PL2_RW, .writefn = vbar_write,
3698 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
3699 .resetvalue = 0 },
3700 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
3701 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
3702 .access = PL3_RW, .type = ARM_CP_ALIAS,
3703 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
3704 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3705 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3706 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
3707 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
3708 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3709 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3710 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
3711 .resetvalue = 0 },
3712 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3713 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3714 .access = PL2_RW, .type = ARM_CP_ALIAS,
3715 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
3716 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3717 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3718 .access = PL2_RW, .type = ARM_CP_CONST,
3719 .resetvalue = 0 },
3720 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3721 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3722 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3723 .access = PL2_RW, .type = ARM_CP_CONST,
3724 .resetvalue = 0 },
3725 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3726 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3727 .access = PL2_RW, .type = ARM_CP_CONST,
3728 .resetvalue = 0 },
3729 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3730 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3731 .access = PL2_RW, .type = ARM_CP_CONST,
3732 .resetvalue = 0 },
3733 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3734 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3735 .access = PL2_RW,
3736 /* no .writefn needed as this can't cause an ASID change;
3737 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3739 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
3740 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
3741 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3742 .type = ARM_CP_ALIAS,
3743 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3744 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3745 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
3746 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3747 .access = PL2_RW,
3748 /* no .writefn needed as this can't cause an ASID change;
3749 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3751 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3752 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3753 .cp = 15, .opc1 = 6, .crm = 2,
3754 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3755 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3756 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
3757 .writefn = vttbr_write },
3758 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3759 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3760 .access = PL2_RW, .writefn = vttbr_write,
3761 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
3762 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3763 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3764 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3765 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
3766 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3767 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3768 .access = PL2_RW, .resetvalue = 0,
3769 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
3770 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3771 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3772 .access = PL2_RW, .resetvalue = 0,
3773 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3774 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3775 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3776 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3777 { .name = "TLBIALLNSNH",
3778 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3779 .type = ARM_CP_NO_RAW, .access = PL2_W,
3780 .writefn = tlbiall_nsnh_write },
3781 { .name = "TLBIALLNSNHIS",
3782 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3783 .type = ARM_CP_NO_RAW, .access = PL2_W,
3784 .writefn = tlbiall_nsnh_is_write },
3785 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3786 .type = ARM_CP_NO_RAW, .access = PL2_W,
3787 .writefn = tlbiall_hyp_write },
3788 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3789 .type = ARM_CP_NO_RAW, .access = PL2_W,
3790 .writefn = tlbiall_hyp_is_write },
3791 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3792 .type = ARM_CP_NO_RAW, .access = PL2_W,
3793 .writefn = tlbimva_hyp_write },
3794 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3795 .type = ARM_CP_NO_RAW, .access = PL2_W,
3796 .writefn = tlbimva_hyp_is_write },
3797 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
3798 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3799 .type = ARM_CP_NO_RAW, .access = PL2_W,
3800 .writefn = tlbi_aa64_alle2_write },
3801 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
3802 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3803 .type = ARM_CP_NO_RAW, .access = PL2_W,
3804 .writefn = tlbi_aa64_vae2_write },
3805 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
3806 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3807 .access = PL2_W, .type = ARM_CP_NO_RAW,
3808 .writefn = tlbi_aa64_vae2_write },
3809 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
3810 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3811 .access = PL2_W, .type = ARM_CP_NO_RAW,
3812 .writefn = tlbi_aa64_alle2is_write },
3813 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
3814 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3815 .type = ARM_CP_NO_RAW, .access = PL2_W,
3816 .writefn = tlbi_aa64_vae2is_write },
3817 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
3818 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3819 .access = PL2_W, .type = ARM_CP_NO_RAW,
3820 .writefn = tlbi_aa64_vae2is_write },
3821 #ifndef CONFIG_USER_ONLY
3822 /* Unlike the other EL2-related AT operations, these must
3823 * UNDEF from EL3 if EL2 is not implemented, which is why we
3824 * define them here rather than with the rest of the AT ops.
3826 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
3827 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3828 .access = PL2_W, .accessfn = at_s1e2_access,
3829 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3830 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
3831 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3832 .access = PL2_W, .accessfn = at_s1e2_access,
3833 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3834 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
3835 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
3836 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
3837 * to behave as if SCR.NS was 1.
3839 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3840 .access = PL2_W,
3841 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3842 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3843 .access = PL2_W,
3844 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3845 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3846 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3847 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
3848 * reset values as IMPDEF. We choose to reset to 3 to comply with
3849 * both ARMv7 and ARMv8.
3851 .access = PL2_RW, .resetvalue = 3,
3852 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
3853 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3854 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3855 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
3856 .writefn = gt_cntvoff_write,
3857 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3858 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3859 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
3860 .writefn = gt_cntvoff_write,
3861 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3862 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3863 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3864 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3865 .type = ARM_CP_IO, .access = PL2_RW,
3866 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3867 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3868 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3869 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
3870 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3871 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3872 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3873 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
3874 .resetfn = gt_hyp_timer_reset,
3875 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
3876 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3877 .type = ARM_CP_IO,
3878 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3879 .access = PL2_RW,
3880 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
3881 .resetvalue = 0,
3882 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
3883 #endif
3884 /* The only field of MDCR_EL2 that has a defined architectural reset value
3885 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
3886 * don't impelment any PMU event counters, so using zero as a reset
3887 * value for MDCR_EL2 is okay
3889 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3890 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3891 .access = PL2_RW, .resetvalue = 0,
3892 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
3893 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
3894 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3895 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3896 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3897 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
3898 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3899 .access = PL2_RW,
3900 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3901 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3902 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3903 .access = PL2_RW,
3904 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
3905 REGINFO_SENTINEL
3908 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
3909 bool isread)
3911 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
3912 * At Secure EL1 it traps to EL3.
3914 if (arm_current_el(env) == 3) {
3915 return CP_ACCESS_OK;
3917 if (arm_is_secure_below_el3(env)) {
3918 return CP_ACCESS_TRAP_EL3;
3920 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
3921 if (isread) {
3922 return CP_ACCESS_OK;
3924 return CP_ACCESS_TRAP_UNCATEGORIZED;
3927 static const ARMCPRegInfo el3_cp_reginfo[] = {
3928 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
3929 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
3930 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
3931 .resetvalue = 0, .writefn = scr_write },
3932 { .name = "SCR", .type = ARM_CP_ALIAS,
3933 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
3934 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3935 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
3936 .writefn = scr_write },
3937 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
3938 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
3939 .access = PL3_RW, .resetvalue = 0,
3940 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
3941 { .name = "SDER",
3942 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
3943 .access = PL3_RW, .resetvalue = 0,
3944 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
3945 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
3946 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3947 .writefn = vbar_write, .resetvalue = 0,
3948 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
3949 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
3950 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
3951 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3952 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
3953 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
3954 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
3955 .access = PL3_RW,
3956 /* no .writefn needed as this can't cause an ASID change;
3957 * we must provide a .raw_writefn and .resetfn because we handle
3958 * reset and migration for the AArch32 TTBCR(S), which might be
3959 * using mask and base_mask.
3961 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
3962 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
3963 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
3964 .type = ARM_CP_ALIAS,
3965 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
3966 .access = PL3_RW,
3967 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
3968 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
3969 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
3970 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
3971 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
3972 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
3973 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
3974 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
3975 .type = ARM_CP_ALIAS,
3976 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
3977 .access = PL3_RW,
3978 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
3979 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
3980 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
3981 .access = PL3_RW, .writefn = vbar_write,
3982 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
3983 .resetvalue = 0 },
3984 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
3985 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
3986 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
3987 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
3988 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
3989 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
3990 .access = PL3_RW, .resetvalue = 0,
3991 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
3992 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
3993 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
3994 .access = PL3_RW, .type = ARM_CP_CONST,
3995 .resetvalue = 0 },
3996 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
3997 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
3998 .access = PL3_RW, .type = ARM_CP_CONST,
3999 .resetvalue = 0 },
4000 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
4001 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
4002 .access = PL3_RW, .type = ARM_CP_CONST,
4003 .resetvalue = 0 },
4004 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
4005 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
4006 .access = PL3_W, .type = ARM_CP_NO_RAW,
4007 .writefn = tlbi_aa64_alle3is_write },
4008 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
4009 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
4010 .access = PL3_W, .type = ARM_CP_NO_RAW,
4011 .writefn = tlbi_aa64_vae3is_write },
4012 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
4013 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
4014 .access = PL3_W, .type = ARM_CP_NO_RAW,
4015 .writefn = tlbi_aa64_vae3is_write },
4016 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
4017 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
4018 .access = PL3_W, .type = ARM_CP_NO_RAW,
4019 .writefn = tlbi_aa64_alle3_write },
4020 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
4021 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
4022 .access = PL3_W, .type = ARM_CP_NO_RAW,
4023 .writefn = tlbi_aa64_vae3_write },
4024 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
4025 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
4026 .access = PL3_W, .type = ARM_CP_NO_RAW,
4027 .writefn = tlbi_aa64_vae3_write },
4028 REGINFO_SENTINEL
4031 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4032 bool isread)
4034 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
4035 * but the AArch32 CTR has its own reginfo struct)
4037 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
4038 return CP_ACCESS_TRAP;
4040 return CP_ACCESS_OK;
4043 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4044 uint64_t value)
4046 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
4047 * read via a bit in OSLSR_EL1.
4049 int oslock;
4051 if (ri->state == ARM_CP_STATE_AA32) {
4052 oslock = (value == 0xC5ACCE55);
4053 } else {
4054 oslock = value & 1;
4057 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
4060 static const ARMCPRegInfo debug_cp_reginfo[] = {
4061 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
4062 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
4063 * unlike DBGDRAR it is never accessible from EL0.
4064 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
4065 * accessor.
4067 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
4068 .access = PL0_R, .accessfn = access_tdra,
4069 .type = ARM_CP_CONST, .resetvalue = 0 },
4070 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
4071 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
4072 .access = PL1_R, .accessfn = access_tdra,
4073 .type = ARM_CP_CONST, .resetvalue = 0 },
4074 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4075 .access = PL0_R, .accessfn = access_tdra,
4076 .type = ARM_CP_CONST, .resetvalue = 0 },
4077 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
4078 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
4079 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4080 .access = PL1_RW, .accessfn = access_tda,
4081 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
4082 .resetvalue = 0 },
4083 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
4084 * We don't implement the configurable EL0 access.
4086 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
4087 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4088 .type = ARM_CP_ALIAS,
4089 .access = PL1_R, .accessfn = access_tda,
4090 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
4091 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
4092 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
4093 .access = PL1_W, .type = ARM_CP_NO_RAW,
4094 .accessfn = access_tdosa,
4095 .writefn = oslar_write },
4096 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
4097 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
4098 .access = PL1_R, .resetvalue = 10,
4099 .accessfn = access_tdosa,
4100 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
4101 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
4102 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
4103 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
4104 .access = PL1_RW, .accessfn = access_tdosa,
4105 .type = ARM_CP_NOP },
4106 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
4107 * implement vector catch debug events yet.
4109 { .name = "DBGVCR",
4110 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4111 .access = PL1_RW, .accessfn = access_tda,
4112 .type = ARM_CP_NOP },
4113 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
4114 * to save and restore a 32-bit guest's DBGVCR)
4116 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
4117 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
4118 .access = PL2_RW, .accessfn = access_tda,
4119 .type = ARM_CP_NOP },
4120 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
4121 * Channel but Linux may try to access this register. The 32-bit
4122 * alias is DBGDCCINT.
4124 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
4125 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4126 .access = PL1_RW, .accessfn = access_tda,
4127 .type = ARM_CP_NOP },
4128 REGINFO_SENTINEL
4131 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
4132 /* 64 bit access versions of the (dummy) debug registers */
4133 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
4134 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4135 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
4136 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4137 REGINFO_SENTINEL
4140 void hw_watchpoint_update(ARMCPU *cpu, int n)
4142 CPUARMState *env = &cpu->env;
4143 vaddr len = 0;
4144 vaddr wvr = env->cp15.dbgwvr[n];
4145 uint64_t wcr = env->cp15.dbgwcr[n];
4146 int mask;
4147 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
4149 if (env->cpu_watchpoint[n]) {
4150 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
4151 env->cpu_watchpoint[n] = NULL;
4154 if (!extract64(wcr, 0, 1)) {
4155 /* E bit clear : watchpoint disabled */
4156 return;
4159 switch (extract64(wcr, 3, 2)) {
4160 case 0:
4161 /* LSC 00 is reserved and must behave as if the wp is disabled */
4162 return;
4163 case 1:
4164 flags |= BP_MEM_READ;
4165 break;
4166 case 2:
4167 flags |= BP_MEM_WRITE;
4168 break;
4169 case 3:
4170 flags |= BP_MEM_ACCESS;
4171 break;
4174 /* Attempts to use both MASK and BAS fields simultaneously are
4175 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
4176 * thus generating a watchpoint for every byte in the masked region.
4178 mask = extract64(wcr, 24, 4);
4179 if (mask == 1 || mask == 2) {
4180 /* Reserved values of MASK; we must act as if the mask value was
4181 * some non-reserved value, or as if the watchpoint were disabled.
4182 * We choose the latter.
4184 return;
4185 } else if (mask) {
4186 /* Watchpoint covers an aligned area up to 2GB in size */
4187 len = 1ULL << mask;
4188 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
4189 * whether the watchpoint fires when the unmasked bits match; we opt
4190 * to generate the exceptions.
4192 wvr &= ~(len - 1);
4193 } else {
4194 /* Watchpoint covers bytes defined by the byte address select bits */
4195 int bas = extract64(wcr, 5, 8);
4196 int basstart;
4198 if (bas == 0) {
4199 /* This must act as if the watchpoint is disabled */
4200 return;
4203 if (extract64(wvr, 2, 1)) {
4204 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
4205 * ignored, and BAS[3:0] define which bytes to watch.
4207 bas &= 0xf;
4209 /* The BAS bits are supposed to be programmed to indicate a contiguous
4210 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
4211 * we fire for each byte in the word/doubleword addressed by the WVR.
4212 * We choose to ignore any non-zero bits after the first range of 1s.
4214 basstart = ctz32(bas);
4215 len = cto32(bas >> basstart);
4216 wvr += basstart;
4219 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
4220 &env->cpu_watchpoint[n]);
4223 void hw_watchpoint_update_all(ARMCPU *cpu)
4225 int i;
4226 CPUARMState *env = &cpu->env;
4228 /* Completely clear out existing QEMU watchpoints and our array, to
4229 * avoid possible stale entries following migration load.
4231 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
4232 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
4234 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
4235 hw_watchpoint_update(cpu, i);
4239 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4240 uint64_t value)
4242 ARMCPU *cpu = arm_env_get_cpu(env);
4243 int i = ri->crm;
4245 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
4246 * register reads and behaves as if values written are sign extended.
4247 * Bits [1:0] are RES0.
4249 value = sextract64(value, 0, 49) & ~3ULL;
4251 raw_write(env, ri, value);
4252 hw_watchpoint_update(cpu, i);
4255 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4256 uint64_t value)
4258 ARMCPU *cpu = arm_env_get_cpu(env);
4259 int i = ri->crm;
4261 raw_write(env, ri, value);
4262 hw_watchpoint_update(cpu, i);
4265 void hw_breakpoint_update(ARMCPU *cpu, int n)
4267 CPUARMState *env = &cpu->env;
4268 uint64_t bvr = env->cp15.dbgbvr[n];
4269 uint64_t bcr = env->cp15.dbgbcr[n];
4270 vaddr addr;
4271 int bt;
4272 int flags = BP_CPU;
4274 if (env->cpu_breakpoint[n]) {
4275 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
4276 env->cpu_breakpoint[n] = NULL;
4279 if (!extract64(bcr, 0, 1)) {
4280 /* E bit clear : watchpoint disabled */
4281 return;
4284 bt = extract64(bcr, 20, 4);
4286 switch (bt) {
4287 case 4: /* unlinked address mismatch (reserved if AArch64) */
4288 case 5: /* linked address mismatch (reserved if AArch64) */
4289 qemu_log_mask(LOG_UNIMP,
4290 "arm: address mismatch breakpoint types not implemented");
4291 return;
4292 case 0: /* unlinked address match */
4293 case 1: /* linked address match */
4295 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
4296 * we behave as if the register was sign extended. Bits [1:0] are
4297 * RES0. The BAS field is used to allow setting breakpoints on 16
4298 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
4299 * a bp will fire if the addresses covered by the bp and the addresses
4300 * covered by the insn overlap but the insn doesn't start at the
4301 * start of the bp address range. We choose to require the insn and
4302 * the bp to have the same address. The constraints on writing to
4303 * BAS enforced in dbgbcr_write mean we have only four cases:
4304 * 0b0000 => no breakpoint
4305 * 0b0011 => breakpoint on addr
4306 * 0b1100 => breakpoint on addr + 2
4307 * 0b1111 => breakpoint on addr
4308 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
4310 int bas = extract64(bcr, 5, 4);
4311 addr = sextract64(bvr, 0, 49) & ~3ULL;
4312 if (bas == 0) {
4313 return;
4315 if (bas == 0xc) {
4316 addr += 2;
4318 break;
4320 case 2: /* unlinked context ID match */
4321 case 8: /* unlinked VMID match (reserved if no EL2) */
4322 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
4323 qemu_log_mask(LOG_UNIMP,
4324 "arm: unlinked context breakpoint types not implemented");
4325 return;
4326 case 9: /* linked VMID match (reserved if no EL2) */
4327 case 11: /* linked context ID and VMID match (reserved if no EL2) */
4328 case 3: /* linked context ID match */
4329 default:
4330 /* We must generate no events for Linked context matches (unless
4331 * they are linked to by some other bp/wp, which is handled in
4332 * updates for the linking bp/wp). We choose to also generate no events
4333 * for reserved values.
4335 return;
4338 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
4341 void hw_breakpoint_update_all(ARMCPU *cpu)
4343 int i;
4344 CPUARMState *env = &cpu->env;
4346 /* Completely clear out existing QEMU breakpoints and our array, to
4347 * avoid possible stale entries following migration load.
4349 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
4350 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
4352 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
4353 hw_breakpoint_update(cpu, i);
4357 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4358 uint64_t value)
4360 ARMCPU *cpu = arm_env_get_cpu(env);
4361 int i = ri->crm;
4363 raw_write(env, ri, value);
4364 hw_breakpoint_update(cpu, i);
4367 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4368 uint64_t value)
4370 ARMCPU *cpu = arm_env_get_cpu(env);
4371 int i = ri->crm;
4373 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
4374 * copy of BAS[0].
4376 value = deposit64(value, 6, 1, extract64(value, 5, 1));
4377 value = deposit64(value, 8, 1, extract64(value, 7, 1));
4379 raw_write(env, ri, value);
4380 hw_breakpoint_update(cpu, i);
4383 static void define_debug_regs(ARMCPU *cpu)
4385 /* Define v7 and v8 architectural debug registers.
4386 * These are just dummy implementations for now.
4388 int i;
4389 int wrps, brps, ctx_cmps;
4390 ARMCPRegInfo dbgdidr = {
4391 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
4392 .access = PL0_R, .accessfn = access_tda,
4393 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
4396 /* Note that all these register fields hold "number of Xs minus 1". */
4397 brps = extract32(cpu->dbgdidr, 24, 4);
4398 wrps = extract32(cpu->dbgdidr, 28, 4);
4399 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
4401 assert(ctx_cmps <= brps);
4403 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
4404 * of the debug registers such as number of breakpoints;
4405 * check that if they both exist then they agree.
4407 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
4408 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
4409 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
4410 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
4413 define_one_arm_cp_reg(cpu, &dbgdidr);
4414 define_arm_cp_regs(cpu, debug_cp_reginfo);
4416 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
4417 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
4420 for (i = 0; i < brps + 1; i++) {
4421 ARMCPRegInfo dbgregs[] = {
4422 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
4423 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
4424 .access = PL1_RW, .accessfn = access_tda,
4425 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
4426 .writefn = dbgbvr_write, .raw_writefn = raw_write
4428 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
4429 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
4430 .access = PL1_RW, .accessfn = access_tda,
4431 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
4432 .writefn = dbgbcr_write, .raw_writefn = raw_write
4434 REGINFO_SENTINEL
4436 define_arm_cp_regs(cpu, dbgregs);
4439 for (i = 0; i < wrps + 1; i++) {
4440 ARMCPRegInfo dbgregs[] = {
4441 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
4442 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
4443 .access = PL1_RW, .accessfn = access_tda,
4444 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
4445 .writefn = dbgwvr_write, .raw_writefn = raw_write
4447 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
4448 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
4449 .access = PL1_RW, .accessfn = access_tda,
4450 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
4451 .writefn = dbgwcr_write, .raw_writefn = raw_write
4453 REGINFO_SENTINEL
4455 define_arm_cp_regs(cpu, dbgregs);
4459 void register_cp_regs_for_features(ARMCPU *cpu)
4461 /* Register all the coprocessor registers based on feature bits */
4462 CPUARMState *env = &cpu->env;
4463 if (arm_feature(env, ARM_FEATURE_M)) {
4464 /* M profile has no coprocessor registers */
4465 return;
4468 define_arm_cp_regs(cpu, cp_reginfo);
4469 if (!arm_feature(env, ARM_FEATURE_V8)) {
4470 /* Must go early as it is full of wildcards that may be
4471 * overridden by later definitions.
