1 #include "qemu/osdep.h"
5 #include "exec/gdbstub.h"
6 #include "exec/helper-proto.h"
7 #include "qemu/host-utils.h"
8 #include "sysemu/arch_init.h"
9 #include "sysemu/sysemu.h"
10 #include "qemu/bitops.h"
11 #include "qemu/crc32c.h"
12 #include "exec/exec-all.h"
13 #include "exec/cpu_ldst.h"
15 #include <zlib.h> /* For crc32 */
16 #include "exec/semihost.h"
17 #include "sysemu/kvm.h"
19 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
21 #ifndef CONFIG_USER_ONLY
22 static bool get_phys_addr(CPUARMState
*env
, target_ulong address
,
23 int access_type
, ARMMMUIdx mmu_idx
,
24 hwaddr
*phys_ptr
, MemTxAttrs
*attrs
, int *prot
,
25 target_ulong
*page_size
, uint32_t *fsr
,
28 static bool get_phys_addr_lpae(CPUARMState
*env
, target_ulong address
,
29 int access_type
, ARMMMUIdx mmu_idx
,
30 hwaddr
*phys_ptr
, MemTxAttrs
*txattrs
, int *prot
,
31 target_ulong
*page_size_ptr
, uint32_t *fsr
,
34 /* Definitions for the PMCCNTR and PMCR registers */
40 static int vfp_gdb_get_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
44 /* VFP data registers are always little-endian. */
45 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
47 stfq_le_p(buf
, env
->vfp
.regs
[reg
]);
50 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
51 /* Aliases for Q regs. */
54 stfq_le_p(buf
, env
->vfp
.regs
[(reg
- 32) * 2]);
55 stfq_le_p(buf
+ 8, env
->vfp
.regs
[(reg
- 32) * 2 + 1]);
59 switch (reg
- nregs
) {
60 case 0: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSID
]); return 4;
61 case 1: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSCR
]); return 4;
62 case 2: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPEXC
]); return 4;
67 static int vfp_gdb_set_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
71 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
73 env
->vfp
.regs
[reg
] = ldfq_le_p(buf
);
76 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
79 env
->vfp
.regs
[(reg
- 32) * 2] = ldfq_le_p(buf
);
80 env
->vfp
.regs
[(reg
- 32) * 2 + 1] = ldfq_le_p(buf
+ 8);
84 switch (reg
- nregs
) {
85 case 0: env
->vfp
.xregs
[ARM_VFP_FPSID
] = ldl_p(buf
); return 4;
86 case 1: env
->vfp
.xregs
[ARM_VFP_FPSCR
] = ldl_p(buf
); return 4;
87 case 2: env
->vfp
.xregs
[ARM_VFP_FPEXC
] = ldl_p(buf
) & (1 << 30); return 4;
92 static int aarch64_fpu_gdb_get_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
96 /* 128 bit FP register */
97 stfq_le_p(buf
, env
->vfp
.regs
[reg
* 2]);
98 stfq_le_p(buf
+ 8, env
->vfp
.regs
[reg
* 2 + 1]);
102 stl_p(buf
, vfp_get_fpsr(env
));
106 stl_p(buf
, vfp_get_fpcr(env
));
113 static int aarch64_fpu_gdb_set_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
117 /* 128 bit FP register */
118 env
->vfp
.regs
[reg
* 2] = ldfq_le_p(buf
);
119 env
->vfp
.regs
[reg
* 2 + 1] = ldfq_le_p(buf
+ 8);
123 vfp_set_fpsr(env
, ldl_p(buf
));
127 vfp_set_fpcr(env
, ldl_p(buf
));
134 static uint64_t raw_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
136 assert(ri
->fieldoffset
);
137 if (cpreg_field_is_64bit(ri
)) {
138 return CPREG_FIELD64(env
, ri
);
140 return CPREG_FIELD32(env
, ri
);
144 static void raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
147 assert(ri
->fieldoffset
);
148 if (cpreg_field_is_64bit(ri
)) {
149 CPREG_FIELD64(env
, ri
) = value
;
151 CPREG_FIELD32(env
, ri
) = value
;
155 static void *raw_ptr(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
157 return (char *)env
+ ri
->fieldoffset
;
160 uint64_t read_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
162 /* Raw read of a coprocessor register (as needed for migration, etc). */
163 if (ri
->type
& ARM_CP_CONST
) {
164 return ri
->resetvalue
;
165 } else if (ri
->raw_readfn
) {
166 return ri
->raw_readfn(env
, ri
);
167 } else if (ri
->readfn
) {
168 return ri
->readfn(env
, ri
);
170 return raw_read(env
, ri
);
174 static void write_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
177 /* Raw write of a coprocessor register (as needed for migration, etc).
178 * Note that constant registers are treated as write-ignored; the
179 * caller should check for success by whether a readback gives the
182 if (ri
->type
& ARM_CP_CONST
) {
184 } else if (ri
->raw_writefn
) {
185 ri
->raw_writefn(env
, ri
, v
);
186 } else if (ri
->writefn
) {
187 ri
->writefn(env
, ri
, v
);
189 raw_write(env
, ri
, v
);
193 static bool raw_accessors_invalid(const ARMCPRegInfo
*ri
)
195 /* Return true if the regdef would cause an assertion if you called
196 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
197 * program bug for it not to have the NO_RAW flag).
198 * NB that returning false here doesn't necessarily mean that calling
199 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
200 * read/write access functions which are safe for raw use" from "has
201 * read/write access functions which have side effects but has forgotten
202 * to provide raw access functions".
203 * The tests here line up with the conditions in read/write_raw_cp_reg()
204 * and assertions in raw_read()/raw_write().
206 if ((ri
->type
& ARM_CP_CONST
) ||
208 ((ri
->raw_writefn
|| ri
->writefn
) && (ri
->raw_readfn
|| ri
->readfn
))) {
214 bool write_cpustate_to_list(ARMCPU
*cpu
)
216 /* Write the coprocessor state from cpu->env to the (index,value) list. */
220 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
221 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
222 const ARMCPRegInfo
*ri
;
224 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
229 if (ri
->type
& ARM_CP_NO_RAW
) {
232 cpu
->cpreg_values
[i
] = read_raw_cp_reg(&cpu
->env
, ri
);
237 bool write_list_to_cpustate(ARMCPU
*cpu
)
242 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
243 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
244 uint64_t v
= cpu
->cpreg_values
[i
];
245 const ARMCPRegInfo
*ri
;
247 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
252 if (ri
->type
& ARM_CP_NO_RAW
) {
255 /* Write value and confirm it reads back as written
256 * (to catch read-only registers and partially read-only
257 * registers where the incoming migration value doesn't match)
259 write_raw_cp_reg(&cpu
->env
, ri
, v
);
260 if (read_raw_cp_reg(&cpu
->env
, ri
) != v
) {
267 static void add_cpreg_to_list(gpointer key
, gpointer opaque
)
269 ARMCPU
*cpu
= opaque
;
271 const ARMCPRegInfo
*ri
;
273 regidx
= *(uint32_t *)key
;
274 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
276 if (!(ri
->type
& (ARM_CP_NO_RAW
|ARM_CP_ALIAS
))) {
277 cpu
->cpreg_indexes
[cpu
->cpreg_array_len
] = cpreg_to_kvm_id(regidx
);
278 /* The value array need not be initialized at this point */
279 cpu
->cpreg_array_len
++;
283 static void count_cpreg(gpointer key
, gpointer opaque
)
285 ARMCPU
*cpu
= opaque
;
287 const ARMCPRegInfo
*ri
;
289 regidx
= *(uint32_t *)key
;
290 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
292 if (!(ri
->type
& (ARM_CP_NO_RAW
|ARM_CP_ALIAS
))) {
293 cpu
->cpreg_array_len
++;
297 static gint
cpreg_key_compare(gconstpointer a
, gconstpointer b
)
299 uint64_t aidx
= cpreg_to_kvm_id(*(uint32_t *)a
);
300 uint64_t bidx
= cpreg_to_kvm_id(*(uint32_t *)b
);
311 void init_cpreg_list(ARMCPU
*cpu
)
313 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
314 * Note that we require cpreg_tuples[] to be sorted by key ID.
319 keys
= g_hash_table_get_keys(cpu
->cp_regs
);
320 keys
= g_list_sort(keys
, cpreg_key_compare
);
322 cpu
->cpreg_array_len
= 0;
324 g_list_foreach(keys
, count_cpreg
, cpu
);
326 arraylen
= cpu
->cpreg_array_len
;
327 cpu
->cpreg_indexes
= g_new(uint64_t, arraylen
);
328 cpu
->cpreg_values
= g_new(uint64_t, arraylen
);
329 cpu
->cpreg_vmstate_indexes
= g_new(uint64_t, arraylen
);
330 cpu
->cpreg_vmstate_values
= g_new(uint64_t, arraylen
);
331 cpu
->cpreg_vmstate_array_len
= cpu
->cpreg_array_len
;
332 cpu
->cpreg_array_len
= 0;
334 g_list_foreach(keys
, add_cpreg_to_list
, cpu
);
336 assert(cpu
->cpreg_array_len
== arraylen
);
342 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
343 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
345 * access_el3_aa32ns: Used to check AArch32 register views.
346 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
348 static CPAccessResult
access_el3_aa32ns(CPUARMState
*env
,
349 const ARMCPRegInfo
*ri
,
352 bool secure
= arm_is_secure_below_el3(env
);
354 assert(!arm_el_is_aa64(env
, 3));
356 return CP_ACCESS_TRAP_UNCATEGORIZED
;
361 static CPAccessResult
access_el3_aa32ns_aa64any(CPUARMState
*env
,
362 const ARMCPRegInfo
*ri
,
365 if (!arm_el_is_aa64(env
, 3)) {
366 return access_el3_aa32ns(env
, ri
, isread
);
371 /* Some secure-only AArch32 registers trap to EL3 if used from
372 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
373 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
374 * We assume that the .access field is set to PL1_RW.
376 static CPAccessResult
access_trap_aa32s_el1(CPUARMState
*env
,
377 const ARMCPRegInfo
*ri
,
380 if (arm_current_el(env
) == 3) {
383 if (arm_is_secure_below_el3(env
)) {
384 return CP_ACCESS_TRAP_EL3
;
386 /* This will be EL1 NS and EL2 NS, which just UNDEF */
387 return CP_ACCESS_TRAP_UNCATEGORIZED
;
390 /* Check for traps to "powerdown debug" registers, which are controlled
393 static CPAccessResult
access_tdosa(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
396 int el
= arm_current_el(env
);
398 if (el
< 2 && (env
->cp15
.mdcr_el2
& MDCR_TDOSA
)
399 && !arm_is_secure_below_el3(env
)) {
400 return CP_ACCESS_TRAP_EL2
;
402 if (el
< 3 && (env
->cp15
.mdcr_el3
& MDCR_TDOSA
)) {
403 return CP_ACCESS_TRAP_EL3
;
408 /* Check for traps to "debug ROM" registers, which are controlled
409 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
411 static CPAccessResult
access_tdra(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
414 int el
= arm_current_el(env
);
416 if (el
< 2 && (env
->cp15
.mdcr_el2
& MDCR_TDRA
)
417 && !arm_is_secure_below_el3(env
)) {
418 return CP_ACCESS_TRAP_EL2
;
420 if (el
< 3 && (env
->cp15
.mdcr_el3
& MDCR_TDA
)) {
421 return CP_ACCESS_TRAP_EL3
;
426 /* Check for traps to general debug registers, which are controlled
427 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
429 static CPAccessResult
access_tda(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
432 int el
= arm_current_el(env
);
434 if (el
< 2 && (env
->cp15
.mdcr_el2
& MDCR_TDA
)
435 && !arm_is_secure_below_el3(env
)) {
436 return CP_ACCESS_TRAP_EL2
;
438 if (el
< 3 && (env
->cp15
.mdcr_el3
& MDCR_TDA
)) {
439 return CP_ACCESS_TRAP_EL3
;
444 /* Check for traps to performance monitor registers, which are controlled
445 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
447 static CPAccessResult
access_tpm(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
450 int el
= arm_current_el(env
);
452 if (el
< 2 && (env
->cp15
.mdcr_el2
& MDCR_TPM
)
453 && !arm_is_secure_below_el3(env
)) {
454 return CP_ACCESS_TRAP_EL2
;
456 if (el
< 3 && (env
->cp15
.mdcr_el3
& MDCR_TPM
)) {
457 return CP_ACCESS_TRAP_EL3
;
462 static void dacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
464 ARMCPU
*cpu
= arm_env_get_cpu(env
);
466 raw_write(env
, ri
, value
);
467 tlb_flush(CPU(cpu
)); /* Flush TLB as domain not tracked in TLB */
470 static void fcse_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
472 ARMCPU
*cpu
= arm_env_get_cpu(env
);
474 if (raw_read(env
, ri
) != value
) {
475 /* Unlike real hardware the qemu TLB uses virtual addresses,
476 * not modified virtual addresses, so this causes a TLB flush.
479 raw_write(env
, ri
, value
);
483 static void contextidr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
486 ARMCPU
*cpu
= arm_env_get_cpu(env
);
488 if (raw_read(env
, ri
) != value
&& !arm_feature(env
, ARM_FEATURE_MPU
)
489 && !extended_addresses_enabled(env
)) {
490 /* For VMSA (when not using the LPAE long descriptor page table
491 * format) this register includes the ASID, so do a TLB flush.
492 * For PMSA it is purely a process ID and no action is needed.
496 raw_write(env
, ri
, value
);
499 static void tlbiall_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
502 /* Invalidate all (TLBIALL) */
503 ARMCPU
*cpu
= arm_env_get_cpu(env
);
508 static void tlbimva_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
511 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
512 ARMCPU
*cpu
= arm_env_get_cpu(env
);
514 tlb_flush_page(CPU(cpu
), value
& TARGET_PAGE_MASK
);
517 static void tlbiasid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
520 /* Invalidate by ASID (TLBIASID) */
521 ARMCPU
*cpu
= arm_env_get_cpu(env
);
526 static void tlbimvaa_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
529 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
530 ARMCPU
*cpu
= arm_env_get_cpu(env
);
532 tlb_flush_page(CPU(cpu
), value
& TARGET_PAGE_MASK
);
535 /* IS variants of TLB operations must affect all cores */
536 static void tlbiall_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
539 CPUState
*cs
= ENV_GET_CPU(env
);
541 tlb_flush_all_cpus_synced(cs
);
544 static void tlbiasid_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
547 CPUState
*cs
= ENV_GET_CPU(env
);
549 tlb_flush_all_cpus_synced(cs
);
552 static void tlbimva_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
555 CPUState
*cs
= ENV_GET_CPU(env
);
557 tlb_flush_page_all_cpus_synced(cs
, value
& TARGET_PAGE_MASK
);
560 static void tlbimvaa_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
563 CPUState
*cs
= ENV_GET_CPU(env
);
565 tlb_flush_page_all_cpus_synced(cs
, value
& TARGET_PAGE_MASK
);
568 static void tlbiall_nsnh_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
571 CPUState
*cs
= ENV_GET_CPU(env
);
573 tlb_flush_by_mmuidx(cs
,
574 (1 << ARMMMUIdx_S12NSE1
) |
575 (1 << ARMMMUIdx_S12NSE0
) |
576 (1 << ARMMMUIdx_S2NS
));
579 static void tlbiall_nsnh_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
582 CPUState
*cs
= ENV_GET_CPU(env
);
584 tlb_flush_by_mmuidx_all_cpus_synced(cs
,
585 (1 << ARMMMUIdx_S12NSE1
) |
586 (1 << ARMMMUIdx_S12NSE0
) |
587 (1 << ARMMMUIdx_S2NS
));
590 static void tlbiipas2_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
593 /* Invalidate by IPA. This has to invalidate any structures that
594 * contain only stage 2 translation information, but does not need
595 * to apply to structures that contain combined stage 1 and stage 2
596 * translation information.
597 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
599 CPUState
*cs
= ENV_GET_CPU(env
);
602 if (!arm_feature(env
, ARM_FEATURE_EL2
) || !(env
->cp15
.scr_el3
& SCR_NS
)) {
606 pageaddr
= sextract64(value
<< 12, 0, 40);
608 tlb_flush_page_by_mmuidx(cs
, pageaddr
, (1 << ARMMMUIdx_S2NS
));
611 static void tlbiipas2_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
614 CPUState
*cs
= ENV_GET_CPU(env
);
617 if (!arm_feature(env
, ARM_FEATURE_EL2
) || !(env
->cp15
.scr_el3
& SCR_NS
)) {
621 pageaddr
= sextract64(value
<< 12, 0, 40);
623 tlb_flush_page_by_mmuidx_all_cpus_synced(cs
, pageaddr
,
624 (1 << ARMMMUIdx_S2NS
));
627 static void tlbiall_hyp_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
630 CPUState
*cs
= ENV_GET_CPU(env
);
632 tlb_flush_by_mmuidx(cs
, (1 << ARMMMUIdx_S1E2
));
635 static void tlbiall_hyp_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
638 CPUState
*cs
= ENV_GET_CPU(env
);
640 tlb_flush_by_mmuidx_all_cpus_synced(cs
, (1 << ARMMMUIdx_S1E2
));
643 static void tlbimva_hyp_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
646 CPUState
*cs
= ENV_GET_CPU(env
);
647 uint64_t pageaddr
= value
& ~MAKE_64BIT_MASK(0, 12);
649 tlb_flush_page_by_mmuidx(cs
, pageaddr
, (1 << ARMMMUIdx_S1E2
));
652 static void tlbimva_hyp_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
655 CPUState
*cs
= ENV_GET_CPU(env
);
656 uint64_t pageaddr
= value
& ~MAKE_64BIT_MASK(0, 12);
658 tlb_flush_page_by_mmuidx_all_cpus_synced(cs
, pageaddr
,
659 (1 << ARMMMUIdx_S1E2
));
662 static const ARMCPRegInfo cp_reginfo
[] = {
663 /* Define the secure and non-secure FCSE identifier CP registers
664 * separately because there is no secure bank in V8 (no _EL3). This allows
665 * the secure register to be properly reset and migrated. There is also no
666 * v8 EL1 version of the register so the non-secure instance stands alone.
668 { .name
= "FCSEIDR(NS)",
669 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 0,
670 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_NS
,
671 .fieldoffset
= offsetof(CPUARMState
, cp15
.fcseidr_ns
),
672 .resetvalue
= 0, .writefn
= fcse_write
, .raw_writefn
= raw_write
, },
673 { .name
= "FCSEIDR(S)",
674 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 0,
675 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_S
,
676 .fieldoffset
= offsetof(CPUARMState
, cp15
.fcseidr_s
),
677 .resetvalue
= 0, .writefn
= fcse_write
, .raw_writefn
= raw_write
, },
678 /* Define the secure and non-secure context identifier CP registers
679 * separately because there is no secure bank in V8 (no _EL3). This allows
680 * the secure register to be properly reset and migrated. In the
681 * non-secure case, the 32-bit register will have reset and migration
682 * disabled during registration as it is handled by the 64-bit instance.
684 { .name
= "CONTEXTIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
685 .opc0
= 3, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 1,
686 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_NS
,
687 .fieldoffset
= offsetof(CPUARMState
, cp15
.contextidr_el
[1]),
688 .resetvalue
= 0, .writefn
= contextidr_write
, .raw_writefn
= raw_write
, },
689 { .name
= "CONTEXTIDR(S)", .state
= ARM_CP_STATE_AA32
,
690 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 1,
691 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_S
,
692 .fieldoffset
= offsetof(CPUARMState
, cp15
.contextidr_s
),
693 .resetvalue
= 0, .writefn
= contextidr_write
, .raw_writefn
= raw_write
, },
697 static const ARMCPRegInfo not_v8_cp_reginfo
[] = {
698 /* NB: Some of these registers exist in v8 but with more precise
699 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
701 /* MMU Domain access control / MPU write buffer control */
703 .cp
= 15, .opc1
= CP_ANY
, .crn
= 3, .crm
= CP_ANY
, .opc2
= CP_ANY
,
704 .access
= PL1_RW
, .resetvalue
= 0,
705 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
706 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dacr_s
),
707 offsetoflow32(CPUARMState
, cp15
.dacr_ns
) } },
708 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
709 * For v6 and v5, these mappings are overly broad.
711 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 0,
712 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
713 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 1,
714 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
715 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 4,
716 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
717 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 8,
718 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
719 /* Cache maintenance ops; some of this space may be overridden later. */
720 { .name
= "CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
721 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
722 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
},
726 static const ARMCPRegInfo not_v6_cp_reginfo
[] = {
727 /* Not all pre-v6 cores implemented this WFI, so this is slightly
730 { .name
= "WFI_v5", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= 2,
731 .access
= PL1_W
, .type
= ARM_CP_WFI
},
735 static const ARMCPRegInfo not_v7_cp_reginfo
[] = {
736 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
737 * is UNPREDICTABLE; we choose to NOP as most implementations do).
739 { .name
= "WFI_v6", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
740 .access
= PL1_W
, .type
= ARM_CP_WFI
},
741 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
742 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
743 * OMAPCP will override this space.
745 { .name
= "DLOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 0,
746 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_data
),
748 { .name
= "ILOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 1,
749 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_insn
),
751 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
752 { .name
= "DUMMY", .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= CP_ANY
,
753 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
755 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
756 * implementing it as RAZ means the "debug architecture version" bits
757 * will read as a reserved value, which should cause Linux to not try
758 * to use the debug hardware.
760 { .name
= "DBGDIDR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 0,
761 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
762 /* MMU TLB control. Note that the wildcarding means we cover not just
763 * the unified TLB ops but also the dside/iside/inner-shareable variants.
765 { .name
= "TLBIALL", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
766 .opc1
= CP_ANY
, .opc2
= 0, .access
= PL1_W
, .writefn
= tlbiall_write
,
767 .type
= ARM_CP_NO_RAW
},
768 { .name
= "TLBIMVA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
769 .opc1
= CP_ANY
, .opc2
= 1, .access
= PL1_W
, .writefn
= tlbimva_write
,
770 .type
= ARM_CP_NO_RAW
},
771 { .name
= "TLBIASID", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
772 .opc1
= CP_ANY
, .opc2
= 2, .access
= PL1_W
, .writefn
= tlbiasid_write
,
773 .type
= ARM_CP_NO_RAW
},
774 { .name
= "TLBIMVAA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
775 .opc1
= CP_ANY
, .opc2
= 3, .access
= PL1_W
, .writefn
= tlbimvaa_write
,
776 .type
= ARM_CP_NO_RAW
},
777 { .name
= "PRRR", .cp
= 15, .crn
= 10, .crm
= 2,
778 .opc1
= 0, .opc2
= 0, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
779 { .name
= "NMRR", .cp
= 15, .crn
= 10, .crm
= 2,
780 .opc1
= 0, .opc2
= 1, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
784 static void cpacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
789 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
790 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
791 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
792 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
793 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
795 if (arm_feature(env
, ARM_FEATURE_VFP
)) {
796 /* VFP coprocessor: cp10 & cp11 [23:20] */
797 mask
|= (1 << 31) | (1 << 30) | (0xf << 20);
799 if (!arm_feature(env
, ARM_FEATURE_NEON
)) {
800 /* ASEDIS [31] bit is RAO/WI */
804 /* VFPv3 and upwards with NEON implement 32 double precision
805 * registers (D0-D31).
807 if (!arm_feature(env
, ARM_FEATURE_NEON
) ||
808 !arm_feature(env
, ARM_FEATURE_VFP3
)) {
809 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
815 env
->cp15
.cpacr_el1
= value
;
818 static CPAccessResult
cpacr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
821 if (arm_feature(env
, ARM_FEATURE_V8
)) {
822 /* Check if CPACR accesses are to be trapped to EL2 */
823 if (arm_current_el(env
) == 1 &&
824 (env
->cp15
.cptr_el
[2] & CPTR_TCPAC
) && !arm_is_secure(env
)) {
825 return CP_ACCESS_TRAP_EL2
;
826 /* Check if CPACR accesses are to be trapped to EL3 */
827 } else if (arm_current_el(env
) < 3 &&
828 (env
->cp15
.cptr_el
[3] & CPTR_TCPAC
)) {
829 return CP_ACCESS_TRAP_EL3
;
836 static CPAccessResult
cptr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
839 /* Check if CPTR accesses are set to trap to EL3 */
840 if (arm_current_el(env
) == 2 && (env
->cp15
.cptr_el
[3] & CPTR_TCPAC
)) {
841 return CP_ACCESS_TRAP_EL3
;
847 static const ARMCPRegInfo v6_cp_reginfo
[] = {
848 /* prefetch by MVA in v6, NOP in v7 */
849 { .name
= "MVA_prefetch",
850 .cp
= 15, .crn
= 7, .crm
= 13, .opc1
= 0, .opc2
= 1,
851 .access
= PL1_W
, .type
= ARM_CP_NOP
},
852 /* We need to break the TB after ISB to execute self-modifying code
853 * correctly and also to take any pending interrupts immediately.
854 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
856 { .name
= "ISB", .cp
= 15, .crn
= 7, .crm
= 5, .opc1
= 0, .opc2
= 4,
857 .access
= PL0_W
, .type
= ARM_CP_NO_RAW
, .writefn
= arm_cp_write_ignore
},
858 { .name
= "DSB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 4,
859 .access
= PL0_W
, .type
= ARM_CP_NOP
},
860 { .name
= "DMB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 5,
861 .access
= PL0_W
, .type
= ARM_CP_NOP
},
862 { .name
= "IFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 2,
864 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ifar_s
),
865 offsetof(CPUARMState
, cp15
.ifar_ns
) },
867 /* Watchpoint Fault Address Register : should actually only be present
868 * for 1136, 1176, 11MPCore.
870 { .name
= "WFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 1,
871 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0, },
872 { .name
= "CPACR", .state
= ARM_CP_STATE_BOTH
, .opc0
= 3,
873 .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 2, .accessfn
= cpacr_access
,
874 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.cpacr_el1
),
875 .resetvalue
= 0, .writefn
= cpacr_write
},
879 static CPAccessResult
pmreg_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
882 /* Performance monitor registers user accessibility is controlled
883 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
884 * trapping to EL2 or EL3 for other accesses.
886 int el
= arm_current_el(env
);
888 if (el
== 0 && !env
->cp15
.c9_pmuserenr
) {
889 return CP_ACCESS_TRAP
;
891 if (el
< 2 && (env
->cp15
.mdcr_el2
& MDCR_TPM
)
892 && !arm_is_secure_below_el3(env
)) {
893 return CP_ACCESS_TRAP_EL2
;
895 if (el
< 3 && (env
->cp15
.mdcr_el3
& MDCR_TPM
)) {
896 return CP_ACCESS_TRAP_EL3
;
902 #ifndef CONFIG_USER_ONLY
904 static inline bool arm_ccnt_enabled(CPUARMState
*env
)
906 /* This does not support checking PMCCFILTR_EL0 register */
908 if (!(env
->cp15
.c9_pmcr
& PMCRE
)) {
915 void pmccntr_sync(CPUARMState
*env
)
919 temp_ticks
= muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
920 ARM_CPU_FREQ
, NANOSECONDS_PER_SECOND
);
922 if (env
->cp15
.c9_pmcr
& PMCRD
) {
923 /* Increment once every 64 processor clock cycles */
927 if (arm_ccnt_enabled(env
)) {
928 env
->cp15
.c15_ccnt
= temp_ticks
- env
->cp15
.c15_ccnt
;
932 static void pmcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
938 /* The counter has been reset */
939 env
->cp15
.c15_ccnt
= 0;
942 /* only the DP, X, D and E bits are writable */
943 env
->cp15
.c9_pmcr
&= ~0x39;
944 env
->cp15
.c9_pmcr
|= (value
& 0x39);
949 static uint64_t pmccntr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
951 uint64_t total_ticks
;
953 if (!arm_ccnt_enabled(env
)) {
954 /* Counter is disabled, do not change value */
955 return env
->cp15
.c15_ccnt
;
958 total_ticks
= muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
959 ARM_CPU_FREQ
, NANOSECONDS_PER_SECOND
);
961 if (env
->cp15
.c9_pmcr
& PMCRD
) {
962 /* Increment once every 64 processor clock cycles */
965 return total_ticks
- env
->cp15
.c15_ccnt
;
968 static void pmselr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
971 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
972 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
973 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
976 env
->cp15
.c9_pmselr
= value
& 0x1f;
979 static void pmccntr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
982 uint64_t total_ticks
;
984 if (!arm_ccnt_enabled(env
)) {
985 /* Counter is disabled, set the absolute value */
986 env
->cp15
.c15_ccnt
= value
;
990 total_ticks
= muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
991 ARM_CPU_FREQ
, NANOSECONDS_PER_SECOND
);
993 if (env
->cp15
.c9_pmcr
& PMCRD
) {
994 /* Increment once every 64 processor clock cycles */
997 env
->cp15
.c15_ccnt
= total_ticks
- value
;
1000 static void pmccntr_write32(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1003 uint64_t cur_val
= pmccntr_read(env
, NULL
);
1005 pmccntr_write(env
, ri
, deposit64(cur_val
, 0, 32, value
));
1008 #else /* CONFIG_USER_ONLY */
1010 void pmccntr_sync(CPUARMState
*env
)
1016 static void pmccfiltr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1020 env
->cp15
.pmccfiltr_el0
= value
& 0x7E000000;
1024 static void pmcntenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1028 env
->cp15
.c9_pmcnten
|= value
;
1031 static void pmcntenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1035 env
->cp15
.c9_pmcnten
&= ~value
;
1038 static void pmovsr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1041 env
->cp15
.c9_pmovsr
&= ~value
;
1044 static void pmxevtyper_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1047 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1048 * PMSELR value is equal to or greater than the number of implemented
1049 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1051 if (env
->cp15
.c9_pmselr
== 0x1f) {
1052 pmccfiltr_write(env
, ri
, value
);
1056 static uint64_t pmxevtyper_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1058 /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1059 * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write().
1061 if (env
->cp15
.c9_pmselr
== 0x1f) {
1062 return env
->cp15
.pmccfiltr_el0
;
1068 static void pmuserenr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1071 env
->cp15
.c9_pmuserenr
= value
& 1;
1074 static void pmintenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1077 /* We have no event counters so only the C bit can be changed */
1079 env
->cp15
.c9_pminten
|= value
;
1082 static void pmintenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1086 env
->cp15
.c9_pminten
&= ~value
;
1089 static void vbar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1092 /* Note that even though the AArch64 view of this register has bits
1093 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1094 * architectural requirements for bits which are RES0 only in some
1095 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1096 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1098 raw_write(env
, ri
, value
& ~0x1FULL
);
1101 static void scr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
1103 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
1104 * For bits that vary between AArch32/64, code needs to check the
1105 * current execution mode before directly using the feature bit.
1107 uint32_t valid_mask
= SCR_AARCH64_MASK
| SCR_AARCH32_MASK
;
1109 if (!arm_feature(env
, ARM_FEATURE_EL2
)) {
1110 valid_mask
&= ~SCR_HCE
;
1112 /* On ARMv7, SMD (or SCD as it is called in v7) is only
1113 * supported if EL2 exists. The bit is UNK/SBZP when
1114 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1115 * when EL2 is unavailable.
1116 * On ARMv8, this bit is always available.
1118 if (arm_feature(env
, ARM_FEATURE_V7
) &&
1119 !arm_feature(env
, ARM_FEATURE_V8
)) {
1120 valid_mask
&= ~SCR_SMD
;
1124 /* Clear all-context RES0 bits. */
1125 value
&= valid_mask
;
1126 raw_write(env
, ri
, value
);
1129 static uint64_t ccsidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1131 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1133 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1136 uint32_t index
= A32_BANKED_REG_GET(env
, csselr
,
1137 ri
->secure
& ARM_CP_SECSTATE_S
);
1139 return cpu
->ccsidr
[index
];
1142 static void csselr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1145 raw_write(env
, ri
, value
& 0xf);
1148 static uint64_t isr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1150 CPUState
*cs
= ENV_GET_CPU(env
);
1153 if (cs
->interrupt_request
& CPU_INTERRUPT_HARD
) {
1156 if (cs
->interrupt_request
& CPU_INTERRUPT_FIQ
) {
1159 /* External aborts are not possible in QEMU so A bit is always clear */
1163 static const ARMCPRegInfo v7_cp_reginfo
[] = {
1164 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1165 { .name
= "NOP", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
1166 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1167 /* Performance monitors are implementation defined in v7,
1168 * but with an ARM recommended set of registers, which we
1169 * follow (although we don't actually implement any counters)
1171 * Performance registers fall into three categories:
1172 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1173 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1174 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1175 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1176 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1178 { .name
= "PMCNTENSET", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 1,
1179 .access
= PL0_RW
, .type
= ARM_CP_ALIAS
,
1180 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcnten
),
1181 .writefn
= pmcntenset_write
,
1182 .accessfn
= pmreg_access
,
1183 .raw_writefn
= raw_write
},
1184 { .name
= "PMCNTENSET_EL0", .state
= ARM_CP_STATE_AA64
,
1185 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 1,
1186 .access
= PL0_RW
, .accessfn
= pmreg_access
,
1187 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
), .resetvalue
= 0,
1188 .writefn
= pmcntenset_write
, .raw_writefn
= raw_write
},
1189 { .name
= "PMCNTENCLR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 2,
1191 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcnten
),
1192 .accessfn
= pmreg_access
,
1193 .writefn
= pmcntenclr_write
,
1194 .type
= ARM_CP_ALIAS
},
1195 { .name
= "PMCNTENCLR_EL0", .state
= ARM_CP_STATE_AA64
,
1196 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 2,
1197 .access
= PL0_RW
, .accessfn
= pmreg_access
,
1198 .type
= ARM_CP_ALIAS
,
1199 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
),
1200 .writefn
= pmcntenclr_write
},
1201 { .name
= "PMOVSR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 3,
1202 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmovsr
),
1203 .accessfn
= pmreg_access
,
1204 .writefn
= pmovsr_write
,
1205 .raw_writefn
= raw_write
},
1206 { .name
= "PMOVSCLR_EL0", .state
= ARM_CP_STATE_AA64
,
1207 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 3,
1208 .access
= PL0_RW
, .accessfn
= pmreg_access
,
1209 .type
= ARM_CP_ALIAS
,
1210 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmovsr
),
1211 .writefn
= pmovsr_write
,
1212 .raw_writefn
= raw_write
},
1213 /* Unimplemented so WI. */
1214 { .name
= "PMSWINC", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 4,
1215 .access
= PL0_W
, .accessfn
= pmreg_access
, .type
= ARM_CP_NOP
},
1216 #ifndef CONFIG_USER_ONLY
1217 { .name
= "PMSELR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 5,
1218 .access
= PL0_RW
, .type
= ARM_CP_ALIAS
,
1219 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmselr
),
1220 .accessfn
= pmreg_access
, .writefn
= pmselr_write
,
1221 .raw_writefn
= raw_write
},
1222 { .name
= "PMSELR_EL0", .state
= ARM_CP_STATE_AA64
,
1223 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 5,
1224 .access
= PL0_RW
, .accessfn
= pmreg_access
,
1225 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmselr
),
1226 .writefn
= pmselr_write
, .raw_writefn
= raw_write
, },
1227 { .name
= "PMCCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 0,
1228 .access
= PL0_RW
, .resetvalue
= 0, .type
= ARM_CP_IO
,
1229 .readfn
= pmccntr_read
, .writefn
= pmccntr_write32
,
1230 .accessfn
= pmreg_access
},
1231 { .name
= "PMCCNTR_EL0", .state
= ARM_CP_STATE_AA64
,
1232 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 13, .opc2
= 0,
1233 .access
= PL0_RW
, .accessfn
= pmreg_access
,
1235 .readfn
= pmccntr_read
, .writefn
= pmccntr_write
, },
1237 { .name
= "PMCCFILTR_EL0", .state
= ARM_CP_STATE_AA64
,
1238 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 15, .opc2
= 7,
1239 .writefn
= pmccfiltr_write
,
1240 .access
= PL0_RW
, .accessfn
= pmreg_access
,
1242 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmccfiltr_el0
),
1244 { .name
= "PMXEVTYPER", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 1,
1245 .access
= PL0_RW
, .type
= ARM_CP_NO_RAW
, .accessfn
= pmreg_access
,
1246 .writefn
= pmxevtyper_write
, .readfn
= pmxevtyper_read
},
1247 { .name
= "PMXEVTYPER_EL0", .state
= ARM_CP_STATE_AA64
,
1248 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 13, .opc2
= 1,
1249 .access
= PL0_RW
, .type
= ARM_CP_NO_RAW
, .accessfn
= pmreg_access
,
1250 .writefn
= pmxevtyper_write
, .readfn
= pmxevtyper_read
},
1251 /* Unimplemented, RAZ/WI. */
1252 { .name
= "PMXEVCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 2,
1253 .access
= PL0_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0,
1254 .accessfn
= pmreg_access
},
1255 { .name
= "PMUSERENR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 0,
1256 .access
= PL0_R
| PL1_RW
, .accessfn
= access_tpm
,
1257 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmuserenr
),
1259 .writefn
= pmuserenr_write
, .raw_writefn
= raw_write
},
1260 { .name
= "PMUSERENR_EL0", .state
= ARM_CP_STATE_AA64
,
1261 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 14, .opc2
= 0,
1262 .access
= PL0_R
| PL1_RW
, .accessfn
= access_tpm
, .type
= ARM_CP_ALIAS
,
1263 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmuserenr
),
1265 .writefn
= pmuserenr_write
, .raw_writefn
= raw_write
},
1266 { .name
= "PMINTENSET", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 1,
1267 .access
= PL1_RW
, .accessfn
= access_tpm
,
1268 .type
= ARM_CP_ALIAS
,
1269 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pminten
),
1271 .writefn
= pmintenset_write
, .raw_writefn
= raw_write
},
1272 { .name
= "PMINTENSET_EL1", .state
= ARM_CP_STATE_AA64
,
1273 .opc0
= 3, .opc1
= 0, .crn
= 9, .crm
= 14, .opc2
= 1,
1274 .access
= PL1_RW
, .accessfn
= access_tpm
,
1276 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
1277 .writefn
= pmintenset_write
, .raw_writefn
= raw_write
,
1278 .resetvalue
= 0x0 },
1279 { .name
= "PMINTENCLR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 2,
1280 .access
= PL1_RW
, .accessfn
= access_tpm
, .type
= ARM_CP_ALIAS
,
1281 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
1282 .writefn
= pmintenclr_write
, },
1283 { .name
= "PMINTENCLR_EL1", .state
= ARM_CP_STATE_AA64
,
1284 .opc0
= 3, .opc1
= 0, .crn
= 9, .crm
= 14, .opc2
= 2,
1285 .access
= PL1_RW
, .accessfn
= access_tpm
, .type
= ARM_CP_ALIAS
,
1286 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
1287 .writefn
= pmintenclr_write
},
1288 { .name
= "CCSIDR", .state
= ARM_CP_STATE_BOTH
,
1289 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 0,
1290 .access
= PL1_R
, .readfn
= ccsidr_read
, .type
= ARM_CP_NO_RAW
},
1291 { .name
= "CSSELR", .state
= ARM_CP_STATE_BOTH
,
1292 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 2, .opc2
= 0,
1293 .access
= PL1_RW
, .writefn
= csselr_write
, .resetvalue
= 0,
1294 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.csselr_s
),
1295 offsetof(CPUARMState
, cp15
.csselr_ns
) } },
1296 /* Auxiliary ID register: this actually has an IMPDEF value but for now
1297 * just RAZ for all cores:
1299 { .name
= "AIDR", .state
= ARM_CP_STATE_BOTH
,
1300 .opc0
= 3, .opc1
= 1, .crn
= 0, .crm
= 0, .opc2
= 7,
1301 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1302 /* Auxiliary fault status registers: these also are IMPDEF, and we
1303 * choose to RAZ/WI for all cores.
1305 { .name
= "AFSR0_EL1", .state
= ARM_CP_STATE_BOTH
,
1306 .opc0
= 3, .opc1
= 0, .crn
= 5, .crm
= 1, .opc2
= 0,
1307 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1308 { .name
= "AFSR1_EL1", .state
= ARM_CP_STATE_BOTH
,
1309 .opc0
= 3, .opc1
= 0, .crn
= 5, .crm
= 1, .opc2
= 1,
1310 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1311 /* MAIR can just read-as-written because we don't implement caches
1312 * and so don't need to care about memory attributes.
1314 { .name
= "MAIR_EL1", .state
= ARM_CP_STATE_AA64
,
1315 .opc0
= 3, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 0,
1316 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mair_el
[1]),
1318 { .name
= "MAIR_EL3", .state
= ARM_CP_STATE_AA64
,
1319 .opc0
= 3, .opc1
= 6, .crn
= 10, .crm
= 2, .opc2
= 0,
1320 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mair_el
[3]),
1322 /* For non-long-descriptor page tables these are PRRR and NMRR;
1323 * regardless they still act as reads-as-written for QEMU.
1325 /* MAIR0/1 are defined separately from their 64-bit counterpart which
1326 * allows them to assign the correct fieldoffset based on the endianness
1327 * handled in the field definitions.
1329 { .name
= "MAIR0", .state
= ARM_CP_STATE_AA32
,
1330 .cp
= 15, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 0, .access
= PL1_RW
,
1331 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.mair0_s
),
1332 offsetof(CPUARMState
, cp15
.mair0_ns
) },
1333 .resetfn
= arm_cp_reset_ignore
},
1334 { .name
= "MAIR1", .state
= ARM_CP_STATE_AA32
,
1335 .cp
= 15, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 1, .access
= PL1_RW
,
1336 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.mair1_s
),
1337 offsetof(CPUARMState
, cp15
.mair1_ns
) },
1338 .resetfn
= arm_cp_reset_ignore
},
1339 { .name
= "ISR_EL1", .state
= ARM_CP_STATE_BOTH
,
1340 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 1, .opc2
= 0,
1341 .type
= ARM_CP_NO_RAW
, .access
= PL1_R
, .readfn
= isr_read
},
1342 /* 32 bit ITLB invalidates */
1343 { .name
= "ITLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 0,
1344 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_write
},
1345 { .name
= "ITLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 1,
1346 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
1347 { .name
= "ITLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 2,
1348 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
1349 /* 32 bit DTLB invalidates */
1350 { .name
= "DTLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 0,
1351 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_write
},
1352 { .name
= "DTLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 1,
1353 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
1354 { .name
= "DTLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 2,
1355 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
1356 /* 32 bit TLB invalidates */
1357 { .name
= "TLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 0,
1358 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_write
},
1359 { .name
= "TLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 1,
1360 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
1361 { .name
= "TLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 2,
1362 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
1363 { .name
= "TLBIMVAA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 3,
1364 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimvaa_write
},
1368 static const ARMCPRegInfo v7mp_cp_reginfo
[] = {
1369 /* 32 bit TLB invalidates, Inner Shareable */
1370 { .name
= "TLBIALLIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 0,
1371 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_is_write
},
1372 { .name
= "TLBIMVAIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 1,
1373 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_is_write
},
1374 { .name
= "TLBIASIDIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 2,
1375 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
,
1376 .writefn
= tlbiasid_is_write
},
1377 { .name
= "TLBIMVAAIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 3,
1378 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
,
1379 .writefn
= tlbimvaa_is_write
},
1383 static void teecr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1390 static CPAccessResult
teehbr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1393 if (arm_current_el(env
) == 0 && (env
->teecr
& 1)) {
1394 return CP_ACCESS_TRAP
;
1396 return CP_ACCESS_OK
;
1399 static const ARMCPRegInfo t2ee_cp_reginfo
[] = {
1400 { .name
= "TEECR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 6, .opc2
= 0,
1401 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, teecr
),
1403 .writefn
= teecr_write
},
1404 { .name
= "TEEHBR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 6, .opc2
= 0,
1405 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, teehbr
),
1406 .accessfn
= teehbr_access
, .resetvalue
= 0 },
1410 static const ARMCPRegInfo v6k_cp_reginfo
[] = {
1411 { .name
= "TPIDR_EL0", .state
= ARM_CP_STATE_AA64
,
1412 .opc0
= 3, .opc1
= 3, .opc2
= 2, .crn
= 13, .crm
= 0,
1414 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[0]), .resetvalue
= 0 },
1415 { .name
= "TPIDRURW", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 2,
1417 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidrurw_s
),
1418 offsetoflow32(CPUARMState
, cp15
.tpidrurw_ns
) },
1419 .resetfn
= arm_cp_reset_ignore
},
1420 { .name
= "TPIDRRO_EL0", .state
= ARM_CP_STATE_AA64
,
1421 .opc0
= 3, .opc1
= 3, .opc2
= 3, .crn
= 13, .crm
= 0,
1422 .access
= PL0_R
|PL1_W
,
1423 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidrro_el
[0]),
1425 { .name
= "TPIDRURO", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 3,
1426 .access
= PL0_R
|PL1_W
,
1427 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidruro_s
),
1428 offsetoflow32(CPUARMState
, cp15
.tpidruro_ns
) },
1429 .resetfn
= arm_cp_reset_ignore
},
1430 { .name
= "TPIDR_EL1", .state
= ARM_CP_STATE_AA64
,
1431 .opc0
= 3, .opc1
= 0, .opc2
= 4, .crn
= 13, .crm
= 0,
1433 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[1]), .resetvalue
= 0 },
1434 { .name
= "TPIDRPRW", .opc1
= 0, .cp
= 15, .crn
= 13, .crm
= 0, .opc2
= 4,
1436 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidrprw_s
),
1437 offsetoflow32(CPUARMState
, cp15
.tpidrprw_ns
) },
1442 #ifndef CONFIG_USER_ONLY
1444 static CPAccessResult
gt_cntfrq_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1447 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
1448 * Writable only at the highest implemented exception level.
1450 int el
= arm_current_el(env
);
1454 if (!extract32(env
->cp15
.c14_cntkctl
, 0, 2)) {
1455 return CP_ACCESS_TRAP
;
1459 if (!isread
&& ri
->state
== ARM_CP_STATE_AA32
&&
1460 arm_is_secure_below_el3(env
)) {
1461 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
1462 return CP_ACCESS_TRAP_UNCATEGORIZED
;
1470 if (!isread
&& el
< arm_highest_el(env
)) {
1471 return CP_ACCESS_TRAP_UNCATEGORIZED
;
1474 return CP_ACCESS_OK
;
1477 static CPAccessResult
gt_counter_access(CPUARMState
*env
, int timeridx
,
1480 unsigned int cur_el
= arm_current_el(env
);
1481 bool secure
= arm_is_secure(env
);
1483 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1485 !extract32(env
->cp15
.c14_cntkctl
, timeridx
, 1)) {
1486 return CP_ACCESS_TRAP
;
1489 if (arm_feature(env
, ARM_FEATURE_EL2
) &&
1490 timeridx
== GTIMER_PHYS
&& !secure
&& cur_el
< 2 &&
1491 !extract32(env
->cp15
.cnthctl_el2
, 0, 1)) {
1492 return CP_ACCESS_TRAP_EL2
;
1494 return CP_ACCESS_OK
;
1497 static CPAccessResult
gt_timer_access(CPUARMState
*env
, int timeridx
,
1500 unsigned int cur_el
= arm_current_el(env
);
1501 bool secure
= arm_is_secure(env
);
1503 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1504 * EL0[PV]TEN is zero.
1507 !extract32(env
->cp15
.c14_cntkctl
, 9 - timeridx
, 1)) {
1508 return CP_ACCESS_TRAP
;
1511 if (arm_feature(env
, ARM_FEATURE_EL2
) &&
1512 timeridx
== GTIMER_PHYS
&& !secure
&& cur_el
< 2 &&
1513 !extract32(env
->cp15
.cnthctl_el2
, 1, 1)) {
1514 return CP_ACCESS_TRAP_EL2
;
1516 return CP_ACCESS_OK
;
1519 static CPAccessResult
gt_pct_access(CPUARMState
*env
,
1520 const ARMCPRegInfo
*ri
,
1523 return gt_counter_access(env
, GTIMER_PHYS
, isread
);
1526 static CPAccessResult
gt_vct_access(CPUARMState
*env
,
1527 const ARMCPRegInfo
*ri
,
1530 return gt_counter_access(env
, GTIMER_VIRT
, isread
);
1533 static CPAccessResult
gt_ptimer_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1536 return gt_timer_access(env
, GTIMER_PHYS
, isread
);
1539 static CPAccessResult
gt_vtimer_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1542 return gt_timer_access(env
, GTIMER_VIRT
, isread
);
1545 static CPAccessResult
gt_stimer_access(CPUARMState
*env
,
1546 const ARMCPRegInfo
*ri
,
1549 /* The AArch64 register view of the secure physical timer is
1550 * always accessible from EL3, and configurably accessible from
1553 switch (arm_current_el(env
)) {
1555 if (!arm_is_secure(env
)) {
1556 return CP_ACCESS_TRAP
;
1558 if (!(env
->cp15
.scr_el3
& SCR_ST
)) {
1559 return CP_ACCESS_TRAP_EL3
;
1561 return CP_ACCESS_OK
;
1564 return CP_ACCESS_TRAP
;
1566 return CP_ACCESS_OK
;
1568 g_assert_not_reached();
1572 static uint64_t gt_get_countervalue(CPUARMState
*env
)
1574 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) / GTIMER_SCALE
;
1577 static void gt_recalc_timer(ARMCPU
*cpu
, int timeridx
)
1579 ARMGenericTimer
*gt
= &cpu
->env
.cp15
.c14_timer
[timeridx
];
1582 /* Timer enabled: calculate and set current ISTATUS, irq, and
1583 * reset timer to when ISTATUS next has to change
1585 uint64_t offset
= timeridx
== GTIMER_VIRT
?
1586 cpu
->env
.cp15
.cntvoff_el2
: 0;
1587 uint64_t count
= gt_get_countervalue(&cpu
->env
);
1588 /* Note that this must be unsigned 64 bit arithmetic: */
1589 int istatus
= count
- offset
>= gt
->cval
;
1593 gt
->ctl
= deposit32(gt
->ctl
, 2, 1, istatus
);
1595 irqstate
= (istatus
&& !(gt
->ctl
& 2));
1596 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
], irqstate
);
1599 /* Next transition is when count rolls back over to zero */
1600 nexttick
= UINT64_MAX
;
1602 /* Next transition is when we hit cval */
1603 nexttick
= gt
->cval
+ offset
;
1605 /* Note that the desired next expiry time might be beyond the
1606 * signed-64-bit range of a QEMUTimer -- in this case we just
1607 * set the timer for as far in the future as possible. When the
1608 * timer expires we will reset the timer for any remaining period.
1610 if (nexttick
> INT64_MAX
/ GTIMER_SCALE
) {
1611 nexttick
= INT64_MAX
/ GTIMER_SCALE
;
1613 timer_mod(cpu
->gt_timer
[timeridx
], nexttick
);
1614 trace_arm_gt_recalc(timeridx
, irqstate
, nexttick
);
1616 /* Timer disabled: ISTATUS and timer output always clear */
1618 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
], 0);
1619 timer_del(cpu
->gt_timer
[timeridx
]);
1620 trace_arm_gt_recalc_disabled(timeridx
);
1624 static void gt_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1627 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1629 timer_del(cpu
->gt_timer
[timeridx
]);
1632 static uint64_t gt_cnt_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1634 return gt_get_countervalue(env
);
1637 static uint64_t gt_virt_cnt_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1639 return gt_get_countervalue(env
) - env
->cp15
.cntvoff_el2
;
1642 static void gt_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1646 trace_arm_gt_cval_write(timeridx
, value
);
1647 env
->cp15
.c14_timer
[timeridx
].cval
= value
;
1648 gt_recalc_timer(arm_env_get_cpu(env
), timeridx
);
1651 static uint64_t gt_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1654 uint64_t offset
= timeridx
== GTIMER_VIRT
? env
->cp15
.cntvoff_el2
: 0;
1656 return (uint32_t)(env
->cp15
.c14_timer
[timeridx
].cval
-
1657 (gt_get_countervalue(env
) - offset
));
1660 static void gt_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1664 uint64_t offset
= timeridx
== GTIMER_VIRT
? env
->cp15
.cntvoff_el2
: 0;
1666 trace_arm_gt_tval_write(timeridx
, value
);
1667 env
->cp15
.c14_timer
[timeridx
].cval
= gt_get_countervalue(env
) - offset
+
1668 sextract64(value
, 0, 32);
1669 gt_recalc_timer(arm_env_get_cpu(env
), timeridx
);
1672 static void gt_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1676 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1677 uint32_t oldval
= env
->cp15
.c14_timer
[timeridx
].ctl
;
1679 trace_arm_gt_ctl_write(timeridx
, value
);
1680 env
->cp15
.c14_timer
[timeridx
].ctl
= deposit64(oldval
, 0, 2, value
);
1681 if ((oldval
^ value
) & 1) {
1682 /* Enable toggled */
1683 gt_recalc_timer(cpu
, timeridx
);
1684 } else if ((oldval
^ value
) & 2) {
1685 /* IMASK toggled: don't need to recalculate,
1686 * just set the interrupt line based on ISTATUS
1688 int irqstate
= (oldval
& 4) && !(value
& 2);
1690 trace_arm_gt_imask_toggle(timeridx
, irqstate
);
1691 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
], irqstate
);
1695 static void gt_phys_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1697 gt_timer_reset(env
, ri
, GTIMER_PHYS
);
1700 static void gt_phys_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1703 gt_cval_write(env
, ri
, GTIMER_PHYS
, value
);
1706 static uint64_t gt_phys_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1708 return gt_tval_read(env
, ri
, GTIMER_PHYS
);
1711 static void gt_phys_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1714 gt_tval_write(env
, ri
, GTIMER_PHYS
, value
);
1717 static void gt_phys_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1720 gt_ctl_write(env
, ri
, GTIMER_PHYS
, value
);
1723 static void gt_virt_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1725 gt_timer_reset(env
, ri
, GTIMER_VIRT
);
1728 static void gt_virt_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1731 gt_cval_write(env
, ri
, GTIMER_VIRT
, value
);
1734 static uint64_t gt_virt_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1736 return gt_tval_read(env
, ri
, GTIMER_VIRT
);
1739 static void gt_virt_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1742 gt_tval_write(env
, ri
, GTIMER_VIRT
, value
);
1745 static void gt_virt_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1748 gt_ctl_write(env
, ri
, GTIMER_VIRT
, value
);
1751 static void gt_cntvoff_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1754 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1756 trace_arm_gt_cntvoff_write(value
);
1757 raw_write(env
, ri
, value
);
1758 gt_recalc_timer(cpu
, GTIMER_VIRT
);
1761 static void gt_hyp_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1763 gt_timer_reset(env
, ri
, GTIMER_HYP
);
1766 static void gt_hyp_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1769 gt_cval_write(env
, ri
, GTIMER_HYP
, value
);
1772 static uint64_t gt_hyp_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1774 return gt_tval_read(env
, ri
, GTIMER_HYP
);
1777 static void gt_hyp_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1780 gt_tval_write(env
, ri
, GTIMER_HYP
, value
);
1783 static void gt_hyp_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1786 gt_ctl_write(env
, ri
, GTIMER_HYP
, value
);
1789 static void gt_sec_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1791 gt_timer_reset(env
, ri
, GTIMER_SEC
);
1794 static void gt_sec_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1797 gt_cval_write(env
, ri
, GTIMER_SEC
, value
);
1800 static uint64_t gt_sec_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1802 return gt_tval_read(env
, ri
, GTIMER_SEC
);
1805 static void gt_sec_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1808 gt_tval_write(env
, ri
, GTIMER_SEC
, value
);
1811 static void gt_sec_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1814 gt_ctl_write(env
, ri
, GTIMER_SEC
, value
);
1817 void arm_gt_ptimer_cb(void *opaque
)
1819 ARMCPU
*cpu
= opaque
;
1821 gt_recalc_timer(cpu
, GTIMER_PHYS
);
1824 void arm_gt_vtimer_cb(void *opaque
)
1826 ARMCPU
*cpu
= opaque
;
1828 gt_recalc_timer(cpu
, GTIMER_VIRT
);
1831 void arm_gt_htimer_cb(void *opaque
)
1833 ARMCPU
*cpu
= opaque
;
1835 gt_recalc_timer(cpu
, GTIMER_HYP
);
1838 void arm_gt_stimer_cb(void *opaque
)
1840 ARMCPU
*cpu
= opaque
;
1842 gt_recalc_timer(cpu
, GTIMER_SEC
);
1845 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
1846 /* Note that CNTFRQ is purely reads-as-written for the benefit
1847 * of software; writing it doesn't actually change the timer frequency.