4473 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
4476 if (arm_feature(env, ARM_FEATURE_V6)) {
4477 /* The ID registers all have impdef reset values */
4478 ARMCPRegInfo v6_idregs[] = {
4479 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
4480 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4481 .access = PL1_R, .type = ARM_CP_CONST,
4482 .resetvalue = cpu->id_pfr0 },
4483 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
4484 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
4485 .access = PL1_R, .type = ARM_CP_CONST,
4486 .resetvalue = cpu->id_pfr1 },
4487 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
4488 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
4489 .access = PL1_R, .type = ARM_CP_CONST,
4490 .resetvalue = cpu->id_dfr0 },
4491 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
4492 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
4493 .access = PL1_R, .type = ARM_CP_CONST,
4494 .resetvalue = cpu->id_afr0 },
4495 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
4496 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
4497 .access = PL1_R, .type = ARM_CP_CONST,
4498 .resetvalue = cpu->id_mmfr0 },
4499 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
4500 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
4501 .access = PL1_R, .type = ARM_CP_CONST,
4502 .resetvalue = cpu->id_mmfr1 },
4503 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
4504 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
4505 .access = PL1_R, .type = ARM_CP_CONST,
4506 .resetvalue = cpu->id_mmfr2 },
4507 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
4508 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
4509 .access = PL1_R, .type = ARM_CP_CONST,
4510 .resetvalue = cpu->id_mmfr3 },
4511 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
4512 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4513 .access = PL1_R, .type = ARM_CP_CONST,
4514 .resetvalue = cpu->id_isar0 },
4515 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
4516 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
4517 .access = PL1_R, .type = ARM_CP_CONST,
4518 .resetvalue = cpu->id_isar1 },
4519 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
4520 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4521 .access = PL1_R, .type = ARM_CP_CONST,
4522 .resetvalue = cpu->id_isar2 },
4523 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
4524 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
4525 .access = PL1_R, .type = ARM_CP_CONST,
4526 .resetvalue = cpu->id_isar3 },
4527 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
4528 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
4529 .access = PL1_R, .type = ARM_CP_CONST,
4530 .resetvalue = cpu->id_isar4 },
4531 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
4532 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
4533 .access = PL1_R, .type = ARM_CP_CONST,
4534 .resetvalue = cpu->id_isar5 },
4535 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
4536 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
4537 .access = PL1_R, .type = ARM_CP_CONST,
4538 .resetvalue = cpu->id_mmfr4 },
4539 /* 7 is as yet unallocated and must RAZ */
4540 { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH,
4541 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
4542 .access = PL1_R, .type = ARM_CP_CONST,
4543 .resetvalue = 0 },
4544 REGINFO_SENTINEL
4546 define_arm_cp_regs(cpu, v6_idregs);
4547 define_arm_cp_regs(cpu, v6_cp_reginfo);
4548 } else {
4549 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
4551 if (arm_feature(env, ARM_FEATURE_V6K)) {
4552 define_arm_cp_regs(cpu, v6k_cp_reginfo);
4554 if (arm_feature(env, ARM_FEATURE_V7MP) &&
4555 !arm_feature(env, ARM_FEATURE_MPU)) {
4556 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
4558 if (arm_feature(env, ARM_FEATURE_V7)) {
4559 /* v7 performance monitor control register: same implementor
4560 * field as main ID register, and we implement only the cycle
4561 * count register.
4563 #ifndef CONFIG_USER_ONLY
4564 ARMCPRegInfo pmcr = {
4565 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
4566 .access = PL0_RW,
4567 .type = ARM_CP_IO | ARM_CP_ALIAS,
4568 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
4569 .accessfn = pmreg_access, .writefn = pmcr_write,
4570 .raw_writefn = raw_write,
4572 ARMCPRegInfo pmcr64 = {
4573 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
4574 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
4575 .access = PL0_RW, .accessfn = pmreg_access,
4576 .type = ARM_CP_IO,
4577 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
4578 .resetvalue = cpu->midr & 0xff000000,
4579 .writefn = pmcr_write, .raw_writefn = raw_write,
4581 define_one_arm_cp_reg(cpu, &pmcr);
4582 define_one_arm_cp_reg(cpu, &pmcr64);
4583 #endif
4584 ARMCPRegInfo clidr = {
4585 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
4586 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
4587 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
4589 define_one_arm_cp_reg(cpu, &clidr);
4590 define_arm_cp_regs(cpu, v7_cp_reginfo);
4591 define_debug_regs(cpu);
4592 } else {
4593 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
4595 if (arm_feature(env, ARM_FEATURE_V8)) {
4596 /* AArch64 ID registers, which all have impdef reset values.
4597 * Note that within the ID register ranges the unused slots
4598 * must all RAZ, not UNDEF; future architecture versions may
4599 * define new registers here.
4601 ARMCPRegInfo v8_idregs[] = {
4602 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
4603 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
4604 .access = PL1_R, .type = ARM_CP_CONST,
4605 .resetvalue = cpu->id_aa64pfr0 },
4606 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
4607 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
4608 .access = PL1_R, .type = ARM_CP_CONST,
4609 .resetvalue = cpu->id_aa64pfr1},
4610 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4611 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
4612 .access = PL1_R, .type = ARM_CP_CONST,
4613 .resetvalue = 0 },
4614 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4615 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
4616 .access = PL1_R, .type = ARM_CP_CONST,
4617 .resetvalue = 0 },
4618 { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4619 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
4620 .access = PL1_R, .type = ARM_CP_CONST,
4621 .resetvalue = 0 },
4622 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4623 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
4624 .access = PL1_R, .type = ARM_CP_CONST,
4625 .resetvalue = 0 },
4626 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4627 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
4628 .access = PL1_R, .type = ARM_CP_CONST,
4629 .resetvalue = 0 },
4630 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4631 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
4632 .access = PL1_R, .type = ARM_CP_CONST,
4633 .resetvalue = 0 },
4634 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
4635 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
4636 .access = PL1_R, .type = ARM_CP_CONST,
4637 .resetvalue = cpu->id_aa64dfr0 },
4638 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
4639 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
4640 .access = PL1_R, .type = ARM_CP_CONST,
4641 .resetvalue = cpu->id_aa64dfr1 },
4642 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4643 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
4644 .access = PL1_R, .type = ARM_CP_CONST,
4645 .resetvalue = 0 },
4646 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4647 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
4648 .access = PL1_R, .type = ARM_CP_CONST,
4649 .resetvalue = 0 },
4650 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
4651 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
4652 .access = PL1_R, .type = ARM_CP_CONST,
4653 .resetvalue = cpu->id_aa64afr0 },
4654 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
4655 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
4656 .access = PL1_R, .type = ARM_CP_CONST,
4657 .resetvalue = cpu->id_aa64afr1 },
4658 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4659 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
4660 .access = PL1_R, .type = ARM_CP_CONST,
4661 .resetvalue = 0 },
4662 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4663 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
4664 .access = PL1_R, .type = ARM_CP_CONST,
4665 .resetvalue = 0 },
4666 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
4667 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
4668 .access = PL1_R, .type = ARM_CP_CONST,
4669 .resetvalue = cpu->id_aa64isar0 },
4670 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
4671 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
4672 .access = PL1_R, .type = ARM_CP_CONST,
4673 .resetvalue = cpu->id_aa64isar1 },
4674 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4675 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
4676 .access = PL1_R, .type = ARM_CP_CONST,
4677 .resetvalue = 0 },
4678 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4679 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
4680 .access = PL1_R, .type = ARM_CP_CONST,
4681 .resetvalue = 0 },
4682 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4683 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
4684 .access = PL1_R, .type = ARM_CP_CONST,
4685 .resetvalue = 0 },
4686 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4687 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
4688 .access = PL1_R, .type = ARM_CP_CONST,
4689 .resetvalue = 0 },
4690 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4691 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
4692 .access = PL1_R, .type = ARM_CP_CONST,
4693 .resetvalue = 0 },
4694 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4695 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
4696 .access = PL1_R, .type = ARM_CP_CONST,
4697 .resetvalue = 0 },
4698 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
4699 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4700 .access = PL1_R, .type = ARM_CP_CONST,
4701 .resetvalue = cpu->id_aa64mmfr0 },
4702 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
4703 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
4704 .access = PL1_R, .type = ARM_CP_CONST,
4705 .resetvalue = cpu->id_aa64mmfr1 },
4706 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4707 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
4708 .access = PL1_R, .type = ARM_CP_CONST,
4709 .resetvalue = 0 },
4710 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4711 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
4712 .access = PL1_R, .type = ARM_CP_CONST,
4713 .resetvalue = 0 },
4714 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4715 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
4716 .access = PL1_R, .type = ARM_CP_CONST,
4717 .resetvalue = 0 },
4718 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4719 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
4720 .access = PL1_R, .type = ARM_CP_CONST,
4721 .resetvalue = 0 },
4722 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4723 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
4724 .access = PL1_R, .type = ARM_CP_CONST,
4725 .resetvalue = 0 },
4726 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4727 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
4728 .access = PL1_R, .type = ARM_CP_CONST,
4729 .resetvalue = 0 },
4730 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
4731 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
4732 .access = PL1_R, .type = ARM_CP_CONST,
4733 .resetvalue = cpu->mvfr0 },
4734 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
4735 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
4736 .access = PL1_R, .type = ARM_CP_CONST,
4737 .resetvalue = cpu->mvfr1 },
4738 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
4739 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
4740 .access = PL1_R, .type = ARM_CP_CONST,
4741 .resetvalue = cpu->mvfr2 },
4742 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4743 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
4744 .access = PL1_R, .type = ARM_CP_CONST,
4745 .resetvalue = 0 },
4746 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4747 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
4748 .access = PL1_R, .type = ARM_CP_CONST,
4749 .resetvalue = 0 },
4750 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4751 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
4752 .access = PL1_R, .type = ARM_CP_CONST,
4753 .resetvalue = 0 },
4754 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4755 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
4756 .access = PL1_R, .type = ARM_CP_CONST,
4757 .resetvalue = 0 },
4758 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4759 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
4760 .access = PL1_R, .type = ARM_CP_CONST,
4761 .resetvalue = 0 },
4762 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
4763 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
4764 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4765 .resetvalue = cpu->pmceid0 },
4766 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
4767 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
4768 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4769 .resetvalue = cpu->pmceid0 },
4770 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
4771 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
4772 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4773 .resetvalue = cpu->pmceid1 },
4774 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
4775 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
4776 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4777 .resetvalue = cpu->pmceid1 },
4778 REGINFO_SENTINEL
4780 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
4781 if (!arm_feature(env, ARM_FEATURE_EL3) &&
4782 !arm_feature(env, ARM_FEATURE_EL2)) {
4783 ARMCPRegInfo rvbar = {
4784 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
4785 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4786 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
4788 define_one_arm_cp_reg(cpu, &rvbar);
4790 define_arm_cp_regs(cpu, v8_idregs);
4791 define_arm_cp_regs(cpu, v8_cp_reginfo);
4793 if (arm_feature(env, ARM_FEATURE_EL2)) {
4794 uint64_t vmpidr_def = mpidr_read_val(env);
4795 ARMCPRegInfo vpidr_regs[] = {
4796 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
4797 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4798 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4799 .resetvalue = cpu->midr,
4800 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4801 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
4802 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4803 .access = PL2_RW, .resetvalue = cpu->midr,
4804 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4805 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
4806 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4807 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4808 .resetvalue = vmpidr_def,
4809 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4810 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
4811 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4812 .access = PL2_RW,
4813 .resetvalue = vmpidr_def,
4814 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4815 REGINFO_SENTINEL
4817 define_arm_cp_regs(cpu, vpidr_regs);
4818 define_arm_cp_regs(cpu, el2_cp_reginfo);
4819 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
4820 if (!arm_feature(env, ARM_FEATURE_EL3)) {
4821 ARMCPRegInfo rvbar = {
4822 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
4823 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
4824 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
4826 define_one_arm_cp_reg(cpu, &rvbar);
4828 } else {
4829 /* If EL2 is missing but higher ELs are enabled, we need to
4830 * register the no_el2 reginfos.
4832 if (arm_feature(env, ARM_FEATURE_EL3)) {
4833 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
4834 * of MIDR_EL1 and MPIDR_EL1.
4836 ARMCPRegInfo vpidr_regs[] = {
4837 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4838 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4839 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4840 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
4841 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4842 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4843 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4844 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4845 .type = ARM_CP_NO_RAW,
4846 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
4847 REGINFO_SENTINEL
4849 define_arm_cp_regs(cpu, vpidr_regs);
4850 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
4853 if (arm_feature(env, ARM_FEATURE_EL3)) {
4854 define_arm_cp_regs(cpu, el3_cp_reginfo);
4855 ARMCPRegInfo el3_regs[] = {
4856 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
4857 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
4858 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
4859 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
4860 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
4861 .access = PL3_RW,
4862 .raw_writefn = raw_write, .writefn = sctlr_write,
4863 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
4864 .resetvalue = cpu->reset_sctlr },
4865 REGINFO_SENTINEL
4868 define_arm_cp_regs(cpu, el3_regs);
4870 /* The behaviour of NSACR is sufficiently various that we don't
4871 * try to describe it in a single reginfo:
4872 * if EL3 is 64 bit, then trap to EL3 from S EL1,
4873 * reads as constant 0xc00 from NS EL1 and NS EL2
4874 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
4875 * if v7 without EL3, register doesn't exist
4876 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
4878 if (arm_feature(env, ARM_FEATURE_EL3)) {
4879 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
4880 ARMCPRegInfo nsacr = {
4881 .name = "NSACR", .type = ARM_CP_CONST,
4882 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4883 .access = PL1_RW, .accessfn = nsacr_access,
4884 .resetvalue = 0xc00
4886 define_one_arm_cp_reg(cpu, &nsacr);
4887 } else {
4888 ARMCPRegInfo nsacr = {
4889 .name = "NSACR",
4890 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4891 .access = PL3_RW | PL1_R,
4892 .resetvalue = 0,
4893 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
4895 define_one_arm_cp_reg(cpu, &nsacr);
4897 } else {
4898 if (arm_feature(env, ARM_FEATURE_V8)) {
4899 ARMCPRegInfo nsacr = {
4900 .name = "NSACR", .type = ARM_CP_CONST,
4901 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4902 .access = PL1_R,
4903 .resetvalue = 0xc00
4905 define_one_arm_cp_reg(cpu, &nsacr);
4909 if (arm_feature(env, ARM_FEATURE_MPU)) {
4910 if (arm_feature(env, ARM_FEATURE_V6)) {
4911 /* PMSAv6 not implemented */
4912 assert(arm_feature(env, ARM_FEATURE_V7));
4913 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
4914 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
4915 } else {
4916 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
4918 } else {
4919 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
4920 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
4922 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
4923 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
4925 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
4926 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
4928 if (arm_feature(env, ARM_FEATURE_VAPA)) {
4929 define_arm_cp_regs(cpu, vapa_cp_reginfo);
4931 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
4932 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
4934 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
4935 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
4937 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
4938 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
4940 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
4941 define_arm_cp_regs(cpu, omap_cp_reginfo);
4943 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
4944 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
4946 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
4947 define_arm_cp_regs(cpu, xscale_cp_reginfo);
4949 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
4950 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
4952 if (arm_feature(env, ARM_FEATURE_LPAE)) {
4953 define_arm_cp_regs(cpu, lpae_cp_reginfo);
4955 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
4956 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
4957 * be read-only (ie write causes UNDEF exception).
4960 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
4961 /* Pre-v8 MIDR space.
4962 * Note that the MIDR isn't a simple constant register because
4963 * of the TI925 behaviour where writes to another register can
4964 * cause the MIDR value to change.
4966 * Unimplemented registers in the c15 0 0 0 space default to
4967 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
4968 * and friends override accordingly.
4970 { .name = "MIDR",
4971 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
4972 .access = PL1_R, .resetvalue = cpu->midr,
4973 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
4974 .readfn = midr_read,
4975 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
4976 .type = ARM_CP_OVERRIDE },
4977 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
4978 { .name = "DUMMY",
4979 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
4980 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4981 { .name = "DUMMY",
4982 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
4983 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4984 { .name = "DUMMY",
4985 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
4986 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4987 { .name = "DUMMY",
4988 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
4989 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4990 { .name = "DUMMY",
4991 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
4992 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4993 REGINFO_SENTINEL
4995 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
4996 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
4997 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
4998 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
4999 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5000 .readfn = midr_read },
5001 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
5002 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5003 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5004 .access = PL1_R, .resetvalue = cpu->midr },
5005 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5006 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
5007 .access = PL1_R, .resetvalue = cpu->midr },
5008 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
5009 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
5010 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
5011 REGINFO_SENTINEL
5013 ARMCPRegInfo id_cp_reginfo[] = {
5014 /* These are common to v8 and pre-v8 */
5015 { .name = "CTR",
5016 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
5017 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5018 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
5019 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
5020 .access = PL0_R, .accessfn = ctr_el0_access,
5021 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5022 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
5023 { .name = "TCMTR",
5024 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
5025 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5026 REGINFO_SENTINEL
5028 /* TLBTR is specific to VMSA */
5029 ARMCPRegInfo id_tlbtr_reginfo = {
5030 .name = "TLBTR",
5031 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
5032 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
5034 /* MPUIR is specific to PMSA V6+ */
5035 ARMCPRegInfo id_mpuir_reginfo = {
5036 .name = "MPUIR",
5037 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5038 .access = PL1_R, .type = ARM_CP_CONST,
5039 .resetvalue = cpu->pmsav7_dregion << 8
5041 ARMCPRegInfo crn0_wi_reginfo = {
5042 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
5043 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
5044 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
5046 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
5047 arm_feature(env, ARM_FEATURE_STRONGARM)) {
5048 ARMCPRegInfo *r;
5049 /* Register the blanket "writes ignored" value first to cover the
5050 * whole space. Then update the specific ID registers to allow write
5051 * access, so that they ignore writes rather than causing them to
5052 * UNDEF.
5054 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
5055 for (r = id_pre_v8_midr_cp_reginfo;
5056 r->type != ARM_CP_SENTINEL; r++) {
5057 r->access = PL1_RW;
5059 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
5060 r->access = PL1_RW;
5062 id_tlbtr_reginfo.access = PL1_RW;
5063 id_tlbtr_reginfo.access = PL1_RW;
5065 if (arm_feature(env, ARM_FEATURE_V8)) {
5066 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
5067 } else {
5068 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
5070 define_arm_cp_regs(cpu, id_cp_reginfo);
5071 if (!arm_feature(env, ARM_FEATURE_MPU)) {
5072 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
5073 } else if (arm_feature(env, ARM_FEATURE_V7)) {
5074 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
5078 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
5079 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
5082 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
5083 ARMCPRegInfo auxcr_reginfo[] = {
5084 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
5085 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
5086 .access = PL1_RW, .type = ARM_CP_CONST,
5087 .resetvalue = cpu->reset_auxcr },
5088 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
5089 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
5090 .access = PL2_RW, .type = ARM_CP_CONST,
5091 .resetvalue = 0 },
5092 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
5093 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
5094 .access = PL3_RW, .type = ARM_CP_CONST,
5095 .resetvalue = 0 },
5096 REGINFO_SENTINEL
5098 define_arm_cp_regs(cpu, auxcr_reginfo);
5101 if (arm_feature(env, ARM_FEATURE_CBAR)) {
5102 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5103 /* 32 bit view is [31:18] 0...0 [43:32]. */
5104 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
5105 | extract64(cpu->reset_cbar, 32, 12);
5106 ARMCPRegInfo cbar_reginfo[] = {
5107 { .name = "CBAR",
5108 .type = ARM_CP_CONST,
5109 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5110 .access = PL1_R, .resetvalue = cpu->reset_cbar },
5111 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
5112 .type = ARM_CP_CONST,
5113 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
5114 .access = PL1_R, .resetvalue = cbar32 },
5115 REGINFO_SENTINEL
5117 /* We don't implement a r/w 64 bit CBAR currently */
5118 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
5119 define_arm_cp_regs(cpu, cbar_reginfo);
5120 } else {
5121 ARMCPRegInfo cbar = {
5122 .name = "CBAR",
5123 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5124 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
5125 .fieldoffset = offsetof(CPUARMState,
5126 cp15.c15_config_base_address)
5128 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
5129 cbar.access = PL1_R;
5130 cbar.fieldoffset = 0;
5131 cbar.type = ARM_CP_CONST;
5133 define_one_arm_cp_reg(cpu, &cbar);
5137 if (arm_feature(env, ARM_FEATURE_VBAR)) {
5138 ARMCPRegInfo vbar_cp_reginfo[] = {
5139 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
5140 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
5141 .access = PL1_RW, .writefn = vbar_write,
5142 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
5143 offsetof(CPUARMState, cp15.vbar_ns) },
5144 .resetvalue = 0 },
5145 REGINFO_SENTINEL
5147 define_arm_cp_regs(cpu, vbar_cp_reginfo);
5150 /* Generic registers whose values depend on the implementation */
5152 ARMCPRegInfo sctlr = {
5153 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
5154 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5155 .access = PL1_RW,
5156 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
5157 offsetof(CPUARMState, cp15.sctlr_ns) },
5158 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
5159 .raw_writefn = raw_write,
5161 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5162 /* Normally we would always end the TB on an SCTLR write, but Linux
5163 * arch/arm/mach-pxa/sleep.S expects two instructions following
5164 * an MMU enable to execute from cache. Imitate this behaviour.
5166 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
5168 define_one_arm_cp_reg(cpu, &sctlr);
5172 ARMCPU *cpu_arm_init(const char *cpu_model)
5174 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model));
5177 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
5179 CPUState *cs = CPU(cpu);
5180 CPUARMState *env = &cpu->env;
5182 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5183 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
5184 aarch64_fpu_gdb_set_reg,
5185 34, "aarch64-fpu.xml", 0);
5186 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
5187 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5188 51, "arm-neon.xml", 0);
5189 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
5190 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5191 35, "arm-vfp3.xml", 0);
5192 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
5193 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5194 19, "arm-vfp.xml", 0);
5198 /* Sort alphabetically by type name, except for "any". */
5199 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
5201 ObjectClass *class_a = (ObjectClass *)a;
5202 ObjectClass *class_b = (ObjectClass *)b;
5203 const char *name_a, *name_b;
5205 name_a = object_class_get_name(class_a);
5206 name_b = object_class_get_name(class_b);
5207 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
5208 return 1;
5209 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
5210 return -1;
5211 } else {
5212 return strcmp(name_a, name_b);
5216 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
5218 ObjectClass *oc = data;
5219 CPUListState *s = user_data;
5220 const char *typename;
5221 char *name;
5223 typename = object_class_get_name(oc);
5224 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
5225 (*s->cpu_fprintf)(s->file, " %s\n",
5226 name);
5227 g_free(name);
5230 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
5232 CPUListState s = {
5233 .file = f,
5234 .cpu_fprintf = cpu_fprintf,
5236 GSList *list;
5238 list = object_class_get_list(TYPE_ARM_CPU, false);
5239 list = g_slist_sort(list, arm_cpu_list_compare);
5240 (*cpu_fprintf)(f, "Available CPUs:\n");
5241 g_slist_foreach(list, arm_cpu_list_entry, &s);
5242 g_slist_free(list);
5243 #ifdef CONFIG_KVM
5244 /* The 'host' CPU type is dynamically registered only if KVM is
5245 * enabled, so we have to special-case it here:
5247 (*cpu_fprintf)(f, " host (only available in KVM mode)\n");
5248 #endif
5251 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
5253 ObjectClass *oc = data;
5254 CpuDefinitionInfoList **cpu_list = user_data;
5255 CpuDefinitionInfoList *entry;
5256 CpuDefinitionInfo *info;
5257 const char *typename;
5259 typename = object_class_get_name(oc);
5260 info = g_malloc0(sizeof(*info));
5261 info->name = g_strndup(typename,
5262 strlen(typename) - strlen("-" TYPE_ARM_CPU));
5263 info->q_typename = g_strdup(typename);
5265 entry = g_malloc0(sizeof(*entry));
5266 entry->value = info;
5267 entry->next = *cpu_list;
5268 *cpu_list = entry;
5271 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
5273 CpuDefinitionInfoList *cpu_list = NULL;
5274 GSList *list;
5276 list = object_class_get_list(TYPE_ARM_CPU, false);
5277 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
5278 g_slist_free(list);
5280 return cpu_list;
5283 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
5284 void *opaque, int state, int secstate,
5285 int crm, int opc1, int opc2)
5287 /* Private utility function for define_one_arm_cp_reg_with_opaque():
5288 * add a single reginfo struct to the hash table.