1848 * Our reset value matches the fixed frequency we implement the timer at.
1850 { .name
= "CNTFRQ", .cp
= 15, .crn
= 14, .crm
= 0, .opc1
= 0, .opc2
= 0,
1851 .type
= ARM_CP_ALIAS
,
1852 .access
= PL1_RW
| PL0_R
, .accessfn
= gt_cntfrq_access
,
1853 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c14_cntfrq
),
1855 { .name
= "CNTFRQ_EL0", .state
= ARM_CP_STATE_AA64
,
1856 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 0,
1857 .access
= PL1_RW
| PL0_R
, .accessfn
= gt_cntfrq_access
,
1858 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntfrq
),
1859 .resetvalue
= (1000 * 1000 * 1000) / GTIMER_SCALE
,
1861 /* overall control: mostly access permissions */
1862 { .name
= "CNTKCTL", .state
= ARM_CP_STATE_BOTH
,
1863 .opc0
= 3, .opc1
= 0, .crn
= 14, .crm
= 1, .opc2
= 0,
1865 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntkctl
),
1868 /* per-timer control */
1869 { .name
= "CNTP_CTL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 1,
1870 .secure
= ARM_CP_SECSTATE_NS
,
1871 .type
= ARM_CP_IO
| ARM_CP_ALIAS
, .access
= PL1_RW
| PL0_R
,
1872 .accessfn
= gt_ptimer_access
,
1873 .fieldoffset
= offsetoflow32(CPUARMState
,
1874 cp15
.c14_timer
[GTIMER_PHYS
].ctl
),
1875 .writefn
= gt_phys_ctl_write
, .raw_writefn
= raw_write
,
1877 { .name
= "CNTP_CTL(S)",
1878 .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 1,
1879 .secure
= ARM_CP_SECSTATE_S
,
1880 .type
= ARM_CP_IO
| ARM_CP_ALIAS
, .access
= PL1_RW
| PL0_R
,
1881 .accessfn
= gt_ptimer_access
,
1882 .fieldoffset
= offsetoflow32(CPUARMState
,
1883 cp15
.c14_timer
[GTIMER_SEC
].ctl
),
1884 .writefn
= gt_sec_ctl_write
, .raw_writefn
= raw_write
,
1886 { .name
= "CNTP_CTL_EL0", .state
= ARM_CP_STATE_AA64
,
1887 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 1,
1888 .type
= ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1889 .accessfn
= gt_ptimer_access
,
1890 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].ctl
),
1892 .writefn
= gt_phys_ctl_write
, .raw_writefn
= raw_write
,
1894 { .name
= "CNTV_CTL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 1,
1895 .type
= ARM_CP_IO
| ARM_CP_ALIAS
, .access
= PL1_RW
| PL0_R
,
1896 .accessfn
= gt_vtimer_access
,
1897 .fieldoffset
= offsetoflow32(CPUARMState
,
1898 cp15
.c14_timer
[GTIMER_VIRT
].ctl
),
1899 .writefn
= gt_virt_ctl_write
, .raw_writefn
= raw_write
,
1901 { .name
= "CNTV_CTL_EL0", .state
= ARM_CP_STATE_AA64
,
1902 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 1,
1903 .type
= ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1904 .accessfn
= gt_vtimer_access
,
1905 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].ctl
),
1907 .writefn
= gt_virt_ctl_write
, .raw_writefn
= raw_write
,
1909 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1910 { .name
= "CNTP_TVAL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 0,
1911 .secure
= ARM_CP_SECSTATE_NS
,
1912 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1913 .accessfn
= gt_ptimer_access
,
1914 .readfn
= gt_phys_tval_read
, .writefn
= gt_phys_tval_write
,
1916 { .name
= "CNTP_TVAL(S)",
1917 .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 0,
1918 .secure
= ARM_CP_SECSTATE_S
,
1919 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1920 .accessfn
= gt_ptimer_access
,
1921 .readfn
= gt_sec_tval_read
, .writefn
= gt_sec_tval_write
,
1923 { .name
= "CNTP_TVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1924 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 0,
1925 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1926 .accessfn
= gt_ptimer_access
, .resetfn
= gt_phys_timer_reset
,
1927 .readfn
= gt_phys_tval_read
, .writefn
= gt_phys_tval_write
,
1929 { .name
= "CNTV_TVAL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 0,
1930 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1931 .accessfn
= gt_vtimer_access
,
1932 .readfn
= gt_virt_tval_read
, .writefn
= gt_virt_tval_write
,
1934 { .name
= "CNTV_TVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1935 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 0,
1936 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1937 .accessfn
= gt_vtimer_access
, .resetfn
= gt_virt_timer_reset
,
1938 .readfn
= gt_virt_tval_read
, .writefn
= gt_virt_tval_write
,
1940 /* The counter itself */
1941 { .name
= "CNTPCT", .cp
= 15, .crm
= 14, .opc1
= 0,
1942 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_RAW
| ARM_CP_IO
,
1943 .accessfn
= gt_pct_access
,
1944 .readfn
= gt_cnt_read
, .resetfn
= arm_cp_reset_ignore
,
1946 { .name
= "CNTPCT_EL0", .state
= ARM_CP_STATE_AA64
,
1947 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 1,
1948 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
1949 .accessfn
= gt_pct_access
, .readfn
= gt_cnt_read
,
1951 { .name
= "CNTVCT", .cp
= 15, .crm
= 14, .opc1
= 1,
1952 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_RAW
| ARM_CP_IO
,
1953 .accessfn
= gt_vct_access
,
1954 .readfn
= gt_virt_cnt_read
, .resetfn
= arm_cp_reset_ignore
,
1956 { .name
= "CNTVCT_EL0", .state
= ARM_CP_STATE_AA64
,
1957 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 2,
1958 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
1959 .accessfn
= gt_vct_access
, .readfn
= gt_virt_cnt_read
,
1961 /* Comparison value, indicating when the timer goes off */
1962 { .name
= "CNTP_CVAL", .cp
= 15, .crm
= 14, .opc1
= 2,
1963 .secure
= ARM_CP_SECSTATE_NS
,
1964 .access
= PL1_RW
| PL0_R
,
1965 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_ALIAS
,
1966 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].cval
),
1967 .accessfn
= gt_ptimer_access
,
1968 .writefn
= gt_phys_cval_write
, .raw_writefn
= raw_write
,
1970 { .name
= "CNTP_CVAL(S)", .cp
= 15, .crm
= 14, .opc1
= 2,
1971 .secure
= ARM_CP_SECSTATE_S
,
1972 .access
= PL1_RW
| PL0_R
,
1973 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_ALIAS
,
1974 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_SEC
].cval
),
1975 .accessfn
= gt_ptimer_access
,
1976 .writefn
= gt_sec_cval_write
, .raw_writefn
= raw_write
,
1978 { .name
= "CNTP_CVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1979 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 2,
1980 .access
= PL1_RW
| PL0_R
,
1982 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].cval
),
1983 .resetvalue
= 0, .accessfn
= gt_ptimer_access
,
1984 .writefn
= gt_phys_cval_write
, .raw_writefn
= raw_write
,
1986 { .name
= "CNTV_CVAL", .cp
= 15, .crm
= 14, .opc1
= 3,
1987 .access
= PL1_RW
| PL0_R
,
1988 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_ALIAS
,
1989 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].cval
),
1990 .accessfn
= gt_vtimer_access
,
1991 .writefn
= gt_virt_cval_write
, .raw_writefn
= raw_write
,
1993 { .name
= "CNTV_CVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1994 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 2,
1995 .access
= PL1_RW
| PL0_R
,
1997 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].cval
),
1998 .resetvalue
= 0, .accessfn
= gt_vtimer_access
,
1999 .writefn
= gt_virt_cval_write
, .raw_writefn
= raw_write
,
2001 /* Secure timer -- this is actually restricted to only EL3
2002 * and configurably Secure-EL1 via the accessfn.
2004 { .name
= "CNTPS_TVAL_EL1", .state
= ARM_CP_STATE_AA64
,
2005 .opc0
= 3, .opc1
= 7, .crn
= 14, .crm
= 2, .opc2
= 0,
2006 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
,
2007 .accessfn
= gt_stimer_access
,
2008 .readfn
= gt_sec_tval_read
,
2009 .writefn
= gt_sec_tval_write
,
2010 .resetfn
= gt_sec_timer_reset
,
2012 { .name
= "CNTPS_CTL_EL1", .state
= ARM_CP_STATE_AA64
,
2013 .opc0
= 3, .opc1
= 7, .crn
= 14, .crm
= 2, .opc2
= 1,
2014 .type
= ARM_CP_IO
, .access
= PL1_RW
,
2015 .accessfn
= gt_stimer_access
,
2016 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_SEC
].ctl
),
2018 .writefn
= gt_sec_ctl_write
, .raw_writefn
= raw_write
,
2020 { .name
= "CNTPS_CVAL_EL1", .state
= ARM_CP_STATE_AA64
,
2021 .opc0
= 3, .opc1
= 7, .crn
= 14, .crm
= 2, .opc2
= 2,
2022 .type
= ARM_CP_IO
, .access
= PL1_RW
,
2023 .accessfn
= gt_stimer_access
,
2024 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_SEC
].cval
),
2025 .writefn
= gt_sec_cval_write
, .raw_writefn
= raw_write
,
2031 /* In user-mode none of the generic timer registers are accessible,
2032 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
2033 * so instead just don't register any of them.
2035 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
2041 static void par_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
2043 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
2044 raw_write(env
, ri
, value
);
2045 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
2046 raw_write(env
, ri
, value
& 0xfffff6ff);
2048 raw_write(env
, ri
, value
& 0xfffff1ff);
2052 #ifndef CONFIG_USER_ONLY
2053 /* get_phys_addr() isn't present for user-mode-only targets */
2055 static CPAccessResult
ats_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2059 /* The ATS12NSO* operations must trap to EL3 if executed in
2060 * Secure EL1 (which can only happen if EL3 is AArch64).
2061 * They are simply UNDEF if executed from NS EL1.
2062 * They function normally from EL2 or EL3.
2064 if (arm_current_el(env
) == 1) {
2065 if (arm_is_secure_below_el3(env
)) {
2066 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3
;
2068 return CP_ACCESS_TRAP_UNCATEGORIZED
;
2071 return CP_ACCESS_OK
;
2074 static uint64_t do_ats_write(CPUARMState
*env
, uint64_t value
,
2075 int access_type
, ARMMMUIdx mmu_idx
)
2078 target_ulong page_size
;
2083 MemTxAttrs attrs
= {};
2084 ARMMMUFaultInfo fi
= {};
2086 ret
= get_phys_addr(env
, value
, access_type
, mmu_idx
,
2087 &phys_addr
, &attrs
, &prot
, &page_size
, &fsr
, &fi
);
2088 if (extended_addresses_enabled(env
)) {
2089 /* fsr is a DFSR/IFSR value for the long descriptor
2090 * translation table format, but with WnR always clear.
2091 * Convert it to a 64-bit PAR.
2093 par64
= (1 << 11); /* LPAE bit always set */
2095 par64
|= phys_addr
& ~0xfffULL
;
2096 if (!attrs
.secure
) {
2097 par64
|= (1 << 9); /* NS */
2099 /* We don't set the ATTR or SH fields in the PAR. */
2102 par64
|= (fsr
& 0x3f) << 1; /* FS */
2103 /* Note that S2WLK and FSTAGE are always zero, because we don't
2104 * implement virtualization and therefore there can't be a stage 2
2109 /* fsr is a DFSR/IFSR value for the short descriptor
2110 * translation table format (with WnR always clear).
2111 * Convert it to a 32-bit PAR.
2114 /* We do not set any attribute bits in the PAR */
2115 if (page_size
== (1 << 24)
2116 && arm_feature(env
, ARM_FEATURE_V7
)) {
2117 par64
= (phys_addr
& 0xff000000) | (1 << 1);
2119 par64
= phys_addr
& 0xfffff000;
2121 if (!attrs
.secure
) {
2122 par64
|= (1 << 9); /* NS */
2125 par64
= ((fsr
& (1 << 10)) >> 5) | ((fsr
& (1 << 12)) >> 6) |
2126 ((fsr
& 0xf) << 1) | 1;
2132 static void ats_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
2134 int access_type
= ri
->opc2
& 1;
2137 int el
= arm_current_el(env
);
2138 bool secure
= arm_is_secure_below_el3(env
);
2140 switch (ri
->opc2
& 6) {
2142 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
2145 mmu_idx
= ARMMMUIdx_S1E3
;
2148 mmu_idx
= ARMMMUIdx_S1NSE1
;
2151 mmu_idx
= secure
? ARMMMUIdx_S1SE1
: ARMMMUIdx_S1NSE1
;
2154 g_assert_not_reached();
2158 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
2161 mmu_idx
= ARMMMUIdx_S1SE0
;
2164 mmu_idx
= ARMMMUIdx_S1NSE0
;
2167 mmu_idx
= secure
? ARMMMUIdx_S1SE0
: ARMMMUIdx_S1NSE0
;
2170 g_assert_not_reached();
2174 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
2175 mmu_idx
= ARMMMUIdx_S12NSE1
;
2178 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
2179 mmu_idx
= ARMMMUIdx_S12NSE0
;
2182 g_assert_not_reached();
2185 par64
= do_ats_write(env
, value
, access_type
, mmu_idx
);
2187 A32_BANKED_CURRENT_REG_SET(env
, par
, par64
);
2190 static void ats1h_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2193 int access_type
= ri
->opc2
& 1;
2196 par64
= do_ats_write(env
, value
, access_type
, ARMMMUIdx_S2NS
);
2198 A32_BANKED_CURRENT_REG_SET(env
, par
, par64
);
2201 static CPAccessResult
at_s1e2_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2204 if (arm_current_el(env
) == 3 && !(env
->cp15
.scr_el3
& SCR_NS
)) {
2205 return CP_ACCESS_TRAP
;
2207 return CP_ACCESS_OK
;
2210 static void ats_write64(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2213 int access_type
= ri
->opc2
& 1;
2215 int secure
= arm_is_secure_below_el3(env
);
2217 switch (ri
->opc2
& 6) {
2220 case 0: /* AT S1E1R, AT S1E1W */
2221 mmu_idx
= secure
? ARMMMUIdx_S1SE1
: ARMMMUIdx_S1NSE1
;
2223 case 4: /* AT S1E2R, AT S1E2W */
2224 mmu_idx
= ARMMMUIdx_S1E2
;
2226 case 6: /* AT S1E3R, AT S1E3W */
2227 mmu_idx
= ARMMMUIdx_S1E3
;
2230 g_assert_not_reached();
2233 case 2: /* AT S1E0R, AT S1E0W */
2234 mmu_idx
= secure
? ARMMMUIdx_S1SE0
: ARMMMUIdx_S1NSE0
;
2236 case 4: /* AT S12E1R, AT S12E1W */
2237 mmu_idx
= secure
? ARMMMUIdx_S1SE1
: ARMMMUIdx_S12NSE1
;
2239 case 6: /* AT S12E0R, AT S12E0W */
2240 mmu_idx
= secure
? ARMMMUIdx_S1SE0
: ARMMMUIdx_S12NSE0
;
2243 g_assert_not_reached();
2246 env
->cp15
.par_el
[1] = do_ats_write(env
, value
, access_type
, mmu_idx
);
2250 static const ARMCPRegInfo vapa_cp_reginfo
[] = {
2251 { .name
= "PAR", .cp
= 15, .crn
= 7, .crm
= 4, .opc1
= 0, .opc2
= 0,
2252 .access
= PL1_RW
, .resetvalue
= 0,
2253 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.par_s
),
2254 offsetoflow32(CPUARMState
, cp15
.par_ns
) },
2255 .writefn
= par_write
},
2256 #ifndef CONFIG_USER_ONLY
2257 /* This underdecoding is safe because the reginfo is NO_RAW. */
2258 { .name
= "ATS", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= CP_ANY
,
2259 .access
= PL1_W
, .accessfn
= ats_access
,
2260 .writefn
= ats_write
, .type
= ARM_CP_NO_RAW
},
2265 /* Return basic MPU access permission bits. */
2266 static uint32_t simple_mpu_ap_bits(uint32_t val
)
2273 for (i
= 0; i
< 16; i
+= 2) {
2274 ret
|= (val
>> i
) & mask
;
2280 /* Pad basic MPU access permission bits to extended format. */
2281 static uint32_t extended_mpu_ap_bits(uint32_t val
)
2288 for (i
= 0; i
< 16; i
+= 2) {
2289 ret
|= (val
& mask
) << i
;
2295 static void pmsav5_data_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2298 env
->cp15
.pmsav5_data_ap
= extended_mpu_ap_bits(value
);
2301 static uint64_t pmsav5_data_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2303 return simple_mpu_ap_bits(env
->cp15
.pmsav5_data_ap
);
2306 static void pmsav5_insn_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2309 env
->cp15
.pmsav5_insn_ap
= extended_mpu_ap_bits(value
);
2312 static uint64_t pmsav5_insn_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2314 return simple_mpu_ap_bits(env
->cp15
.pmsav5_insn_ap
);
2317 static uint64_t pmsav7_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2319 uint32_t *u32p
= *(uint32_t **)raw_ptr(env
, ri
);
2325 u32p
+= env
->cp15
.c6_rgnr
;
2329 static void pmsav7_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2332 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2333 uint32_t *u32p
= *(uint32_t **)raw_ptr(env
, ri
);
2339 u32p
+= env
->cp15
.c6_rgnr
;
2340 tlb_flush(CPU(cpu
)); /* Mappings may have changed - purge! */
2344 static void pmsav7_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2346 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2347 uint32_t *u32p
= *(uint32_t **)raw_ptr(env
, ri
);
2353 memset(u32p
, 0, sizeof(*u32p
) * cpu
->pmsav7_dregion
);
2356 static void pmsav7_rgnr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2359 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2360 uint32_t nrgs
= cpu
->pmsav7_dregion
;
2362 if (value
>= nrgs
) {
2363 qemu_log_mask(LOG_GUEST_ERROR
,
2364 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2365 " > %" PRIu32
"\n", (uint32_t)value
, nrgs
);
2369 raw_write(env
, ri
, value
);
2372 static const ARMCPRegInfo pmsav7_cp_reginfo
[] = {
2373 { .name
= "DRBAR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 1, .opc2
= 0,
2374 .access
= PL1_RW
, .type
= ARM_CP_NO_RAW
,
2375 .fieldoffset
= offsetof(CPUARMState
, pmsav7
.drbar
),
2376 .readfn
= pmsav7_read
, .writefn
= pmsav7_write
, .resetfn
= pmsav7_reset
},
2377 { .name
= "DRSR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 1, .opc2
= 2,
2378 .access
= PL1_RW
, .type
= ARM_CP_NO_RAW
,
2379 .fieldoffset
= offsetof(CPUARMState
, pmsav7
.drsr
),
2380 .readfn
= pmsav7_read
, .writefn
= pmsav7_write
, .resetfn
= pmsav7_reset
},
2381 { .name
= "DRACR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 1, .opc2
= 4,
2382 .access
= PL1_RW
, .type
= ARM_CP_NO_RAW
,
2383 .fieldoffset
= offsetof(CPUARMState
, pmsav7
.dracr
),
2384 .readfn
= pmsav7_read
, .writefn
= pmsav7_write
, .resetfn
= pmsav7_reset
},
2385 { .name
= "RGNR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 2, .opc2
= 0,
2387 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_rgnr
),
2388 .writefn
= pmsav7_rgnr_write
},
2392 static const ARMCPRegInfo pmsav5_cp_reginfo
[] = {
2393 { .name
= "DATA_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
2394 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
2395 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_data_ap
),
2396 .readfn
= pmsav5_data_ap_read
, .writefn
= pmsav5_data_ap_write
, },
2397 { .name
= "INSN_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
2398 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
2399 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_insn_ap
),
2400 .readfn
= pmsav5_insn_ap_read
, .writefn
= pmsav5_insn_ap_write
, },
2401 { .name
= "DATA_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 2,
2403 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_data_ap
),
2405 { .name
= "INSN_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 3,
2407 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_insn_ap
),
2409 { .name
= "DCACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
2411 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_data
), .resetvalue
= 0, },
2412 { .name
= "ICACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 1,
2414 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_insn
), .resetvalue
= 0, },
2415 /* Protection region base and size registers */
2416 { .name
= "946_PRBS0", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0,
2417 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2418 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[0]) },
2419 { .name
= "946_PRBS1", .cp
= 15, .crn
= 6, .crm
= 1, .opc1
= 0,
2420 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2421 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[1]) },
2422 { .name
= "946_PRBS2", .cp
= 15, .crn
= 6, .crm
= 2, .opc1
= 0,
2423 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2424 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[2]) },
2425 { .name
= "946_PRBS3", .cp
= 15, .crn
= 6, .crm
= 3, .opc1
= 0,
2426 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2427 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[3]) },
2428 { .name
= "946_PRBS4", .cp
= 15, .crn
= 6, .crm
= 4, .opc1
= 0,
2429 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2430 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[4]) },
2431 { .name
= "946_PRBS5", .cp
= 15, .crn
= 6, .crm
= 5, .opc1
= 0,
2432 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2433 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[5]) },
2434 { .name
= "946_PRBS6", .cp
= 15, .crn
= 6, .crm
= 6, .opc1
= 0,
2435 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2436 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[6]) },
2437 { .name
= "946_PRBS7", .cp
= 15, .crn
= 6, .crm
= 7, .opc1
= 0,
2438 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2439 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[7]) },
2443 static void vmsa_ttbcr_raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2446 TCR
*tcr
= raw_ptr(env
, ri
);
2447 int maskshift
= extract32(value
, 0, 3);
2449 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
2450 if (arm_feature(env
, ARM_FEATURE_LPAE
) && (value
& TTBCR_EAE
)) {
2451 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2452 * using Long-desciptor translation table format */
2453 value
&= ~((7 << 19) | (3 << 14) | (0xf << 3));
2454 } else if (arm_feature(env
, ARM_FEATURE_EL3
)) {
2455 /* In an implementation that includes the Security Extensions
2456 * TTBCR has additional fields PD0 [4] and PD1 [5] for
2457 * Short-descriptor translation table format.
2459 value
&= TTBCR_PD1
| TTBCR_PD0
| TTBCR_N
;
2465 /* Update the masks corresponding to the TCR bank being written
2466 * Note that we always calculate mask and base_mask, but
2467 * they are only used for short-descriptor tables (ie if EAE is 0);
2468 * for long-descriptor tables the TCR fields are used differently
2469 * and the mask and base_mask values are meaningless.
2471 tcr
->raw_tcr
= value
;
2472 tcr
->mask
= ~(((uint32_t)0xffffffffu
) >> maskshift
);
2473 tcr
->base_mask
= ~((uint32_t)0x3fffu
>> maskshift
);
2476 static void vmsa_ttbcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2479 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2481 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
2482 /* With LPAE the TTBCR could result in a change of ASID
2483 * via the TTBCR.A1 bit, so do a TLB flush.
2485 tlb_flush(CPU(cpu
));
2487 vmsa_ttbcr_raw_write(env
, ri
, value
);
2490 static void vmsa_ttbcr_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2492 TCR
*tcr
= raw_ptr(env
, ri
);
2494 /* Reset both the TCR as well as the masks corresponding to the bank of
2495 * the TCR being reset.
2499 tcr
->base_mask
= 0xffffc000u
;
2502 static void vmsa_tcr_el1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2505 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2506 TCR
*tcr
= raw_ptr(env
, ri
);
2508 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2509 tlb_flush(CPU(cpu
));
2510 tcr
->raw_tcr
= value
;
2513 static void vmsa_ttbr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2516 /* 64 bit accesses to the TTBRs can change the ASID and so we
2517 * must flush the TLB.
2519 if (cpreg_field_is_64bit(ri
)) {
2520 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2522 tlb_flush(CPU(cpu
));
2524 raw_write(env
, ri
, value
);
2527 static void vttbr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2530 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2531 CPUState
*cs
= CPU(cpu
);
2533 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
2534 if (raw_read(env
, ri
) != value
) {
2535 tlb_flush_by_mmuidx(cs
,
2536 (1 << ARMMMUIdx_S12NSE1
) |
2537 (1 << ARMMMUIdx_S12NSE0
) |
2538 (1 << ARMMMUIdx_S2NS
));
2539 raw_write(env
, ri
, value
);
2543 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo
[] = {
2544 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
2545 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
2546 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dfsr_s
),
2547 offsetoflow32(CPUARMState
, cp15
.dfsr_ns
) }, },
2548 { .name
= "IFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
2549 .access
= PL1_RW
, .resetvalue
= 0,
2550 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.ifsr_s
),
2551 offsetoflow32(CPUARMState
, cp15
.ifsr_ns
) } },
2552 { .name
= "DFAR", .cp
= 15, .opc1
= 0, .crn
= 6, .crm
= 0, .opc2
= 0,
2553 .access
= PL1_RW
, .resetvalue
= 0,
2554 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.dfar_s
),
2555 offsetof(CPUARMState
, cp15
.dfar_ns
) } },
2556 { .name
= "FAR_EL1", .state
= ARM_CP_STATE_AA64
,
2557 .opc0
= 3, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 0,
2558 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[1]),
2563 static const ARMCPRegInfo vmsa_cp_reginfo
[] = {
2564 { .name
= "ESR_EL1", .state
= ARM_CP_STATE_AA64
,
2565 .opc0
= 3, .crn
= 5, .crm
= 2, .opc1
= 0, .opc2
= 0,
2567 .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[1]), .resetvalue
= 0, },
2568 { .name
= "TTBR0_EL1", .state
= ARM_CP_STATE_BOTH
,
2569 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 0, .opc2
= 0,
2570 .access
= PL1_RW
, .writefn
= vmsa_ttbr_write
, .resetvalue
= 0,
2571 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr0_s
),
2572 offsetof(CPUARMState
, cp15
.ttbr0_ns
) } },
2573 { .name
= "TTBR1_EL1", .state
= ARM_CP_STATE_BOTH
,
2574 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 0, .opc2
= 1,
2575 .access
= PL1_RW
, .writefn
= vmsa_ttbr_write
, .resetvalue
= 0,
2576 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr1_s
),
2577 offsetof(CPUARMState
, cp15
.ttbr1_ns
) } },
2578 { .name
= "TCR_EL1", .state
= ARM_CP_STATE_AA64
,
2579 .opc0
= 3, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 2,
2580 .access
= PL1_RW
, .writefn
= vmsa_tcr_el1_write
,
2581 .resetfn
= vmsa_ttbcr_reset
, .raw_writefn
= raw_write
,
2582 .fieldoffset
= offsetof(CPUARMState
, cp15
.tcr_el
[1]) },
2583 { .name
= "TTBCR", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 2,
2584 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
, .writefn
= vmsa_ttbcr_write
,
2585 .raw_writefn
= vmsa_ttbcr_raw_write
,
2586 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tcr_el
[3]),
2587 offsetoflow32(CPUARMState
, cp15
.tcr_el
[1])} },
2591 static void omap_ticonfig_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2594 env
->cp15
.c15_ticonfig
= value
& 0xe7;
2595 /* The OS_TYPE bit in this register changes the reported CPUID! */
2596 env
->cp15
.c0_cpuid
= (value
& (1 << 5)) ?
2597 ARM_CPUID_TI915T
: ARM_CPUID_TI925T
;
2600 static void omap_threadid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2603 env
->cp15
.c15_threadid
= value
& 0xffff;
2606 static void omap_wfi_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2609 /* Wait-for-interrupt (deprecated) */
2610 cpu_interrupt(CPU(arm_env_get_cpu(env
)), CPU_INTERRUPT_HALT
);
2613 static void omap_cachemaint_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2616 /* On OMAP there are registers indicating the max/min index of dcache lines
2617 * containing a dirty line; cache flush operations have to reset these.
2619 env
->cp15
.c15_i_max
= 0x000;
2620 env
->cp15
.c15_i_min
= 0xff0;
2623 static const ARMCPRegInfo omap_cp_reginfo
[] = {
2624 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= CP_ANY
,
2625 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_OVERRIDE
,
2626 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.esr_el
[1]),
2628 { .name
= "", .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 0, .opc2
= 0,
2629 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
2630 { .name
= "TICONFIG", .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0,
2632 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_ticonfig
), .resetvalue
= 0,
2633 .writefn
= omap_ticonfig_write
},
2634 { .name
= "IMAX", .cp
= 15, .crn
= 15, .crm
= 2, .opc1
= 0, .opc2
= 0,
2636 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_max
), .resetvalue
= 0, },
2637 { .name
= "IMIN", .cp
= 15, .crn
= 15, .crm
= 3, .opc1
= 0, .opc2
= 0,
2638 .access
= PL1_RW
, .resetvalue
= 0xff0,
2639 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_min
) },
2640 { .name
= "THREADID", .cp
= 15, .crn
= 15, .crm
= 4, .opc1
= 0, .opc2
= 0,
2642 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_threadid
), .resetvalue
= 0,
2643 .writefn
= omap_threadid_write
},
2644 { .name
= "TI925T_STATUS", .cp
= 15, .crn
= 15,
2645 .crm
= 8, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
2646 .type
= ARM_CP_NO_RAW
,
2647 .readfn
= arm_cp_read_zero
, .writefn
= omap_wfi_write
, },
2648 /* TODO: Peripheral port remap register:
2649 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2650 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2653 { .name
= "OMAP_CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
2654 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
2655 .type
= ARM_CP_OVERRIDE
| ARM_CP_NO_RAW
,
2656 .writefn
= omap_cachemaint_write
},
2657 { .name
= "C9", .cp
= 15, .crn
= 9,
2658 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
,
2659 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
, .resetvalue
= 0 },
2663 static void xscale_cpar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2666 env
->cp15
.c15_cpar
= value
& 0x3fff;
2669 static const ARMCPRegInfo xscale_cp_reginfo
[] = {
2670 { .name
= "XSCALE_CPAR",
2671 .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
2672 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_cpar
), .resetvalue
= 0,
2673 .writefn
= xscale_cpar_write
, },
2674 { .name
= "XSCALE_AUXCR",
2675 .cp
= 15, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 1, .access
= PL1_RW
,
2676 .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_xscaleauxcr
),
2678 /* XScale specific cache-lockdown: since we have no cache we NOP these
2679 * and hope the guest does not really rely on cache behaviour.
2681 { .name
= "XSCALE_LOCK_ICACHE_LINE",
2682 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 0,
2683 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2684 { .name
= "XSCALE_UNLOCK_ICACHE",
2685 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 1,
2686 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2687 { .name
= "XSCALE_DCACHE_LOCK",
2688 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 2, .opc2
= 0,
2689 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
2690 { .name
= "XSCALE_UNLOCK_DCACHE",
2691 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 2, .opc2
= 1,
2692 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2696 static const ARMCPRegInfo dummy_c15_cp_reginfo
[] = {
2697 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2698 * implementation of this implementation-defined space.
2699 * Ideally this should eventually disappear in favour of actually
2700 * implementing the correct behaviour for all cores.
2702 { .name
= "C15_IMPDEF", .cp
= 15, .crn
= 15,
2703 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
2705 .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
| ARM_CP_OVERRIDE
,
2710 static const ARMCPRegInfo cache_dirty_status_cp_reginfo
[] = {
2711 /* Cache status: RAZ because we have no cache so it's always clean */
2712 { .name
= "CDSR", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 6,
2713 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
2718 static const ARMCPRegInfo cache_block_ops_cp_reginfo
[] = {
2719 /* We never have a a block transfer operation in progress */
2720 { .name
= "BXSR", .cp
= 15, .crn
= 7, .crm
= 12, .opc1
= 0, .opc2
= 4,
2721 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
2723 /* The cache ops themselves: these all NOP for QEMU */
2724 { .name
= "IICR", .cp
= 15, .crm
= 5, .opc1
= 0,
2725 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2726 { .name
= "IDCR", .cp
= 15, .crm
= 6, .opc1
= 0,
2727 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2728 { .name
= "CDCR", .cp
= 15, .crm
= 12, .opc1
= 0,
2729 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2730 { .name
= "PIR", .cp
= 15, .crm
= 12, .opc1
= 1,
2731 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2732 { .name
= "PDR", .cp
= 15, .crm
= 12, .opc1
= 2,
2733 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2734 { .name
= "CIDCR", .cp
= 15, .crm
= 14, .opc1
= 0,
2735 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2739 static const ARMCPRegInfo cache_test_clean_cp_reginfo
[] = {
2740 /* The cache test-and-clean instructions always return (1 << 30)
2741 * to indicate that there are no dirty cache lines.
2743 { .name
= "TC_DCACHE", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 3,
2744 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
2745 .resetvalue
= (1 << 30) },
2746 { .name
= "TCI_DCACHE", .cp
= 15, .crn
= 7, .crm
= 14, .opc1
= 0, .opc2
= 3,
2747 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
2748 .resetvalue
= (1 << 30) },
2752 static const ARMCPRegInfo strongarm_cp_reginfo
[] = {
2753 /* Ignore ReadBuffer accesses */
2754 { .name
= "C9_READBUFFER", .cp
= 15, .crn
= 9,
2755 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
2756 .access
= PL1_RW
, .resetvalue
= 0,
2757 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
| ARM_CP_NO_RAW
},
2761 static uint64_t midr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2763 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2764 unsigned int cur_el
= arm_current_el(env
);
2765 bool secure
= arm_is_secure(env
);
2767 if (arm_feature(&cpu
->env
, ARM_FEATURE_EL2
) && !secure
&& cur_el
== 1) {
2768 return env
->cp15
.vpidr_el2
;
2770 return raw_read(env
, ri
);
2773 static uint64_t mpidr_read_val(CPUARMState
*env
)
2775 ARMCPU
*cpu
= ARM_CPU(arm_env_get_cpu(env
));
2776 uint64_t mpidr
= cpu
->mp_affinity
;
2778 if (arm_feature(env
, ARM_FEATURE_V7MP
)) {
2779 mpidr
|= (1U << 31);
2780 /* Cores which are uniprocessor (non-coherent)
2781 * but still implement the MP extensions set
2782 * bit 30. (For instance, Cortex-R5).
2784 if (cpu
->mp_is_up
) {
2785 mpidr
|= (1u << 30);
2791 static uint64_t mpidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2793 unsigned int cur_el
= arm_current_el(env
);
2794 bool secure
= arm_is_secure(env
);
2796 if (arm_feature(env
, ARM_FEATURE_EL2
) && !secure
&& cur_el
== 1) {
2797 return env
->cp15
.vmpidr_el2
;
2799 return mpidr_read_val(env
);
2802 static const ARMCPRegInfo mpidr_cp_reginfo
[] = {
2803 { .name
= "MPIDR", .state
= ARM_CP_STATE_BOTH
,
2804 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 5,
2805 .access
= PL1_R
, .readfn
= mpidr_read
, .type
= ARM_CP_NO_RAW
},
2809 static const ARMCPRegInfo lpae_cp_reginfo
[] = {
2811 { .name
= "AMAIR0", .state
= ARM_CP_STATE_BOTH
,
2812 .opc0
= 3, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 0,
2813 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
2815 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2816 { .name
= "AMAIR1", .cp
= 15, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 1,
2817 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
2819 { .name
= "PAR", .cp
= 15, .crm
= 7, .opc1
= 0,
2820 .access
= PL1_RW
, .type
= ARM_CP_64BIT
, .resetvalue
= 0,
2821 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.par_s
),
2822 offsetof(CPUARMState
, cp15
.par_ns
)} },
2823 { .name
= "TTBR0", .cp
= 15, .crm
= 2, .opc1
= 0,
2824 .access
= PL1_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
2825 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr0_s
),
2826 offsetof(CPUARMState
, cp15
.ttbr0_ns
) },
2827 .writefn
= vmsa_ttbr_write
, },
2828 { .name
= "TTBR1", .cp
= 15, .crm
= 2, .opc1
= 1,
2829 .access
= PL1_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
2830 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr1_s
),
2831 offsetof(CPUARMState
, cp15
.ttbr1_ns
) },
2832 .writefn
= vmsa_ttbr_write
, },
2836 static uint64_t aa64_fpcr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2838 return vfp_get_fpcr(env
);
2841 static void aa64_fpcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2844 vfp_set_fpcr(env
, value
);
2847 static uint64_t aa64_fpsr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2849 return vfp_get_fpsr(env
);
2852 static void aa64_fpsr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2855 vfp_set_fpsr(env
, value
);
2858 static CPAccessResult
aa64_daif_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2861 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UMA
)) {
2862 return CP_ACCESS_TRAP
;
2864 return CP_ACCESS_OK
;
2867 static void aa64_daif_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2870 env
->daif
= value
& PSTATE_DAIF
;
2873 static CPAccessResult
aa64_cacheop_access(CPUARMState
*env
,
2874 const ARMCPRegInfo
*ri
,
2877 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2878 * SCTLR_EL1.UCI is set.
2880 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UCI
)) {
2881 return CP_ACCESS_TRAP
;
2883 return CP_ACCESS_OK
;
2886 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2887 * Page D4-1736 (DDI0487A.b)
2890 static void tlbi_aa64_vmalle1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2893 CPUState
*cs
= ENV_GET_CPU(env
);
2895 if (arm_is_secure_below_el3(env
)) {
2896 tlb_flush_by_mmuidx(cs
,
2897 (1 << ARMMMUIdx_S1SE1
) |
2898 (1 << ARMMMUIdx_S1SE0
));
2900 tlb_flush_by_mmuidx(cs
,
2901 (1 << ARMMMUIdx_S12NSE1
) |
2902 (1 << ARMMMUIdx_S12NSE0
));
2906 static void tlbi_aa64_vmalle1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2909 CPUState
*cs
= ENV_GET_CPU(env
);
2910 bool sec
= arm_is_secure_below_el3(env
);
2913 tlb_flush_by_mmuidx_all_cpus_synced(cs
,
2914 (1 << ARMMMUIdx_S1SE1
) |
2915 (1 << ARMMMUIdx_S1SE0
));
2917 tlb_flush_by_mmuidx_all_cpus_synced(cs
,
2918 (1 << ARMMMUIdx_S12NSE1
) |
2919 (1 << ARMMMUIdx_S12NSE0
));
2923 static void tlbi_aa64_alle1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2926 /* Note that the 'ALL' scope must invalidate both stage 1 and
2927 * stage 2 translations, whereas most other scopes only invalidate
2928 * stage 1 translations.
2930 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2931 CPUState
*cs
= CPU(cpu
);
2933 if (arm_is_secure_below_el3(env
)) {
2934 tlb_flush_by_mmuidx(cs
,
2935 (1 << ARMMMUIdx_S1SE1
) |
2936 (1 << ARMMMUIdx_S1SE0
));
2938 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
2939 tlb_flush_by_mmuidx(cs
,
2940 (1 << ARMMMUIdx_S12NSE1
) |
2941 (1 << ARMMMUIdx_S12NSE0
) |
2942 (1 << ARMMMUIdx_S2NS
));
2944 tlb_flush_by_mmuidx(cs
,
2945 (1 << ARMMMUIdx_S12NSE1
) |
2946 (1 << ARMMMUIdx_S12NSE0
));
2951 static void tlbi_aa64_alle2_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2954 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2955 CPUState
*cs
= CPU(cpu
);
2957 tlb_flush_by_mmuidx(cs
, (1 << ARMMMUIdx_S1E2
));
2960 static void tlbi_aa64_alle3_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2963 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2964 CPUState
*cs
= CPU(cpu
);
2966 tlb_flush_by_mmuidx(cs
, (1 << ARMMMUIdx_S1E3
));
2969 static void tlbi_aa64_alle1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2972 /* Note that the 'ALL' scope must invalidate both stage 1 and
2973 * stage 2 translations, whereas most other scopes only invalidate
2974 * stage 1 translations.
2976 CPUState
*cs
= ENV_GET_CPU(env
);
2977 bool sec
= arm_is_secure_below_el3(env
);
2978 bool has_el2
= arm_feature(env
, ARM_FEATURE_EL2
);
2981 tlb_flush_by_mmuidx_all_cpus_synced(cs
,
2982 (1 << ARMMMUIdx_S1SE1
) |
2983 (1 << ARMMMUIdx_S1SE0
));
2984 } else if (has_el2
) {
2985 tlb_flush_by_mmuidx_all_cpus_synced(cs
,
2986 (1 << ARMMMUIdx_S12NSE1
) |
2987 (1 << ARMMMUIdx_S12NSE0
) |
2988 (1 << ARMMMUIdx_S2NS
));
2990 tlb_flush_by_mmuidx_all_cpus_synced(cs
,
2991 (1 << ARMMMUIdx_S12NSE1
) |
2992 (1 << ARMMMUIdx_S12NSE0
));
2996 static void tlbi_aa64_alle2is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2999 CPUState
*cs
= ENV_GET_CPU(env
);
3001 tlb_flush_by_mmuidx_all_cpus_synced(cs
, (1 << ARMMMUIdx_S1E2
));
3004 static void tlbi_aa64_alle3is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3007 CPUState
*cs
= ENV_GET_CPU(env
);
3009 tlb_flush_by_mmuidx_all_cpus_synced(cs
, (1 << ARMMMUIdx_S1E3
));
3012 static void tlbi_aa64_vae1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3015 /* Invalidate by VA, EL1&0 (AArch64 version).
3016 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
3017 * since we don't support flush-for-specific-ASID-only or
3018 * flush-last-level-only.
3020 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3021 CPUState
*cs
= CPU(cpu
);
3022 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
3024 if (arm_is_secure_below_el3(env
)) {
3025 tlb_flush_page_by_mmuidx(cs
, pageaddr
,
3026 (1 << ARMMMUIdx_S1SE1
) |
3027 (1 << ARMMMUIdx_S1SE0
));
3029 tlb_flush_page_by_mmuidx(cs
, pageaddr
,
3030 (1 << ARMMMUIdx_S12NSE1
) |
3031 (1 << ARMMMUIdx_S12NSE0
));
3035 static void tlbi_aa64_vae2_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3038 /* Invalidate by VA, EL2
3039 * Currently handles both VAE2 and VALE2, since we don't support
3040 * flush-last-level-only.
3042 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3043 CPUState
*cs
= CPU(cpu
);
3044 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
3046 tlb_flush_page_by_mmuidx(cs
, pageaddr
, (1 << ARMMMUIdx_S1E2
));
3049 static void tlbi_aa64_vae3_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3052 /* Invalidate by VA, EL3
3053 * Currently handles both VAE3 and VALE3, since we don't support
3054 * flush-last-level-only.
3056 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3057 CPUState
*cs
= CPU(cpu
);
3058 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
3060 tlb_flush_page_by_mmuidx(cs
, pageaddr
, (1 << ARMMMUIdx_S1E3
));
3063 static void tlbi_aa64_vae1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3066 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3067 CPUState
*cs
= CPU(cpu
);
3068 bool sec
= arm_is_secure_below_el3(env
);
3069 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
3072 tlb_flush_page_by_mmuidx_all_cpus_synced(cs
, pageaddr
,
3073 (1 << ARMMMUIdx_S1SE1
) |
3074 (1 << ARMMMUIdx_S1SE0
));
3076 tlb_flush_page_by_mmuidx_all_cpus_synced(cs
, pageaddr
,
3077 (1 << ARMMMUIdx_S12NSE1
) |
3078 (1 << ARMMMUIdx_S12NSE0
));
3082 static void tlbi_aa64_vae2is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3085 CPUState
*cs
= ENV_GET_CPU(env
);
3086 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
3088 tlb_flush_page_by_mmuidx_all_cpus_synced(cs
, pageaddr
,
3089 (1 << ARMMMUIdx_S1E2
));
3092 static void tlbi_aa64_vae3is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3095 CPUState
*cs
= ENV_GET_CPU(env
);
3096 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
3098 tlb_flush_page_by_mmuidx_all_cpus_synced(cs
, pageaddr
,
3099 (1 << ARMMMUIdx_S1E3
));
3102 static void tlbi_aa64_ipas2e1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3105 /* Invalidate by IPA. This has to invalidate any structures that
3106 * contain only stage 2 translation information, but does not need
3107 * to apply to structures that contain combined stage 1 and stage 2
3108 * translation information.
3109 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
3111 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3112 CPUState
*cs
= CPU(cpu
);
3115 if (!arm_feature(env
, ARM_FEATURE_EL2
) || !(env
->cp15
.scr_el3
& SCR_NS
)) {
3119 pageaddr
= sextract64(value
<< 12, 0, 48);
3121 tlb_flush_page_by_mmuidx(cs
, pageaddr
, (1 << ARMMMUIdx_S2NS
));
3124 static void tlbi_aa64_ipas2e1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3127 CPUState
*cs
= ENV_GET_CPU(env
);
3130 if (!arm_feature(env
, ARM_FEATURE_EL2
) || !(env
->cp15
.scr_el3
& SCR_NS
)) {
3134 pageaddr
= sextract64(value
<< 12, 0, 48);
3136 tlb_flush_page_by_mmuidx_all_cpus_synced(cs
, pageaddr
,
3137 (1 << ARMMMUIdx_S2NS
));
3140 static CPAccessResult
aa64_zva_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3143 /* We don't implement EL2, so the only control on DC ZVA is the
3144 * bit in the SCTLR which can prohibit access for EL0.
3146 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_DZE
)) {
3147 return CP_ACCESS_TRAP
;
3149 return CP_ACCESS_OK
;
3152 static uint64_t aa64_dczid_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
3154 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3155 int dzp_bit
= 1 << 4;
3157 /* DZP indicates whether DC ZVA access is allowed */
3158 if (aa64_zva_access(env
, NULL
, false) == CP_ACCESS_OK
) {
3161 return cpu
->dcz_blocksize
| dzp_bit
;
3164 static CPAccessResult
sp_el0_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3167 if (!(env
->pstate
& PSTATE_SP
)) {
3168 /* Access to SP_EL0 is undefined if it's being used as
3169 * the stack pointer.
3171 return CP_ACCESS_TRAP_UNCATEGORIZED
;
3173 return CP_ACCESS_OK
;
3176 static uint64_t spsel_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
3178 return env
->pstate
& PSTATE_SP
;
3181 static void spsel_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t val
)
3183 update_spsel(env
, val
);
3186 static void sctlr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3189 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3191 if (raw_read(env
, ri
) == value
) {
3192 /* Skip the TLB flush if nothing actually changed; Linux likes
3193 * to do a lot of pointless SCTLR writes.
3198 raw_write(env
, ri
, value
);
3199 /* ??? Lots of these bits are not implemented. */
3200 /* This may enable/disable the MMU, so do a TLB flush. */
3201 tlb_flush(CPU(cpu
));
3204 static CPAccessResult
fpexc32_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3207 if ((env
->cp15
.cptr_el
[2] & CPTR_TFP
) && arm_current_el(env
) == 2) {
3208 return CP_ACCESS_TRAP_FP_EL2
;
3210 if (env
->cp15
.cptr_el
[3] & CPTR_TFP
) {
3211 return CP_ACCESS_TRAP_FP_EL3
;
3213 return CP_ACCESS_OK
;
3216 static void sdcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3219 env
->cp15
.mdcr_el3
= value
& SDCR_VALID_MASK
;
3222 static const ARMCPRegInfo v8_cp_reginfo
[] = {
3223 /* Minimal set of EL0-visible registers. This will need to be expanded
3224 * significantly for system emulation of AArch64 CPUs.