5290 uint32_t *key = g_new(uint32_t, 1);
5291 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
5292 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
5293 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
5295 /* Reset the secure state to the specific incoming state. This is
5296 * necessary as the register may have been defined with both states.
5298 r2->secure = secstate;
5300 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5301 /* Register is banked (using both entries in array).
5302 * Overwriting fieldoffset as the array is only used to define
5303 * banked registers but later only fieldoffset is used.
5305 r2->fieldoffset = r->bank_fieldoffsets[ns];
5308 if (state == ARM_CP_STATE_AA32) {
5309 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5310 /* If the register is banked then we don't need to migrate or
5311 * reset the 32-bit instance in certain cases:
5313 * 1) If the register has both 32-bit and 64-bit instances then we
5314 * can count on the 64-bit instance taking care of the
5315 * non-secure bank.
5316 * 2) If ARMv8 is enabled then we can count on a 64-bit version
5317 * taking care of the secure bank. This requires that separate
5318 * 32 and 64-bit definitions are provided.
5320 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
5321 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
5322 r2->type |= ARM_CP_ALIAS;
5324 } else if ((secstate != r->secure) && !ns) {
5325 /* The register is not banked so we only want to allow migration of
5326 * the non-secure instance.
5328 r2->type |= ARM_CP_ALIAS;
5331 if (r->state == ARM_CP_STATE_BOTH) {
5332 /* We assume it is a cp15 register if the .cp field is left unset.
5334 if (r2->cp == 0) {
5335 r2->cp = 15;
5338 #ifdef HOST_WORDS_BIGENDIAN
5339 if (r2->fieldoffset) {
5340 r2->fieldoffset += sizeof(uint32_t);
5342 #endif
5345 if (state == ARM_CP_STATE_AA64) {
5346 /* To allow abbreviation of ARMCPRegInfo
5347 * definitions, we treat cp == 0 as equivalent to
5348 * the value for "standard guest-visible sysreg".
5349 * STATE_BOTH definitions are also always "standard
5350 * sysreg" in their AArch64 view (the .cp value may
5351 * be non-zero for the benefit of the AArch32 view).
5353 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
5354 r2->cp = CP_REG_ARM64_SYSREG_CP;
5356 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
5357 r2->opc0, opc1, opc2);
5358 } else {
5359 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
5361 if (opaque) {
5362 r2->opaque = opaque;
5364 /* reginfo passed to helpers is correct for the actual access,
5365 * and is never ARM_CP_STATE_BOTH:
5367 r2->state = state;
5368 /* Make sure reginfo passed to helpers for wildcarded regs
5369 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
5371 r2->crm = crm;
5372 r2->opc1 = opc1;
5373 r2->opc2 = opc2;
5374 /* By convention, for wildcarded registers only the first
5375 * entry is used for migration; the others are marked as
5376 * ALIAS so we don't try to transfer the register
5377 * multiple times. Special registers (ie NOP/WFI) are
5378 * never migratable and not even raw-accessible.
5380 if ((r->type & ARM_CP_SPECIAL)) {
5381 r2->type |= ARM_CP_NO_RAW;
5383 if (((r->crm == CP_ANY) && crm != 0) ||
5384 ((r->opc1 == CP_ANY) && opc1 != 0) ||
5385 ((r->opc2 == CP_ANY) && opc2 != 0)) {
5386 r2->type |= ARM_CP_ALIAS;
5389 /* Check that raw accesses are either forbidden or handled. Note that
5390 * we can't assert this earlier because the setup of fieldoffset for
5391 * banked registers has to be done first.
5393 if (!(r2->type & ARM_CP_NO_RAW)) {
5394 assert(!raw_accessors_invalid(r2));
5397 /* Overriding of an existing definition must be explicitly
5398 * requested.
5400 if (!(r->type & ARM_CP_OVERRIDE)) {
5401 ARMCPRegInfo *oldreg;
5402 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
5403 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
5404 fprintf(stderr, "Register redefined: cp=%d %d bit "
5405 "crn=%d crm=%d opc1=%d opc2=%d, "
5406 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
5407 r2->crn, r2->crm, r2->opc1, r2->opc2,
5408 oldreg->name, r2->name);
5409 g_assert_not_reached();
5412 g_hash_table_insert(cpu->cp_regs, key, r2);
5416 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
5417 const ARMCPRegInfo *r, void *opaque)
5419 /* Define implementations of coprocessor registers.
5420 * We store these in a hashtable because typically
5421 * there are less than 150 registers in a space which
5422 * is 16*16*16*8*8 = 262144 in size.
5423 * Wildcarding is supported for the crm, opc1 and opc2 fields.
5424 * If a register is defined twice then the second definition is
5425 * used, so this can be used to define some generic registers and
5426 * then override them with implementation specific variations.
5427 * At least one of the original and the second definition should
5428 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
5429 * against accidental use.
5431 * The state field defines whether the register is to be
5432 * visible in the AArch32 or AArch64 execution state. If the
5433 * state is set to ARM_CP_STATE_BOTH then we synthesise a
5434 * reginfo structure for the AArch32 view, which sees the lower
5435 * 32 bits of the 64 bit register.
5437 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
5438 * be wildcarded. AArch64 registers are always considered to be 64
5439 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
5440 * the register, if any.
5442 int crm, opc1, opc2, state;
5443 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
5444 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
5445 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
5446 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
5447 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
5448 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
5449 /* 64 bit registers have only CRm and Opc1 fields */
5450 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
5451 /* op0 only exists in the AArch64 encodings */
5452 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
5453 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
5454 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
5455 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
5456 * encodes a minimum access level for the register. We roll this
5457 * runtime check into our general permission check code, so check
5458 * here that the reginfo's specified permissions are strict enough
5459 * to encompass the generic architectural permission check.
5461 if (r->state != ARM_CP_STATE_AA32) {
5462 int mask = 0;
5463 switch (r->opc1) {
5464 case 0: case 1: case 2:
5465 /* min_EL EL1 */
5466 mask = PL1_RW;
5467 break;
5468 case 3:
5469 /* min_EL EL0 */
5470 mask = PL0_RW;
5471 break;
5472 case 4:
5473 /* min_EL EL2 */
5474 mask = PL2_RW;
5475 break;
5476 case 5:
5477 /* unallocated encoding, so not possible */
5478 assert(false);
5479 break;
5480 case 6:
5481 /* min_EL EL3 */
5482 mask = PL3_RW;
5483 break;
5484 case 7:
5485 /* min_EL EL1, secure mode only (we don't check the latter) */
5486 mask = PL1_RW;
5487 break;
5488 default:
5489 /* broken reginfo with out-of-range opc1 */
5490 assert(false);
5491 break;
5493 /* assert our permissions are not too lax (stricter is fine) */
5494 assert((r->access & ~mask) == 0);
5497 /* Check that the register definition has enough info to handle
5498 * reads and writes if they are permitted.
5500 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
5501 if (r->access & PL3_R) {
5502 assert((r->fieldoffset ||
5503 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5504 r->readfn);
5506 if (r->access & PL3_W) {
5507 assert((r->fieldoffset ||
5508 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5509 r->writefn);
5512 /* Bad type field probably means missing sentinel at end of reg list */
5513 assert(cptype_valid(r->type));
5514 for (crm = crmmin; crm <= crmmax; crm++) {
5515 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
5516 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
5517 for (state = ARM_CP_STATE_AA32;
5518 state <= ARM_CP_STATE_AA64; state++) {
5519 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
5520 continue;
5522 if (state == ARM_CP_STATE_AA32) {
5523 /* Under AArch32 CP registers can be common
5524 * (same for secure and non-secure world) or banked.
5526 switch (r->secure) {
5527 case ARM_CP_SECSTATE_S:
5528 case ARM_CP_SECSTATE_NS:
5529 add_cpreg_to_hashtable(cpu, r, opaque, state,
5530 r->secure, crm, opc1, opc2);
5531 break;
5532 default:
5533 add_cpreg_to_hashtable(cpu, r, opaque, state,
5534 ARM_CP_SECSTATE_S,
5535 crm, opc1, opc2);
5536 add_cpreg_to_hashtable(cpu, r, opaque, state,
5537 ARM_CP_SECSTATE_NS,
5538 crm, opc1, opc2);
5539 break;
5541 } else {
5542 /* AArch64 registers get mapped to non-secure instance
5543 * of AArch32 */
5544 add_cpreg_to_hashtable(cpu, r, opaque, state,
5545 ARM_CP_SECSTATE_NS,
5546 crm, opc1, opc2);
5554 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
5555 const ARMCPRegInfo *regs, void *opaque)
5557 /* Define a whole list of registers */
5558 const ARMCPRegInfo *r;
5559 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
5560 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
5564 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
5566 return g_hash_table_lookup(cpregs, &encoded_cp);
5569 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
5570 uint64_t value)
5572 /* Helper coprocessor write function for write-ignore registers */
5575 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
5577 /* Helper coprocessor write function for read-as-zero registers */
5578 return 0;
5581 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
5583 /* Helper coprocessor reset function for do-nothing-on-reset registers */
5586 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
5588 /* Return true if it is not valid for us to switch to
5589 * this CPU mode (ie all the UNPREDICTABLE cases in
5590 * the ARM ARM CPSRWriteByInstr pseudocode).
5593 /* Changes to or from Hyp via MSR and CPS are illegal. */
5594 if (write_type == CPSRWriteByInstr &&
5595 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
5596 mode == ARM_CPU_MODE_HYP)) {
5597 return 1;
5600 switch (mode) {
5601 case ARM_CPU_MODE_USR:
5602 return 0;
5603 case ARM_CPU_MODE_SYS:
5604 case ARM_CPU_MODE_SVC:
5605 case ARM_CPU_MODE_ABT:
5606 case ARM_CPU_MODE_UND:
5607 case ARM_CPU_MODE_IRQ:
5608 case ARM_CPU_MODE_FIQ:
5609 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
5610 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
5612 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
5613 * and CPS are treated as illegal mode changes.
5615 if (write_type == CPSRWriteByInstr &&
5616 (env->cp15.hcr_el2 & HCR_TGE) &&
5617 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
5618 !arm_is_secure_below_el3(env)) {
5619 return 1;
5621 return 0;
5622 case ARM_CPU_MODE_HYP:
5623 return !arm_feature(env, ARM_FEATURE_EL2)
5624 || arm_current_el(env) < 2 || arm_is_secure(env);
5625 case ARM_CPU_MODE_MON:
5626 return arm_current_el(env) < 3;
5627 default:
5628 return 1;
5632 uint32_t cpsr_read(CPUARMState *env)
5634 int ZF;
5635 ZF = (env->ZF == 0);
5636 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
5637 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
5638 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
5639 | ((env->condexec_bits & 0xfc) << 8)
5640 | (env->GE << 16) | (env->daif & CPSR_AIF);
5643 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
5644 CPSRWriteType write_type)
5646 uint32_t changed_daif;
5648 if (mask & CPSR_NZCV) {
5649 env->ZF = (~val) & CPSR_Z;
5650 env->NF = val;
5651 env->CF = (val >> 29) & 1;
5652 env->VF = (val << 3) & 0x80000000;
5654 if (mask & CPSR_Q)
5655 env->QF = ((val & CPSR_Q) != 0);
5656 if (mask & CPSR_T)
5657 env->thumb = ((val & CPSR_T) != 0);
5658 if (mask & CPSR_IT_0_1) {
5659 env->condexec_bits &= ~3;
5660 env->condexec_bits |= (val >> 25) & 3;
5662 if (mask & CPSR_IT_2_7) {
5663 env->condexec_bits &= 3;
5664 env->condexec_bits |= (val >> 8) & 0xfc;
5666 if (mask & CPSR_GE) {
5667 env->GE = (val >> 16) & 0xf;
5670 /* In a V7 implementation that includes the security extensions but does
5671 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
5672 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
5673 * bits respectively.
5675 * In a V8 implementation, it is permitted for privileged software to
5676 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
5678 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
5679 arm_feature(env, ARM_FEATURE_EL3) &&
5680 !arm_feature(env, ARM_FEATURE_EL2) &&
5681 !arm_is_secure(env)) {
5683 changed_daif = (env->daif ^ val) & mask;
5685 if (changed_daif & CPSR_A) {
5686 /* Check to see if we are allowed to change the masking of async
5687 * abort exceptions from a non-secure state.
5689 if (!(env->cp15.scr_el3 & SCR_AW)) {
5690 qemu_log_mask(LOG_GUEST_ERROR,
5691 "Ignoring attempt to switch CPSR_A flag from "
5692 "non-secure world with SCR.AW bit clear\n");
5693 mask &= ~CPSR_A;
5697 if (changed_daif & CPSR_F) {
5698 /* Check to see if we are allowed to change the masking of FIQ
5699 * exceptions from a non-secure state.
5701 if (!(env->cp15.scr_el3 & SCR_FW)) {
5702 qemu_log_mask(LOG_GUEST_ERROR,
5703 "Ignoring attempt to switch CPSR_F flag from "
5704 "non-secure world with SCR.FW bit clear\n");
5705 mask &= ~CPSR_F;
5708 /* Check whether non-maskable FIQ (NMFI) support is enabled.
5709 * If this bit is set software is not allowed to mask
5710 * FIQs, but is allowed to set CPSR_F to 0.
5712 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
5713 (val & CPSR_F)) {
5714 qemu_log_mask(LOG_GUEST_ERROR,
5715 "Ignoring attempt to enable CPSR_F flag "
5716 "(non-maskable FIQ [NMFI] support enabled)\n");
5717 mask &= ~CPSR_F;
5722 env->daif &= ~(CPSR_AIF & mask);
5723 env->daif |= val & CPSR_AIF & mask;
5725 if (write_type != CPSRWriteRaw &&
5726 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
5727 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
5728 /* Note that we can only get here in USR mode if this is a
5729 * gdb stub write; for this case we follow the architectural
5730 * behaviour for guest writes in USR mode of ignoring an attempt
5731 * to switch mode. (Those are caught by translate.c for writes
5732 * triggered by guest instructions.)
5734 mask &= ~CPSR_M;
5735 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
5736 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
5737 * v7, and has defined behaviour in v8:
5738 * + leave CPSR.M untouched
5739 * + allow changes to the other CPSR fields
5740 * + set PSTATE.IL
5741 * For user changes via the GDB stub, we don't set PSTATE.IL,
5742 * as this would be unnecessarily harsh for a user error.
5744 mask &= ~CPSR_M;
5745 if (write_type != CPSRWriteByGDBStub &&
5746 arm_feature(env, ARM_FEATURE_V8)) {
5747 mask |= CPSR_IL;
5748 val |= CPSR_IL;
5750 } else {
5751 switch_mode(env, val & CPSR_M);
5754 mask &= ~CACHED_CPSR_BITS;
5755 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
5758 /* Sign/zero extend */
5759 uint32_t HELPER(sxtb16)(uint32_t x)
5761 uint32_t res;
5762 res = (uint16_t)(int8_t)x;
5763 res |= (uint32_t)(int8_t)(x >> 16) << 16;
5764 return res;
5767 uint32_t HELPER(uxtb16)(uint32_t x)
5769 uint32_t res;
5770 res = (uint16_t)(uint8_t)x;
5771 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
5772 return res;
5775 int32_t HELPER(sdiv)(int32_t num, int32_t den)
5777 if (den == 0)
5778 return 0;
5779 if (num == INT_MIN && den == -1)
5780 return INT_MIN;
5781 return num / den;
5784 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
5786 if (den == 0)
5787 return 0;
5788 return num / den;
5791 uint32_t HELPER(rbit)(uint32_t x)
5793 return revbit32(x);
5796 #if defined(CONFIG_USER_ONLY)
5798 /* These should probably raise undefined insn exceptions. */
5799 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
5801 ARMCPU *cpu = arm_env_get_cpu(env);
5803 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
5806 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
5808 ARMCPU *cpu = arm_env_get_cpu(env);
5810 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
5811 return 0;
5814 void switch_mode(CPUARMState *env, int mode)
5816 ARMCPU *cpu = arm_env_get_cpu(env);
5818 if (mode != ARM_CPU_MODE_USR) {
5819 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
5823 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5824 uint32_t cur_el, bool secure)
5826 return 1;
5829 void aarch64_sync_64_to_32(CPUARMState *env)
5831 g_assert_not_reached();
5834 #else
5836 void switch_mode(CPUARMState *env, int mode)
5838 int old_mode;
5839 int i;
5841 old_mode = env->uncached_cpsr & CPSR_M;
5842 if (mode == old_mode)
5843 return;
5845 if (old_mode == ARM_CPU_MODE_FIQ) {
5846 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
5847 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
5848 } else if (mode == ARM_CPU_MODE_FIQ) {
5849 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
5850 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
5853 i = bank_number(old_mode);
5854 env->banked_r13[i] = env->regs[13];
5855 env->banked_r14[i] = env->regs[14];
5856 env->banked_spsr[i] = env->spsr;
5858 i = bank_number(mode);
5859 env->regs[13] = env->banked_r13[i];
5860 env->regs[14] = env->banked_r14[i];
5861 env->spsr = env->banked_spsr[i];
5864 /* Physical Interrupt Target EL Lookup Table
5866 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
5868 * The below multi-dimensional table is used for looking up the target
5869 * exception level given numerous condition criteria. Specifically, the
5870 * target EL is based on SCR and HCR routing controls as well as the
5871 * currently executing EL and secure state.
5873 * Dimensions:
5874 * target_el_table[2][2][2][2][2][4]
5875 * | | | | | +--- Current EL
5876 * | | | | +------ Non-secure(0)/Secure(1)
5877 * | | | +--------- HCR mask override
5878 * | | +------------ SCR exec state control
5879 * | +--------------- SCR mask override
5880 * +------------------ 32-bit(0)/64-bit(1) EL3
5882 * The table values are as such:
5883 * 0-3 = EL0-EL3
5884 * -1 = Cannot occur
5886 * The ARM ARM target EL table includes entries indicating that an "exception
5887 * is not taken". The two cases where this is applicable are:
5888 * 1) An exception is taken from EL3 but the SCR does not have the exception
5889 * routed to EL3.
5890 * 2) An exception is taken from EL2 but the HCR does not have the exception
5891 * routed to EL2.
5892 * In these two cases, the below table contain a target of EL1. This value is
5893 * returned as it is expected that the consumer of the table data will check
5894 * for "target EL >= current EL" to ensure the exception is not taken.
5896 * SCR HCR
5897 * 64 EA AMO From
5898 * BIT IRQ IMO Non-secure Secure
5899 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
5901 static const int8_t target_el_table[2][2][2][2][2][4] = {
5902 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5903 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
5904 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5905 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
5906 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5907 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
5908 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5909 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
5910 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
5911 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
5912 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
5913 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
5914 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5915 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
5916 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5917 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
5921 * Determine the target EL for physical exceptions
5923 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5924 uint32_t cur_el, bool secure)
5926 CPUARMState *env = cs->env_ptr;
5927 int rw;
5928 int scr;
5929 int hcr;
5930 int target_el;
5931 /* Is the highest EL AArch64? */
5932 int is64 = arm_feature(env, ARM_FEATURE_AARCH64);
5934 if (arm_feature(env, ARM_FEATURE_EL3)) {
5935 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
5936 } else {
5937 /* Either EL2 is the highest EL (and so the EL2 register width
5938 * is given by is64); or there is no EL2 or EL3, in which case
5939 * the value of 'rw' does not affect the table lookup anyway.
5941 rw = is64;
5944 switch (excp_idx) {
5945 case EXCP_IRQ:
5946 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
5947 hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
5948 break;
5949 case EXCP_FIQ:
5950 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
5951 hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
5952 break;
5953 default:
5954 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
5955 hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
5956 break;
5959 /* If HCR.TGE is set then HCR is treated as being 1 */
5960 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
5962 /* Perform a table-lookup for the target EL given the current state */
5963 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
5965 assert(target_el > 0);
5967 return target_el;
5970 static void v7m_push(CPUARMState *env, uint32_t val)
5972 CPUState *cs = CPU(arm_env_get_cpu(env));
5974 env->regs[13] -= 4;
5975 stl_phys(cs->as, env->regs[13], val);
5978 static uint32_t v7m_pop(CPUARMState *env)
5980 CPUState *cs = CPU(arm_env_get_cpu(env));
5981 uint32_t val;
5983 val = ldl_phys(cs->as, env->regs[13]);
5984 env->regs[13] += 4;
5985 return val;
5988 /* Switch to V7M main or process stack pointer. */
5989 static void switch_v7m_sp(CPUARMState *env, bool new_spsel)
5991 uint32_t tmp;
5992 bool old_spsel = env->v7m.control & R_V7M_CONTROL_SPSEL_MASK;
5994 if (old_spsel != new_spsel) {
5995 tmp = env->v7m.other_sp;
5996 env->v7m.other_sp = env->regs[13];
5997 env->regs[13] = tmp;
5999 env->v7m.control = deposit32(env->v7m.control,
6000 R_V7M_CONTROL_SPSEL_SHIFT,
6001 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
6005 static uint32_t arm_v7m_load_vector(ARMCPU *cpu)
6007 CPUState *cs = CPU(cpu);
6008 CPUARMState *env = &cpu->env;
6009 MemTxResult result;
6010 hwaddr vec = env->v7m.vecbase + env->v7m.exception * 4;
6011 uint32_t addr;
6013 addr = address_space_ldl(cs->as, vec,
6014 MEMTXATTRS_UNSPECIFIED, &result);
6015 if (result != MEMTX_OK) {
6016 /* Architecturally this should cause a HardFault setting HSFR.VECTTBL,
6017 * which would then be immediately followed by our failing to load
6018 * the entry vector for that HardFault, which is a Lockup case.