3226 { .name
= "NZCV", .state
= ARM_CP_STATE_AA64
,
3227 .opc0
= 3, .opc1
= 3, .opc2
= 0, .crn
= 4, .crm
= 2,
3228 .access
= PL0_RW
, .type
= ARM_CP_NZCV
},
3229 { .name
= "DAIF", .state
= ARM_CP_STATE_AA64
,
3230 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 4, .crm
= 2,
3231 .type
= ARM_CP_NO_RAW
,
3232 .access
= PL0_RW
, .accessfn
= aa64_daif_access
,
3233 .fieldoffset
= offsetof(CPUARMState
, daif
),
3234 .writefn
= aa64_daif_write
, .resetfn
= arm_cp_reset_ignore
},
3235 { .name
= "FPCR", .state
= ARM_CP_STATE_AA64
,
3236 .opc0
= 3, .opc1
= 3, .opc2
= 0, .crn
= 4, .crm
= 4,
3237 .access
= PL0_RW
, .readfn
= aa64_fpcr_read
, .writefn
= aa64_fpcr_write
},
3238 { .name
= "FPSR", .state
= ARM_CP_STATE_AA64
,
3239 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 4, .crm
= 4,
3240 .access
= PL0_RW
, .readfn
= aa64_fpsr_read
, .writefn
= aa64_fpsr_write
},
3241 { .name
= "DCZID_EL0", .state
= ARM_CP_STATE_AA64
,
3242 .opc0
= 3, .opc1
= 3, .opc2
= 7, .crn
= 0, .crm
= 0,
3243 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
,
3244 .readfn
= aa64_dczid_read
},
3245 { .name
= "DC_ZVA", .state
= ARM_CP_STATE_AA64
,
3246 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 4, .opc2
= 1,
3247 .access
= PL0_W
, .type
= ARM_CP_DC_ZVA
,
3248 #ifndef CONFIG_USER_ONLY
3249 /* Avoid overhead of an access check that always passes in user-mode */
3250 .accessfn
= aa64_zva_access
,
3253 { .name
= "CURRENTEL", .state
= ARM_CP_STATE_AA64
,
3254 .opc0
= 3, .opc1
= 0, .opc2
= 2, .crn
= 4, .crm
= 2,
3255 .access
= PL1_R
, .type
= ARM_CP_CURRENTEL
},
3256 /* Cache ops: all NOPs since we don't emulate caches */
3257 { .name
= "IC_IALLUIS", .state
= ARM_CP_STATE_AA64
,
3258 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 0,
3259 .access
= PL1_W
, .type
= ARM_CP_NOP
},
3260 { .name
= "IC_IALLU", .state
= ARM_CP_STATE_AA64
,
3261 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 0,
3262 .access
= PL1_W
, .type
= ARM_CP_NOP
},
3263 { .name
= "IC_IVAU", .state
= ARM_CP_STATE_AA64
,
3264 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 5, .opc2
= 1,
3265 .access
= PL0_W
, .type
= ARM_CP_NOP
,
3266 .accessfn
= aa64_cacheop_access
},
3267 { .name
= "DC_IVAC", .state
= ARM_CP_STATE_AA64
,
3268 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 1,
3269 .access
= PL1_W
, .type
= ARM_CP_NOP
},
3270 { .name
= "DC_ISW", .state
= ARM_CP_STATE_AA64
,
3271 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 2,
3272 .access
= PL1_W
, .type
= ARM_CP_NOP
},
3273 { .name
= "DC_CVAC", .state
= ARM_CP_STATE_AA64
,
3274 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 10, .opc2
= 1,
3275 .access
= PL0_W
, .type
= ARM_CP_NOP
,
3276 .accessfn
= aa64_cacheop_access
},
3277 { .name
= "DC_CSW", .state
= ARM_CP_STATE_AA64
,
3278 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 2,
3279 .access
= PL1_W
, .type
= ARM_CP_NOP
},
3280 { .name
= "DC_CVAU", .state
= ARM_CP_STATE_AA64
,
3281 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 11, .opc2
= 1,
3282 .access
= PL0_W
, .type
= ARM_CP_NOP
,
3283 .accessfn
= aa64_cacheop_access
},
3284 { .name
= "DC_CIVAC", .state
= ARM_CP_STATE_AA64
,
3285 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 14, .opc2
= 1,
3286 .access
= PL0_W
, .type
= ARM_CP_NOP
,
3287 .accessfn
= aa64_cacheop_access
},
3288 { .name
= "DC_CISW", .state
= ARM_CP_STATE_AA64
,
3289 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 2,
3290 .access
= PL1_W
, .type
= ARM_CP_NOP
},
3291 /* TLBI operations */
3292 { .name
= "TLBI_VMALLE1IS", .state
= ARM_CP_STATE_AA64
,
3293 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 0,
3294 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3295 .writefn
= tlbi_aa64_vmalle1is_write
},
3296 { .name
= "TLBI_VAE1IS", .state
= ARM_CP_STATE_AA64
,
3297 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 1,
3298 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3299 .writefn
= tlbi_aa64_vae1is_write
},
3300 { .name
= "TLBI_ASIDE1IS", .state
= ARM_CP_STATE_AA64
,
3301 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 2,
3302 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3303 .writefn
= tlbi_aa64_vmalle1is_write
},
3304 { .name
= "TLBI_VAAE1IS", .state
= ARM_CP_STATE_AA64
,
3305 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 3,
3306 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3307 .writefn
= tlbi_aa64_vae1is_write
},
3308 { .name
= "TLBI_VALE1IS", .state
= ARM_CP_STATE_AA64
,
3309 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 5,
3310 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3311 .writefn
= tlbi_aa64_vae1is_write
},
3312 { .name
= "TLBI_VAALE1IS", .state
= ARM_CP_STATE_AA64
,
3313 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 7,
3314 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3315 .writefn
= tlbi_aa64_vae1is_write
},
3316 { .name
= "TLBI_VMALLE1", .state
= ARM_CP_STATE_AA64
,
3317 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 0,
3318 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3319 .writefn
= tlbi_aa64_vmalle1_write
},
3320 { .name
= "TLBI_VAE1", .state
= ARM_CP_STATE_AA64
,
3321 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 1,
3322 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3323 .writefn
= tlbi_aa64_vae1_write
},
3324 { .name
= "TLBI_ASIDE1", .state
= ARM_CP_STATE_AA64
,
3325 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 2,
3326 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3327 .writefn
= tlbi_aa64_vmalle1_write
},
3328 { .name
= "TLBI_VAAE1", .state
= ARM_CP_STATE_AA64
,
3329 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 3,
3330 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3331 .writefn
= tlbi_aa64_vae1_write
},
3332 { .name
= "TLBI_VALE1", .state
= ARM_CP_STATE_AA64
,
3333 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 5,
3334 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3335 .writefn
= tlbi_aa64_vae1_write
},
3336 { .name
= "TLBI_VAALE1", .state
= ARM_CP_STATE_AA64
,
3337 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 7,
3338 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3339 .writefn
= tlbi_aa64_vae1_write
},
3340 { .name
= "TLBI_IPAS2E1IS", .state
= ARM_CP_STATE_AA64
,
3341 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 0, .opc2
= 1,
3342 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3343 .writefn
= tlbi_aa64_ipas2e1is_write
},
3344 { .name
= "TLBI_IPAS2LE1IS", .state
= ARM_CP_STATE_AA64
,
3345 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 0, .opc2
= 5,
3346 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3347 .writefn
= tlbi_aa64_ipas2e1is_write
},
3348 { .name
= "TLBI_ALLE1IS", .state
= ARM_CP_STATE_AA64
,
3349 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 4,
3350 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3351 .writefn
= tlbi_aa64_alle1is_write
},
3352 { .name
= "TLBI_VMALLS12E1IS", .state
= ARM_CP_STATE_AA64
,
3353 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 6,
3354 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3355 .writefn
= tlbi_aa64_alle1is_write
},
3356 { .name
= "TLBI_IPAS2E1", .state
= ARM_CP_STATE_AA64
,
3357 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 4, .opc2
= 1,
3358 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3359 .writefn
= tlbi_aa64_ipas2e1_write
},
3360 { .name
= "TLBI_IPAS2LE1", .state
= ARM_CP_STATE_AA64
,
3361 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 4, .opc2
= 5,
3362 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3363 .writefn
= tlbi_aa64_ipas2e1_write
},
3364 { .name
= "TLBI_ALLE1", .state
= ARM_CP_STATE_AA64
,
3365 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 4,
3366 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3367 .writefn
= tlbi_aa64_alle1_write
},
3368 { .name
= "TLBI_VMALLS12E1", .state
= ARM_CP_STATE_AA64
,
3369 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 6,
3370 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3371 .writefn
= tlbi_aa64_alle1is_write
},
3372 #ifndef CONFIG_USER_ONLY
3373 /* 64 bit address translation operations */
3374 { .name
= "AT_S1E1R", .state
= ARM_CP_STATE_AA64
,
3375 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 0,
3376 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3377 { .name
= "AT_S1E1W", .state
= ARM_CP_STATE_AA64
,
3378 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 1,
3379 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3380 { .name
= "AT_S1E0R", .state
= ARM_CP_STATE_AA64
,
3381 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 2,
3382 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3383 { .name
= "AT_S1E0W", .state
= ARM_CP_STATE_AA64
,
3384 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 3,
3385 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3386 { .name
= "AT_S12E1R", .state
= ARM_CP_STATE_AA64
,
3387 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 4,
3388 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3389 { .name
= "AT_S12E1W", .state
= ARM_CP_STATE_AA64
,
3390 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 5,
3391 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3392 { .name
= "AT_S12E0R", .state
= ARM_CP_STATE_AA64
,
3393 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 6,
3394 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3395 { .name
= "AT_S12E0W", .state
= ARM_CP_STATE_AA64
,
3396 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 7,
3397 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3398 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3399 { .name
= "AT_S1E3R", .state
= ARM_CP_STATE_AA64
,
3400 .opc0
= 1, .opc1
= 6, .crn
= 7, .crm
= 8, .opc2
= 0,
3401 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3402 { .name
= "AT_S1E3W", .state
= ARM_CP_STATE_AA64
,
3403 .opc0
= 1, .opc1
= 6, .crn
= 7, .crm
= 8, .opc2
= 1,
3404 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3405 { .name
= "PAR_EL1", .state
= ARM_CP_STATE_AA64
,
3406 .type
= ARM_CP_ALIAS
,
3407 .opc0
= 3, .opc1
= 0, .crn
= 7, .crm
= 4, .opc2
= 0,
3408 .access
= PL1_RW
, .resetvalue
= 0,
3409 .fieldoffset
= offsetof(CPUARMState
, cp15
.par_el
[1]),
3410 .writefn
= par_write
},
3412 /* TLB invalidate last level of translation table walk */
3413 { .name
= "TLBIMVALIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 5,
3414 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_is_write
},
3415 { .name
= "TLBIMVAALIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 7,
3416 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
,
3417 .writefn
= tlbimvaa_is_write
},
3418 { .name
= "TLBIMVAL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 5,
3419 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
3420 { .name
= "TLBIMVAAL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 7,
3421 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimvaa_write
},
3422 { .name
= "TLBIMVALH", .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 5,
3423 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3424 .writefn
= tlbimva_hyp_write
},
3425 { .name
= "TLBIMVALHIS",
3426 .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 5,
3427 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3428 .writefn
= tlbimva_hyp_is_write
},
3429 { .name
= "TLBIIPAS2",
3430 .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 4, .opc2
= 1,
3431 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3432 .writefn
= tlbiipas2_write
},
3433 { .name
= "TLBIIPAS2IS",
3434 .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 0, .opc2
= 1,
3435 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3436 .writefn
= tlbiipas2_is_write
},
3437 { .name
= "TLBIIPAS2L",
3438 .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 4, .opc2
= 5,
3439 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3440 .writefn
= tlbiipas2_write
},
3441 { .name
= "TLBIIPAS2LIS",
3442 .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 0, .opc2
= 5,
3443 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3444 .writefn
= tlbiipas2_is_write
},
3445 /* 32 bit cache operations */
3446 { .name
= "ICIALLUIS", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 0,
3447 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3448 { .name
= "BPIALLUIS", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 6,
3449 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3450 { .name
= "ICIALLU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 0,
3451 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3452 { .name
= "ICIMVAU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 1,
3453 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3454 { .name
= "BPIALL", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 6,
3455 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3456 { .name
= "BPIMVA", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 7,
3457 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3458 { .name
= "DCIMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 1,
3459 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3460 { .name
= "DCISW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 2,
3461 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3462 { .name
= "DCCMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 1,
3463 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3464 { .name
= "DCCSW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 2,
3465 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3466 { .name
= "DCCMVAU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 11, .opc2
= 1,
3467 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3468 { .name
= "DCCIMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 1,
3469 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3470 { .name
= "DCCISW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 2,
3471 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3472 /* MMU Domain access control / MPU write buffer control */
3473 { .name
= "DACR", .cp
= 15, .opc1
= 0, .crn
= 3, .crm
= 0, .opc2
= 0,
3474 .access
= PL1_RW
, .resetvalue
= 0,
3475 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
3476 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dacr_s
),
3477 offsetoflow32(CPUARMState
, cp15
.dacr_ns
) } },
3478 { .name
= "ELR_EL1", .state
= ARM_CP_STATE_AA64
,
3479 .type
= ARM_CP_ALIAS
,
3480 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 0, .opc2
= 1,
3482 .fieldoffset
= offsetof(CPUARMState
, elr_el
[1]) },
3483 { .name
= "SPSR_EL1", .state
= ARM_CP_STATE_AA64
,
3484 .type
= ARM_CP_ALIAS
,
3485 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 0, .opc2
= 0,
3487 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_SVC
]) },
3488 /* We rely on the access checks not allowing the guest to write to the
3489 * state field when SPSel indicates that it's being used as the stack
3492 { .name
= "SP_EL0", .state
= ARM_CP_STATE_AA64
,
3493 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 1, .opc2
= 0,
3494 .access
= PL1_RW
, .accessfn
= sp_el0_access
,
3495 .type
= ARM_CP_ALIAS
,
3496 .fieldoffset
= offsetof(CPUARMState
, sp_el
[0]) },
3497 { .name
= "SP_EL1", .state
= ARM_CP_STATE_AA64
,
3498 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 1, .opc2
= 0,
3499 .access
= PL2_RW
, .type
= ARM_CP_ALIAS
,
3500 .fieldoffset
= offsetof(CPUARMState
, sp_el
[1]) },
3501 { .name
= "SPSel", .state
= ARM_CP_STATE_AA64
,
3502 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 2, .opc2
= 0,
3503 .type
= ARM_CP_NO_RAW
,
3504 .access
= PL1_RW
, .readfn
= spsel_read
, .writefn
= spsel_write
},
3505 { .name
= "FPEXC32_EL2", .state
= ARM_CP_STATE_AA64
,
3506 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 3, .opc2
= 0,
3507 .type
= ARM_CP_ALIAS
,
3508 .fieldoffset
= offsetof(CPUARMState
, vfp
.xregs
[ARM_VFP_FPEXC
]),
3509 .access
= PL2_RW
, .accessfn
= fpexc32_access
},
3510 { .name
= "DACR32_EL2", .state
= ARM_CP_STATE_AA64
,
3511 .opc0
= 3, .opc1
= 4, .crn
= 3, .crm
= 0, .opc2
= 0,
3512 .access
= PL2_RW
, .resetvalue
= 0,
3513 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
3514 .fieldoffset
= offsetof(CPUARMState
, cp15
.dacr32_el2
) },
3515 { .name
= "IFSR32_EL2", .state
= ARM_CP_STATE_AA64
,
3516 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 0, .opc2
= 1,
3517 .access
= PL2_RW
, .resetvalue
= 0,
3518 .fieldoffset
= offsetof(CPUARMState
, cp15
.ifsr32_el2
) },
3519 { .name
= "SPSR_IRQ", .state
= ARM_CP_STATE_AA64
,
3520 .type
= ARM_CP_ALIAS
,
3521 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 3, .opc2
= 0,
3523 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_IRQ
]) },
3524 { .name
= "SPSR_ABT", .state
= ARM_CP_STATE_AA64
,
3525 .type
= ARM_CP_ALIAS
,
3526 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 3, .opc2
= 1,
3528 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_ABT
]) },
3529 { .name
= "SPSR_UND", .state
= ARM_CP_STATE_AA64
,
3530 .type
= ARM_CP_ALIAS
,
3531 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 3, .opc2
= 2,
3533 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_UND
]) },
3534 { .name
= "SPSR_FIQ", .state
= ARM_CP_STATE_AA64
,
3535 .type
= ARM_CP_ALIAS
,
3536 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 3, .opc2
= 3,
3538 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_FIQ
]) },
3539 { .name
= "MDCR_EL3", .state
= ARM_CP_STATE_AA64
,
3540 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 3, .opc2
= 1,
3542 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mdcr_el3
) },
3543 { .name
= "SDCR", .type
= ARM_CP_ALIAS
,
3544 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 3, .opc2
= 1,
3545 .access
= PL1_RW
, .accessfn
= access_trap_aa32s_el1
,
3546 .writefn
= sdcr_write
,
3547 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.mdcr_el3
) },
3551 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
3552 static const ARMCPRegInfo el3_no_el2_cp_reginfo
[] = {
3553 { .name
= "VBAR_EL2", .state
= ARM_CP_STATE_AA64
,
3554 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 0,
3556 .readfn
= arm_cp_read_zero
, .writefn
= arm_cp_write_ignore
},
3557 { .name
= "HCR_EL2", .state
= ARM_CP_STATE_AA64
,
3558 .type
= ARM_CP_NO_RAW
,
3559 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 0,
3561 .readfn
= arm_cp_read_zero
, .writefn
= arm_cp_write_ignore
},
3562 { .name
= "CPTR_EL2", .state
= ARM_CP_STATE_BOTH
,
3563 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 2,
3564 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3565 { .name
= "MAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
3566 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 0,
3567 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3569 { .name
= "HMAIR1", .state
= ARM_CP_STATE_AA32
,
3570 .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 1,
3571 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3572 { .name
= "AMAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
3573 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 0,
3574 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3576 { .name
= "HMAIR1", .state
= ARM_CP_STATE_AA32
,
3577 .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 1,
3578 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3580 { .name
= "AFSR0_EL2", .state
= ARM_CP_STATE_BOTH
,
3581 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 0,
3582 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3584 { .name
= "AFSR1_EL2", .state
= ARM_CP_STATE_BOTH
,
3585 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 1,
3586 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3588 { .name
= "TCR_EL2", .state
= ARM_CP_STATE_BOTH
,
3589 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 2,
3590 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3591 { .name
= "VTCR_EL2", .state
= ARM_CP_STATE_BOTH
,
3592 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 2,
3593 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns_aa64any
,
3594 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3595 { .name
= "VTTBR", .state
= ARM_CP_STATE_AA32
,
3596 .cp
= 15, .opc1
= 6, .crm
= 2,
3597 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
3598 .type
= ARM_CP_CONST
| ARM_CP_64BIT
, .resetvalue
= 0 },
3599 { .name
= "VTTBR_EL2", .state
= ARM_CP_STATE_AA64
,
3600 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 0,
3601 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3602 { .name
= "SCTLR_EL2", .state
= ARM_CP_STATE_BOTH
,
3603 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 0, .opc2
= 0,
3604 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3605 { .name
= "TPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
3606 .opc0
= 3, .opc1
= 4, .crn
= 13, .crm
= 0, .opc2
= 2,
3607 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3608 { .name
= "TTBR0_EL2", .state
= ARM_CP_STATE_AA64
,
3609 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 0,
3610 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3611 { .name
= "HTTBR", .cp
= 15, .opc1
= 4, .crm
= 2,
3612 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_CONST
,
3614 { .name
= "CNTHCTL_EL2", .state
= ARM_CP_STATE_BOTH
,
3615 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 1, .opc2
= 0,
3616 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3617 { .name
= "CNTVOFF_EL2", .state
= ARM_CP_STATE_AA64
,
3618 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 0, .opc2
= 3,
3619 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3620 { .name
= "CNTVOFF", .cp
= 15, .opc1
= 4, .crm
= 14,
3621 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_CONST
,
3623 { .name
= "CNTHP_CVAL_EL2", .state
= ARM_CP_STATE_AA64
,
3624 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 2,
3625 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3626 { .name
= "CNTHP_CVAL", .cp
= 15, .opc1
= 6, .crm
= 14,
3627 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_CONST
,
3629 { .name
= "CNTHP_TVAL_EL2", .state
= ARM_CP_STATE_BOTH
,
3630 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 0,
3631 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3632 { .name
= "CNTHP_CTL_EL2", .state
= ARM_CP_STATE_BOTH
,
3633 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 1,
3634 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3635 { .name
= "MDCR_EL2", .state
= ARM_CP_STATE_BOTH
,
3636 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 1,
3637 .access
= PL2_RW
, .accessfn
= access_tda
,
3638 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3639 { .name
= "HPFAR_EL2", .state
= ARM_CP_STATE_BOTH
,
3640 .opc0
= 3, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 4,
3641 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns_aa64any
,
3642 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3643 { .name
= "HSTR_EL2", .state
= ARM_CP_STATE_BOTH
,
3644 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 3,
3645 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3649 static void hcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
3651 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3652 uint64_t valid_mask
= HCR_MASK
;
3654 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
3655 valid_mask
&= ~HCR_HCD
;
3657 valid_mask
&= ~HCR_TSC
;
3660 /* Clear RES0 bits. */
3661 value
&= valid_mask
;
3663 /* These bits change the MMU setup:
3664 * HCR_VM enables stage 2 translation
3665 * HCR_PTW forbids certain page-table setups
3666 * HCR_DC Disables stage1 and enables stage2 translation
3668 if ((raw_read(env
, ri
) ^ value
) & (HCR_VM
| HCR_PTW
| HCR_DC
)) {
3669 tlb_flush(CPU(cpu
));
3671 raw_write(env
, ri
, value
);
3674 static const ARMCPRegInfo el2_cp_reginfo
[] = {
3675 { .name
= "HCR_EL2", .state
= ARM_CP_STATE_AA64
,
3676 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 0,
3677 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.hcr_el2
),
3678 .writefn
= hcr_write
},
3679 { .name
= "ELR_EL2", .state
= ARM_CP_STATE_AA64
,
3680 .type
= ARM_CP_ALIAS
,
3681 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 0, .opc2
= 1,
3683 .fieldoffset
= offsetof(CPUARMState
, elr_el
[2]) },
3684 { .name
= "ESR_EL2", .state
= ARM_CP_STATE_AA64
,
3685 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 2, .opc2
= 0,
3686 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[2]) },
3687 { .name
= "FAR_EL2", .state
= ARM_CP_STATE_AA64
,
3688 .opc0
= 3, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 0,
3689 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[2]) },
3690 { .name
= "SPSR_EL2", .state
= ARM_CP_STATE_AA64
,
3691 .type
= ARM_CP_ALIAS
,
3692 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 0, .opc2
= 0,
3694 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_HYP
]) },
3695 { .name
= "VBAR_EL2", .state
= ARM_CP_STATE_AA64
,
3696 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 0,
3697 .access
= PL2_RW
, .writefn
= vbar_write
,
3698 .fieldoffset
= offsetof(CPUARMState
, cp15
.vbar_el
[2]),
3700 { .name
= "SP_EL2", .state
= ARM_CP_STATE_AA64
,
3701 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 1, .opc2
= 0,
3702 .access
= PL3_RW
, .type
= ARM_CP_ALIAS
,
3703 .fieldoffset
= offsetof(CPUARMState
, sp_el
[2]) },
3704 { .name
= "CPTR_EL2", .state
= ARM_CP_STATE_BOTH
,
3705 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 2,
3706 .access
= PL2_RW
, .accessfn
= cptr_access
, .resetvalue
= 0,
3707 .fieldoffset
= offsetof(CPUARMState
, cp15
.cptr_el
[2]) },
3708 { .name
= "MAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
3709 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 0,
3710 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mair_el
[2]),
3712 { .name
= "HMAIR1", .state
= ARM_CP_STATE_AA32
,
3713 .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 1,
3714 .access
= PL2_RW
, .type
= ARM_CP_ALIAS
,
3715 .fieldoffset
= offsetofhigh32(CPUARMState
, cp15
.mair_el
[2]) },
3716 { .name
= "AMAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
3717 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 0,
3718 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3720 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3721 { .name
= "HMAIR1", .state
= ARM_CP_STATE_AA32
,
3722 .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 1,
3723 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3725 { .name
= "AFSR0_EL2", .state
= ARM_CP_STATE_BOTH
,
3726 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 0,
3727 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3729 { .name
= "AFSR1_EL2", .state
= ARM_CP_STATE_BOTH
,
3730 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 1,
3731 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3733 { .name
= "TCR_EL2", .state
= ARM_CP_STATE_BOTH
,
3734 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 2,
3736 /* no .writefn needed as this can't cause an ASID change;
3737 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3739 .fieldoffset
= offsetof(CPUARMState
, cp15
.tcr_el
[2]) },
3740 { .name
= "VTCR", .state
= ARM_CP_STATE_AA32
,
3741 .cp
= 15, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 2,
3742 .type
= ARM_CP_ALIAS
,
3743 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
3744 .fieldoffset
= offsetof(CPUARMState
, cp15
.vtcr_el2
) },
3745 { .name
= "VTCR_EL2", .state
= ARM_CP_STATE_AA64
,
3746 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 2,
3748 /* no .writefn needed as this can't cause an ASID change;
3749 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3751 .fieldoffset
= offsetof(CPUARMState
, cp15
.vtcr_el2
) },
3752 { .name
= "VTTBR", .state
= ARM_CP_STATE_AA32
,
3753 .cp
= 15, .opc1
= 6, .crm
= 2,
3754 .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
3755 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
3756 .fieldoffset
= offsetof(CPUARMState
, cp15
.vttbr_el2
),
3757 .writefn
= vttbr_write
},
3758 { .name
= "VTTBR_EL2", .state
= ARM_CP_STATE_AA64
,
3759 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 0,
3760 .access
= PL2_RW
, .writefn
= vttbr_write
,
3761 .fieldoffset
= offsetof(CPUARMState
, cp15
.vttbr_el2
) },
3762 { .name
= "SCTLR_EL2", .state
= ARM_CP_STATE_BOTH
,
3763 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 0, .opc2
= 0,
3764 .access
= PL2_RW
, .raw_writefn
= raw_write
, .writefn
= sctlr_write
,
3765 .fieldoffset
= offsetof(CPUARMState
, cp15
.sctlr_el
[2]) },
3766 { .name
= "TPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
3767 .opc0
= 3, .opc1
= 4, .crn
= 13, .crm
= 0, .opc2
= 2,
3768 .access
= PL2_RW
, .resetvalue
= 0,
3769 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[2]) },
3770 { .name
= "TTBR0_EL2", .state
= ARM_CP_STATE_AA64
,
3771 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 0,
3772 .access
= PL2_RW
, .resetvalue
= 0,
3773 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el
[2]) },
3774 { .name
= "HTTBR", .cp
= 15, .opc1
= 4, .crm
= 2,
3775 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
3776 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el
[2]) },
3777 { .name
= "TLBIALLNSNH",
3778 .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 4,
3779 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3780 .writefn
= tlbiall_nsnh_write
},
3781 { .name
= "TLBIALLNSNHIS",
3782 .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 4,
3783 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3784 .writefn
= tlbiall_nsnh_is_write
},
3785 { .name
= "TLBIALLH", .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 0,
3786 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3787 .writefn
= tlbiall_hyp_write
},
3788 { .name
= "TLBIALLHIS", .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 0,
3789 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3790 .writefn
= tlbiall_hyp_is_write
},
3791 { .name
= "TLBIMVAH", .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 1,
3792 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3793 .writefn
= tlbimva_hyp_write
},
3794 { .name
= "TLBIMVAHIS", .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 1,
3795 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3796 .writefn
= tlbimva_hyp_is_write
},
3797 { .name
= "TLBI_ALLE2", .state
= ARM_CP_STATE_AA64
,
3798 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 0,
3799 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3800 .writefn
= tlbi_aa64_alle2_write
},
3801 { .name
= "TLBI_VAE2", .state
= ARM_CP_STATE_AA64
,
3802 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 1,
3803 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3804 .writefn
= tlbi_aa64_vae2_write
},
3805 { .name
= "TLBI_VALE2", .state
= ARM_CP_STATE_AA64
,
3806 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 5,
3807 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3808 .writefn
= tlbi_aa64_vae2_write
},
3809 { .name
= "TLBI_ALLE2IS", .state
= ARM_CP_STATE_AA64
,
3810 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 0,
3811 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3812 .writefn
= tlbi_aa64_alle2is_write
},
3813 { .name
= "TLBI_VAE2IS", .state
= ARM_CP_STATE_AA64
,
3814 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 1,
3815 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3816 .writefn
= tlbi_aa64_vae2is_write
},
3817 { .name
= "TLBI_VALE2IS", .state
= ARM_CP_STATE_AA64
,
3818 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 5,
3819 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3820 .writefn
= tlbi_aa64_vae2is_write
},
3821 #ifndef CONFIG_USER_ONLY
3822 /* Unlike the other EL2-related AT operations, these must
3823 * UNDEF from EL3 if EL2 is not implemented, which is why we
3824 * define them here rather than with the rest of the AT ops.
3826 { .name
= "AT_S1E2R", .state
= ARM_CP_STATE_AA64
,
3827 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 0,
3828 .access
= PL2_W
, .accessfn
= at_s1e2_access
,
3829 .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3830 { .name
= "AT_S1E2W", .state
= ARM_CP_STATE_AA64
,
3831 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 1,
3832 .access
= PL2_W
, .accessfn
= at_s1e2_access
,
3833 .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3834 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
3835 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
3836 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
3837 * to behave as if SCR.NS was 1.
3839 { .name
= "ATS1HR", .cp
= 15, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 0,
3841 .writefn
= ats1h_write
, .type
= ARM_CP_NO_RAW
},
3842 { .name
= "ATS1HW", .cp
= 15, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 1,
3844 .writefn
= ats1h_write
, .type
= ARM_CP_NO_RAW
},
3845 { .name
= "CNTHCTL_EL2", .state
= ARM_CP_STATE_BOTH
,
3846 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 1, .opc2
= 0,
3847 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
3848 * reset values as IMPDEF. We choose to reset to 3 to comply with
3849 * both ARMv7 and ARMv8.
3851 .access
= PL2_RW
, .resetvalue
= 3,
3852 .fieldoffset
= offsetof(CPUARMState
, cp15
.cnthctl_el2
) },
3853 { .name
= "CNTVOFF_EL2", .state
= ARM_CP_STATE_AA64
,
3854 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 0, .opc2
= 3,
3855 .access
= PL2_RW
, .type
= ARM_CP_IO
, .resetvalue
= 0,
3856 .writefn
= gt_cntvoff_write
,
3857 .fieldoffset
= offsetof(CPUARMState
, cp15
.cntvoff_el2
) },
3858 { .name
= "CNTVOFF", .cp
= 15, .opc1
= 4, .crm
= 14,
3859 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
| ARM_CP_IO
,
3860 .writefn
= gt_cntvoff_write
,
3861 .fieldoffset
= offsetof(CPUARMState
, cp15
.cntvoff_el2
) },
3862 { .name
= "CNTHP_CVAL_EL2", .state
= ARM_CP_STATE_AA64
,
3863 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 2,
3864 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_HYP
].cval
),
3865 .type
= ARM_CP_IO
, .access
= PL2_RW
,
3866 .writefn
= gt_hyp_cval_write
, .raw_writefn
= raw_write
},
3867 { .name
= "CNTHP_CVAL", .cp
= 15, .opc1
= 6, .crm
= 14,
3868 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_HYP
].cval
),
3869 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_IO
,
3870 .writefn
= gt_hyp_cval_write
, .raw_writefn
= raw_write
},
3871 { .name
= "CNTHP_TVAL_EL2", .state
= ARM_CP_STATE_BOTH
,
3872 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 0,
3873 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL2_RW
,
3874 .resetfn
= gt_hyp_timer_reset
,
3875 .readfn
= gt_hyp_tval_read
, .writefn
= gt_hyp_tval_write
},
3876 { .name
= "CNTHP_CTL_EL2", .state
= ARM_CP_STATE_BOTH
,
3878 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 1,
3880 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_HYP
].ctl
),
3882 .writefn
= gt_hyp_ctl_write
, .raw_writefn
= raw_write
},
3884 /* The only field of MDCR_EL2 that has a defined architectural reset value
3885 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
3886 * don't impelment any PMU event counters, so using zero as a reset
3887 * value for MDCR_EL2 is okay
3889 { .name
= "MDCR_EL2", .state
= ARM_CP_STATE_BOTH
,
3890 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 1,
3891 .access
= PL2_RW
, .resetvalue
= 0,
3892 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdcr_el2
), },
3893 { .name
= "HPFAR", .state
= ARM_CP_STATE_AA32
,
3894 .cp
= 15, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 4,
3895 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
3896 .fieldoffset
= offsetof(CPUARMState
, cp15
.hpfar_el2
) },
3897 { .name
= "HPFAR_EL2", .state
= ARM_CP_STATE_AA64
,
3898 .opc0
= 3, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 4,
3900 .fieldoffset
= offsetof(CPUARMState
, cp15
.hpfar_el2
) },
3901 { .name
= "HSTR_EL2", .state
= ARM_CP_STATE_BOTH
,
3902 .cp
= 15, .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 3,
3904 .fieldoffset
= offsetof(CPUARMState
, cp15
.hstr_el2
) },
3908 static CPAccessResult
nsacr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3911 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
3912 * At Secure EL1 it traps to EL3.
3914 if (arm_current_el(env
) == 3) {
3915 return CP_ACCESS_OK
;
3917 if (arm_is_secure_below_el3(env
)) {
3918 return CP_ACCESS_TRAP_EL3
;
3920 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
3922 return CP_ACCESS_OK
;
3924 return CP_ACCESS_TRAP_UNCATEGORIZED
;
3927 static const ARMCPRegInfo el3_cp_reginfo
[] = {
3928 { .name
= "SCR_EL3", .state
= ARM_CP_STATE_AA64
,
3929 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 1, .opc2
= 0,
3930 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.scr_el3
),
3931 .resetvalue
= 0, .writefn
= scr_write
},
3932 { .name
= "SCR", .type
= ARM_CP_ALIAS
,
3933 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 0,
3934 .access
= PL1_RW
, .accessfn
= access_trap_aa32s_el1
,
3935 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.scr_el3
),
3936 .writefn
= scr_write
},
3937 { .name
= "SDER32_EL3", .state
= ARM_CP_STATE_AA64
,
3938 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 1, .opc2
= 1,
3939 .access
= PL3_RW
, .resetvalue
= 0,
3940 .fieldoffset
= offsetof(CPUARMState
, cp15
.sder
) },
3942 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 1,
3943 .access
= PL3_RW
, .resetvalue
= 0,
3944 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.sder
) },
3945 { .name
= "MVBAR", .cp
= 15, .opc1
= 0, .crn
= 12, .crm
= 0, .opc2
= 1,
3946 .access
= PL1_RW
, .accessfn
= access_trap_aa32s_el1
,
3947 .writefn
= vbar_write
, .resetvalue
= 0,
3948 .fieldoffset
= offsetof(CPUARMState
, cp15
.mvbar
) },
3949 { .name
= "TTBR0_EL3", .state
= ARM_CP_STATE_AA64
,
3950 .opc0
= 3, .opc1
= 6, .crn
= 2, .crm
= 0, .opc2
= 0,
3951 .access
= PL3_RW
, .writefn
= vmsa_ttbr_write
, .resetvalue
= 0,
3952 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el
[3]) },
3953 { .name
= "TCR_EL3", .state
= ARM_CP_STATE_AA64
,
3954 .opc0
= 3, .opc1
= 6, .crn
= 2, .crm
= 0, .opc2
= 2,
3956 /* no .writefn needed as this can't cause an ASID change;
3957 * we must provide a .raw_writefn and .resetfn because we handle
3958 * reset and migration for the AArch32 TTBCR(S), which might be
3959 * using mask and base_mask.
3961 .resetfn
= vmsa_ttbcr_reset
, .raw_writefn
= vmsa_ttbcr_raw_write
,
3962 .fieldoffset
= offsetof(CPUARMState
, cp15
.tcr_el
[3]) },
3963 { .name
= "ELR_EL3", .state
= ARM_CP_STATE_AA64
,
3964 .type
= ARM_CP_ALIAS
,
3965 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 0, .opc2
= 1,
3967 .fieldoffset
= offsetof(CPUARMState
, elr_el
[3]) },
3968 { .name
= "ESR_EL3", .state
= ARM_CP_STATE_AA64
,
3969 .opc0
= 3, .opc1
= 6, .crn
= 5, .crm
= 2, .opc2
= 0,
3970 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[3]) },
3971 { .name
= "FAR_EL3", .state
= ARM_CP_STATE_AA64
,
3972 .opc0
= 3, .opc1
= 6, .crn
= 6, .crm
= 0, .opc2
= 0,
3973 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[3]) },
3974 { .name
= "SPSR_EL3", .state
= ARM_CP_STATE_AA64
,
3975 .type
= ARM_CP_ALIAS
,
3976 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 0, .opc2
= 0,
3978 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_MON
]) },
3979 { .name
= "VBAR_EL3", .state
= ARM_CP_STATE_AA64
,
3980 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 0, .opc2
= 0,
3981 .access
= PL3_RW
, .writefn
= vbar_write
,
3982 .fieldoffset
= offsetof(CPUARMState
, cp15
.vbar_el
[3]),
3984 { .name
= "CPTR_EL3", .state
= ARM_CP_STATE_AA64
,
3985 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 1, .opc2
= 2,
3986 .access
= PL3_RW
, .accessfn
= cptr_access
, .resetvalue
= 0,
3987 .fieldoffset
= offsetof(CPUARMState
, cp15
.cptr_el
[3]) },
3988 { .name
= "TPIDR_EL3", .state
= ARM_CP_STATE_AA64
,
3989 .opc0
= 3, .opc1
= 6, .crn
= 13, .crm
= 0, .opc2
= 2,
3990 .access
= PL3_RW
, .resetvalue
= 0,
3991 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[3]) },
3992 { .name
= "AMAIR_EL3", .state
= ARM_CP_STATE_AA64
,
3993 .opc0
= 3, .opc1
= 6, .crn
= 10, .crm
= 3, .opc2
= 0,
3994 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
3996 { .name
= "AFSR0_EL3", .state
= ARM_CP_STATE_BOTH
,
3997 .opc0
= 3, .opc1
= 6, .crn
= 5, .crm
= 1, .opc2
= 0,
3998 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
4000 { .name
= "AFSR1_EL3", .state
= ARM_CP_STATE_BOTH
,
4001 .opc0
= 3, .opc1
= 6, .crn
= 5, .crm
= 1, .opc2
= 1,
4002 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
4004 { .name
= "TLBI_ALLE3IS", .state
= ARM_CP_STATE_AA64
,
4005 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 3, .opc2
= 0,
4006 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
4007 .writefn
= tlbi_aa64_alle3is_write
},
4008 { .name
= "TLBI_VAE3IS", .state
= ARM_CP_STATE_AA64
,
4009 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 3, .opc2
= 1,
4010 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
4011 .writefn
= tlbi_aa64_vae3is_write
},
4012 { .name
= "TLBI_VALE3IS", .state
= ARM_CP_STATE_AA64
,
4013 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 3, .opc2
= 5,
4014 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
4015 .writefn
= tlbi_aa64_vae3is_write
},
4016 { .name
= "TLBI_ALLE3", .state
= ARM_CP_STATE_AA64
,
4017 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 7, .opc2
= 0,
4018 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
4019 .writefn
= tlbi_aa64_alle3_write
},
4020 { .name
= "TLBI_VAE3", .state
= ARM_CP_STATE_AA64
,
4021 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 7, .opc2
= 1,
4022 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
4023 .writefn
= tlbi_aa64_vae3_write
},
4024 { .name
= "TLBI_VALE3", .state
= ARM_CP_STATE_AA64
,
4025 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 7, .opc2
= 5,
4026 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
4027 .writefn
= tlbi_aa64_vae3_write
},
4031 static CPAccessResult
ctr_el0_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4034 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
4035 * but the AArch32 CTR has its own reginfo struct)
4037 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UCT
)) {
4038 return CP_ACCESS_TRAP
;
4040 return CP_ACCESS_OK
;
4043 static void oslar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4046 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
4047 * read via a bit in OSLSR_EL1.
4051 if (ri
->state
== ARM_CP_STATE_AA32
) {
4052 oslock
= (value
== 0xC5ACCE55);
4057 env
->cp15
.oslsr_el1
= deposit32(env
->cp15
.oslsr_el1
, 1, 1, oslock
);
4060 static const ARMCPRegInfo debug_cp_reginfo
[] = {
4061 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
4062 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
4063 * unlike DBGDRAR it is never accessible from EL0.
4064 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
4067 { .name
= "DBGDRAR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 0,
4068 .access
= PL0_R
, .accessfn
= access_tdra
,
4069 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4070 { .name
= "MDRAR_EL1", .state
= ARM_CP_STATE_AA64
,
4071 .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 0,
4072 .access
= PL1_R
, .accessfn
= access_tdra
,
4073 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4074 { .name
= "DBGDSAR", .cp
= 14, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
4075 .access
= PL0_R
, .accessfn
= access_tdra
,
4076 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4077 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
4078 { .name
= "MDSCR_EL1", .state
= ARM_CP_STATE_BOTH
,
4079 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 2,
4080 .access
= PL1_RW
, .accessfn
= access_tda
,
4081 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdscr_el1
),
4083 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
4084 * We don't implement the configurable EL0 access.
4086 { .name
= "MDCCSR_EL0", .state
= ARM_CP_STATE_BOTH
,
4087 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 0,
4088 .type
= ARM_CP_ALIAS
,
4089 .access
= PL1_R
, .accessfn
= access_tda
,
4090 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdscr_el1
), },
4091 { .name
= "OSLAR_EL1", .state
= ARM_CP_STATE_BOTH
,
4092 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 4,
4093 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
4094 .accessfn
= access_tdosa
,
4095 .writefn
= oslar_write
},
4096 { .name
= "OSLSR_EL1", .state
= ARM_CP_STATE_BOTH
,
4097 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 4,
4098 .access
= PL1_R
, .resetvalue
= 10,
4099 .accessfn
= access_tdosa
,
4100 .fieldoffset
= offsetof(CPUARMState
, cp15
.oslsr_el1
) },
4101 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
4102 { .name
= "OSDLR_EL1", .state
= ARM_CP_STATE_BOTH
,
4103 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 3, .opc2
= 4,
4104 .access
= PL1_RW
, .accessfn
= access_tdosa
,
4105 .type
= ARM_CP_NOP
},
4106 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
4107 * implement vector catch debug events yet.
4110 .cp
= 14, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 0,
4111 .access
= PL1_RW
, .accessfn
= access_tda
,
4112 .type
= ARM_CP_NOP
},
4113 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
4114 * to save and restore a 32-bit guest's DBGVCR)
4116 { .name
= "DBGVCR32_EL2", .state
= ARM_CP_STATE_AA64
,
4117 .opc0
= 2, .opc1
= 4, .crn
= 0, .crm
= 7, .opc2
= 0,
4118 .access
= PL2_RW
, .accessfn
= access_tda
,
4119 .type
= ARM_CP_NOP
},
4120 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
4121 * Channel but Linux may try to access this register. The 32-bit
4122 * alias is DBGDCCINT.
4124 { .name
= "MDCCINT_EL1", .state
= ARM_CP_STATE_BOTH
,
4125 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 0,
4126 .access
= PL1_RW
, .accessfn
= access_tda
,
4127 .type
= ARM_CP_NOP
},
4131 static const ARMCPRegInfo debug_lpae_cp_reginfo
[] = {
4132 /* 64 bit access versions of the (dummy) debug registers */
4133 { .name
= "DBGDRAR", .cp
= 14, .crm
= 1, .opc1
= 0,
4134 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
4135 { .name
= "DBGDSAR", .cp
= 14, .crm
= 2, .opc1
= 0,
4136 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
4140 void hw_watchpoint_update(ARMCPU
*cpu
, int n
)
4142 CPUARMState
*env
= &cpu
->env
;
4144 vaddr wvr
= env
->cp15
.dbgwvr
[n
];
4145 uint64_t wcr
= env
->cp15
.dbgwcr
[n
];
4147 int flags
= BP_CPU
| BP_STOP_BEFORE_ACCESS
;
4149 if (env
->cpu_watchpoint
[n
]) {
4150 cpu_watchpoint_remove_by_ref(CPU(cpu
), env
->cpu_watchpoint
[n
]);
4151 env
->cpu_watchpoint
[n
] = NULL
;
4154 if (!extract64(wcr
, 0, 1)) {
4155 /* E bit clear : watchpoint disabled */
4159 switch (extract64(wcr
, 3, 2)) {
4161 /* LSC 00 is reserved and must behave as if the wp is disabled */
4164 flags
|= BP_MEM_READ
;
4167 flags
|= BP_MEM_WRITE
;
4170 flags
|= BP_MEM_ACCESS
;
4174 /* Attempts to use both MASK and BAS fields simultaneously are
4175 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
4176 * thus generating a watchpoint for every byte in the masked region.
4178 mask
= extract64(wcr
, 24, 4);
4179 if (mask
== 1 || mask
== 2) {
4180 /* Reserved values of MASK; we must act as if the mask value was
4181 * some non-reserved value, or as if the watchpoint were disabled.
4182 * We choose the latter.
4186 /* Watchpoint covers an aligned area up to 2GB in size */
4188 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
4189 * whether the watchpoint fires when the unmasked bits match; we opt
4190 * to generate the exceptions.
4194 /* Watchpoint covers bytes defined by the byte address select bits */
4195 int bas
= extract64(wcr
, 5, 8);
4199 /* This must act as if the watchpoint is disabled */
4203 if (extract64(wvr
, 2, 1)) {
4204 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
4205 * ignored, and BAS[3:0] define which bytes to watch.
4209 /* The BAS bits are supposed to be programmed to indicate a contiguous
4210 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
4211 * we fire for each byte in the word/doubleword addressed by the WVR.
4212 * We choose to ignore any non-zero bits after the first range of 1s.
4214 basstart
= ctz32(bas
);
4215 len
= cto32(bas
>> basstart
);
4219 cpu_watchpoint_insert(CPU(cpu
), wvr
, len
, flags
,
4220 &env
->cpu_watchpoint
[n
]);
4223 void hw_watchpoint_update_all(ARMCPU
*cpu
)
4226 CPUARMState
*env
= &cpu
->env
;
4228 /* Completely clear out existing QEMU watchpoints and our array, to
4229 * avoid possible stale entries following migration load.
4231 cpu_watchpoint_remove_all(CPU(cpu
), BP_CPU
);
4232 memset(env
->cpu_watchpoint
, 0, sizeof(env
->cpu_watchpoint
));
4234 for (i
= 0; i
< ARRAY_SIZE(cpu
->env
.cpu_watchpoint
); i
++) {
4235 hw_watchpoint_update(cpu
, i
);
4239 static void dbgwvr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4242 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4245 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
4246 * register reads and behaves as if values written are sign extended.
4247 * Bits [1:0] are RES0.
4249 value
= sextract64(value
, 0, 49) & ~3ULL;
4251 raw_write(env
, ri
, value
);
4252 hw_watchpoint_update(cpu
, i
);
4255 static void dbgwcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4258 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4261 raw_write(env
, ri
, value
);
4262 hw_watchpoint_update(cpu
, i
);
4265 void hw_breakpoint_update(ARMCPU
*cpu
, int n
)
4267 CPUARMState
*env
= &cpu
->env
;
4268 uint64_t bvr
= env
->cp15
.dbgbvr
[n
];
4269 uint64_t bcr
= env
->cp15
.dbgbcr
[n
];
4274 if (env
->cpu_breakpoint
[n
]) {
4275 cpu_breakpoint_remove_by_ref(CPU(cpu
), env
->cpu_breakpoint
[n
]);
4276 env
->cpu_breakpoint
[n
] = NULL
;
4279 if (!extract64(bcr
, 0, 1)) {
4280 /* E bit clear : watchpoint disabled */
4284 bt
= extract64(bcr
, 20, 4);
4287 case 4: /* unlinked address mismatch (reserved if AArch64) */
4288 case 5: /* linked address mismatch (reserved if AArch64) */
4289 qemu_log_mask(LOG_UNIMP
,
4290 "arm: address mismatch breakpoint types not implemented");
4292 case 0: /* unlinked address match */
4293 case 1: /* linked address match */
4295 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
4296 * we behave as if the register was sign extended. Bits [1:0] are
4297 * RES0. The BAS field is used to allow setting breakpoints on 16
4298 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
4299 * a bp will fire if the addresses covered by the bp and the addresses
4300 * covered by the insn overlap but the insn doesn't start at the
4301 * start of the bp address range. We choose to require the insn and
4302 * the bp to have the same address. The constraints on writing to
4303 * BAS enforced in dbgbcr_write mean we have only four cases:
4304 * 0b0000 => no breakpoint
4305 * 0b0011 => breakpoint on addr
4306 * 0b1100 => breakpoint on addr + 2
4307 * 0b1111 => breakpoint on addr
4308 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
4310 int bas
= extract64(bcr
, 5, 4);
4311 addr
= sextract64(bvr
, 0, 49) & ~3ULL;
4320 case 2: /* unlinked context ID match */
4321 case 8: /* unlinked VMID match (reserved if no EL2) */
4322 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
4323 qemu_log_mask(LOG_UNIMP
,
4324 "arm: unlinked context breakpoint types not implemented");
4326 case 9: /* linked VMID match (reserved if no EL2) */
4327 case 11: /* linked context ID and VMID match (reserved if no EL2) */
4328 case 3: /* linked context ID match */
4330 /* We must generate no events for Linked context matches (unless
4331 * they are linked to by some other bp/wp, which is handled in
4332 * updates for the linking bp/wp). We choose to also generate no events
4333 * for reserved values.
4338 cpu_breakpoint_insert(CPU(cpu
), addr
, flags
, &env
->cpu_breakpoint
[n
]);
4341 void hw_breakpoint_update_all(ARMCPU
*cpu
)
4344 CPUARMState
*env
= &cpu
->env
;
4346 /* Completely clear out existing QEMU breakpoints and our array, to
4347 * avoid possible stale entries following migration load.
4349 cpu_breakpoint_remove_all(CPU(cpu
), BP_CPU
);
4350 memset(env
->cpu_breakpoint
, 0, sizeof(env
->cpu_breakpoint
));
4352 for (i
= 0; i
< ARRAY_SIZE(cpu
->env
.cpu_breakpoint
); i
++) {
4353 hw_breakpoint_update(cpu
, i
);
4357 static void dbgbvr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4360 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4363 raw_write(env
, ri
, value
);
4364 hw_breakpoint_update(cpu
, i
);
4367 static void dbgbcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4370 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4373 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
4376 value
= deposit64(value
, 6, 1, extract64(value
, 5, 1));
4377 value
= deposit64(value
, 8, 1, extract64(value
, 7, 1));
4379 raw_write(env
, ri
, value
);
4380 hw_breakpoint_update(cpu
, i
);
4383 static void define_debug_regs(ARMCPU
*cpu
)
4385 /* Define v7 and v8 architectural debug registers.
4386 * These are just dummy implementations for now.
4389 int wrps
, brps
, ctx_cmps
;
4390 ARMCPRegInfo dbgdidr
= {
4391 .name
= "DBGDIDR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 0,
4392 .access
= PL0_R
, .accessfn
= access_tda
,
4393 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->dbgdidr
,
4396 /* Note that all these register fields hold "number of Xs minus 1". */
4397 brps
= extract32(cpu
->dbgdidr
, 24, 4);
4398 wrps
= extract32(cpu
->dbgdidr
, 28, 4);
4399 ctx_cmps
= extract32(cpu
->dbgdidr
, 20, 4);
4401 assert(ctx_cmps
<= brps
);
4403 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
4404 * of the debug registers such as number of breakpoints;
4405 * check that if they both exist then they agree.
4407 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
4408 assert(extract32(cpu
->id_aa64dfr0
, 12, 4) == brps
);
4409 assert(extract32(cpu
->id_aa64dfr0
, 20, 4) == wrps
);
4410 assert(extract32(cpu
->id_aa64dfr0
, 28, 4) == ctx_cmps
);
4413 define_one_arm_cp_reg(cpu
, &dbgdidr
);
4414 define_arm_cp_regs(cpu
, debug_cp_reginfo
);
4416 if (arm_feature(&cpu
->env
, ARM_FEATURE_LPAE
)) {
4417 define_arm_cp_regs(cpu
, debug_lpae_cp_reginfo
);
4420 for (i
= 0; i
< brps
+ 1; i
++) {
4421 ARMCPRegInfo dbgregs
[] = {
4422 { .name
= "DBGBVR", .state
= ARM_CP_STATE_BOTH
,
4423 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 4,
4424 .access
= PL1_RW
, .accessfn
= access_tda
,
4425 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgbvr
[i
]),
4426 .writefn
= dbgbvr_write
, .raw_writefn
= raw_write
4428 { .name
= "DBGBCR", .state
= ARM_CP_STATE_BOTH
,
4429 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 5,
4430 .access
= PL1_RW
, .accessfn
= access_tda
,
4431 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgbcr
[i
]),
4432 .writefn
= dbgbcr_write
, .raw_writefn
= raw_write
4436 define_arm_cp_regs(cpu
, dbgregs
);
4439 for (i
= 0; i
< wrps
+ 1; i
++) {
4440 ARMCPRegInfo dbgregs
[] = {
4441 { .name
= "DBGWVR", .state
= ARM_CP_STATE_BOTH
,
4442 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 6,
4443 .access
= PL1_RW
, .accessfn
= access_tda
,
4444 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgwvr
[i
]),
4445 .writefn
= dbgwvr_write
, .raw_writefn
= raw_write
4447 { .name
= "DBGWCR", .state
= ARM_CP_STATE_BOTH
,
4448 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 7,
4449 .access
= PL1_RW
, .accessfn
= access_tda
,
4450 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgwcr
[i
]),
4451 .writefn
= dbgwcr_write
, .raw_writefn
= raw_write
4455 define_arm_cp_regs(cpu
, dbgregs
);
4459 void register_cp_regs_for_features(ARMCPU
*cpu
)
4461 /* Register all the coprocessor registers based on feature bits */
4462 CPUARMState
*env
= &cpu
->env
;
4463 if (arm_feature(env
, ARM_FEATURE_M
)) {
4464 /* M profile has no coprocessor registers */
4468 define_arm_cp_regs(cpu
, cp_reginfo
);
4469 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
4470 /* Must go early as it is full of wildcards that may be
4471 * overridden by later definitions.
4473 define_arm_cp_regs(cpu
, not_v8_cp_reginfo
);
4476 if (arm_feature(env
, ARM_FEATURE_V6
)) {
4477 /* The ID registers all have impdef reset values */
4478 ARMCPRegInfo v6_idregs
[] = {
4479 { .name
= "ID_PFR0", .state
= ARM_CP_STATE_BOTH
,
4480 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 0,
4481 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4482 .resetvalue
= cpu
->id_pfr0
},
4483 { .name
= "ID_PFR1", .state
= ARM_CP_STATE_BOTH
,
4484 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 1,
4485 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4486 .resetvalue
= cpu
->id_pfr1
},
4487 { .name
= "ID_DFR0", .state
= ARM_CP_STATE_BOTH
,
4488 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 2,
4489 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4490 .resetvalue
= cpu
->id_dfr0
},
4491 { .name
= "ID_AFR0", .state
= ARM_CP_STATE_BOTH
,
4492 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 3,
4493 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4494 .resetvalue
= cpu
->id_afr0
},
4495 { .name
= "ID_MMFR0", .state
= ARM_CP_STATE_BOTH
,
4496 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 4,
4497 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4498 .resetvalue
= cpu
->id_mmfr0
},
4499 { .name
= "ID_MMFR1", .state
= ARM_CP_STATE_BOTH
,
4500 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 5,
4501 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4502 .resetvalue
= cpu
->id_mmfr1
},
4503 { .name
= "ID_MMFR2", .state
= ARM_CP_STATE_BOTH
,
4504 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 6,
4505 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4506 .resetvalue
= cpu
->id_mmfr2
},
4507 { .name
= "ID_MMFR3", .state
= ARM_CP_STATE_BOTH
,
4508 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 7,
4509 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4510 .resetvalue
= cpu
->id_mmfr3
},
4511 { .name
= "ID_ISAR0", .state
= ARM_CP_STATE_BOTH
,
4512 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 0,
4513 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4514 .resetvalue
= cpu
->id_isar0
},
4515 { .name
= "ID_ISAR1", .state
= ARM_CP_STATE_BOTH
,
4516 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 1,
4517 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4518 .resetvalue
= cpu
->id_isar1
},
4519 { .name
= "ID_ISAR2", .state
= ARM_CP_STATE_BOTH
,
4520 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 2,
4521 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4522 .resetvalue
= cpu
->id_isar2
},
4523 { .name
= "ID_ISAR3", .state
= ARM_CP_STATE_BOTH
,
4524 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 3,
4525 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4526 .resetvalue
= cpu
->id_isar3
},
4527 { .name
= "ID_ISAR4", .state
= ARM_CP_STATE_BOTH
,
4528 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 4,
4529 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4530 .resetvalue
= cpu
->id_isar4
},
4531 { .name
= "ID_ISAR5", .state
= ARM_CP_STATE_BOTH
,
4532 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 5,
4533 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4534 .resetvalue
= cpu
->id_isar5
},
4535 { .name
= "ID_MMFR4", .state
= ARM_CP_STATE_BOTH
,
4536 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 6,
4537 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4538 .resetvalue
= cpu
->id_mmfr4
},
4539 /* 7 is as yet unallocated and must RAZ */
4540 { .name
= "ID_ISAR7_RESERVED", .state
= ARM_CP_STATE_BOTH
,
4541 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 7,
4542 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4546 define_arm_cp_regs(cpu
, v6_idregs
);
4547 define_arm_cp_regs(cpu
, v6_cp_reginfo
);
4549 define_arm_cp_regs(cpu
, not_v6_cp_reginfo
);
4551 if (arm_feature(env
, ARM_FEATURE_V6K
)) {
4552 define_arm_cp_regs(cpu
, v6k_cp_reginfo
);
4554 if (arm_feature(env
, ARM_FEATURE_V7MP
) &&
4555 !arm_feature(env
, ARM_FEATURE_MPU
)) {
4556 define_arm_cp_regs(cpu
, v7mp_cp_reginfo
);
4558 if (arm_feature(env
, ARM_FEATURE_V7
)) {
4559 /* v7 performance monitor control register: same implementor
4560 * field as main ID register, and we implement only the cycle
4563 #ifndef CONFIG_USER_ONLY
4564 ARMCPRegInfo pmcr
= {
4565 .name
= "PMCR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 0,
4567 .type
= ARM_CP_IO
| ARM_CP_ALIAS
,
4568 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcr
),
4569 .accessfn
= pmreg_access
, .writefn
= pmcr_write
,
4570 .raw_writefn
= raw_write
,
4572 ARMCPRegInfo pmcr64
= {
4573 .name
= "PMCR_EL0", .state
= ARM_CP_STATE_AA64
,
4574 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 0,
4575 .access
= PL0_RW
, .accessfn
= pmreg_access
,
4577 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcr
),
4578 .resetvalue
= cpu
->midr
& 0xff000000,
4579 .writefn
= pmcr_write
, .raw_writefn
= raw_write
,
4581 define_one_arm_cp_reg(cpu
, &pmcr
);
4582 define_one_arm_cp_reg(cpu
, &pmcr64
);
4584 ARMCPRegInfo clidr
= {
4585 .name
= "CLIDR", .state
= ARM_CP_STATE_BOTH
,
4586 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 1,
4587 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->clidr
4589 define_one_arm_cp_reg(cpu
, &clidr
);
4590 define_arm_cp_regs(cpu
, v7_cp_reginfo
);
4591 define_debug_regs(cpu
);
4593 define_arm_cp_regs(cpu
, not_v7_cp_reginfo
);
4595 if (arm_feature(env
, ARM_FEATURE_V8
)) {
4596 /* AArch64 ID registers, which all have impdef reset values.