6019 * Since we don't model Lockup, we just report this guest error
6020 * via cpu_abort().
6022 cpu_abort(cs, "Failed to read from exception vector table "
6023 "entry %08x\n", (unsigned)vec);
6025 return addr;
6028 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr)
6030 /* Do the "take the exception" parts of exception entry,
6031 * but not the pushing of state to the stack. This is
6032 * similar to the pseudocode ExceptionTaken() function.
6034 CPUARMState *env = &cpu->env;
6035 uint32_t addr;
6037 armv7m_nvic_acknowledge_irq(env->nvic);
6038 switch_v7m_sp(env, 0);
6039 /* Clear IT bits */
6040 env->condexec_bits = 0;
6041 env->regs[14] = lr;
6042 addr = arm_v7m_load_vector(cpu);
6043 env->regs[15] = addr & 0xfffffffe;
6044 env->thumb = addr & 1;
6047 static void v7m_push_stack(ARMCPU *cpu)
6049 /* Do the "set up stack frame" part of exception entry,
6050 * similar to pseudocode PushStack().
6052 CPUARMState *env = &cpu->env;
6053 uint32_t xpsr = xpsr_read(env);
6055 /* Align stack pointer if the guest wants that */
6056 if ((env->regs[13] & 4) && (env->v7m.ccr & R_V7M_CCR_STKALIGN_MASK)) {
6057 env->regs[13] -= 4;
6058 xpsr |= 0x200;
6060 /* Switch to the handler mode. */
6061 v7m_push(env, xpsr);
6062 v7m_push(env, env->regs[15]);
6063 v7m_push(env, env->regs[14]);
6064 v7m_push(env, env->regs[12]);
6065 v7m_push(env, env->regs[3]);
6066 v7m_push(env, env->regs[2]);
6067 v7m_push(env, env->regs[1]);
6068 v7m_push(env, env->regs[0]);
6071 static void do_v7m_exception_exit(ARMCPU *cpu)
6073 CPUARMState *env = &cpu->env;
6074 uint32_t type;
6075 uint32_t xpsr;
6076 bool ufault = false;
6077 bool return_to_sp_process = false;
6078 bool return_to_handler = false;
6079 bool rettobase = false;
6081 /* We can only get here from an EXCP_EXCEPTION_EXIT, and
6082 * arm_v7m_do_unassigned_access() enforces the architectural rule
6083 * that jumps to magic addresses don't have magic behaviour unless
6084 * we're in Handler mode (compare pseudocode BXWritePC()).
6086 assert(env->v7m.exception != 0);
6088 /* In the spec pseudocode ExceptionReturn() is called directly
6089 * from BXWritePC() and gets the full target PC value including
6090 * bit zero. In QEMU's implementation we treat it as a normal
6091 * jump-to-register (which is then caught later on), and so split
6092 * the target value up between env->regs[15] and env->thumb in
6093 * gen_bx(). Reconstitute it.
6095 type = env->regs[15];
6096 if (env->thumb) {
6097 type |= 1;
6100 qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
6101 " previous exception %d\n",
6102 type, env->v7m.exception);
6104 if (extract32(type, 5, 23) != extract32(-1, 5, 23)) {
6105 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
6106 "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n", type);
6109 if (env->v7m.exception != ARMV7M_EXCP_NMI) {
6110 /* Auto-clear FAULTMASK on return from other than NMI */
6111 env->daif &= ~PSTATE_F;
6114 switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception)) {
6115 case -1:
6116 /* attempt to exit an exception that isn't active */
6117 ufault = true;
6118 break;
6119 case 0:
6120 /* still an irq active now */
6121 break;
6122 case 1:
6123 /* we returned to base exception level, no nesting.
6124 * (In the pseudocode this is written using "NestedActivation != 1"
6125 * where we have 'rettobase == false'.)
6127 rettobase = true;
6128 break;
6129 default:
6130 g_assert_not_reached();
6133 switch (type & 0xf) {
6134 case 1: /* Return to Handler */
6135 return_to_handler = true;
6136 break;
6137 case 13: /* Return to Thread using Process stack */
6138 return_to_sp_process = true;
6139 /* fall through */
6140 case 9: /* Return to Thread using Main stack */
6141 if (!rettobase &&
6142 !(env->v7m.ccr & R_V7M_CCR_NONBASETHRDENA_MASK)) {
6143 ufault = true;
6145 break;
6146 default:
6147 ufault = true;
6150 if (ufault) {
6151 /* Bad exception return: instead of popping the exception
6152 * stack, directly take a usage fault on the current stack.
6154 env->v7m.cfsr |= R_V7M_CFSR_INVPC_MASK;
6155 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
6156 v7m_exception_taken(cpu, type | 0xf0000000);
6157 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
6158 "stackframe: failed exception return integrity check\n");
6159 return;
6162 /* Switch to the target stack. */
6163 switch_v7m_sp(env, return_to_sp_process);
6164 /* Pop registers. */
6165 env->regs[0] = v7m_pop(env);
6166 env->regs[1] = v7m_pop(env);
6167 env->regs[2] = v7m_pop(env);
6168 env->regs[3] = v7m_pop(env);
6169 env->regs[12] = v7m_pop(env);
6170 env->regs[14] = v7m_pop(env);
6171 env->regs[15] = v7m_pop(env);
6172 if (env->regs[15] & 1) {
6173 qemu_log_mask(LOG_GUEST_ERROR,
6174 "M profile return from interrupt with misaligned "
6175 "PC is UNPREDICTABLE\n");
6176 /* Actual hardware seems to ignore the lsbit, and there are several
6177 * RTOSes out there which incorrectly assume the r15 in the stack
6178 * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
6180 env->regs[15] &= ~1U;
6182 xpsr = v7m_pop(env);
6183 xpsr_write(env, xpsr, 0xfffffdff);
6184 /* Undo stack alignment. */
6185 if (xpsr & 0x200)
6186 env->regs[13] |= 4;
6188 /* The restored xPSR exception field will be zero if we're
6189 * resuming in Thread mode. If that doesn't match what the
6190 * exception return type specified then this is a UsageFault.
6192 if (return_to_handler == (env->v7m.exception == 0)) {
6193 /* Take an INVPC UsageFault by pushing the stack again. */
6194 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
6195 env->v7m.cfsr |= R_V7M_CFSR_INVPC_MASK;
6196 v7m_push_stack(cpu);
6197 v7m_exception_taken(cpu, type | 0xf0000000);
6198 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
6199 "failed exception return integrity check\n");
6200 return;
6203 /* Otherwise, we have a successful exception exit. */
6204 qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
6207 static void arm_log_exception(int idx)
6209 if (qemu_loglevel_mask(CPU_LOG_INT)) {
6210 const char *exc = NULL;
6212 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
6213 exc = excnames[idx];
6215 if (!exc) {
6216 exc = "unknown";
6218 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
6222 void arm_v7m_cpu_do_interrupt(CPUState *cs)
6224 ARMCPU *cpu = ARM_CPU(cs);
6225 CPUARMState *env = &cpu->env;
6226 uint32_t lr;
6228 arm_log_exception(cs->exception_index);
6230 lr = 0xfffffff1;
6231 if (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) {
6232 lr |= 4;
6234 if (env->v7m.exception == 0)
6235 lr |= 8;
6237 /* For exceptions we just mark as pending on the NVIC, and let that
6238 handle it. */
6239 switch (cs->exception_index) {
6240 case EXCP_UDEF:
6241 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
6242 env->v7m.cfsr |= R_V7M_CFSR_UNDEFINSTR_MASK;
6243 break;
6244 case EXCP_NOCP:
6245 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
6246 env->v7m.cfsr |= R_V7M_CFSR_NOCP_MASK;
6247 break;
6248 case EXCP_INVSTATE:
6249 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
6250 env->v7m.cfsr |= R_V7M_CFSR_INVSTATE_MASK;
6251 break;
6252 case EXCP_SWI:
6253 /* The PC already points to the next instruction. */
6254 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
6255 break;
6256 case EXCP_PREFETCH_ABORT:
6257 case EXCP_DATA_ABORT:
6258 /* TODO: if we implemented the MPU registers, this is where we
6259 * should set the MMFAR, etc from exception.fsr and exception.vaddress.
6261 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
6262 break;
6263 case EXCP_BKPT:
6264 if (semihosting_enabled()) {
6265 int nr;
6266 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
6267 if (nr == 0xab) {
6268 env->regs[15] += 2;
6269 qemu_log_mask(CPU_LOG_INT,
6270 "...handling as semihosting call 0x%x\n",
6271 env->regs[0]);
6272 env->regs[0] = do_arm_semihosting(env);
6273 return;
6276 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
6277 break;
6278 case EXCP_IRQ:
6279 break;
6280 case EXCP_EXCEPTION_EXIT:
6281 do_v7m_exception_exit(cpu);
6282 return;
6283 default:
6284 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
6285 return; /* Never happens. Keep compiler happy. */
6288 v7m_push_stack(cpu);
6289 v7m_exception_taken(cpu, lr);
6290 qemu_log_mask(CPU_LOG_INT, "... as %d\n", env->v7m.exception);
6293 /* Function used to synchronize QEMU's AArch64 register set with AArch32
6294 * register set. This is necessary when switching between AArch32 and AArch64
6295 * execution state.
6297 void aarch64_sync_32_to_64(CPUARMState *env)
6299 int i;
6300 uint32_t mode = env->uncached_cpsr & CPSR_M;
6302 /* We can blanket copy R[0:7] to X[0:7] */
6303 for (i = 0; i < 8; i++) {
6304 env->xregs[i] = env->regs[i];
6307 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
6308 * Otherwise, they come from the banked user regs.
6310 if (mode == ARM_CPU_MODE_FIQ) {
6311 for (i = 8; i < 13; i++) {
6312 env->xregs[i] = env->usr_regs[i - 8];
6314 } else {
6315 for (i = 8; i < 13; i++) {
6316 env->xregs[i] = env->regs[i];
6320 /* Registers x13-x23 are the various mode SP and FP registers. Registers
6321 * r13 and r14 are only copied if we are in that mode, otherwise we copy
6322 * from the mode banked register.
6324 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
6325 env->xregs[13] = env->regs[13];
6326 env->xregs[14] = env->regs[14];
6327 } else {
6328 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
6329 /* HYP is an exception in that it is copied from r14 */
6330 if (mode == ARM_CPU_MODE_HYP) {
6331 env->xregs[14] = env->regs[14];
6332 } else {
6333 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
6337 if (mode == ARM_CPU_MODE_HYP) {
6338 env->xregs[15] = env->regs[13];
6339 } else {
6340 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
6343 if (mode == ARM_CPU_MODE_IRQ) {
6344 env->xregs[16] = env->regs[14];
6345 env->xregs[17] = env->regs[13];
6346 } else {
6347 env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
6348 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
6351 if (mode == ARM_CPU_MODE_SVC) {
6352 env->xregs[18] = env->regs[14];
6353 env->xregs[19] = env->regs[13];
6354 } else {
6355 env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
6356 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
6359 if (mode == ARM_CPU_MODE_ABT) {
6360 env->xregs[20] = env->regs[14];
6361 env->xregs[21] = env->regs[13];
6362 } else {
6363 env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
6364 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
6367 if (mode == ARM_CPU_MODE_UND) {
6368 env->xregs[22] = env->regs[14];
6369 env->xregs[23] = env->regs[13];
6370 } else {
6371 env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
6372 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
6375 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
6376 * mode, then we can copy from r8-r14. Otherwise, we copy from the
6377 * FIQ bank for r8-r14.
6379 if (mode == ARM_CPU_MODE_FIQ) {
6380 for (i = 24; i < 31; i++) {
6381 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
6383 } else {
6384 for (i = 24; i < 29; i++) {
6385 env->xregs[i] = env->fiq_regs[i - 24];
6387 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
6388 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
6391 env->pc = env->regs[15];
6394 /* Function used to synchronize QEMU's AArch32 register set with AArch64
6395 * register set. This is necessary when switching between AArch32 and AArch64
6396 * execution state.
6398 void aarch64_sync_64_to_32(CPUARMState *env)
6400 int i;
6401 uint32_t mode = env->uncached_cpsr & CPSR_M;
6403 /* We can blanket copy X[0:7] to R[0:7] */
6404 for (i = 0; i < 8; i++) {
6405 env->regs[i] = env->xregs[i];
6408 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
6409 * Otherwise, we copy x8-x12 into the banked user regs.
6411 if (mode == ARM_CPU_MODE_FIQ) {
6412 for (i = 8; i < 13; i++) {
6413 env->usr_regs[i - 8] = env->xregs[i];
6415 } else {
6416 for (i = 8; i < 13; i++) {
6417 env->regs[i] = env->xregs[i];
6421 /* Registers r13 & r14 depend on the current mode.
6422 * If we are in a given mode, we copy the corresponding x registers to r13
6423 * and r14. Otherwise, we copy the x register to the banked r13 and r14
6424 * for the mode.
6426 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
6427 env->regs[13] = env->xregs[13];
6428 env->regs[14] = env->xregs[14];
6429 } else {
6430 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
6432 /* HYP is an exception in that it does not have its own banked r14 but
6433 * shares the USR r14
6435 if (mode == ARM_CPU_MODE_HYP) {
6436 env->regs[14] = env->xregs[14];
6437 } else {
6438 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
6442 if (mode == ARM_CPU_MODE_HYP) {
6443 env->regs[13] = env->xregs[15];
6444 } else {
6445 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
6448 if (mode == ARM_CPU_MODE_IRQ) {
6449 env->regs[14] = env->xregs[16];
6450 env->regs[13] = env->xregs[17];
6451 } else {
6452 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
6453 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
6456 if (mode == ARM_CPU_MODE_SVC) {
6457 env->regs[14] = env->xregs[18];
6458 env->regs[13] = env->xregs[19];
6459 } else {
6460 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
6461 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
6464 if (mode == ARM_CPU_MODE_ABT) {
6465 env->regs[14] = env->xregs[20];
6466 env->regs[13] = env->xregs[21];
6467 } else {
6468 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
6469 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
6472 if (mode == ARM_CPU_MODE_UND) {
6473 env->regs[14] = env->xregs[22];
6474 env->regs[13] = env->xregs[23];
6475 } else {
6476 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
6477 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
6480 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
6481 * mode, then we can copy to r8-r14. Otherwise, we copy to the
6482 * FIQ bank for r8-r14.
6484 if (mode == ARM_CPU_MODE_FIQ) {
6485 for (i = 24; i < 31; i++) {
6486 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
6488 } else {
6489 for (i = 24; i < 29; i++) {
6490 env->fiq_regs[i - 24] = env->xregs[i];
6492 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
6493 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
6496 env->regs[15] = env->pc;
6499 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
6501 ARMCPU *cpu = ARM_CPU(cs);
6502 CPUARMState *env = &cpu->env;
6503 uint32_t addr;
6504 uint32_t mask;
6505 int new_mode;
6506 uint32_t offset;
6507 uint32_t moe;
6509 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
6510 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
6511 case EC_BREAKPOINT:
6512 case EC_BREAKPOINT_SAME_EL:
6513 moe = 1;
6514 break;
6515 case EC_WATCHPOINT:
6516 case EC_WATCHPOINT_SAME_EL:
6517 moe = 10;
6518 break;
6519 case EC_AA32_BKPT:
6520 moe = 3;
6521 break;
6522 case EC_VECTORCATCH:
6523 moe = 5;
6524 break;
6525 default:
6526 moe = 0;
6527 break;
6530 if (moe) {
6531 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
6534 /* TODO: Vectored interrupt controller. */
6535 switch (cs->exception_index) {
6536 case EXCP_UDEF:
6537 new_mode = ARM_CPU_MODE_UND;
6538 addr = 0x04;
6539 mask = CPSR_I;
6540 if (env->thumb)
6541 offset = 2;
6542 else
6543 offset = 4;
6544 break;
6545 case EXCP_SWI:
6546 new_mode = ARM_CPU_MODE_SVC;
6547 addr = 0x08;
6548 mask = CPSR_I;
6549 /* The PC already points to the next instruction. */
6550 offset = 0;
6551 break;
6552 case EXCP_BKPT:
6553 env->exception.fsr = 2;
6554 /* Fall through to prefetch abort. */
6555 case EXCP_PREFETCH_ABORT:
6556 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
6557 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
6558 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
6559 env->exception.fsr, (uint32_t)env->exception.vaddress);
6560 new_mode = ARM_CPU_MODE_ABT;
6561 addr = 0x0c;
6562 mask = CPSR_A | CPSR_I;
6563 offset = 4;
6564 break;
6565 case EXCP_DATA_ABORT:
6566 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
6567 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
6568 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
6569 env->exception.fsr,
6570 (uint32_t)env->exception.vaddress);
6571 new_mode = ARM_CPU_MODE_ABT;
6572 addr = 0x10;
6573 mask = CPSR_A | CPSR_I;
6574 offset = 8;
6575 break;
6576 case EXCP_IRQ:
6577 new_mode = ARM_CPU_MODE_IRQ;
6578 addr = 0x18;
6579 /* Disable IRQ and imprecise data aborts. */
6580 mask = CPSR_A | CPSR_I;
6581 offset = 4;
6582 if (env->cp15.scr_el3 & SCR_IRQ) {
6583 /* IRQ routed to monitor mode */
6584 new_mode = ARM_CPU_MODE_MON;
6585 mask |= CPSR_F;
6587 break;
6588 case EXCP_FIQ:
6589 new_mode = ARM_CPU_MODE_FIQ;
6590 addr = 0x1c;
6591 /* Disable FIQ, IRQ and imprecise data aborts. */
6592 mask = CPSR_A | CPSR_I | CPSR_F;
6593 if (env->cp15.scr_el3 & SCR_FIQ) {
6594 /* FIQ routed to monitor mode */
6595 new_mode = ARM_CPU_MODE_MON;
6597 offset = 4;
6598 break;
6599 case EXCP_VIRQ:
6600 new_mode = ARM_CPU_MODE_IRQ;
6601 addr = 0x18;
6602 /* Disable IRQ and imprecise data aborts. */
6603 mask = CPSR_A | CPSR_I;
6604 offset = 4;
6605 break;
6606 case EXCP_VFIQ:
6607 new_mode = ARM_CPU_MODE_FIQ;
6608 addr = 0x1c;
6609 /* Disable FIQ, IRQ and imprecise data aborts. */
6610 mask = CPSR_A | CPSR_I | CPSR_F;
6611 offset = 4;
6612 break;
6613 case EXCP_SMC:
6614 new_mode = ARM_CPU_MODE_MON;
6615 addr = 0x08;
6616 mask = CPSR_A | CPSR_I | CPSR_F;
6617 offset = 0;
6618 break;
6619 default:
6620 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
6621 return; /* Never happens. Keep compiler happy. */
6624 if (new_mode == ARM_CPU_MODE_MON) {
6625 addr += env->cp15.mvbar;
6626 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
6627 /* High vectors. When enabled, base address cannot be remapped. */
6628 addr += 0xffff0000;
6629 } else {
6630 /* ARM v7 architectures provide a vector base address register to remap
6631 * the interrupt vector table.
6632 * This register is only followed in non-monitor mode, and is banked.
6633 * Note: only bits 31:5 are valid.
6635 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
6638 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
6639 env->cp15.scr_el3 &= ~SCR_NS;
6642 switch_mode (env, new_mode);
6643 /* For exceptions taken to AArch32 we must clear the SS bit in both
6644 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
6646 env->uncached_cpsr &= ~PSTATE_SS;
6647 env->spsr = cpsr_read(env);
6648 /* Clear IT bits. */
6649 env->condexec_bits = 0;
6650 /* Switch to the new mode, and to the correct instruction set. */
6651 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
6652 /* Set new mode endianness */
6653 env->uncached_cpsr &= ~CPSR_E;
6654 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
6655 env->uncached_cpsr |= CPSR_E;
6657 env->daif |= mask;
6658 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
6659 * and we should just guard the thumb mode on V4 */
6660 if (arm_feature(env, ARM_FEATURE_V4T)) {
6661 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
6663 env->regs[14] = env->regs[15] + offset;
6664 env->regs[15] = addr;
6667 /* Handle exception entry to a target EL which is using AArch64 */
6668 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
6670 ARMCPU *cpu = ARM_CPU(cs);
6671 CPUARMState *env = &cpu->env;
6672 unsigned int new_el = env->exception.target_el;
6673 target_ulong addr = env->cp15.vbar_el[new_el];
6674 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
6676 if (arm_current_el(env) < new_el) {
6677 /* Entry vector offset depends on whether the implemented EL
6678 * immediately lower than the target level is using AArch32 or AArch64
6680 bool is_aa64;
6682 switch (new_el) {
6683 case 3:
6684 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
6685 break;
6686 case 2:
6687 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
6688 break;
6689 case 1:
6690 is_aa64 = is_a64(env);
6691 break;
6692 default:
6693 g_assert_not_reached();
6696 if (is_aa64) {
6697 addr += 0x400;
6698 } else {
6699 addr += 0x600;
6701 } else if (pstate_read(env) & PSTATE_SP) {
6702 addr += 0x200;
6705 switch (cs->exception_index) {
6706 case EXCP_PREFETCH_ABORT:
6707 case EXCP_DATA_ABORT:
6708 env->cp15.far_el[new_el] = env->exception.vaddress;
6709 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
6710 env->cp15.far_el[new_el]);
6711 /* fall through */
6712 case EXCP_BKPT:
6713 case EXCP_UDEF:
6714 case EXCP_SWI:
6715 case EXCP_HVC:
6716 case EXCP_HYP_TRAP:
6717 case EXCP_SMC:
6718 env->cp15.esr_el[new_el] = env->exception.syndrome;
6719 break;
6720 case EXCP_IRQ:
6721 case EXCP_VIRQ:
6722 addr += 0x80;
6723 break;
6724 case EXCP_FIQ:
6725 case EXCP_VFIQ:
6726 addr += 0x100;
6727 break;
6728 case EXCP_SEMIHOST:
6729 qemu_log_mask(CPU_LOG_INT,
6730 "...handling as semihosting call 0x%" PRIx64 "\n",
6731 env->xregs[0]);
6732 env->xregs[0] = do_arm_semihosting(env);
6733 return;
6734 default:
6735 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
6738 if (is_a64(env)) {
6739 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
6740 aarch64_save_sp(env, arm_current_el(env));
6741 env->elr_el[new_el] = env->pc;
6742 } else {
6743 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
6744 env->elr_el[new_el] = env->regs[15];
6746 aarch64_sync_32_to_64(env);
6748 env->condexec_bits = 0;
6750 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
6751 env->elr_el[new_el]);
6753 pstate_write(env, PSTATE_DAIF | new_mode);
6754 env->aarch64 = 1;
6755 aarch64_restore_sp(env, new_el);
6757 env->pc = addr;
6759 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
6760 new_el, env->pc, pstate_read(env));
6763 static inline bool check_for_semihosting(CPUState *cs)
6765 /* Check whether this exception is a semihosting call; if so
6766 * then handle it and return true; otherwise return false.
6768 ARMCPU *cpu = ARM_CPU(cs);
6769 CPUARMState *env = &cpu->env;
6771 if (is_a64(env)) {
6772 if (cs->exception_index == EXCP_SEMIHOST) {
6773 /* This is always the 64-bit semihosting exception.
6774 * The "is this usermode" and "is semihosting enabled"
6775 * checks have been done at translate time.
6777 qemu_log_mask(CPU_LOG_INT,
6778 "...handling as semihosting call 0x%" PRIx64 "\n",
6779 env->xregs[0]);
6780 env->xregs[0] = do_arm_semihosting(env);
6781 return true;
6783 return false;
6784 } else {
6785 uint32_t imm;
6787 /* Only intercept calls from privileged modes, to provide some
6788 * semblance of security.
6790 if (cs->exception_index != EXCP_SEMIHOST &&
6791 (!semihosting_enabled() ||
6792 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
6793 return false;
6796 switch (cs->exception_index) {
6797 case EXCP_SEMIHOST:
6798 /* This is always a semihosting call; the "is this usermode"
6799 * and "is semihosting enabled" checks have been done at
6800 * translate time.
6802 break;
6803 case EXCP_SWI:
6804 /* Check for semihosting interrupt. */
6805 if (env->thumb) {
6806 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
6807 & 0xff;
6808 if (imm == 0xab) {
6809 break;
6811 } else {
6812 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
6813 & 0xffffff;
6814 if (imm == 0x123456) {
6815 break;
6818 return false;
6819 case EXCP_BKPT:
6820 /* See if this is a semihosting syscall. */
6821 if (env->thumb) {
6822 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
6823 & 0xff;
6824 if (imm == 0xab) {
6825 env->regs[15] += 2;
6826 break;
6829 return false;
6830 default:
6831 return false;
6834 qemu_log_mask(CPU_LOG_INT,
6835 "...handling as semihosting call 0x%x\n",
6836 env->regs[0]);
6837 env->regs[0] = do_arm_semihosting(env);
6838 return true;
6842 /* Handle a CPU exception for A and R profile CPUs.
6843 * Do any appropriate logging, handle PSCI calls, and then hand off
6844 * to the AArch64-entry or AArch32-entry function depending on the
6845 * target exception level's register width.
6847 void arm_cpu_do_interrupt(CPUState *cs)
6849 ARMCPU *cpu = ARM_CPU(cs);
6850 CPUARMState *env = &cpu->env;
6851 unsigned int new_el = env->exception.target_el;
6853 assert(!arm_feature(env, ARM_FEATURE_M));
6855 arm_log_exception(cs->exception_index);
6856 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
6857 new_el);
6858 if (qemu_loglevel_mask(CPU_LOG_INT)
6859 && !excp_is_internal(cs->exception_index)) {
6860 qemu_log_mask(CPU_LOG_INT, "...with ESR %x/0x%" PRIx32 "\n",
6861 env->exception.syndrome >> ARM_EL_EC_SHIFT,
6862 env->exception.syndrome);
6865 if (arm_is_psci_call(cpu, cs->exception_index)) {
6866 arm_handle_psci_call(cpu);
6867 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
6868 return;
6871 /* Semihosting semantics depend on the register width of the
6872 * code that caused the exception, not the target exception level,
6873 * so must be handled here.
6875 if (check_for_semihosting(cs)) {
6876 return;
6879 assert(!excp_is_internal(cs->exception_index));
6880 if (arm_el_is_aa64(env, new_el)) {
6881 arm_cpu_do_interrupt_aarch64(cs);
6882 } else {
6883 arm_cpu_do_interrupt_aarch32(cs);
6886 /* Hooks may change global state so BQL should be held, also the
6887 * BQL needs to be held for any modification of
6888 * cs->interrupt_request.
6890 g_assert(qemu_mutex_iothread_locked());
6892 arm_call_el_change_hook(cpu);
6894 if (!kvm_enabled()) {
6895 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
6899 /* Return the exception level which controls this address translation regime */
6900 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
6902 switch (mmu_idx) {
6903 case ARMMMUIdx_S2NS:
6904 case ARMMMUIdx_S1E2:
6905 return 2;
6906 case ARMMMUIdx_S1E3:
6907 return 3;
6908 case ARMMMUIdx_S1SE0:
6909 return arm_el_is_aa64(env, 3) ? 1 : 3;
6910 case ARMMMUIdx_S1SE1:
6911 case ARMMMUIdx_S1NSE0:
6912 case ARMMMUIdx_S1NSE1:
6913 return 1;
6914 default:
6915 g_assert_not_reached();
6919 /* Return true if this address translation regime is secure */
6920 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
6922 switch (mmu_idx) {
6923 case ARMMMUIdx_S12NSE0:
6924 case ARMMMUIdx_S12NSE1:
6925 case ARMMMUIdx_S1NSE0:
6926 case ARMMMUIdx_S1NSE1:
6927 case ARMMMUIdx_S1E2:
6928 case ARMMMUIdx_S2NS:
6929 return false;
6930 case ARMMMUIdx_S1E3:
6931 case ARMMMUIdx_S1SE0:
6932 case ARMMMUIdx_S1SE1:
6933 return true;
6934 default:
6935 g_assert_not_reached();
6939 /* Return the SCTLR value which controls this address translation regime */
6940 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
6942 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
6945 /* Return true if the specified stage of address translation is disabled */
6946 static inline bool regime_translation_disabled(CPUARMState *env,
6947 ARMMMUIdx mmu_idx)
6949 if (mmu_idx == ARMMMUIdx_S2NS) {
6950 return (env->cp15.hcr_el2 & HCR_VM) == 0;
6952 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
6955 static inline bool regime_translation_big_endian(CPUARMState *env,
6956 ARMMMUIdx mmu_idx)
6958 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
6961 /* Return the TCR controlling this translation regime */
6962 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
6964 if (mmu_idx == ARMMMUIdx_S2NS) {
6965 return &env->cp15.vtcr_el2;
6967 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
6970 /* Returns TBI0 value for current regime el */
6971 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
6973 TCR *tcr;
6974 uint32_t el;
6976 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
6977 * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
6979 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
6980 mmu_idx += ARMMMUIdx_S1NSE0;
6983 tcr = regime_tcr(env, mmu_idx);
6984 el = regime_el(env, mmu_idx);
6986 if (el > 1) {
6987 return extract64(tcr->raw_tcr, 20, 1);
6988 } else {
6989 return extract64(tcr->raw_tcr, 37, 1);
6993 /* Returns TBI1 value for current regime el */
6994 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
6996 TCR *tcr;
6997 uint32_t el;
6999 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
7000 * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
7002 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
7003 mmu_idx += ARMMMUIdx_S1NSE0;
7006 tcr = regime_tcr(env, mmu_idx);
7007 el = regime_el(env, mmu_idx);
7009 if (el > 1) {
7010 return 0;
7011 } else {
7012 return extract64(tcr->raw_tcr, 38, 1);
7016 /* Return the TTBR associated with this translation regime */
7017 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
7018 int ttbrn)
7020 if (mmu_idx == ARMMMUIdx_S2NS) {
7021 return env->cp15.vttbr_el2;
7023 if (ttbrn == 0) {
7024 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
7025 } else {
7026 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
7030 /* Return true if the translation regime is using LPAE format page tables */
7031 static inline bool regime_using_lpae_format(CPUARMState *env,
7032 ARMMMUIdx mmu_idx)
7034 int el = regime_el(env, mmu_idx);
7035 if (el == 2 || arm_el_is_aa64(env, el)) {
7036 return true;
7038 if (arm_feature(env, ARM_FEATURE_LPAE)
7039 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
7040 return true;
7042 return false;
7045 /* Returns true if the stage 1 translation regime is using LPAE format page
7046 * tables. Used when raising alignment exceptions, whose FSR changes depending
7047 * on whether the long or short descriptor format is in use. */
7048 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
7050 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
7051 mmu_idx += ARMMMUIdx_S1NSE0;
7054 return regime_using_lpae_format(env, mmu_idx);
7057 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
7059 switch (mmu_idx) {
7060 case ARMMMUIdx_S1SE0:
7061 case ARMMMUIdx_S1NSE0:
7062 return true;
7063 default:
7064 return false;
7065 case ARMMMUIdx_S12NSE0:
7066 case ARMMMUIdx_S12NSE1:
7067 g_assert_not_reached();
7071 /* Translate section/page access permissions to page
7072 * R/W protection flags
7074 * @env: CPUARMState
7075 * @mmu_idx: MMU index indicating required translation regime
7076 * @ap: The 3-bit access permissions (AP[2:0])
7077 * @domain_prot: The 2-bit domain access permissions
7079 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
7080 int ap, int domain_prot)
7082 bool is_user = regime_is_user(env, mmu_idx);
7084 if (domain_prot == 3) {
7085 return PAGE_READ | PAGE_WRITE;
7088 switch (ap) {
7089 case 0:
7090 if (arm_feature(env, ARM_FEATURE_V7)) {
7091 return 0;
7093 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
7094 case SCTLR_S:
7095 return is_user ? 0 : PAGE_READ;
7096 case SCTLR_R:
7097 return PAGE_READ;
7098 default:
7099 return 0;
7101 case 1:
7102 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
7103 case 2:
7104 if (is_user) {
7105 return PAGE_READ;
7106 } else {
7107 return PAGE_READ | PAGE_WRITE;
7109 case 3:
7110 return PAGE_READ | PAGE_WRITE;
7111 case 4: /* Reserved. */
7112 return 0;
7113 case 5:
7114 return is_user ? 0 : PAGE_READ;
7115 case 6:
7116 return PAGE_READ;
7117 case 7:
7118 if (!arm_feature(env, ARM_FEATURE_V6K)) {
7119 return 0;
7121 return PAGE_READ;
7122 default:
7123 g_assert_not_reached();
7127 /* Translate section/page access permissions to page
7128 * R/W protection flags.
7130 * @ap: The 2-bit simple AP (AP[2:1])
7131 * @is_user: TRUE if accessing from PL0
7133 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
7135 switch (ap) {
7136 case 0:
7137 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
7138 case 1:
7139 return PAGE_READ | PAGE_WRITE;
7140 case 2:
7141 return is_user ? 0 : PAGE_READ;
7142 case 3:
7143 return PAGE_READ;
7144 default:
7145 g_assert_not_reached();
7149 static inline int
7150 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
7152 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
7155 /* Translate S2 section/page access permissions to protection flags
7157 * @env: CPUARMState
7158 * @s2ap: The 2-bit stage2 access permissions (S2AP)
7159 * @xn: XN (execute-never) bit
7161 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
7163 int prot = 0;
7165 if (s2ap & 1) {
7166 prot |= PAGE_READ;
7168 if (s2ap & 2) {
7169 prot |= PAGE_WRITE;
7171 if (!xn) {
7172 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
7173 prot |= PAGE_EXEC;
7176 return prot;
7179 /* Translate section/page access permissions to protection flags
7181 * @env: CPUARMState
7182 * @mmu_idx: MMU index indicating required translation regime
7183 * @is_aa64: TRUE if AArch64
7184 * @ap: The 2-bit simple AP (AP[2:1])
7185 * @ns: NS (non-secure) bit
7186 * @xn: XN (execute-never) bit
7187 * @pxn: PXN (privileged execute-never) bit
7189 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
7190 int ap, int ns, int xn, int pxn)
7192 bool is_user = regime_is_user(env, mmu_idx);
7193 int prot_rw, user_rw;
7194 bool have_wxn;
7195 int wxn = 0;
7197 assert(mmu_idx != ARMMMUIdx_S2NS);
7199 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
7200 if (is_user) {
7201 prot_rw = user_rw;
7202 } else {
7203 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
7206 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
7207 return prot_rw;
7210 /* TODO have_wxn should be replaced with
7211 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
7212 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
7213 * compatible processors have EL2, which is required for [U]WXN.
7215 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
7217 if (have_wxn) {
7218 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
7221 if (is_aa64) {
7222 switch (regime_el(env, mmu_idx)) {
7223 case 1:
7224 if (!is_user) {
7225 xn = pxn || (user_rw & PAGE_WRITE);
7227 break;
7228 case 2:
7229 case 3:
7230 break;
7232 } else if (arm_feature(env, ARM_FEATURE_V7)) {
7233 switch (regime_el(env, mmu_idx)) {
7234 case 1:
7235 case 3:
7236 if (is_user) {
7237 xn = xn || !(user_rw & PAGE_READ);
7238 } else {
7239 int uwxn = 0;
7240 if (have_wxn) {
7241 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
7243 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
7244 (uwxn && (user_rw & PAGE_WRITE));
7246 break;
7247 case 2:
7248 break;
7250 } else {
7251 xn = wxn = 0;
7254 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
7255 return prot_rw;
7257 return prot_rw | PAGE_EXEC;
7260 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
7261 uint32_t *table, uint32_t address)
7263 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
7264 TCR *tcr = regime_tcr(env, mmu_idx);
7266 if (address & tcr->mask) {
7267 if (tcr->raw_tcr & TTBCR_PD1) {
7268 /* Translation table walk disabled for TTBR1 */
7269 return false;
7271 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
7272 } else {
7273 if (tcr->raw_tcr & TTBCR_PD0) {
7274 /* Translation table walk disabled for TTBR0 */
7275 return false;
7277 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
7279 *table |= (address >> 18) & 0x3ffc;
7280 return true;
7283 /* Translate a S1 pagetable walk through S2 if needed. */
7284 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
7285 hwaddr addr, MemTxAttrs txattrs,
7286 uint32_t *fsr,
7287 ARMMMUFaultInfo *fi)
7289 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
7290 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
7291 target_ulong s2size;
7292 hwaddr s2pa;
7293 int s2prot;
7294 int ret;
7296 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
7297 &txattrs, &s2prot, &s2size, fsr, fi);
7298 if (ret) {
7299 fi->s2addr = addr;
7300 fi->stage2 = true;
7301 fi->s1ptw = true;
7302 return ~0;
7304 addr = s2pa;
7306 return addr;
7309 /* All loads done in the course of a page table walk go through here.
7310 * TODO: rather than ignoring errors from physical memory reads (which
7311 * are external aborts in ARM terminology) we should propagate this
7312 * error out so that we can turn it into a Data Abort if this walk
7313 * was being done for a CPU load/store or an address translation instruction
7314 * (but not if it was for a debug access).
7316 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
7317 ARMMMUIdx mmu_idx, uint32_t *fsr,
7318 ARMMMUFaultInfo *fi)
7320 ARMCPU *cpu = ARM_CPU(cs);
7321 CPUARMState *env = &cpu->env;
7322 MemTxAttrs attrs = {};
7323 AddressSpace *as;
7325 attrs.secure = is_secure;
7326 as = arm_addressspace(cs, attrs);
7327 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
7328 if (fi->s1ptw) {
7329 return 0;
7331 if (regime_translation_big_endian(env, mmu_idx)) {
7332 return address_space_ldl_be(as, addr, attrs, NULL);
7333 } else {
7334 return address_space_ldl_le(as, addr, attrs, NULL);
7338 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
7339 ARMMMUIdx mmu_idx, uint32_t *fsr,
7340 ARMMMUFaultInfo *fi)
7342 ARMCPU *cpu = ARM_CPU(cs);
7343 CPUARMState *env = &cpu->env;
7344 MemTxAttrs attrs = {};
7345 AddressSpace *as;
7347 attrs.secure = is_secure;
7348 as = arm_addressspace(cs, attrs);
7349 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
7350 if (fi->s1ptw) {
7351 return 0;
7353 if (regime_translation_big_endian(env, mmu_idx)) {
7354 return address_space_ldq_be(as, addr, attrs, NULL);
7355 } else {
7356 return address_space_ldq_le(as, addr, attrs, NULL);
7360 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
7361 int access_type, ARMMMUIdx mmu_idx,
7362 hwaddr *phys_ptr, int *prot,
7363 target_ulong *page_size, uint32_t *fsr,
7364 ARMMMUFaultInfo *fi)
7366 CPUState *cs = CPU(arm_env_get_cpu(env));
7367 int code;
7368 uint32_t table;
7369 uint32_t desc;
7370 int type;
7371 int ap;
7372 int domain = 0;
7373 int domain_prot;
7374 hwaddr phys_addr;
7375 uint32_t dacr;
7377 /* Pagetable walk. */
7378 /* Lookup l1 descriptor. */
7379 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
7380 /* Section translation fault if page walk is disabled by PD0 or PD1 */
7381 code = 5;
7382 goto do_fault;
7384 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7385 mmu_idx, fsr, fi);
7386 type = (desc & 3);
7387 domain = (desc >> 5) & 0x0f;
7388 if (regime_el(env, mmu_idx) == 1) {
7389 dacr = env->cp15.dacr_ns;
7390 } else {
7391 dacr = env->cp15.dacr_s;
7393 domain_prot = (dacr >> (domain * 2)) & 3;
7394 if (type == 0) {
7395 /* Section translation fault. */
7396 code = 5;
7397 goto do_fault;
7399 if (domain_prot == 0 || domain_prot == 2) {
7400 if (type == 2)
7401 code = 9; /* Section domain fault. */
7402 else
7403 code = 11; /* Page domain fault. */
7404 goto do_fault;
7406 if (type == 2) {
7407 /* 1Mb section. */
7408 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
7409 ap = (desc >> 10) & 3;
7410 code = 13;
7411 *page_size = 1024 * 1024;
7412 } else {
7413 /* Lookup l2 entry. */
7414 if (type == 1) {
7415 /* Coarse pagetable. */
7416 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
7417 } else {
7418 /* Fine pagetable. */
7419 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
7421 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7422 mmu_idx, fsr, fi);
7423 switch (desc & 3) {
7424 case 0: /* Page translation fault. */
7425 code = 7;
7426 goto do_fault;
7427 case 1: /* 64k page. */
7428 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
7429 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
7430 *page_size = 0x10000;
7431 break;
7432 case 2: /* 4k page. */
7433 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
7434 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
7435 *page_size = 0x1000;
7436 break;
7437 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
7438 if (type == 1) {
7439 /* ARMv6/XScale extended small page format */
7440 if (arm_feature(env, ARM_FEATURE_XSCALE)
7441 || arm_feature(env, ARM_FEATURE_V6)) {
7442 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
7443 *page_size = 0x1000;
7444 } else {
7445 /* UNPREDICTABLE in ARMv5; we choose to take a
7446 * page translation fault.
7448 code = 7;
7449 goto do_fault;
7451 } else {
7452 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
7453 *page_size = 0x400;
7455 ap = (desc >> 4) & 3;
7456 break;
7457 default:
7458 /* Never happens, but compiler isn't smart enough to tell. */
7459 abort();
7461 code = 15;
7463 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
7464 *prot |= *prot ? PAGE_EXEC : 0;
7465 if (!(*prot & (1 << access_type))) {
7466 /* Access permission fault. */
7467 goto do_fault;
7469 *phys_ptr = phys_addr;
7470 return false;
7471 do_fault:
7472 *fsr = code | (domain << 4);
7473 return true;
7476 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
7477 int access_type, ARMMMUIdx mmu_idx,
7478 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
7479 target_ulong *page_size, uint32_t *fsr,
7480 ARMMMUFaultInfo *fi)
7482 CPUState *cs = CPU(arm_env_get_cpu(env));
7483 int code;
7484 uint32_t table;
7485 uint32_t desc;
7486 uint32_t xn;
7487 uint32_t pxn = 0;
7488 int type;
7489 int ap;
7490 int domain = 0;
7491 int domain_prot;
7492 hwaddr phys_addr;
7493 uint32_t dacr;
7494 bool ns;
7496 /* Pagetable walk. */
7497 /* Lookup l1 descriptor. */
7498 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
7499 /* Section translation fault if page walk is disabled by PD0 or PD1 */
7500 code = 5;
7501 goto do_fault;
7503 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7504 mmu_idx, fsr, fi);
7505 type = (desc & 3);
7506 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
7507 /* Section translation fault, or attempt to use the encoding
7508 * which is Reserved on implementations without PXN.