4597 * Note that within the ID register ranges the unused slots
4598 * must all RAZ, not UNDEF; future architecture versions may
4599 * define new registers here.
4601 ARMCPRegInfo v8_idregs
[] = {
4602 { .name
= "ID_AA64PFR0_EL1", .state
= ARM_CP_STATE_AA64
,
4603 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 0,
4604 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4605 .resetvalue
= cpu
->id_aa64pfr0
},
4606 { .name
= "ID_AA64PFR1_EL1", .state
= ARM_CP_STATE_AA64
,
4607 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 1,
4608 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4609 .resetvalue
= cpu
->id_aa64pfr1
},
4610 { .name
= "ID_AA64PFR2_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4611 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 2,
4612 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4614 { .name
= "ID_AA64PFR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4615 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 3,
4616 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4618 { .name
= "ID_AA64PFR4_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4619 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 4,
4620 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4622 { .name
= "ID_AA64PFR5_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4623 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 5,
4624 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4626 { .name
= "ID_AA64PFR6_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4627 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 6,
4628 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4630 { .name
= "ID_AA64PFR7_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4631 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 7,
4632 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4634 { .name
= "ID_AA64DFR0_EL1", .state
= ARM_CP_STATE_AA64
,
4635 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 0,
4636 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4637 .resetvalue
= cpu
->id_aa64dfr0
},
4638 { .name
= "ID_AA64DFR1_EL1", .state
= ARM_CP_STATE_AA64
,
4639 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 1,
4640 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4641 .resetvalue
= cpu
->id_aa64dfr1
},
4642 { .name
= "ID_AA64DFR2_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4643 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 2,
4644 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4646 { .name
= "ID_AA64DFR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4647 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 3,
4648 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4650 { .name
= "ID_AA64AFR0_EL1", .state
= ARM_CP_STATE_AA64
,
4651 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 4,
4652 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4653 .resetvalue
= cpu
->id_aa64afr0
},
4654 { .name
= "ID_AA64AFR1_EL1", .state
= ARM_CP_STATE_AA64
,
4655 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 5,
4656 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4657 .resetvalue
= cpu
->id_aa64afr1
},
4658 { .name
= "ID_AA64AFR2_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4659 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 6,
4660 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4662 { .name
= "ID_AA64AFR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4663 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 7,
4664 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4666 { .name
= "ID_AA64ISAR0_EL1", .state
= ARM_CP_STATE_AA64
,
4667 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 0,
4668 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4669 .resetvalue
= cpu
->id_aa64isar0
},
4670 { .name
= "ID_AA64ISAR1_EL1", .state
= ARM_CP_STATE_AA64
,
4671 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 1,
4672 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4673 .resetvalue
= cpu
->id_aa64isar1
},
4674 { .name
= "ID_AA64ISAR2_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4675 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 2,
4676 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4678 { .name
= "ID_AA64ISAR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4679 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 3,
4680 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4682 { .name
= "ID_AA64ISAR4_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4683 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 4,
4684 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4686 { .name
= "ID_AA64ISAR5_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4687 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 5,
4688 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4690 { .name
= "ID_AA64ISAR6_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4691 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 6,
4692 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4694 { .name
= "ID_AA64ISAR7_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4695 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 7,
4696 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4698 { .name
= "ID_AA64MMFR0_EL1", .state
= ARM_CP_STATE_AA64
,
4699 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 0,
4700 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4701 .resetvalue
= cpu
->id_aa64mmfr0
},
4702 { .name
= "ID_AA64MMFR1_EL1", .state
= ARM_CP_STATE_AA64
,
4703 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 1,
4704 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4705 .resetvalue
= cpu
->id_aa64mmfr1
},
4706 { .name
= "ID_AA64MMFR2_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4707 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 2,
4708 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4710 { .name
= "ID_AA64MMFR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4711 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 3,
4712 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4714 { .name
= "ID_AA64MMFR4_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4715 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 4,
4716 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4718 { .name
= "ID_AA64MMFR5_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4719 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 5,
4720 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4722 { .name
= "ID_AA64MMFR6_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4723 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 6,
4724 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4726 { .name
= "ID_AA64MMFR7_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4727 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 7,
4728 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4730 { .name
= "MVFR0_EL1", .state
= ARM_CP_STATE_AA64
,
4731 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 0,
4732 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4733 .resetvalue
= cpu
->mvfr0
},
4734 { .name
= "MVFR1_EL1", .state
= ARM_CP_STATE_AA64
,
4735 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 1,
4736 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4737 .resetvalue
= cpu
->mvfr1
},
4738 { .name
= "MVFR2_EL1", .state
= ARM_CP_STATE_AA64
,
4739 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 2,
4740 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4741 .resetvalue
= cpu
->mvfr2
},
4742 { .name
= "MVFR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4743 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 3,
4744 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4746 { .name
= "MVFR4_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4747 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 4,
4748 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4750 { .name
= "MVFR5_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4751 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 5,
4752 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4754 { .name
= "MVFR6_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4755 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 6,
4756 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4758 { .name
= "MVFR7_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
4759 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 7,
4760 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4762 { .name
= "PMCEID0", .state
= ARM_CP_STATE_AA32
,
4763 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 12, .opc2
= 6,
4764 .access
= PL0_R
, .accessfn
= pmreg_access
, .type
= ARM_CP_CONST
,
4765 .resetvalue
= cpu
->pmceid0
},
4766 { .name
= "PMCEID0_EL0", .state
= ARM_CP_STATE_AA64
,
4767 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 6,
4768 .access
= PL0_R
, .accessfn
= pmreg_access
, .type
= ARM_CP_CONST
,
4769 .resetvalue
= cpu
->pmceid0
},
4770 { .name
= "PMCEID1", .state
= ARM_CP_STATE_AA32
,
4771 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 12, .opc2
= 7,
4772 .access
= PL0_R
, .accessfn
= pmreg_access
, .type
= ARM_CP_CONST
,
4773 .resetvalue
= cpu
->pmceid1
},
4774 { .name
= "PMCEID1_EL0", .state
= ARM_CP_STATE_AA64
,
4775 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 7,
4776 .access
= PL0_R
, .accessfn
= pmreg_access
, .type
= ARM_CP_CONST
,
4777 .resetvalue
= cpu
->pmceid1
},
4780 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
4781 if (!arm_feature(env
, ARM_FEATURE_EL3
) &&
4782 !arm_feature(env
, ARM_FEATURE_EL2
)) {
4783 ARMCPRegInfo rvbar
= {
4784 .name
= "RVBAR_EL1", .state
= ARM_CP_STATE_AA64
,
4785 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 0, .opc2
= 1,
4786 .type
= ARM_CP_CONST
, .access
= PL1_R
, .resetvalue
= cpu
->rvbar
4788 define_one_arm_cp_reg(cpu
, &rvbar
);
4790 define_arm_cp_regs(cpu
, v8_idregs
);
4791 define_arm_cp_regs(cpu
, v8_cp_reginfo
);
4793 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
4794 uint64_t vmpidr_def
= mpidr_read_val(env
);
4795 ARMCPRegInfo vpidr_regs
[] = {
4796 { .name
= "VPIDR", .state
= ARM_CP_STATE_AA32
,
4797 .cp
= 15, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 0,
4798 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
4799 .resetvalue
= cpu
->midr
,
4800 .fieldoffset
= offsetof(CPUARMState
, cp15
.vpidr_el2
) },
4801 { .name
= "VPIDR_EL2", .state
= ARM_CP_STATE_AA64
,
4802 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 0,
4803 .access
= PL2_RW
, .resetvalue
= cpu
->midr
,
4804 .fieldoffset
= offsetof(CPUARMState
, cp15
.vpidr_el2
) },
4805 { .name
= "VMPIDR", .state
= ARM_CP_STATE_AA32
,
4806 .cp
= 15, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 5,
4807 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
4808 .resetvalue
= vmpidr_def
,
4809 .fieldoffset
= offsetof(CPUARMState
, cp15
.vmpidr_el2
) },
4810 { .name
= "VMPIDR_EL2", .state
= ARM_CP_STATE_AA64
,
4811 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 5,
4813 .resetvalue
= vmpidr_def
,
4814 .fieldoffset
= offsetof(CPUARMState
, cp15
.vmpidr_el2
) },
4817 define_arm_cp_regs(cpu
, vpidr_regs
);
4818 define_arm_cp_regs(cpu
, el2_cp_reginfo
);
4819 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
4820 if (!arm_feature(env
, ARM_FEATURE_EL3
)) {
4821 ARMCPRegInfo rvbar
= {
4822 .name
= "RVBAR_EL2", .state
= ARM_CP_STATE_AA64
,
4823 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 1,
4824 .type
= ARM_CP_CONST
, .access
= PL2_R
, .resetvalue
= cpu
->rvbar
4826 define_one_arm_cp_reg(cpu
, &rvbar
);
4829 /* If EL2 is missing but higher ELs are enabled, we need to
4830 * register the no_el2 reginfos.
4832 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
4833 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
4834 * of MIDR_EL1 and MPIDR_EL1.
4836 ARMCPRegInfo vpidr_regs
[] = {
4837 { .name
= "VPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
4838 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 0,
4839 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns_aa64any
,
4840 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->midr
,
4841 .fieldoffset
= offsetof(CPUARMState
, cp15
.vpidr_el2
) },
4842 { .name
= "VMPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
4843 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 5,
4844 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns_aa64any
,
4845 .type
= ARM_CP_NO_RAW
,
4846 .writefn
= arm_cp_write_ignore
, .readfn
= mpidr_read
},
4849 define_arm_cp_regs(cpu
, vpidr_regs
);
4850 define_arm_cp_regs(cpu
, el3_no_el2_cp_reginfo
);
4853 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
4854 define_arm_cp_regs(cpu
, el3_cp_reginfo
);
4855 ARMCPRegInfo el3_regs
[] = {
4856 { .name
= "RVBAR_EL3", .state
= ARM_CP_STATE_AA64
,
4857 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 0, .opc2
= 1,
4858 .type
= ARM_CP_CONST
, .access
= PL3_R
, .resetvalue
= cpu
->rvbar
},
4859 { .name
= "SCTLR_EL3", .state
= ARM_CP_STATE_AA64
,
4860 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 0, .opc2
= 0,
4862 .raw_writefn
= raw_write
, .writefn
= sctlr_write
,
4863 .fieldoffset
= offsetof(CPUARMState
, cp15
.sctlr_el
[3]),
4864 .resetvalue
= cpu
->reset_sctlr
},
4868 define_arm_cp_regs(cpu
, el3_regs
);
4870 /* The behaviour of NSACR is sufficiently various that we don't
4871 * try to describe it in a single reginfo:
4872 * if EL3 is 64 bit, then trap to EL3 from S EL1,
4873 * reads as constant 0xc00 from NS EL1 and NS EL2
4874 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
4875 * if v7 without EL3, register doesn't exist
4876 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
4878 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
4879 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
4880 ARMCPRegInfo nsacr
= {
4881 .name
= "NSACR", .type
= ARM_CP_CONST
,
4882 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 2,
4883 .access
= PL1_RW
, .accessfn
= nsacr_access
,
4886 define_one_arm_cp_reg(cpu
, &nsacr
);
4888 ARMCPRegInfo nsacr
= {
4890 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 2,
4891 .access
= PL3_RW
| PL1_R
,
4893 .fieldoffset
= offsetof(CPUARMState
, cp15
.nsacr
)
4895 define_one_arm_cp_reg(cpu
, &nsacr
);
4898 if (arm_feature(env
, ARM_FEATURE_V8
)) {
4899 ARMCPRegInfo nsacr
= {
4900 .name
= "NSACR", .type
= ARM_CP_CONST
,
4901 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 2,
4905 define_one_arm_cp_reg(cpu
, &nsacr
);
4909 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
4910 if (arm_feature(env
, ARM_FEATURE_V6
)) {
4911 /* PMSAv6 not implemented */
4912 assert(arm_feature(env
, ARM_FEATURE_V7
));
4913 define_arm_cp_regs(cpu
, vmsa_pmsa_cp_reginfo
);
4914 define_arm_cp_regs(cpu
, pmsav7_cp_reginfo
);
4916 define_arm_cp_regs(cpu
, pmsav5_cp_reginfo
);
4919 define_arm_cp_regs(cpu
, vmsa_pmsa_cp_reginfo
);
4920 define_arm_cp_regs(cpu
, vmsa_cp_reginfo
);
4922 if (arm_feature(env
, ARM_FEATURE_THUMB2EE
)) {
4923 define_arm_cp_regs(cpu
, t2ee_cp_reginfo
);
4925 if (arm_feature(env
, ARM_FEATURE_GENERIC_TIMER
)) {
4926 define_arm_cp_regs(cpu
, generic_timer_cp_reginfo
);
4928 if (arm_feature(env
, ARM_FEATURE_VAPA
)) {
4929 define_arm_cp_regs(cpu
, vapa_cp_reginfo
);
4931 if (arm_feature(env
, ARM_FEATURE_CACHE_TEST_CLEAN
)) {
4932 define_arm_cp_regs(cpu
, cache_test_clean_cp_reginfo
);
4934 if (arm_feature(env
, ARM_FEATURE_CACHE_DIRTY_REG
)) {
4935 define_arm_cp_regs(cpu
, cache_dirty_status_cp_reginfo
);
4937 if (arm_feature(env
, ARM_FEATURE_CACHE_BLOCK_OPS
)) {
4938 define_arm_cp_regs(cpu
, cache_block_ops_cp_reginfo
);
4940 if (arm_feature(env
, ARM_FEATURE_OMAPCP
)) {
4941 define_arm_cp_regs(cpu
, omap_cp_reginfo
);
4943 if (arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
4944 define_arm_cp_regs(cpu
, strongarm_cp_reginfo
);
4946 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
4947 define_arm_cp_regs(cpu
, xscale_cp_reginfo
);
4949 if (arm_feature(env
, ARM_FEATURE_DUMMY_C15_REGS
)) {
4950 define_arm_cp_regs(cpu
, dummy_c15_cp_reginfo
);
4952 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
4953 define_arm_cp_regs(cpu
, lpae_cp_reginfo
);
4955 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
4956 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
4957 * be read-only (ie write causes UNDEF exception).
4960 ARMCPRegInfo id_pre_v8_midr_cp_reginfo
[] = {
4961 /* Pre-v8 MIDR space.
4962 * Note that the MIDR isn't a simple constant register because
4963 * of the TI925 behaviour where writes to another register can
4964 * cause the MIDR value to change.
4966 * Unimplemented registers in the c15 0 0 0 space default to
4967 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
4968 * and friends override accordingly.
4971 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= CP_ANY
,
4972 .access
= PL1_R
, .resetvalue
= cpu
->midr
,
4973 .writefn
= arm_cp_write_ignore
, .raw_writefn
= raw_write
,
4974 .readfn
= midr_read
,
4975 .fieldoffset
= offsetof(CPUARMState
, cp15
.c0_cpuid
),
4976 .type
= ARM_CP_OVERRIDE
},
4977 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
4979 .cp
= 15, .crn
= 0, .crm
= 3, .opc1
= 0, .opc2
= CP_ANY
,
4980 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4982 .cp
= 15, .crn
= 0, .crm
= 4, .opc1
= 0, .opc2
= CP_ANY
,
4983 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4985 .cp
= 15, .crn
= 0, .crm
= 5, .opc1
= 0, .opc2
= CP_ANY
,
4986 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4988 .cp
= 15, .crn
= 0, .crm
= 6, .opc1
= 0, .opc2
= CP_ANY
,
4989 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4991 .cp
= 15, .crn
= 0, .crm
= 7, .opc1
= 0, .opc2
= CP_ANY
,
4992 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4995 ARMCPRegInfo id_v8_midr_cp_reginfo
[] = {
4996 { .name
= "MIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
4997 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 0, .opc2
= 0,
4998 .access
= PL1_R
, .type
= ARM_CP_NO_RAW
, .resetvalue
= cpu
->midr
,
4999 .fieldoffset
= offsetof(CPUARMState
, cp15
.c0_cpuid
),
5000 .readfn
= midr_read
},
5001 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
5002 { .name
= "MIDR", .type
= ARM_CP_ALIAS
| ARM_CP_CONST
,
5003 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 4,
5004 .access
= PL1_R
, .resetvalue
= cpu
->midr
},
5005 { .name
= "MIDR", .type
= ARM_CP_ALIAS
| ARM_CP_CONST
,
5006 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 7,
5007 .access
= PL1_R
, .resetvalue
= cpu
->midr
},
5008 { .name
= "REVIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
5009 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 0, .opc2
= 6,
5010 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->revidr
},
5013 ARMCPRegInfo id_cp_reginfo
[] = {
5014 /* These are common to v8 and pre-v8 */
5016 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 1,
5017 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->ctr
},
5018 { .name
= "CTR_EL0", .state
= ARM_CP_STATE_AA64
,
5019 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 0, .crm
= 0,
5020 .access
= PL0_R
, .accessfn
= ctr_el0_access
,
5021 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->ctr
},
5022 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
5024 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 2,
5025 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
5028 /* TLBTR is specific to VMSA */
5029 ARMCPRegInfo id_tlbtr_reginfo
= {
5031 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 3,
5032 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0,
5034 /* MPUIR is specific to PMSA V6+ */
5035 ARMCPRegInfo id_mpuir_reginfo
= {
5037 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 4,
5038 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5039 .resetvalue
= cpu
->pmsav7_dregion
<< 8
5041 ARMCPRegInfo crn0_wi_reginfo
= {
5042 .name
= "CRN0_WI", .cp
= 15, .crn
= 0, .crm
= CP_ANY
,
5043 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_W
,
5044 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
5046 if (arm_feature(env
, ARM_FEATURE_OMAPCP
) ||
5047 arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
5049 /* Register the blanket "writes ignored" value first to cover the
5050 * whole space. Then update the specific ID registers to allow write
5051 * access, so that they ignore writes rather than causing them to
5054 define_one_arm_cp_reg(cpu
, &crn0_wi_reginfo
);
5055 for (r
= id_pre_v8_midr_cp_reginfo
;
5056 r
->type
!= ARM_CP_SENTINEL
; r
++) {
5059 for (r
= id_cp_reginfo
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
5062 id_tlbtr_reginfo
.access
= PL1_RW
;
5063 id_tlbtr_reginfo
.access
= PL1_RW
;
5065 if (arm_feature(env
, ARM_FEATURE_V8
)) {
5066 define_arm_cp_regs(cpu
, id_v8_midr_cp_reginfo
);
5068 define_arm_cp_regs(cpu
, id_pre_v8_midr_cp_reginfo
);
5070 define_arm_cp_regs(cpu
, id_cp_reginfo
);
5071 if (!arm_feature(env
, ARM_FEATURE_MPU
)) {
5072 define_one_arm_cp_reg(cpu
, &id_tlbtr_reginfo
);
5073 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
5074 define_one_arm_cp_reg(cpu
, &id_mpuir_reginfo
);
5078 if (arm_feature(env
, ARM_FEATURE_MPIDR
)) {
5079 define_arm_cp_regs(cpu
, mpidr_cp_reginfo
);
5082 if (arm_feature(env
, ARM_FEATURE_AUXCR
)) {
5083 ARMCPRegInfo auxcr_reginfo
[] = {
5084 { .name
= "ACTLR_EL1", .state
= ARM_CP_STATE_BOTH
,
5085 .opc0
= 3, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 1,
5086 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
5087 .resetvalue
= cpu
->reset_auxcr
},
5088 { .name
= "ACTLR_EL2", .state
= ARM_CP_STATE_BOTH
,
5089 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 0, .opc2
= 1,
5090 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
5092 { .name
= "ACTLR_EL3", .state
= ARM_CP_STATE_AA64
,
5093 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 0, .opc2
= 1,
5094 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
5098 define_arm_cp_regs(cpu
, auxcr_reginfo
);
5101 if (arm_feature(env
, ARM_FEATURE_CBAR
)) {
5102 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
5103 /* 32 bit view is [31:18] 0...0 [43:32]. */
5104 uint32_t cbar32
= (extract64(cpu
->reset_cbar
, 18, 14) << 18)
5105 | extract64(cpu
->reset_cbar
, 32, 12);
5106 ARMCPRegInfo cbar_reginfo
[] = {
5108 .type
= ARM_CP_CONST
,
5109 .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 4, .opc2
= 0,
5110 .access
= PL1_R
, .resetvalue
= cpu
->reset_cbar
},
5111 { .name
= "CBAR_EL1", .state
= ARM_CP_STATE_AA64
,
5112 .type
= ARM_CP_CONST
,
5113 .opc0
= 3, .opc1
= 1, .crn
= 15, .crm
= 3, .opc2
= 0,
5114 .access
= PL1_R
, .resetvalue
= cbar32
},
5117 /* We don't implement a r/w 64 bit CBAR currently */
5118 assert(arm_feature(env
, ARM_FEATURE_CBAR_RO
));
5119 define_arm_cp_regs(cpu
, cbar_reginfo
);
5121 ARMCPRegInfo cbar
= {
5123 .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 4, .opc2
= 0,
5124 .access
= PL1_R
|PL3_W
, .resetvalue
= cpu
->reset_cbar
,
5125 .fieldoffset
= offsetof(CPUARMState
,
5126 cp15
.c15_config_base_address
)
5128 if (arm_feature(env
, ARM_FEATURE_CBAR_RO
)) {
5129 cbar
.access
= PL1_R
;
5130 cbar
.fieldoffset
= 0;
5131 cbar
.type
= ARM_CP_CONST
;
5133 define_one_arm_cp_reg(cpu
, &cbar
);
5137 if (arm_feature(env
, ARM_FEATURE_VBAR
)) {
5138 ARMCPRegInfo vbar_cp_reginfo
[] = {
5139 { .name
= "VBAR", .state
= ARM_CP_STATE_BOTH
,
5140 .opc0
= 3, .crn
= 12, .crm
= 0, .opc1
= 0, .opc2
= 0,
5141 .access
= PL1_RW
, .writefn
= vbar_write
,
5142 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.vbar_s
),
5143 offsetof(CPUARMState
, cp15
.vbar_ns
) },
5147 define_arm_cp_regs(cpu
, vbar_cp_reginfo
);
5150 /* Generic registers whose values depend on the implementation */
5152 ARMCPRegInfo sctlr
= {
5153 .name
= "SCTLR", .state
= ARM_CP_STATE_BOTH
,
5154 .opc0
= 3, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 0,
5156 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.sctlr_s
),
5157 offsetof(CPUARMState
, cp15
.sctlr_ns
) },
5158 .writefn
= sctlr_write
, .resetvalue
= cpu
->reset_sctlr
,
5159 .raw_writefn
= raw_write
,
5161 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
5162 /* Normally we would always end the TB on an SCTLR write, but Linux
5163 * arch/arm/mach-pxa/sleep.S expects two instructions following
5164 * an MMU enable to execute from cache. Imitate this behaviour.
5166 sctlr
.type
|= ARM_CP_SUPPRESS_TB_END
;
5168 define_one_arm_cp_reg(cpu
, &sctlr
);
5172 ARMCPU
*cpu_arm_init(const char *cpu_model
)
5174 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU
, cpu_model
));
5177 void arm_cpu_register_gdb_regs_for_features(ARMCPU
*cpu
)
5179 CPUState
*cs
= CPU(cpu
);
5180 CPUARMState
*env
= &cpu
->env
;
5182 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
5183 gdb_register_coprocessor(cs
, aarch64_fpu_gdb_get_reg
,
5184 aarch64_fpu_gdb_set_reg
,
5185 34, "aarch64-fpu.xml", 0);
5186 } else if (arm_feature(env
, ARM_FEATURE_NEON
)) {
5187 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
5188 51, "arm-neon.xml", 0);
5189 } else if (arm_feature(env
, ARM_FEATURE_VFP3
)) {
5190 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
5191 35, "arm-vfp3.xml", 0);
5192 } else if (arm_feature(env
, ARM_FEATURE_VFP
)) {
5193 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
5194 19, "arm-vfp.xml", 0);
5198 /* Sort alphabetically by type name, except for "any". */
5199 static gint
arm_cpu_list_compare(gconstpointer a
, gconstpointer b
)
5201 ObjectClass
*class_a
= (ObjectClass
*)a
;
5202 ObjectClass
*class_b
= (ObjectClass
*)b
;
5203 const char *name_a
, *name_b
;
5205 name_a
= object_class_get_name(class_a
);
5206 name_b
= object_class_get_name(class_b
);
5207 if (strcmp(name_a
, "any-" TYPE_ARM_CPU
) == 0) {
5209 } else if (strcmp(name_b
, "any-" TYPE_ARM_CPU
) == 0) {
5212 return strcmp(name_a
, name_b
);
5216 static void arm_cpu_list_entry(gpointer data
, gpointer user_data
)
5218 ObjectClass
*oc
= data
;
5219 CPUListState
*s
= user_data
;
5220 const char *typename
;
5223 typename
= object_class_get_name(oc
);
5224 name
= g_strndup(typename
, strlen(typename
) - strlen("-" TYPE_ARM_CPU
));
5225 (*s
->cpu_fprintf
)(s
->file
, " %s\n",
5230 void arm_cpu_list(FILE *f
, fprintf_function cpu_fprintf
)
5234 .cpu_fprintf
= cpu_fprintf
,
5238 list
= object_class_get_list(TYPE_ARM_CPU
, false);
5239 list
= g_slist_sort(list
, arm_cpu_list_compare
);
5240 (*cpu_fprintf
)(f
, "Available CPUs:\n");
5241 g_slist_foreach(list
, arm_cpu_list_entry
, &s
);
5244 /* The 'host' CPU type is dynamically registered only if KVM is
5245 * enabled, so we have to special-case it here:
5247 (*cpu_fprintf
)(f
, " host (only available in KVM mode)\n");
5251 static void arm_cpu_add_definition(gpointer data
, gpointer user_data
)
5253 ObjectClass
*oc
= data
;
5254 CpuDefinitionInfoList
**cpu_list
= user_data
;
5255 CpuDefinitionInfoList
*entry
;
5256 CpuDefinitionInfo
*info
;
5257 const char *typename
;
5259 typename
= object_class_get_name(oc
);
5260 info
= g_malloc0(sizeof(*info
));
5261 info
->name
= g_strndup(typename
,
5262 strlen(typename
) - strlen("-" TYPE_ARM_CPU
));
5263 info
->q_typename
= g_strdup(typename
);
5265 entry
= g_malloc0(sizeof(*entry
));
5266 entry
->value
= info
;
5267 entry
->next
= *cpu_list
;
5271 CpuDefinitionInfoList
*arch_query_cpu_definitions(Error
**errp
)
5273 CpuDefinitionInfoList
*cpu_list
= NULL
;
5276 list
= object_class_get_list(TYPE_ARM_CPU
, false);
5277 g_slist_foreach(list
, arm_cpu_add_definition
, &cpu_list
);
5283 static void add_cpreg_to_hashtable(ARMCPU
*cpu
, const ARMCPRegInfo
*r
,
5284 void *opaque
, int state
, int secstate
,
5285 int crm
, int opc1
, int opc2
)
5287 /* Private utility function for define_one_arm_cp_reg_with_opaque():
5288 * add a single reginfo struct to the hash table.