7510 code = 5;
7511 goto do_fault;
7513 if ((type == 1) || !(desc & (1 << 18))) {
7514 /* Page or Section. */
7515 domain = (desc >> 5) & 0x0f;
7517 if (regime_el(env, mmu_idx) == 1) {
7518 dacr = env->cp15.dacr_ns;
7519 } else {
7520 dacr = env->cp15.dacr_s;
7522 domain_prot = (dacr >> (domain * 2)) & 3;
7523 if (domain_prot == 0 || domain_prot == 2) {
7524 if (type != 1) {
7525 code = 9; /* Section domain fault. */
7526 } else {
7527 code = 11; /* Page domain fault. */
7529 goto do_fault;
7531 if (type != 1) {
7532 if (desc & (1 << 18)) {
7533 /* Supersection. */
7534 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
7535 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
7536 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
7537 *page_size = 0x1000000;
7538 } else {
7539 /* Section. */
7540 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
7541 *page_size = 0x100000;
7543 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
7544 xn = desc & (1 << 4);
7545 pxn = desc & 1;
7546 code = 13;
7547 ns = extract32(desc, 19, 1);
7548 } else {
7549 if (arm_feature(env, ARM_FEATURE_PXN)) {
7550 pxn = (desc >> 2) & 1;
7552 ns = extract32(desc, 3, 1);
7553 /* Lookup l2 entry. */
7554 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
7555 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7556 mmu_idx, fsr, fi);
7557 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
7558 switch (desc & 3) {
7559 case 0: /* Page translation fault. */
7560 code = 7;
7561 goto do_fault;
7562 case 1: /* 64k page. */
7563 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
7564 xn = desc & (1 << 15);
7565 *page_size = 0x10000;
7566 break;
7567 case 2: case 3: /* 4k page. */
7568 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
7569 xn = desc & 1;
7570 *page_size = 0x1000;
7571 break;
7572 default:
7573 /* Never happens, but compiler isn't smart enough to tell. */
7574 abort();
7576 code = 15;
7578 if (domain_prot == 3) {
7579 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
7580 } else {
7581 if (pxn && !regime_is_user(env, mmu_idx)) {
7582 xn = 1;
7584 if (xn && access_type == 2)
7585 goto do_fault;
7587 if (arm_feature(env, ARM_FEATURE_V6K) &&
7588 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
7589 /* The simplified model uses AP[0] as an access control bit. */
7590 if ((ap & 1) == 0) {
7591 /* Access flag fault. */
7592 code = (code == 15) ? 6 : 3;
7593 goto do_fault;
7595 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
7596 } else {
7597 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
7599 if (*prot && !xn) {
7600 *prot |= PAGE_EXEC;
7602 if (!(*prot & (1 << access_type))) {
7603 /* Access permission fault. */
7604 goto do_fault;
7607 if (ns) {
7608 /* The NS bit will (as required by the architecture) have no effect if
7609 * the CPU doesn't support TZ or this is a non-secure translation
7610 * regime, because the attribute will already be non-secure.
7612 attrs->secure = false;
7614 *phys_ptr = phys_addr;
7615 return false;
7616 do_fault:
7617 *fsr = code | (domain << 4);
7618 return true;
7621 /* Fault type for long-descriptor MMU fault reporting; this corresponds
7622 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
7624 typedef enum {
7625 translation_fault = 1,
7626 access_fault = 2,
7627 permission_fault = 3,
7628 } MMUFaultType;
7631 * check_s2_mmu_setup
7632 * @cpu: ARMCPU
7633 * @is_aa64: True if the translation regime is in AArch64 state
7634 * @startlevel: Suggested starting level
7635 * @inputsize: Bitsize of IPAs
7636 * @stride: Page-table stride (See the ARM ARM)
7638 * Returns true if the suggested S2 translation parameters are OK and
7639 * false otherwise.
7641 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
7642 int inputsize, int stride)
7644 const int grainsize = stride + 3;
7645 int startsizecheck;
7647 /* Negative levels are never allowed. */
7648 if (level < 0) {
7649 return false;
7652 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
7653 if (startsizecheck < 1 || startsizecheck > stride + 4) {
7654 return false;
7657 if (is_aa64) {
7658 CPUARMState *env = &cpu->env;
7659 unsigned int pamax = arm_pamax(cpu);
7661 switch (stride) {
7662 case 13: /* 64KB Pages. */
7663 if (level == 0 || (level == 1 && pamax <= 42)) {
7664 return false;
7666 break;
7667 case 11: /* 16KB Pages. */
7668 if (level == 0 || (level == 1 && pamax <= 40)) {
7669 return false;
7671 break;
7672 case 9: /* 4KB Pages. */
7673 if (level == 0 && pamax <= 42) {
7674 return false;
7676 break;
7677 default:
7678 g_assert_not_reached();
7681 /* Inputsize checks. */
7682 if (inputsize > pamax &&
7683 (arm_el_is_aa64(env, 1) || inputsize > 40)) {
7684 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
7685 return false;
7687 } else {
7688 /* AArch32 only supports 4KB pages. Assert on that. */
7689 assert(stride == 9);
7691 if (level == 0) {
7692 return false;
7695 return true;
7698 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
7699 int access_type, ARMMMUIdx mmu_idx,
7700 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
7701 target_ulong *page_size_ptr, uint32_t *fsr,
7702 ARMMMUFaultInfo *fi)
7704 ARMCPU *cpu = arm_env_get_cpu(env);
7705 CPUState *cs = CPU(cpu);
7706 /* Read an LPAE long-descriptor translation table. */
7707 MMUFaultType fault_type = translation_fault;
7708 uint32_t level;
7709 uint32_t epd = 0;
7710 int32_t t0sz, t1sz;
7711 uint32_t tg;
7712 uint64_t ttbr;
7713 int ttbr_select;
7714 hwaddr descaddr, indexmask, indexmask_grainsize;
7715 uint32_t tableattrs;
7716 target_ulong page_size;
7717 uint32_t attrs;
7718 int32_t stride = 9;
7719 int32_t addrsize;
7720 int inputsize;
7721 int32_t tbi = 0;
7722 TCR *tcr = regime_tcr(env, mmu_idx);
7723 int ap, ns, xn, pxn;
7724 uint32_t el = regime_el(env, mmu_idx);
7725 bool ttbr1_valid = true;
7726 uint64_t descaddrmask;
7727 bool aarch64 = arm_el_is_aa64(env, el);
7729 /* TODO:
7730 * This code does not handle the different format TCR for VTCR_EL2.
7731 * This code also does not support shareability levels.
7732 * Attribute and permission bit handling should also be checked when adding
7733 * support for those page table walks.
7735 if (aarch64) {
7736 level = 0;
7737 addrsize = 64;
7738 if (el > 1) {
7739 if (mmu_idx != ARMMMUIdx_S2NS) {
7740 tbi = extract64(tcr->raw_tcr, 20, 1);
7742 } else {
7743 if (extract64(address, 55, 1)) {
7744 tbi = extract64(tcr->raw_tcr, 38, 1);
7745 } else {
7746 tbi = extract64(tcr->raw_tcr, 37, 1);
7749 tbi *= 8;
7751 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
7752 * invalid.
7754 if (el > 1) {
7755 ttbr1_valid = false;
7757 } else {
7758 level = 1;
7759 addrsize = 32;
7760 /* There is no TTBR1 for EL2 */
7761 if (el == 2) {
7762 ttbr1_valid = false;
7766 /* Determine whether this address is in the region controlled by
7767 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
7768 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
7769 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
7771 if (aarch64) {
7772 /* AArch64 translation. */
7773 t0sz = extract32(tcr->raw_tcr, 0, 6);
7774 t0sz = MIN(t0sz, 39);
7775 t0sz = MAX(t0sz, 16);
7776 } else if (mmu_idx != ARMMMUIdx_S2NS) {
7777 /* AArch32 stage 1 translation. */
7778 t0sz = extract32(tcr->raw_tcr, 0, 3);
7779 } else {
7780 /* AArch32 stage 2 translation. */
7781 bool sext = extract32(tcr->raw_tcr, 4, 1);
7782 bool sign = extract32(tcr->raw_tcr, 3, 1);
7783 /* Address size is 40-bit for a stage 2 translation,
7784 * and t0sz can be negative (from -8 to 7),
7785 * so we need to adjust it to use the TTBR selecting logic below.
7787 addrsize = 40;
7788 t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8;
7790 /* If the sign-extend bit is not the same as t0sz[3], the result
7791 * is unpredictable. Flag this as a guest error. */
7792 if (sign != sext) {
7793 qemu_log_mask(LOG_GUEST_ERROR,
7794 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
7797 t1sz = extract32(tcr->raw_tcr, 16, 6);
7798 if (aarch64) {
7799 t1sz = MIN(t1sz, 39);
7800 t1sz = MAX(t1sz, 16);
7802 if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) {
7803 /* there is a ttbr0 region and we are in it (high bits all zero) */
7804 ttbr_select = 0;
7805 } else if (ttbr1_valid && t1sz &&
7806 !extract64(~address, addrsize - t1sz, t1sz - tbi)) {
7807 /* there is a ttbr1 region and we are in it (high bits all one) */
7808 ttbr_select = 1;
7809 } else if (!t0sz) {
7810 /* ttbr0 region is "everything not in the ttbr1 region" */
7811 ttbr_select = 0;
7812 } else if (!t1sz && ttbr1_valid) {
7813 /* ttbr1 region is "everything not in the ttbr0 region" */
7814 ttbr_select = 1;
7815 } else {
7816 /* in the gap between the two regions, this is a Translation fault */
7817 fault_type = translation_fault;
7818 goto do_fault;
7821 /* Note that QEMU ignores shareability and cacheability attributes,
7822 * so we don't need to do anything with the SH, ORGN, IRGN fields
7823 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
7824 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
7825 * implement any ASID-like capability so we can ignore it (instead
7826 * we will always flush the TLB any time the ASID is changed).
7828 if (ttbr_select == 0) {
7829 ttbr = regime_ttbr(env, mmu_idx, 0);
7830 if (el < 2) {
7831 epd = extract32(tcr->raw_tcr, 7, 1);
7833 inputsize = addrsize - t0sz;
7835 tg = extract32(tcr->raw_tcr, 14, 2);
7836 if (tg == 1) { /* 64KB pages */
7837 stride = 13;
7839 if (tg == 2) { /* 16KB pages */
7840 stride = 11;
7842 } else {
7843 /* We should only be here if TTBR1 is valid */
7844 assert(ttbr1_valid);
7846 ttbr = regime_ttbr(env, mmu_idx, 1);
7847 epd = extract32(tcr->raw_tcr, 23, 1);
7848 inputsize = addrsize - t1sz;
7850 tg = extract32(tcr->raw_tcr, 30, 2);
7851 if (tg == 3) { /* 64KB pages */
7852 stride = 13;
7854 if (tg == 1) { /* 16KB pages */
7855 stride = 11;
7859 /* Here we should have set up all the parameters for the translation:
7860 * inputsize, ttbr, epd, stride, tbi
7863 if (epd) {
7864 /* Translation table walk disabled => Translation fault on TLB miss
7865 * Note: This is always 0 on 64-bit EL2 and EL3.
7867 goto do_fault;
7870 if (mmu_idx != ARMMMUIdx_S2NS) {
7871 /* The starting level depends on the virtual address size (which can
7872 * be up to 48 bits) and the translation granule size. It indicates
7873 * the number of strides (stride bits at a time) needed to
7874 * consume the bits of the input address. In the pseudocode this is:
7875 * level = 4 - RoundUp((inputsize - grainsize) / stride)
7876 * where their 'inputsize' is our 'inputsize', 'grainsize' is
7877 * our 'stride + 3' and 'stride' is our 'stride'.
7878 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
7879 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
7880 * = 4 - (inputsize - 4) / stride;
7882 level = 4 - (inputsize - 4) / stride;
7883 } else {
7884 /* For stage 2 translations the starting level is specified by the
7885 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
7887 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
7888 uint32_t startlevel;
7889 bool ok;
7891 if (!aarch64 || stride == 9) {
7892 /* AArch32 or 4KB pages */
7893 startlevel = 2 - sl0;
7894 } else {
7895 /* 16KB or 64KB pages */
7896 startlevel = 3 - sl0;
7899 /* Check that the starting level is valid. */
7900 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
7901 inputsize, stride);
7902 if (!ok) {
7903 fault_type = translation_fault;
7904 goto do_fault;
7906 level = startlevel;
7909 indexmask_grainsize = (1ULL << (stride + 3)) - 1;
7910 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
7912 /* Now we can extract the actual base address from the TTBR */
7913 descaddr = extract64(ttbr, 0, 48);
7914 descaddr &= ~indexmask;
7916 /* The address field in the descriptor goes up to bit 39 for ARMv7
7917 * but up to bit 47 for ARMv8, but we use the descaddrmask
7918 * up to bit 39 for AArch32, because we don't need other bits in that case
7919 * to construct next descriptor address (anyway they should be all zeroes).
7921 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
7922 ~indexmask_grainsize;
7924 /* Secure accesses start with the page table in secure memory and
7925 * can be downgraded to non-secure at any step. Non-secure accesses
7926 * remain non-secure. We implement this by just ORing in the NSTable/NS
7927 * bits at each step.
7929 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
7930 for (;;) {
7931 uint64_t descriptor;
7932 bool nstable;
7934 descaddr |= (address >> (stride * (4 - level))) & indexmask;
7935 descaddr &= ~7ULL;
7936 nstable = extract32(tableattrs, 4, 1);
7937 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fsr, fi);
7938 if (fi->s1ptw) {
7939 goto do_fault;
7942 if (!(descriptor & 1) ||
7943 (!(descriptor & 2) && (level == 3))) {
7944 /* Invalid, or the Reserved level 3 encoding */
7945 goto do_fault;
7947 descaddr = descriptor & descaddrmask;
7949 if ((descriptor & 2) && (level < 3)) {
7950 /* Table entry. The top five bits are attributes which may
7951 * propagate down through lower levels of the table (and
7952 * which are all arranged so that 0 means "no effect", so
7953 * we can gather them up by ORing in the bits at each level).
7955 tableattrs |= extract64(descriptor, 59, 5);
7956 level++;
7957 indexmask = indexmask_grainsize;
7958 continue;
7960 /* Block entry at level 1 or 2, or page entry at level 3.
7961 * These are basically the same thing, although the number
7962 * of bits we pull in from the vaddr varies.
7964 page_size = (1ULL << ((stride * (4 - level)) + 3));
7965 descaddr |= (address & (page_size - 1));
7966 /* Extract attributes from the descriptor */
7967 attrs = extract64(descriptor, 2, 10)
7968 | (extract64(descriptor, 52, 12) << 10);
7970 if (mmu_idx == ARMMMUIdx_S2NS) {
7971 /* Stage 2 table descriptors do not include any attribute fields */
7972 break;
7974 /* Merge in attributes from table descriptors */
7975 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
7976 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
7977 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
7978 * means "force PL1 access only", which means forcing AP[1] to 0.
7980 if (extract32(tableattrs, 2, 1)) {
7981 attrs &= ~(1 << 4);
7983 attrs |= nstable << 3; /* NS */
7984 break;
7986 /* Here descaddr is the final physical address, and attributes
7987 * are all in attrs.
7989 fault_type = access_fault;
7990 if ((attrs & (1 << 8)) == 0) {
7991 /* Access flag */
7992 goto do_fault;
7995 ap = extract32(attrs, 4, 2);
7996 xn = extract32(attrs, 12, 1);
7998 if (mmu_idx == ARMMMUIdx_S2NS) {
7999 ns = true;
8000 *prot = get_S2prot(env, ap, xn);
8001 } else {
8002 ns = extract32(attrs, 3, 1);
8003 pxn = extract32(attrs, 11, 1);
8004 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
8007 fault_type = permission_fault;
8008 if (!(*prot & (1 << access_type))) {
8009 goto do_fault;
8012 if (ns) {
8013 /* The NS bit will (as required by the architecture) have no effect if
8014 * the CPU doesn't support TZ or this is a non-secure translation
8015 * regime, because the attribute will already be non-secure.
8017 txattrs->secure = false;
8019 *phys_ptr = descaddr;
8020 *page_size_ptr = page_size;
8021 return false;
8023 do_fault:
8024 /* Long-descriptor format IFSR/DFSR value */
8025 *fsr = (1 << 9) | (fault_type << 2) | level;
8026 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
8027 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
8028 return true;
8031 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
8032 ARMMMUIdx mmu_idx,
8033 int32_t address, int *prot)
8035 *prot = PAGE_READ | PAGE_WRITE;
8036 switch (address) {
8037 case 0xF0000000 ... 0xFFFFFFFF:
8038 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { /* hivecs execing is ok */
8039 *prot |= PAGE_EXEC;
8041 break;
8042 case 0x00000000 ... 0x7FFFFFFF:
8043 *prot |= PAGE_EXEC;
8044 break;
8049 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
8050 int access_type, ARMMMUIdx mmu_idx,
8051 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
8053 ARMCPU *cpu = arm_env_get_cpu(env);
8054 int n;
8055 bool is_user = regime_is_user(env, mmu_idx);
8057 *phys_ptr = address;
8058 *prot = 0;
8060 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
8061 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
8062 } else { /* MPU enabled */
8063 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
8064 /* region search */
8065 uint32_t base = env->pmsav7.drbar[n];
8066 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
8067 uint32_t rmask;
8068 bool srdis = false;
8070 if (!(env->pmsav7.drsr[n] & 0x1)) {
8071 continue;
8074 if (!rsize) {
8075 qemu_log_mask(LOG_GUEST_ERROR, "DRSR.Rsize field can not be 0");
8076 continue;
8078 rsize++;
8079 rmask = (1ull << rsize) - 1;
8081 if (base & rmask) {
8082 qemu_log_mask(LOG_GUEST_ERROR, "DRBAR %" PRIx32 " misaligned "
8083 "to DRSR region size, mask = %" PRIx32,
8084 base, rmask);
8085 continue;
8088 if (address < base || address > base + rmask) {
8089 continue;
8092 /* Region matched */
8094 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
8095 int i, snd;
8096 uint32_t srdis_mask;
8098 rsize -= 3; /* sub region size (power of 2) */
8099 snd = ((address - base) >> rsize) & 0x7;
8100 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
8102 srdis_mask = srdis ? 0x3 : 0x0;
8103 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
8104 /* This will check in groups of 2, 4 and then 8, whether
8105 * the subregion bits are consistent. rsize is incremented
8106 * back up to give the region size, considering consistent
8107 * adjacent subregions as one region. Stop testing if rsize
8108 * is already big enough for an entire QEMU page.
8110 int snd_rounded = snd & ~(i - 1);
8111 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
8112 snd_rounded + 8, i);
8113 if (srdis_mask ^ srdis_multi) {
8114 break;
8116 srdis_mask = (srdis_mask << i) | srdis_mask;
8117 rsize++;
8120 if (rsize < TARGET_PAGE_BITS) {
8121 qemu_log_mask(LOG_UNIMP, "No support for MPU (sub)region"
8122 "alignment of %" PRIu32 " bits. Minimum is %d\n",
8123 rsize, TARGET_PAGE_BITS);
8124 continue;
8126 if (srdis) {
8127 continue;
8129 break;
8132 if (n == -1) { /* no hits */
8133 if (cpu->pmsav7_dregion &&
8134 (is_user || !(regime_sctlr(env, mmu_idx) & SCTLR_BR))) {
8135 /* background fault */
8136 *fsr = 0;
8137 return true;
8139 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
8140 } else { /* a MPU hit! */
8141 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
8143 if (is_user) { /* User mode AP bit decoding */
8144 switch (ap) {
8145 case 0:
8146 case 1:
8147 case 5:
8148 break; /* no access */
8149 case 3:
8150 *prot |= PAGE_WRITE;
8151 /* fall through */
8152 case 2:
8153 case 6:
8154 *prot |= PAGE_READ | PAGE_EXEC;
8155 break;
8156 default:
8157 qemu_log_mask(LOG_GUEST_ERROR,
8158 "Bad value for AP bits in DRACR %"
8159 PRIx32 "\n", ap);
8161 } else { /* Priv. mode AP bits decoding */
8162 switch (ap) {
8163 case 0:
8164 break; /* no access */
8165 case 1:
8166 case 2:
8167 case 3:
8168 *prot |= PAGE_WRITE;
8169 /* fall through */
8170 case 5:
8171 case 6:
8172 *prot |= PAGE_READ | PAGE_EXEC;
8173 break;
8174 default:
8175 qemu_log_mask(LOG_GUEST_ERROR,
8176 "Bad value for AP bits in DRACR %"
8177 PRIx32 "\n", ap);
8181 /* execute never */
8182 if (env->pmsav7.dracr[n] & (1 << 12)) {
8183 *prot &= ~PAGE_EXEC;
8188 *fsr = 0x00d; /* Permission fault */
8189 return !(*prot & (1 << access_type));
8192 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
8193 int access_type, ARMMMUIdx mmu_idx,
8194 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
8196 int n;
8197 uint32_t mask;
8198 uint32_t base;
8199 bool is_user = regime_is_user(env, mmu_idx);
8201 *phys_ptr = address;
8202 for (n = 7; n >= 0; n--) {
8203 base = env->cp15.c6_region[n];
8204 if ((base & 1) == 0) {
8205 continue;
8207 mask = 1 << ((base >> 1) & 0x1f);
8208 /* Keep this shift separate from the above to avoid an
8209 (undefined) << 32. */
8210 mask = (mask << 1) - 1;
8211 if (((base ^ address) & ~mask) == 0) {
8212 break;
8215 if (n < 0) {
8216 *fsr = 2;
8217 return true;
8220 if (access_type == 2) {
8221 mask = env->cp15.pmsav5_insn_ap;
8222 } else {
8223 mask = env->cp15.pmsav5_data_ap;
8225 mask = (mask >> (n * 4)) & 0xf;
8226 switch (mask) {
8227 case 0:
8228 *fsr = 1;
8229 return true;
8230 case 1:
8231 if (is_user) {
8232 *fsr = 1;
8233 return true;
8235 *prot = PAGE_READ | PAGE_WRITE;
8236 break;
8237 case 2:
8238 *prot = PAGE_READ;
8239 if (!is_user) {
8240 *prot |= PAGE_WRITE;
8242 break;
8243 case 3:
8244 *prot = PAGE_READ | PAGE_WRITE;
8245 break;
8246 case 5:
8247 if (is_user) {
8248 *fsr = 1;
8249 return true;
8251 *prot = PAGE_READ;
8252 break;
8253 case 6:
8254 *prot = PAGE_READ;
8255 break;
8256 default:
8257 /* Bad permission. */
8258 *fsr = 1;
8259 return true;
8261 *prot |= PAGE_EXEC;
8262 return false;
8265 /* get_phys_addr - get the physical address for this virtual address
8267 * Find the physical address corresponding to the given virtual address,
8268 * by doing a translation table walk on MMU based systems or using the
8269 * MPU state on MPU based systems.
8271 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
8272 * prot and page_size may not be filled in, and the populated fsr value provides
8273 * information on why the translation aborted, in the format of a
8274 * DFSR/IFSR fault register, with the following caveats:
8275 * * we honour the short vs long DFSR format differences.
8276 * * the WnR bit is never set (the caller must do this).
8277 * * for PSMAv5 based systems we don't bother to return a full FSR format
8278 * value.
8280 * @env: CPUARMState
8281 * @address: virtual address to get physical address for
8282 * @access_type: 0 for read, 1 for write, 2 for execute
8283 * @mmu_idx: MMU index indicating required translation regime
8284 * @phys_ptr: set to the physical address corresponding to the virtual address
8285 * @attrs: set to the memory transaction attributes to use
8286 * @prot: set to the permissions for the page containing phys_ptr
8287 * @page_size: set to the size of the page containing phys_ptr
8288 * @fsr: set to the DFSR/IFSR value on failure
8290 static bool get_phys_addr(CPUARMState *env, target_ulong address,
8291 int access_type, ARMMMUIdx mmu_idx,
8292 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
8293 target_ulong *page_size, uint32_t *fsr,
8294 ARMMMUFaultInfo *fi)
8296 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
8297 /* Call ourselves recursively to do the stage 1 and then stage 2
8298 * translations.
8300 if (arm_feature(env, ARM_FEATURE_EL2)) {
8301 hwaddr ipa;
8302 int s2_prot;
8303 int ret;
8305 ret = get_phys_addr(env, address, access_type,
8306 mmu_idx + ARMMMUIdx_S1NSE0, &ipa, attrs,
8307 prot, page_size, fsr, fi);
8309 /* If S1 fails or S2 is disabled, return early. */
8310 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
8311 *phys_ptr = ipa;
8312 return ret;
8315 /* S1 is done. Now do S2 translation. */
8316 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
8317 phys_ptr, attrs, &s2_prot,
8318 page_size, fsr, fi);
8319 fi->s2addr = ipa;
8320 /* Combine the S1 and S2 perms. */
8321 *prot &= s2_prot;
8322 return ret;
8323 } else {
8325 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
8327 mmu_idx += ARMMMUIdx_S1NSE0;
8331 /* The page table entries may downgrade secure to non-secure, but
8332 * cannot upgrade an non-secure translation regime's attributes
8333 * to secure.
8335 attrs->secure = regime_is_secure(env, mmu_idx);
8336 attrs->user = regime_is_user(env, mmu_idx);
8338 /* Fast Context Switch Extension. This doesn't exist at all in v8.
8339 * In v7 and earlier it affects all stage 1 translations.
8341 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
8342 && !arm_feature(env, ARM_FEATURE_V8)) {
8343 if (regime_el(env, mmu_idx) == 3) {
8344 address += env->cp15.fcseidr_s;
8345 } else {
8346 address += env->cp15.fcseidr_ns;
8350 /* pmsav7 has special handling for when MPU is disabled so call it before
8351 * the common MMU/MPU disabled check below.
8353 if (arm_feature(env, ARM_FEATURE_MPU) &&
8354 arm_feature(env, ARM_FEATURE_V7)) {
8355 *page_size = TARGET_PAGE_SIZE;
8356 return get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
8357 phys_ptr, prot, fsr);
8360 if (regime_translation_disabled(env, mmu_idx)) {
8361 /* MMU/MPU disabled. */
8362 *phys_ptr = address;
8363 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
8364 *page_size = TARGET_PAGE_SIZE;
8365 return 0;
8368 if (arm_feature(env, ARM_FEATURE_MPU)) {
8369 /* Pre-v7 MPU */
8370 *page_size = TARGET_PAGE_SIZE;
8371 return get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
8372 phys_ptr, prot, fsr);
8375 if (regime_using_lpae_format(env, mmu_idx)) {
8376 return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr,
8377 attrs, prot, page_size, fsr, fi);
8378 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
8379 return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr,
8380 attrs, prot, page_size, fsr, fi);
8381 } else {
8382 return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr,
8383 prot, page_size, fsr, fi);
8387 /* Walk the page table and (if the mapping exists) add the page
8388 * to the TLB. Return false on success, or true on failure. Populate
8389 * fsr with ARM DFSR/IFSR fault register format value on failure.
8391 bool arm_tlb_fill(CPUState *cs, vaddr address,
8392 int access_type, int mmu_idx, uint32_t *fsr,
8393 ARMMMUFaultInfo *fi)
8395 ARMCPU *cpu = ARM_CPU(cs);
8396 CPUARMState *env = &cpu->env;
8397 hwaddr phys_addr;
8398 target_ulong page_size;
8399 int prot;
8400 int ret;
8401 MemTxAttrs attrs = {};
8403 ret = get_phys_addr(env, address, access_type, mmu_idx, &phys_addr,
8404 &attrs, &prot, &page_size, fsr, fi);
8405 if (!ret) {
8406 /* Map a single [sub]page. */
8407 phys_addr &= TARGET_PAGE_MASK;
8408 address &= TARGET_PAGE_MASK;
8409 tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
8410 prot, mmu_idx, page_size);
8411 return 0;
8414 return ret;
8417 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
8418 MemTxAttrs *attrs)
8420 ARMCPU *cpu = ARM_CPU(cs);
8421 CPUARMState *env = &cpu->env;
8422 hwaddr phys_addr;
8423 target_ulong page_size;
8424 int prot;
8425 bool ret;
8426 uint32_t fsr;
8427 ARMMMUFaultInfo fi = {};
8429 *attrs = (MemTxAttrs) {};
8431 ret = get_phys_addr(env, addr, 0, cpu_mmu_index(env, false), &phys_addr,
8432 attrs, &prot, &page_size, &fsr, &fi);
8434 if (ret) {
8435 return -1;
8437 return phys_addr;
8440 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
8442 uint32_t mask;
8443 unsigned el = arm_current_el(env);
8445 /* First handle registers which unprivileged can read */
8447 switch (reg) {
8448 case 0 ... 7: /* xPSR sub-fields */
8449 mask = 0;
8450 if ((reg & 1) && el) {
8451 mask |= 0x000001ff; /* IPSR (unpriv. reads as zero) */
8453 if (!(reg & 4)) {
8454 mask |= 0xf8000000; /* APSR */
8456 /* EPSR reads as zero */
8457 return xpsr_read(env) & mask;
8458 break;
8459 case 20: /* CONTROL */
8460 return env->v7m.control;
8463 if (el == 0) {
8464 return 0; /* unprivileged reads others as zero */
8467 switch (reg) {
8468 case 8: /* MSP */
8469 return (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) ?
8470 env->v7m.other_sp : env->regs[13];
8471 case 9: /* PSP */
8472 return (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) ?
8473 env->regs[13] : env->v7m.other_sp;
8474 case 16: /* PRIMASK */
8475 return (env->daif & PSTATE_I) != 0;
8476 case 17: /* BASEPRI */
8477 case 18: /* BASEPRI_MAX */
8478 return env->v7m.basepri;
8479 case 19: /* FAULTMASK */
8480 return (env->daif & PSTATE_F) != 0;
8481 default:
8482 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
8483 " register %d\n", reg);
8484 return 0;
8488 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
8490 if (arm_current_el(env) == 0 && reg > 7) {
8491 /* only xPSR sub-fields may be written by unprivileged */
8492 return;
8495 switch (reg) {
8496 case 0 ... 7: /* xPSR sub-fields */
8497 /* only APSR is actually writable */
8498 if (reg & 4) {
8499 xpsr_write(env, val, 0xf8000000); /* APSR */
8501 break;
8502 case 8: /* MSP */
8503 if (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) {
8504 env->v7m.other_sp = val;
8505 } else {
8506 env->regs[13] = val;
8508 break;
8509 case 9: /* PSP */
8510 if (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) {
8511 env->regs[13] = val;
8512 } else {
8513 env->v7m.other_sp = val;
8515 break;
8516 case 16: /* PRIMASK */
8517 if (val & 1) {
8518 env->daif |= PSTATE_I;
8519 } else {
8520 env->daif &= ~PSTATE_I;
8522 break;
8523 case 17: /* BASEPRI */
8524 env->v7m.basepri = val & 0xff;
8525 break;
8526 case 18: /* BASEPRI_MAX */
8527 val &= 0xff;
8528 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
8529 env->v7m.basepri = val;
8530 break;
8531 case 19: /* FAULTMASK */
8532 if (val & 1) {
8533 env->daif |= PSTATE_F;
8534 } else {
8535 env->daif &= ~PSTATE_F;
8537 break;
8538 case 20: /* CONTROL */
8539 switch_v7m_sp(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
8540 env->v7m.control = val & (R_V7M_CONTROL_SPSEL_MASK |
8541 R_V7M_CONTROL_NPRIV_MASK);
8542 break;
8543 default:
8544 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
8545 " register %d\n", reg);
8546 return;
8550 #endif
8552 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
8554 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
8555 * Note that we do not implement the (architecturally mandated)
8556 * alignment fault for attempts to use this on Device memory
8557 * (which matches the usual QEMU behaviour of not implementing either
8558 * alignment faults or any memory attribute handling).
8561 ARMCPU *cpu = arm_env_get_cpu(env);
8562 uint64_t blocklen = 4 << cpu->dcz_blocksize;
8563 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
8565 #ifndef CONFIG_USER_ONLY
8567 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
8568 * the block size so we might have to do more than one TLB lookup.
8569 * We know that in fact for any v8 CPU the page size is at least 4K
8570 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
8571 * 1K as an artefact of legacy v5 subpage support being present in the
8572 * same QEMU executable.
8574 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
8575 void *hostaddr[maxidx];
8576 int try, i;
8577 unsigned mmu_idx = cpu_mmu_index(env, false);
8578 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
8580 for (try = 0; try < 2; try++) {
8582 for (i = 0; i < maxidx; i++) {
8583 hostaddr[i] = tlb_vaddr_to_host(env,
8584 vaddr + TARGET_PAGE_SIZE * i,
8585 1, mmu_idx);
8586 if (!hostaddr[i]) {
8587 break;
8590 if (i == maxidx) {
8591 /* If it's all in the TLB it's fair game for just writing to;
8592 * we know we don't need to update dirty status, etc.
8594 for (i = 0; i < maxidx - 1; i++) {
8595 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
8597 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
8598 return;
8600 /* OK, try a store and see if we can populate the tlb. This
8601 * might cause an exception if the memory isn't writable,
8602 * in which case we will longjmp out of here. We must for
8603 * this purpose use the actual register value passed to us
8604 * so that we get the fault address right.
8606 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
8607 /* Now we can populate the other TLB entries, if any */
8608 for (i = 0; i < maxidx; i++) {
8609 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
8610 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
8611 helper_ret_stb_mmu(env, va, 0, oi, GETPC());
8616 /* Slow path (probably attempt to do this to an I/O device or
8617 * similar, or clearing of a block of code we have translations
8618 * cached for). Just do a series of byte writes as the architecture
8619 * demands. It's not worth trying to use a cpu_physical_memory_map(),
8620 * memset(), unmap() sequence here because:
8621 * + we'd need to account for the blocksize being larger than a page
8622 * + the direct-RAM access case is almost always going to be dealt
8623 * with in the fastpath code above, so there's no speed benefit
8624 * + we would have to deal with the map returning NULL because the
8625 * bounce buffer was in use
8627 for (i = 0; i < blocklen; i++) {
8628 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
8631 #else
8632 memset(g2h(vaddr), 0, blocklen);
8633 #endif
8636 /* Note that signed overflow is undefined in C. The following routines are
8637 careful to use unsigned types where modulo arithmetic is required.
8638 Failure to do so _will_ break on newer gcc. */
8640 /* Signed saturating arithmetic. */
8642 /* Perform 16-bit signed saturating addition. */
8643 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
8645 uint16_t res;
8647 res = a + b;
8648 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
8649 if (a & 0x8000)
8650 res = 0x8000;
8651 else
8652 res = 0x7fff;
8654 return res;
8657 /* Perform 8-bit signed saturating addition. */
8658 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
8660 uint8_t res;
8662 res = a + b;
8663 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
8664 if (a & 0x80)
8665 res = 0x80;
8666 else
8667 res = 0x7f;
8669 return res;
8672 /* Perform 16-bit signed saturating subtraction. */
8673 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
8675 uint16_t res;
8677 res = a - b;
8678 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
8679 if (a & 0x8000)
8680 res = 0x8000;
8681 else
8682 res = 0x7fff;
8684 return res;
8687 /* Perform 8-bit signed saturating subtraction. */
8688 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
8690 uint8_t res;
8692 res = a - b;
8693 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
8694 if (a & 0x80)
8695 res = 0x80;
8696 else
8697 res = 0x7f;
8699 return res;
8702 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
8703 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
8704 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
8705 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
8706 #define PFX q
8708 #include "op_addsub.h"
8710 /* Unsigned saturating arithmetic. */
8711 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
8713 uint16_t res;
8714 res = a + b;
8715 if (res < a)
8716 res = 0xffff;
8717 return res;
8720 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
8722 if (a > b)
8723 return a - b;
8724 else
8725 return 0;
8728 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
8730 uint8_t res;
8731 res = a + b;
8732 if (res < a)
8733 res = 0xff;
8734 return res;
8737 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
8739 if (a > b)
8740 return a - b;
8741 else
8742 return 0;
8745 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
8746 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
8747 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
8748 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
8749 #define PFX uq
8751 #include "op_addsub.h"
8753 /* Signed modulo arithmetic. */
8754 #define SARITH16(a, b, n, op) do { \
8755 int32_t sum; \
8756 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
8757 RESULT(sum, n, 16); \
8758 if (sum >= 0) \
8759 ge |= 3 << (n * 2); \
8760 } while(0)
8762 #define SARITH8(a, b, n, op) do { \
8763 int32_t sum; \
8764 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
8765 RESULT(sum, n, 8); \
8766 if (sum >= 0) \
8767 ge |= 1 << n; \
8768 } while(0)
8771 #define ADD16(a, b, n) SARITH16(a, b, n, +)
8772 #define SUB16(a, b, n) SARITH16(a, b, n, -)
8773 #define ADD8(a, b, n) SARITH8(a, b, n, +)
8774 #define SUB8(a, b, n) SARITH8(a, b, n, -)
8775 #define PFX s
8776 #define ARITH_GE
8778 #include "op_addsub.h"
8780 /* Unsigned modulo arithmetic. */
8781 #define ADD16(a, b, n) do { \
8782 uint32_t sum; \
8783 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
8784 RESULT(sum, n, 16); \
8785 if ((sum >> 16) == 1) \
8786 ge |= 3 << (n * 2); \
8787 } while(0)
8789 #define ADD8(a, b, n) do { \
8790 uint32_t sum; \
8791 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
8792 RESULT(sum, n, 8); \
8793 if ((sum >> 8) == 1) \
8794 ge |= 1 << n; \
8795 } while(0)
8797 #define SUB16(a, b, n) do { \
8798 uint32_t sum; \
8799 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
8800 RESULT(sum, n, 16); \
8801 if ((sum >> 16) == 0) \
8802 ge |= 3 << (n * 2); \
8803 } while(0)
8805 #define SUB8(a, b, n) do { \
8806 uint32_t sum; \
8807 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
8808 RESULT(sum, n, 8); \
8809 if ((sum >> 8) == 0) \
8810 ge |= 1 << n; \
8811 } while(0)
8813 #define PFX u
8814 #define ARITH_GE
8816 #include "op_addsub.h"
8818 /* Halved signed arithmetic. */
8819 #define ADD16(a, b, n) \
8820 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
8821 #define SUB16(a, b, n) \
8822 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
8823 #define ADD8(a, b, n) \
8824 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
8825 #define SUB8(a, b, n) \
8826 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
8827 #define PFX sh
8829 #include "op_addsub.h"
8831 /* Halved unsigned arithmetic. */
8832 #define ADD16(a, b, n) \
8833 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
8834 #define SUB16(a, b, n) \
8835 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
8836 #define ADD8(a, b, n) \
8837 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
8838 #define SUB8(a, b, n) \
8839 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
8840 #define PFX uh
8842 #include "op_addsub.h"
8844 static inline uint8_t do_usad(uint8_t a, uint8_t b)
8846 if (a > b)
8847 return a - b;
8848 else
8849 return b - a;
8852 /* Unsigned sum of absolute byte differences. */
8853 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
8855 uint32_t sum;
8856 sum = do_usad(a, b);
8857 sum += do_usad(a >> 8, b >> 8);
8858 sum += do_usad(a >> 16, b >>16);
8859 sum += do_usad(a >> 24, b >> 24);
8860 return sum;
8863 /* For ARMv6 SEL instruction. */
8864 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
8866 uint32_t mask;
8868 mask = 0;
8869 if (flags & 1)
8870 mask |= 0xff;
8871 if (flags & 2)
8872 mask |= 0xff00;
8873 if (flags & 4)
8874 mask |= 0xff0000;
8875 if (flags & 8)
8876 mask |= 0xff000000;
8877 return (a & mask) | (b & ~mask);
8880 /* VFP support. We follow the convention used for VFP instructions:
8881 Single precision routines have a "s" suffix, double precision a
8882 "d" suffix. */
8884 /* Convert host exception flags to vfp form. */
8885 static inline int vfp_exceptbits_from_host(int host_bits)
8887 int target_bits = 0;
8889 if (host_bits & float_flag_invalid)
8890 target_bits |= 1;
8891 if (host_bits & float_flag_divbyzero)
8892 target_bits |= 2;
8893 if (host_bits & float_flag_overflow)
8894 target_bits |= 4;
8895 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
8896 target_bits |= 8;
8897 if (host_bits & float_flag_inexact)
8898 target_bits |= 0x10;
8899 if (host_bits & float_flag_input_denormal)
8900 target_bits |= 0x80;
8901 return target_bits;
8904 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
8906 int i;
8907 uint32_t fpscr;
8909 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
8910 | (env->vfp.vec_len << 16)
8911 | (env->vfp.vec_stride << 20);
8912 i = get_float_exception_flags(&env->vfp.fp_status);
8913 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
8914 fpscr |= vfp_exceptbits_from_host(i);
8915 return fpscr;
8918 uint32_t vfp_get_fpscr(CPUARMState *env)
8920 return HELPER(vfp_get_fpscr)(env);
8923 /* Convert vfp exception flags to target form. */
8924 static inline int vfp_exceptbits_to_host(int target_bits)
8926 int host_bits = 0;
8928 if (target_bits & 1)
8929 host_bits |= float_flag_invalid;
8930 if (target_bits & 2)
8931 host_bits |= float_flag_divbyzero;
8932 if (target_bits & 4)
8933 host_bits |= float_flag_overflow;
8934 if (target_bits & 8)
8935 host_bits |= float_flag_underflow;
8936 if (target_bits & 0x10)
8937 host_bits |= float_flag_inexact;
8938 if (target_bits & 0x80)
8939 host_bits |= float_flag_input_denormal;
8940 return host_bits;
8943 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
8945 int i;
8946 uint32_t changed;
8948 changed = env->vfp.xregs[ARM_VFP_FPSCR];
8949 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
8950 env->vfp.vec_len = (val >> 16) & 7;
8951 env->vfp.vec_stride = (val >> 20) & 3;
8953 changed ^= val;
8954 if (changed & (3 << 22)) {
8955 i = (val >> 22) & 3;
8956 switch (i) {
8957 case FPROUNDING_TIEEVEN:
8958 i = float_round_nearest_even;
8959 break;
8960 case FPROUNDING_POSINF:
8961 i = float_round_up;
8962 break;
8963 case FPROUNDING_NEGINF:
8964 i = float_round_down;
8965 break;
8966 case FPROUNDING_ZERO:
8967 i = float_round_to_zero;
8968 break;
8970 set_float_rounding_mode(i, &env->vfp.fp_status);
8972 if (changed & (1 << 24)) {
8973 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
8974 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
8976 if (changed & (1 << 25))
8977 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
8979 i = vfp_exceptbits_to_host(val);
8980 set_float_exception_flags(i, &env->vfp.fp_status);
8981 set_float_exception_flags(0, &env->vfp.standard_fp_status);
8984 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
8986 HELPER(vfp_set_fpscr)(env, val);
8989 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
8991 #define VFP_BINOP(name) \
8992 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
8994 float_status *fpst = fpstp; \
8995 return float32_ ## name(a, b, fpst); \
8997 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
8999 float_status *fpst = fpstp; \
9000 return float64_ ## name(a, b, fpst); \
9002 VFP_BINOP(add)
9003 VFP_BINOP(sub)
9004 VFP_BINOP(mul)
9005 VFP_BINOP(div)
9006 VFP_BINOP(min)
9007 VFP_BINOP(max)
9008 VFP_BINOP(minnum)
9009 VFP_BINOP(maxnum)
9010 #undef VFP_BINOP
9012 float32 VFP_HELPER(neg, s)(float32 a)
9014 return float32_chs(a);
9017 float64 VFP_HELPER(neg, d)(float64 a)
9019 return float64_chs(a);
9022 float32 VFP_HELPER(abs, s)(float32 a)
9024 return float32_abs(a);
9027 float64 VFP_HELPER(abs, d)(float64 a)
9029 return float64_abs(a);
9032 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
9034 return float32_sqrt(a, &env->vfp.fp_status);
9037 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
9039 return float64_sqrt(a, &env->vfp.fp_status);
9042 /* XXX: check quiet/signaling case */
9043 #define DO_VFP_cmp(p, type) \
9044 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
9046 uint32_t flags; \
9047 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
9048 case 0: flags = 0x6; break; \
9049 case -1: flags = 0x8; break; \
9050 case 1: flags = 0x2; break; \
9051 default: case 2: flags = 0x3; break; \
9053 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
9054 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
9056 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
9058 uint32_t flags; \
9059 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
9060 case 0: flags = 0x6; break; \
9061 case -1: flags = 0x8; break; \
9062 case 1: flags = 0x2; break; \
9063 default: case 2: flags = 0x3; break; \
9065 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
9066 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
9068 DO_VFP_cmp(s, float32)
9069 DO_VFP_cmp(d, float64)
9070 #undef DO_VFP_cmp
9072 /* Integer to float and float to integer conversions */
9074 #define CONV_ITOF(name, fsz, sign) \
9075 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
9077 float_status *fpst = fpstp; \
9078 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
9081 #define CONV_FTOI(name, fsz, sign, round) \
9082 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
9084 float_status *fpst = fpstp; \
9085 if (float##fsz##_is_any_nan(x)) { \
9086 float_raise(float_flag_invalid, fpst); \
9087 return 0; \
9089 return float##fsz##_to_##sign##int32##round(x, fpst); \
9092 #define FLOAT_CONVS(name, p, fsz, sign) \
9093 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
9094 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
9095 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
9097 FLOAT_CONVS(si, s, 32, )
9098 FLOAT_CONVS(si, d, 64, )
9099 FLOAT_CONVS(ui, s, 32, u)
9100 FLOAT_CONVS(ui, d, 64, u)
9102 #undef CONV_ITOF
9103 #undef CONV_FTOI
9104 #undef FLOAT_CONVS
9106 /* floating point conversion */
9107 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
9109 float64 r = float32_to_float64(x, &env->vfp.fp_status);
9110 /* ARM requires that S<->D conversion of any kind of NaN generates
9111 * a quiet NaN by forcing the most significant frac bit to 1.
9113 return float64_maybe_silence_nan(r, &env->vfp.fp_status);
9116 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
9118 float32 r = float64_to_float32(x, &env->vfp.fp_status);
9119 /* ARM requires that S<->D conversion of any kind of NaN generates
9120 * a quiet NaN by forcing the most significant frac bit to 1.
9122 return float32_maybe_silence_nan(r, &env->vfp.fp_status);
9125 /* VFP3 fixed point conversion. */
9126 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
9127 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
9128 void *fpstp) \
9130 float_status *fpst = fpstp; \
9131 float##fsz tmp; \
9132 tmp = itype##_to_##float##fsz(x, fpst); \
9133 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
9136 /* Notice that we want only input-denormal exception flags from the
9137 * scalbn operation: the other possible flags (overflow+inexact if
9138 * we overflow to infinity, output-denormal) aren't correct for the
9139 * complete scale-and-convert operation.
9141 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
9142 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
9143 uint32_t shift, \
9144 void *fpstp) \
9146 float_status *fpst = fpstp; \
9147 int old_exc_flags = get_float_exception_flags(fpst); \
9148 float##fsz tmp; \
9149 if (float##fsz##_is_any_nan(x)) { \
9150 float_raise(float_flag_invalid, fpst); \
9151 return 0; \
9153 tmp = float##fsz##_scalbn(x, shift, fpst); \
9154 old_exc_flags |= get_float_exception_flags(fpst) \
9155 & float_flag_input_denormal; \
9156 set_float_exception_flags(old_exc_flags, fpst); \
9157 return float##fsz##_to_##itype##round(tmp, fpst); \
9160 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
9161 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
9162 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
9163 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
9165 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
9166 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
9167 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
9169 VFP_CONV_FIX(sh, d, 64, 64, int16)
9170 VFP_CONV_FIX(sl, d, 64, 64, int32)
9171 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
9172 VFP_CONV_FIX(uh, d, 64, 64, uint16)
9173 VFP_CONV_FIX(ul, d, 64, 64, uint32)
9174 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
9175 VFP_CONV_FIX(sh, s, 32, 32, int16)
9176 VFP_CONV_FIX(sl, s, 32, 32, int32)
9177 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
9178 VFP_CONV_FIX(uh, s, 32, 32, uint16)
9179 VFP_CONV_FIX(ul, s, 32, 32, uint32)
9180 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
9181 #undef VFP_CONV_FIX
9182 #undef VFP_CONV_FIX_FLOAT
9183 #undef VFP_CONV_FLOAT_FIX_ROUND
9185 /* Set the current fp rounding mode and return the old one.
9186 * The argument is a softfloat float_round_ value.
9188 uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
9190 float_status *fp_status = &env->vfp.fp_status;
9192 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
9193 set_float_rounding_mode(rmode, fp_status);
9195 return prev_rmode;
9198 /* Set the current fp rounding mode in the standard fp status and return
9199 * the old one. This is for NEON instructions that need to change the
9200 * rounding mode but wish to use the standard FPSCR values for everything
9201 * else. Always set the rounding mode back to the correct value after
9202 * modifying it.
9203 * The argument is a softfloat float_round_ value.
9205 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
9207 float_status *fp_status = &env->vfp.standard_fp_status;
9209 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
9210 set_float_rounding_mode(rmode, fp_status);
9212 return prev_rmode;
9215 /* Half precision conversions. */
9216 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
9218 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9219 float32 r = float16_to_float32(make_float16(a), ieee, s);
9220 if (ieee) {
9221 return float32_maybe_silence_nan(r, s);
9223 return r;
9226 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
9228 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9229 float16 r = float32_to_float16(a, ieee, s);
9230 if (ieee) {
9231 r = float16_maybe_silence_nan(r, s);
9233 return float16_val(r);
9236 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
9238 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
9241 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
9243 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
9246 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
9248 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
9251 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
9253 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
9256 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
9258 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9259 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
9260 if (ieee) {
9261 return float64_maybe_silence_nan(r, &env->vfp.fp_status);
9263 return r;
9266 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
9268 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9269 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
9270 if (ieee) {
9271 r = float16_maybe_silence_nan(r, &env->vfp.fp_status);
9273 return float16_val(r);
9276 #define float32_two make_float32(0x40000000)
9277 #define float32_three make_float32(0x40400000)
9278 #define float32_one_point_five make_float32(0x3fc00000)
9280 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
9282 float_status *s = &env->vfp.standard_fp_status;
9283 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
9284 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
9285 if (!(float32_is_zero(a) || float32_is_zero(b))) {
9286 float_raise(float_flag_input_denormal, s);
9288 return float32_two;
9290 return float32_sub(float32_two, float32_mul(a, b, s), s);
9293 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
9295 float_status *s = &env->vfp.standard_fp_status;
9296 float32 product;
9297 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
9298 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
9299 if (!(float32_is_zero(a) || float32_is_zero(b))) {
9300 float_raise(float_flag_input_denormal, s);
9302 return float32_one_point_five;
9304 product = float32_mul(a, b, s);
9305 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
9308 /* NEON helpers. */
9310 /* Constants 256 and 512 are used in some helpers; we avoid relying on
9311 * int->float conversions at run-time. */
9312 #define float64_256 make_float64(0x4070000000000000LL)
9313 #define float64_512 make_float64(0x4080000000000000LL)
9314 #define float32_maxnorm make_float32(0x7f7fffff)
9315 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
9317 /* Reciprocal functions
9319 * The algorithm that must be used to calculate the estimate
9320 * is specified by the ARM ARM, see FPRecipEstimate()
9323 static float64 recip_estimate(float64 a, float_status *real_fp_status)
9325 /* These calculations mustn't set any fp exception flags,
9326 * so we use a local copy of the fp_status.
9328 float_status dummy_status = *real_fp_status;
9329 float_status *s = &dummy_status;
9330 /* q = (int)(a * 512.0) */
9331 float64 q = float64_mul(float64_512, a, s);
9332 int64_t q_int = float64_to_int64_round_to_zero(q, s);
9334 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
9335 q = int64_to_float64(q_int, s);
9336 q = float64_add(q, float64_half, s);
9337 q = float64_div(q, float64_512, s);
9338 q = float64_div(float64_one, q, s);
9340 /* s = (int)(256.0 * r + 0.5) */
9341 q = float64_mul(q, float64_256, s);
9342 q = float64_add(q, float64_half, s);
9343 q_int = float64_to_int64_round_to_zero(q, s);
9345 /* return (double)s / 256.0 */
9346 return float64_div(int64_to_float64(q_int, s), float64_256, s);
9349 /* Common wrapper to call recip_estimate */
9350 static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
9352 uint64_t val64 = float64_val(num);
9353 uint64_t frac = extract64(val64, 0, 52);
9354 int64_t exp = extract64(val64, 52, 11);
9355 uint64_t sbit;
9356 float64 scaled, estimate;
9358 /* Generate the scaled number for the estimate function */
9359 if (exp == 0) {
9360 if (extract64(frac, 51, 1) == 0) {
9361 exp = -1;
9362 frac = extract64(frac, 0, 50) << 2;
9363 } else {
9364 frac = extract64(frac, 0, 51) << 1;
9368 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
9369 scaled = make_float64((0x3feULL << 52)
9370 | extract64(frac, 44, 8) << 44);
9372 estimate = recip_estimate(scaled, fpst);
9374 /* Build new result */
9375 val64 = float64_val(estimate);
9376 sbit = 0x8000000000000000ULL & val64;
9377 exp = off - exp;
9378 frac = extract64(val64, 0, 52);
9380 if (exp == 0) {
9381 frac = 1ULL << 51 | extract64(frac, 1, 51);
9382 } else if (exp == -1) {
9383 frac = 1ULL << 50 | extract64(frac, 2, 50);
9384 exp = 0;
9387 return make_float64(sbit | (exp << 52) | frac);
9390 static bool round_to_inf(float_status *fpst, bool sign_bit)
9392 switch (fpst->float_rounding_mode) {
9393 case float_round_nearest_even: /* Round to Nearest */
9394 return true;
9395 case float_round_up: /* Round to +Inf */
9396 return !sign_bit;
9397 case float_round_down: /* Round to -Inf */
9398 return sign_bit;
9399 case float_round_to_zero: /* Round to Zero */
9400 return false;
9403 g_assert_not_reached();
9406 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
9408 float_status *fpst = fpstp;
9409 float32 f32 = float32_squash_input_denormal(input, fpst);
9410 uint32_t f32_val = float32_val(f32);
9411 uint32_t f32_sbit = 0x80000000ULL & f32_val;
9412 int32_t f32_exp = extract32(f32_val, 23, 8);
9413 uint32_t f32_frac = extract32(f32_val, 0, 23);
9414 float64 f64, r64;
9415 uint64_t r64_val;
9416 int64_t r64_exp;
9417 uint64_t r64_frac;
9419 if (float32_is_any_nan(f32)) {
9420 float32 nan = f32;
9421 if (float32_is_signaling_nan(f32, fpst)) {
9422 float_raise(float_flag_invalid, fpst);
9423 nan = float32_maybe_silence_nan(f32, fpst);
9425 if (fpst->default_nan_mode) {
9426 nan = float32_default_nan(fpst);
9428 return nan;
9429 } else if (float32_is_infinity(f32)) {
9430 return float32_set_sign(float32_zero, float32_is_neg(f32));
9431 } else if (float32_is_zero(f32)) {
9432 float_raise(float_flag_divbyzero, fpst);
9433 return float32_set_sign(float32_infinity, float32_is_neg(f32));
9434 } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
9435 /* Abs(value) < 2.0^-128 */
9436 float_raise(float_flag_overflow | float_flag_inexact, fpst);
9437 if (round_to_inf(fpst, f32_sbit)) {
9438 return float32_set_sign(float32_infinity, float32_is_neg(f32));
9439 } else {
9440 return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
9442 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
9443 float_raise(float_flag_underflow, fpst);
9444 return float32_set_sign(float32_zero, float32_is_neg(f32));
9448 f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
9449 r64 = call_recip_estimate(f64, 253, fpst);
9450 r64_val = float64_val(r64);
9451 r64_exp = extract64(r64_val, 52, 11);
9452 r64_frac = extract64(r64_val, 0, 52);
9454 /* result = sign : result_exp<7:0> : fraction<51:29>; */
9455 return make_float32(f32_sbit |
9456 (r64_exp & 0xff) << 23 |
9457 extract64(r64_frac, 29, 24));
9460 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
9462 float_status *fpst = fpstp;
9463 float64 f64 = float64_squash_input_denormal(input, fpst);
9464 uint64_t f64_val = float64_val(f64);
9465 uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
9466 int64_t f64_exp = extract64(f64_val, 52, 11);
9467 float64 r64;
9468 uint64_t r64_val;
9469 int64_t r64_exp;
9470 uint64_t r64_frac;
9472 /* Deal with any special cases */
9473 if (float64_is_any_nan(f64)) {
9474 float64 nan = f64;
9475 if (float64_is_signaling_nan(f64, fpst)) {
9476 float_raise(float_flag_invalid, fpst);
9477 nan = float64_maybe_silence_nan(f64, fpst);
9479 if (fpst->default_nan_mode) {
9480 nan = float64_default_nan(fpst);
9482 return nan;
9483 } else if (float64_is_infinity(f64)) {
9484 return float64_set_sign(float64_zero, float64_is_neg(f64));
9485 } else if (float64_is_zero(f64)) {
9486 float_raise(float_flag_divbyzero, fpst);
9487 return float64_set_sign(float64_infinity, float64_is_neg(f64));
9488 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
9489 /* Abs(value) < 2.0^-1024 */
9490 float_raise(float_flag_overflow | float_flag_inexact, fpst);
9491 if (round_to_inf(fpst, f64_sbit)) {
9492 return float64_set_sign(float64_infinity, float64_is_neg(f64));
9493 } else {
9494 return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
9496 } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
9497 float_raise(float_flag_underflow, fpst);
9498 return float64_set_sign(float64_zero, float64_is_neg(f64));
9501 r64 = call_recip_estimate(f64, 2045, fpst);
9502 r64_val = float64_val(r64);
9503 r64_exp = extract64(r64_val, 52, 11);
9504 r64_frac = extract64(r64_val, 0, 52);
9506 /* result = sign : result_exp<10:0> : fraction<51:0> */
9507 return make_float64(f64_sbit |
9508 ((r64_exp & 0x7ff) << 52) |
9509 r64_frac);
9512 /* The algorithm that must be used to calculate the estimate
9513 * is specified by the ARM ARM.
9515 static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
9517 /* These calculations mustn't set any fp exception flags,
9518 * so we use a local copy of the fp_status.
9520 float_status dummy_status = *real_fp_status;
9521 float_status *s = &dummy_status;
9522 float64 q;
9523 int64_t q_int;
9525 if (float64_lt(a, float64_half, s)) {
9526 /* range 0.25 <= a < 0.5 */
9528 /* a in units of 1/512 rounded down */
9529 /* q0 = (int)(a * 512.0); */
9530 q = float64_mul(float64_512, a, s);
9531 q_int = float64_to_int64_round_to_zero(q, s);
9533 /* reciprocal root r */
9534 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
9535 q = int64_to_float64(q_int, s);
9536 q = float64_add(q, float64_half, s);
9537 q = float64_div(q, float64_512, s);
9538 q = float64_sqrt(q, s);
9539 q = float64_div(float64_one, q, s);
9540 } else {
9541 /* range 0.5 <= a < 1.0 */
9543 /* a in units of 1/256 rounded down */
9544 /* q1 = (int)(a * 256.0); */
9545 q = float64_mul(float64_256, a, s);
9546 int64_t q_int = float64_to_int64_round_to_zero(q, s);
9548 /* reciprocal root r */
9549 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
9550 q = int64_to_float64(q_int, s);
9551 q = float64_add(q, float64_half, s);
9552 q = float64_div(q, float64_256, s);
9553 q = float64_sqrt(q, s);
9554 q = float64_div(float64_one, q, s);
9556 /* r in units of 1/256 rounded to nearest */
9557 /* s = (int)(256.0 * r + 0.5); */
9559 q = float64_mul(q, float64_256,s );
9560 q = float64_add(q, float64_half, s);
9561 q_int = float64_to_int64_round_to_zero(q, s);
9563 /* return (double)s / 256.0;*/
9564 return float64_div(int64_to_float64(q_int, s), float64_256, s);
9567 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
9569 float_status *s = fpstp;
9570 float32 f32 = float32_squash_input_denormal(input, s);
9571 uint32_t val = float32_val(f32);
9572 uint32_t f32_sbit = 0x80000000 & val;
9573 int32_t f32_exp = extract32(val, 23, 8);
9574 uint32_t f32_frac = extract32(val, 0, 23);
9575 uint64_t f64_frac;
9576 uint64_t val64;
9577 int result_exp;
9578 float64 f64;
9580 if (float32_is_any_nan(f32)) {
9581 float32 nan = f32;
9582 if (float32_is_signaling_nan(f32, s)) {
9583 float_raise(float_flag_invalid, s);
9584 nan = float32_maybe_silence_nan(f32, s);
9586 if (s->default_nan_mode) {
9587 nan = float32_default_nan(s);
9589 return nan;
9590 } else if (float32_is_zero(f32)) {
9591 float_raise(float_flag_divbyzero, s);
9592 return float32_set_sign(float32_infinity, float32_is_neg(f32));
9593 } else if (float32_is_neg(f32)) {
9594 float_raise(float_flag_invalid, s);
9595 return float32_default_nan(s);
9596 } else if (float32_is_infinity(f32)) {
9597 return float32_zero;
9600 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
9601 * preserving the parity of the exponent. */
9603 f64_frac = ((uint64_t) f32_frac) << 29;
9604 if (f32_exp == 0) {
9605 while (extract64(f64_frac, 51, 1) == 0) {
9606 f64_frac = f64_frac << 1;
9607 f32_exp = f32_exp-1;
9609 f64_frac = extract64(f64_frac, 0, 51) << 1;
9612 if (extract64(f32_exp, 0, 1) == 0) {
9613 f64 = make_float64(((uint64_t) f32_sbit) << 32
9614 | (0x3feULL << 52)
9615 | f64_frac);
9616 } else {
9617 f64 = make_float64(((uint64_t) f32_sbit) << 32
9618 | (0x3fdULL << 52)
9619 | f64_frac);
9622 result_exp = (380 - f32_exp) / 2;
9624 f64 = recip_sqrt_estimate(f64, s);
9626 val64 = float64_val(f64);
9628 val = ((result_exp & 0xff) << 23)
9629 | ((val64 >> 29) & 0x7fffff);
9630 return make_float32(val);
9633 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
9635 float_status *s = fpstp;
9636 float64 f64 = float64_squash_input_denormal(input, s);
9637 uint64_t val = float64_val(f64);
9638 uint64_t f64_sbit = 0x8000000000000000ULL & val;
9639 int64_t f64_exp = extract64(val, 52, 11);
9640 uint64_t f64_frac = extract64(val, 0, 52);
9641 int64_t result_exp;
9642 uint64_t result_frac;
9644 if (float64_is_any_nan(f64)) {
9645 float64 nan = f64;
9646 if (float64_is_signaling_nan(f64, s)) {
9647 float_raise(float_flag_invalid, s);
9648 nan = float64_maybe_silence_nan(f64, s);
9650 if (s->default_nan_mode) {
9651 nan = float64_default_nan(s);
9653 return nan;
9654 } else if (float64_is_zero(f64)) {
9655 float_raise(float_flag_divbyzero, s);
9656 return float64_set_sign(float64_infinity, float64_is_neg(f64));
9657 } else if (float64_is_neg(f64)) {
9658 float_raise(float_flag_invalid, s);
9659 return float64_default_nan(s);
9660 } else if (float64_is_infinity(f64)) {
9661 return float64_zero;
9664 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
9665 * preserving the parity of the exponent. */
9667 if (f64_exp == 0) {
9668 while (extract64(f64_frac, 51, 1) == 0) {
9669 f64_frac = f64_frac << 1;
9670 f64_exp = f64_exp - 1;
9672 f64_frac = extract64(f64_frac, 0, 51) << 1;
9675 if (extract64(f64_exp, 0, 1) == 0) {
9676 f64 = make_float64(f64_sbit
9677 | (0x3feULL << 52)
9678 | f64_frac);
9679 } else {
9680 f64 = make_float64(f64_sbit
9681 | (0x3fdULL << 52)
9682 | f64_frac);
9685 result_exp = (3068 - f64_exp) / 2;
9687 f64 = recip_sqrt_estimate(f64, s);
9689 result_frac = extract64(float64_val(f64), 0, 52);
9691 return make_float64(f64_sbit |
9692 ((result_exp & 0x7ff) << 52) |
9693 result_frac);
9696 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
9698 float_status *s = fpstp;
9699 float64 f64;
9701 if ((a & 0x80000000) == 0) {
9702 return 0xffffffff;
9705 f64 = make_float64((0x3feULL << 52)
9706 | ((int64_t)(a & 0x7fffffff) << 21));
9708 f64 = recip_estimate(f64, s);
9710 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
9713 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
9715 float_status *fpst = fpstp;
9716 float64 f64;
9718 if ((a & 0xc0000000) == 0) {
9719 return 0xffffffff;
9722 if (a & 0x80000000) {
9723 f64 = make_float64((0x3feULL << 52)
9724 | ((uint64_t)(a & 0x7fffffff) << 21));
9725 } else { /* bits 31-30 == '01' */
9726 f64 = make_float64((0x3fdULL << 52)
9727 | ((uint64_t)(a & 0x3fffffff) << 22));
9730 f64 = recip_sqrt_estimate(f64, fpst);
9732 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
9735 /* VFPv4 fused multiply-accumulate */
9736 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
9738 float_status *fpst = fpstp;
9739 return float32_muladd(a, b, c, 0, fpst);
9742 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
9744 float_status *fpst = fpstp;
9745 return float64_muladd(a, b, c, 0, fpst);
9748 /* ARMv8 round to integral */
9749 float32 HELPER(rints_exact)(float32 x, void *fp_status)
9751 return float32_round_to_int(x, fp_status);
9754 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
9756 return float64_round_to_int(x, fp_status);
9759 float32 HELPER(rints)(float32 x, void *fp_status)
9761 int old_flags = get_float_exception_flags(fp_status), new_flags;
9762 float32 ret;
9764 ret = float32_round_to_int(x, fp_status);
9766 /* Suppress any inexact exceptions the conversion produced */
9767 if (!(old_flags & float_flag_inexact)) {
9768 new_flags = get_float_exception_flags(fp_status);
9769 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
9772 return ret;
9775 float64 HELPER(rintd)(float64 x, void *fp_status)
9777 int old_flags = get_float_exception_flags(fp_status), new_flags;
9778 float64 ret;
9780 ret = float64_round_to_int(x, fp_status);
9782 new_flags = get_float_exception_flags(fp_status);
9784 /* Suppress any inexact exceptions the conversion produced */
9785 if (!(old_flags & float_flag_inexact)) {
9786 new_flags = get_float_exception_flags(fp_status);
9787 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
9790 return ret;
9793 /* Convert ARM rounding mode to softfloat */
9794 int arm_rmode_to_sf(int rmode)
9796 switch (rmode) {
9797 case FPROUNDING_TIEAWAY:
9798 rmode = float_round_ties_away;
9799 break;
9800 case FPROUNDING_ODD:
9801 /* FIXME: add support for TIEAWAY and ODD */
9802 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
9803 rmode);
9804 case FPROUNDING_TIEEVEN:
9805 default:
9806 rmode = float_round_nearest_even;
9807 break;
9808 case FPROUNDING_POSINF:
9809 rmode = float_round_up;
9810 break;
9811 case FPROUNDING_NEGINF:
9812 rmode = float_round_down;
9813 break;
9814 case FPROUNDING_ZERO:
9815 rmode = float_round_to_zero;
9816 break;
9818 return rmode;
9821 /* CRC helpers.
9822 * The upper bytes of val (above the number specified by 'bytes') must have
9823 * been zeroed out by the caller.
9825 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
9827 uint8_t buf[4];
9829 stl_le_p(buf, val);
9831 /* zlib crc32 converts the accumulator and output to one's complement. */
9832 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
9835 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
9837 uint8_t buf[4];
9839 stl_le_p(buf, val);
9841 /* Linux crc32c converts the output to one's complement. */
9842 return crc32c(acc, buf, bytes) ^ 0xffffffff;