5290 uint32_t *key
= g_new(uint32_t, 1);
5291 ARMCPRegInfo
*r2
= g_memdup(r
, sizeof(ARMCPRegInfo
));
5292 int is64
= (r
->type
& ARM_CP_64BIT
) ? 1 : 0;
5293 int ns
= (secstate
& ARM_CP_SECSTATE_NS
) ? 1 : 0;
5295 /* Reset the secure state to the specific incoming state. This is
5296 * necessary as the register may have been defined with both states.
5298 r2
->secure
= secstate
;
5300 if (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1]) {
5301 /* Register is banked (using both entries in array).
5302 * Overwriting fieldoffset as the array is only used to define
5303 * banked registers but later only fieldoffset is used.
5305 r2
->fieldoffset
= r
->bank_fieldoffsets
[ns
];
5308 if (state
== ARM_CP_STATE_AA32
) {
5309 if (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1]) {
5310 /* If the register is banked then we don't need to migrate or
5311 * reset the 32-bit instance in certain cases:
5313 * 1) If the register has both 32-bit and 64-bit instances then we
5314 * can count on the 64-bit instance taking care of the
5316 * 2) If ARMv8 is enabled then we can count on a 64-bit version
5317 * taking care of the secure bank. This requires that separate
5318 * 32 and 64-bit definitions are provided.
5320 if ((r
->state
== ARM_CP_STATE_BOTH
&& ns
) ||
5321 (arm_feature(&cpu
->env
, ARM_FEATURE_V8
) && !ns
)) {
5322 r2
->type
|= ARM_CP_ALIAS
;
5324 } else if ((secstate
!= r
->secure
) && !ns
) {
5325 /* The register is not banked so we only want to allow migration of
5326 * the non-secure instance.
5328 r2
->type
|= ARM_CP_ALIAS
;
5331 if (r
->state
== ARM_CP_STATE_BOTH
) {
5332 /* We assume it is a cp15 register if the .cp field is left unset.
5338 #ifdef HOST_WORDS_BIGENDIAN
5339 if (r2
->fieldoffset
) {
5340 r2
->fieldoffset
+= sizeof(uint32_t);
5345 if (state
== ARM_CP_STATE_AA64
) {
5346 /* To allow abbreviation of ARMCPRegInfo
5347 * definitions, we treat cp == 0 as equivalent to
5348 * the value for "standard guest-visible sysreg".
5349 * STATE_BOTH definitions are also always "standard
5350 * sysreg" in their AArch64 view (the .cp value may
5351 * be non-zero for the benefit of the AArch32 view).
5353 if (r
->cp
== 0 || r
->state
== ARM_CP_STATE_BOTH
) {
5354 r2
->cp
= CP_REG_ARM64_SYSREG_CP
;
5356 *key
= ENCODE_AA64_CP_REG(r2
->cp
, r2
->crn
, crm
,
5357 r2
->opc0
, opc1
, opc2
);
5359 *key
= ENCODE_CP_REG(r2
->cp
, is64
, ns
, r2
->crn
, crm
, opc1
, opc2
);
5362 r2
->opaque
= opaque
;
5364 /* reginfo passed to helpers is correct for the actual access,
5365 * and is never ARM_CP_STATE_BOTH:
5368 /* Make sure reginfo passed to helpers for wildcarded regs
5369 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
5374 /* By convention, for wildcarded registers only the first
5375 * entry is used for migration; the others are marked as
5376 * ALIAS so we don't try to transfer the register
5377 * multiple times. Special registers (ie NOP/WFI) are
5378 * never migratable and not even raw-accessible.
5380 if ((r
->type
& ARM_CP_SPECIAL
)) {
5381 r2
->type
|= ARM_CP_NO_RAW
;
5383 if (((r
->crm
== CP_ANY
) && crm
!= 0) ||
5384 ((r
->opc1
== CP_ANY
) && opc1
!= 0) ||
5385 ((r
->opc2
== CP_ANY
) && opc2
!= 0)) {
5386 r2
->type
|= ARM_CP_ALIAS
;
5389 /* Check that raw accesses are either forbidden or handled. Note that
5390 * we can't assert this earlier because the setup of fieldoffset for
5391 * banked registers has to be done first.
5393 if (!(r2
->type
& ARM_CP_NO_RAW
)) {
5394 assert(!raw_accessors_invalid(r2
));
5397 /* Overriding of an existing definition must be explicitly
5400 if (!(r
->type
& ARM_CP_OVERRIDE
)) {
5401 ARMCPRegInfo
*oldreg
;
5402 oldreg
= g_hash_table_lookup(cpu
->cp_regs
, key
);
5403 if (oldreg
&& !(oldreg
->type
& ARM_CP_OVERRIDE
)) {
5404 fprintf(stderr
, "Register redefined: cp=%d %d bit "
5405 "crn=%d crm=%d opc1=%d opc2=%d, "
5406 "was %s, now %s\n", r2
->cp
, 32 + 32 * is64
,
5407 r2
->crn
, r2
->crm
, r2
->opc1
, r2
->opc2
,
5408 oldreg
->name
, r2
->name
);
5409 g_assert_not_reached();
5412 g_hash_table_insert(cpu
->cp_regs
, key
, r2
);
5416 void define_one_arm_cp_reg_with_opaque(ARMCPU
*cpu
,
5417 const ARMCPRegInfo
*r
, void *opaque
)
5419 /* Define implementations of coprocessor registers.
5420 * We store these in a hashtable because typically
5421 * there are less than 150 registers in a space which
5422 * is 16*16*16*8*8 = 262144 in size.
5423 * Wildcarding is supported for the crm, opc1 and opc2 fields.
5424 * If a register is defined twice then the second definition is
5425 * used, so this can be used to define some generic registers and
5426 * then override them with implementation specific variations.
5427 * At least one of the original and the second definition should
5428 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
5429 * against accidental use.
5431 * The state field defines whether the register is to be
5432 * visible in the AArch32 or AArch64 execution state. If the
5433 * state is set to ARM_CP_STATE_BOTH then we synthesise a
5434 * reginfo structure for the AArch32 view, which sees the lower
5435 * 32 bits of the 64 bit register.
5437 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
5438 * be wildcarded. AArch64 registers are always considered to be 64
5439 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
5440 * the register, if any.
5442 int crm
, opc1
, opc2
, state
;
5443 int crmmin
= (r
->crm
== CP_ANY
) ? 0 : r
->crm
;
5444 int crmmax
= (r
->crm
== CP_ANY
) ? 15 : r
->crm
;
5445 int opc1min
= (r
->opc1
== CP_ANY
) ? 0 : r
->opc1
;
5446 int opc1max
= (r
->opc1
== CP_ANY
) ? 7 : r
->opc1
;
5447 int opc2min
= (r
->opc2
== CP_ANY
) ? 0 : r
->opc2
;
5448 int opc2max
= (r
->opc2
== CP_ANY
) ? 7 : r
->opc2
;
5449 /* 64 bit registers have only CRm and Opc1 fields */
5450 assert(!((r
->type
& ARM_CP_64BIT
) && (r
->opc2
|| r
->crn
)));
5451 /* op0 only exists in the AArch64 encodings */
5452 assert((r
->state
!= ARM_CP_STATE_AA32
) || (r
->opc0
== 0));
5453 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
5454 assert((r
->state
!= ARM_CP_STATE_AA64
) || !(r
->type
& ARM_CP_64BIT
));
5455 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
5456 * encodes a minimum access level for the register. We roll this
5457 * runtime check into our general permission check code, so check
5458 * here that the reginfo's specified permissions are strict enough
5459 * to encompass the generic architectural permission check.
5461 if (r
->state
!= ARM_CP_STATE_AA32
) {
5464 case 0: case 1: case 2:
5477 /* unallocated encoding, so not possible */
5485 /* min_EL EL1, secure mode only (we don't check the latter) */
5489 /* broken reginfo with out-of-range opc1 */
5493 /* assert our permissions are not too lax (stricter is fine) */
5494 assert((r
->access
& ~mask
) == 0);
5497 /* Check that the register definition has enough info to handle
5498 * reads and writes if they are permitted.
5500 if (!(r
->type
& (ARM_CP_SPECIAL
|ARM_CP_CONST
))) {
5501 if (r
->access
& PL3_R
) {
5502 assert((r
->fieldoffset
||
5503 (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1])) ||
5506 if (r
->access
& PL3_W
) {
5507 assert((r
->fieldoffset
||
5508 (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1])) ||
5512 /* Bad type field probably means missing sentinel at end of reg list */
5513 assert(cptype_valid(r
->type
));
5514 for (crm
= crmmin
; crm
<= crmmax
; crm
++) {
5515 for (opc1
= opc1min
; opc1
<= opc1max
; opc1
++) {
5516 for (opc2
= opc2min
; opc2
<= opc2max
; opc2
++) {
5517 for (state
= ARM_CP_STATE_AA32
;
5518 state
<= ARM_CP_STATE_AA64
; state
++) {
5519 if (r
->state
!= state
&& r
->state
!= ARM_CP_STATE_BOTH
) {
5522 if (state
== ARM_CP_STATE_AA32
) {
5523 /* Under AArch32 CP registers can be common
5524 * (same for secure and non-secure world) or banked.
5526 switch (r
->secure
) {
5527 case ARM_CP_SECSTATE_S
:
5528 case ARM_CP_SECSTATE_NS
:
5529 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
5530 r
->secure
, crm
, opc1
, opc2
);
5533 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
5536 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
5542 /* AArch64 registers get mapped to non-secure instance
5544 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
5554 void define_arm_cp_regs_with_opaque(ARMCPU
*cpu
,
5555 const ARMCPRegInfo
*regs
, void *opaque
)
5557 /* Define a whole list of registers */
5558 const ARMCPRegInfo
*r
;
5559 for (r
= regs
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
5560 define_one_arm_cp_reg_with_opaque(cpu
, r
, opaque
);
5564 const ARMCPRegInfo
*get_arm_cp_reginfo(GHashTable
*cpregs
, uint32_t encoded_cp
)
5566 return g_hash_table_lookup(cpregs
, &encoded_cp
);
5569 void arm_cp_write_ignore(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
5572 /* Helper coprocessor write function for write-ignore registers */
5575 uint64_t arm_cp_read_zero(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
5577 /* Helper coprocessor write function for read-as-zero registers */
5581 void arm_cp_reset_ignore(CPUARMState
*env
, const ARMCPRegInfo
*opaque
)
5583 /* Helper coprocessor reset function for do-nothing-on-reset registers */
5586 static int bad_mode_switch(CPUARMState
*env
, int mode
, CPSRWriteType write_type
)
5588 /* Return true if it is not valid for us to switch to
5589 * this CPU mode (ie all the UNPREDICTABLE cases in
5590 * the ARM ARM CPSRWriteByInstr pseudocode).
5593 /* Changes to or from Hyp via MSR and CPS are illegal. */
5594 if (write_type
== CPSRWriteByInstr
&&
5595 ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_HYP
||
5596 mode
== ARM_CPU_MODE_HYP
)) {
5601 case ARM_CPU_MODE_USR
:
5603 case ARM_CPU_MODE_SYS
:
5604 case ARM_CPU_MODE_SVC
:
5605 case ARM_CPU_MODE_ABT
:
5606 case ARM_CPU_MODE_UND
:
5607 case ARM_CPU_MODE_IRQ
:
5608 case ARM_CPU_MODE_FIQ
:
5609 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
5610 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
5612 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
5613 * and CPS are treated as illegal mode changes.
5615 if (write_type
== CPSRWriteByInstr
&&
5616 (env
->cp15
.hcr_el2
& HCR_TGE
) &&
5617 (env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_MON
&&
5618 !arm_is_secure_below_el3(env
)) {
5622 case ARM_CPU_MODE_HYP
:
5623 return !arm_feature(env
, ARM_FEATURE_EL2
)
5624 || arm_current_el(env
) < 2 || arm_is_secure(env
);
5625 case ARM_CPU_MODE_MON
:
5626 return arm_current_el(env
) < 3;
5632 uint32_t cpsr_read(CPUARMState
*env
)
5635 ZF
= (env
->ZF
== 0);
5636 return env
->uncached_cpsr
| (env
->NF
& 0x80000000) | (ZF
<< 30) |
5637 (env
->CF
<< 29) | ((env
->VF
& 0x80000000) >> 3) | (env
->QF
<< 27)
5638 | (env
->thumb
<< 5) | ((env
->condexec_bits
& 3) << 25)
5639 | ((env
->condexec_bits
& 0xfc) << 8)
5640 | (env
->GE
<< 16) | (env
->daif
& CPSR_AIF
);
5643 void cpsr_write(CPUARMState
*env
, uint32_t val
, uint32_t mask
,
5644 CPSRWriteType write_type
)
5646 uint32_t changed_daif
;
5648 if (mask
& CPSR_NZCV
) {
5649 env
->ZF
= (~val
) & CPSR_Z
;
5651 env
->CF
= (val
>> 29) & 1;
5652 env
->VF
= (val
<< 3) & 0x80000000;
5655 env
->QF
= ((val
& CPSR_Q
) != 0);
5657 env
->thumb
= ((val
& CPSR_T
) != 0);
5658 if (mask
& CPSR_IT_0_1
) {
5659 env
->condexec_bits
&= ~3;
5660 env
->condexec_bits
|= (val
>> 25) & 3;
5662 if (mask
& CPSR_IT_2_7
) {
5663 env
->condexec_bits
&= 3;
5664 env
->condexec_bits
|= (val
>> 8) & 0xfc;
5666 if (mask
& CPSR_GE
) {
5667 env
->GE
= (val
>> 16) & 0xf;
5670 /* In a V7 implementation that includes the security extensions but does
5671 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
5672 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
5673 * bits respectively.
5675 * In a V8 implementation, it is permitted for privileged software to
5676 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
5678 if (write_type
!= CPSRWriteRaw
&& !arm_feature(env
, ARM_FEATURE_V8
) &&
5679 arm_feature(env
, ARM_FEATURE_EL3
) &&
5680 !arm_feature(env
, ARM_FEATURE_EL2
) &&
5681 !arm_is_secure(env
)) {
5683 changed_daif
= (env
->daif
^ val
) & mask
;
5685 if (changed_daif
& CPSR_A
) {
5686 /* Check to see if we are allowed to change the masking of async
5687 * abort exceptions from a non-secure state.
5689 if (!(env
->cp15
.scr_el3
& SCR_AW
)) {
5690 qemu_log_mask(LOG_GUEST_ERROR
,
5691 "Ignoring attempt to switch CPSR_A flag from "
5692 "non-secure world with SCR.AW bit clear\n");
5697 if (changed_daif
& CPSR_F
) {
5698 /* Check to see if we are allowed to change the masking of FIQ
5699 * exceptions from a non-secure state.
5701 if (!(env
->cp15
.scr_el3
& SCR_FW
)) {
5702 qemu_log_mask(LOG_GUEST_ERROR
,
5703 "Ignoring attempt to switch CPSR_F flag from "
5704 "non-secure world with SCR.FW bit clear\n");
5708 /* Check whether non-maskable FIQ (NMFI) support is enabled.
5709 * If this bit is set software is not allowed to mask
5710 * FIQs, but is allowed to set CPSR_F to 0.
5712 if ((A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_NMFI
) &&
5714 qemu_log_mask(LOG_GUEST_ERROR
,
5715 "Ignoring attempt to enable CPSR_F flag "
5716 "(non-maskable FIQ [NMFI] support enabled)\n");
5722 env
->daif
&= ~(CPSR_AIF
& mask
);
5723 env
->daif
|= val
& CPSR_AIF
& mask
;
5725 if (write_type
!= CPSRWriteRaw
&&
5726 ((env
->uncached_cpsr
^ val
) & mask
& CPSR_M
)) {
5727 if ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_USR
) {
5728 /* Note that we can only get here in USR mode if this is a
5729 * gdb stub write; for this case we follow the architectural
5730 * behaviour for guest writes in USR mode of ignoring an attempt
5731 * to switch mode. (Those are caught by translate.c for writes
5732 * triggered by guest instructions.)
5735 } else if (bad_mode_switch(env
, val
& CPSR_M
, write_type
)) {
5736 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
5737 * v7, and has defined behaviour in v8:
5738 * + leave CPSR.M untouched
5739 * + allow changes to the other CPSR fields
5741 * For user changes via the GDB stub, we don't set PSTATE.IL,
5742 * as this would be unnecessarily harsh for a user error.
5745 if (write_type
!= CPSRWriteByGDBStub
&&
5746 arm_feature(env
, ARM_FEATURE_V8
)) {
5751 switch_mode(env
, val
& CPSR_M
);
5754 mask
&= ~CACHED_CPSR_BITS
;
5755 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~mask
) | (val
& mask
);
5758 /* Sign/zero extend */
5759 uint32_t HELPER(sxtb16
)(uint32_t x
)
5762 res
= (uint16_t)(int8_t)x
;
5763 res
|= (uint32_t)(int8_t)(x
>> 16) << 16;
5767 uint32_t HELPER(uxtb16
)(uint32_t x
)
5770 res
= (uint16_t)(uint8_t)x
;
5771 res
|= (uint32_t)(uint8_t)(x
>> 16) << 16;
5775 int32_t HELPER(sdiv
)(int32_t num
, int32_t den
)
5779 if (num
== INT_MIN
&& den
== -1)
5784 uint32_t HELPER(udiv
)(uint32_t num
, uint32_t den
)
5791 uint32_t HELPER(rbit
)(uint32_t x
)
5796 #if defined(CONFIG_USER_ONLY)
5798 /* These should probably raise undefined insn exceptions. */
5799 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t reg
, uint32_t val
)
5801 ARMCPU
*cpu
= arm_env_get_cpu(env
);
5803 cpu_abort(CPU(cpu
), "v7m_msr %d\n", reg
);
5806 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
5808 ARMCPU
*cpu
= arm_env_get_cpu(env
);
5810 cpu_abort(CPU(cpu
), "v7m_mrs %d\n", reg
);
5814 void switch_mode(CPUARMState
*env
, int mode
)
5816 ARMCPU
*cpu
= arm_env_get_cpu(env
);
5818 if (mode
!= ARM_CPU_MODE_USR
) {
5819 cpu_abort(CPU(cpu
), "Tried to switch out of user mode\n");
5823 uint32_t arm_phys_excp_target_el(CPUState
*cs
, uint32_t excp_idx
,
5824 uint32_t cur_el
, bool secure
)
5829 void aarch64_sync_64_to_32(CPUARMState
*env
)
5831 g_assert_not_reached();
5836 void switch_mode(CPUARMState
*env
, int mode
)
5841 old_mode
= env
->uncached_cpsr
& CPSR_M
;
5842 if (mode
== old_mode
)
5845 if (old_mode
== ARM_CPU_MODE_FIQ
) {
5846 memcpy (env
->fiq_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
5847 memcpy (env
->regs
+ 8, env
->usr_regs
, 5 * sizeof(uint32_t));
5848 } else if (mode
== ARM_CPU_MODE_FIQ
) {
5849 memcpy (env
->usr_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
5850 memcpy (env
->regs
+ 8, env
->fiq_regs
, 5 * sizeof(uint32_t));
5853 i
= bank_number(old_mode
);
5854 env
->banked_r13
[i
] = env
->regs
[13];
5855 env
->banked_r14
[i
] = env
->regs
[14];
5856 env
->banked_spsr
[i
] = env
->spsr
;
5858 i
= bank_number(mode
);
5859 env
->regs
[13] = env
->banked_r13
[i
];
5860 env
->regs
[14] = env
->banked_r14
[i
];
5861 env
->spsr
= env
->banked_spsr
[i
];
5864 /* Physical Interrupt Target EL Lookup Table
5866 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
5868 * The below multi-dimensional table is used for looking up the target
5869 * exception level given numerous condition criteria. Specifically, the
5870 * target EL is based on SCR and HCR routing controls as well as the
5871 * currently executing EL and secure state.
5874 * target_el_table[2][2][2][2][2][4]
5875 * | | | | | +--- Current EL
5876 * | | | | +------ Non-secure(0)/Secure(1)
5877 * | | | +--------- HCR mask override
5878 * | | +------------ SCR exec state control
5879 * | +--------------- SCR mask override
5880 * +------------------ 32-bit(0)/64-bit(1) EL3
5882 * The table values are as such:
5886 * The ARM ARM target EL table includes entries indicating that an "exception
5887 * is not taken". The two cases where this is applicable are:
5888 * 1) An exception is taken from EL3 but the SCR does not have the exception
5890 * 2) An exception is taken from EL2 but the HCR does not have the exception
5892 * In these two cases, the below table contain a target of EL1. This value is
5893 * returned as it is expected that the consumer of the table data will check
5894 * for "target EL >= current EL" to ensure the exception is not taken.
5898 * BIT IRQ IMO Non-secure Secure
5899 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
5901 static const int8_t target_el_table
[2][2][2][2][2][4] = {
5902 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5903 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
5904 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5905 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
5906 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5907 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
5908 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5909 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
5910 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
5911 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
5912 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
5913 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
5914 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5915 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
5916 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5917 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
5921 * Determine the target EL for physical exceptions
5923 uint32_t arm_phys_excp_target_el(CPUState
*cs
, uint32_t excp_idx
,
5924 uint32_t cur_el
, bool secure
)
5926 CPUARMState
*env
= cs
->env_ptr
;
5931 /* Is the highest EL AArch64? */
5932 int is64
= arm_feature(env
, ARM_FEATURE_AARCH64
);
5934 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
5935 rw
= ((env
->cp15
.scr_el3
& SCR_RW
) == SCR_RW
);
5937 /* Either EL2 is the highest EL (and so the EL2 register width
5938 * is given by is64); or there is no EL2 or EL3, in which case
5939 * the value of 'rw' does not affect the table lookup anyway.
5946 scr
= ((env
->cp15
.scr_el3
& SCR_IRQ
) == SCR_IRQ
);
5947 hcr
= ((env
->cp15
.hcr_el2
& HCR_IMO
) == HCR_IMO
);
5950 scr
= ((env
->cp15
.scr_el3
& SCR_FIQ
) == SCR_FIQ
);
5951 hcr
= ((env
->cp15
.hcr_el2
& HCR_FMO
) == HCR_FMO
);
5954 scr
= ((env
->cp15
.scr_el3
& SCR_EA
) == SCR_EA
);
5955 hcr
= ((env
->cp15
.hcr_el2
& HCR_AMO
) == HCR_AMO
);
5959 /* If HCR.TGE is set then HCR is treated as being 1 */
5960 hcr
|= ((env
->cp15
.hcr_el2
& HCR_TGE
) == HCR_TGE
);
5962 /* Perform a table-lookup for the target EL given the current state */
5963 target_el
= target_el_table
[is64
][scr
][rw
][hcr
][secure
][cur_el
];
5965 assert(target_el
> 0);
5970 static void v7m_push(CPUARMState
*env
, uint32_t val
)
5972 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
5975 stl_phys(cs
->as
, env
->regs
[13], val
);
5978 static uint32_t v7m_pop(CPUARMState
*env
)
5980 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
5983 val
= ldl_phys(cs
->as
, env
->regs
[13]);
5988 /* Switch to V7M main or process stack pointer. */
5989 static void switch_v7m_sp(CPUARMState
*env
, bool new_spsel
)
5992 bool old_spsel
= env
->v7m
.control
& R_V7M_CONTROL_SPSEL_MASK
;
5994 if (old_spsel
!= new_spsel
) {
5995 tmp
= env
->v7m
.other_sp
;
5996 env
->v7m
.other_sp
= env
->regs
[13];
5997 env
->regs
[13] = tmp
;
5999 env
->v7m
.control
= deposit32(env
->v7m
.control
,
6000 R_V7M_CONTROL_SPSEL_SHIFT
,
6001 R_V7M_CONTROL_SPSEL_LENGTH
, new_spsel
);
6005 static uint32_t arm_v7m_load_vector(ARMCPU
*cpu
)
6007 CPUState
*cs
= CPU(cpu
);
6008 CPUARMState
*env
= &cpu
->env
;
6010 hwaddr vec
= env
->v7m
.vecbase
+ env
->v7m
.exception
* 4;
6013 addr
= address_space_ldl(cs
->as
, vec
,
6014 MEMTXATTRS_UNSPECIFIED
, &result
);
6015 if (result
!= MEMTX_OK
) {
6016 /* Architecturally this should cause a HardFault setting HSFR.VECTTBL,
6017 * which would then be immediately followed by our failing to load
6018 * the entry vector for that HardFault, which is a Lockup case.
6019 * Since we don't model Lockup, we just report this guest error
6022 cpu_abort(cs
, "Failed to read from exception vector table "
6023 "entry %08x\n", (unsigned)vec
);
6028 static void v7m_exception_taken(ARMCPU
*cpu
, uint32_t lr
)
6030 /* Do the "take the exception" parts of exception entry,
6031 * but not the pushing of state to the stack. This is
6032 * similar to the pseudocode ExceptionTaken() function.
6034 CPUARMState
*env
= &cpu
->env
;
6037 armv7m_nvic_acknowledge_irq(env
->nvic
);
6038 switch_v7m_sp(env
, 0);
6040 env
->condexec_bits
= 0;
6042 addr
= arm_v7m_load_vector(cpu
);
6043 env
->regs
[15] = addr
& 0xfffffffe;
6044 env
->thumb
= addr
& 1;
6047 static void v7m_push_stack(ARMCPU
*cpu
)
6049 /* Do the "set up stack frame" part of exception entry,
6050 * similar to pseudocode PushStack().
6052 CPUARMState
*env
= &cpu
->env
;
6053 uint32_t xpsr
= xpsr_read(env
);
6055 /* Align stack pointer if the guest wants that */
6056 if ((env
->regs
[13] & 4) && (env
->v7m
.ccr
& R_V7M_CCR_STKALIGN_MASK
)) {
6060 /* Switch to the handler mode. */
6061 v7m_push(env
, xpsr
);
6062 v7m_push(env
, env
->regs
[15]);
6063 v7m_push(env
, env
->regs
[14]);
6064 v7m_push(env
, env
->regs
[12]);
6065 v7m_push(env
, env
->regs
[3]);
6066 v7m_push(env
, env
->regs
[2]);
6067 v7m_push(env
, env
->regs
[1]);
6068 v7m_push(env
, env
->regs
[0]);
6071 static void do_v7m_exception_exit(ARMCPU
*cpu
)
6073 CPUARMState
*env
= &cpu
->env
;
6076 bool ufault
= false;
6077 bool return_to_sp_process
= false;
6078 bool return_to_handler
= false;
6079 bool rettobase
= false;
6081 /* We can only get here from an EXCP_EXCEPTION_EXIT, and
6082 * arm_v7m_do_unassigned_access() enforces the architectural rule
6083 * that jumps to magic addresses don't have magic behaviour unless
6084 * we're in Handler mode (compare pseudocode BXWritePC()).
6086 assert(env
->v7m
.exception
!= 0);
6088 /* In the spec pseudocode ExceptionReturn() is called directly
6089 * from BXWritePC() and gets the full target PC value including
6090 * bit zero. In QEMU's implementation we treat it as a normal
6091 * jump-to-register (which is then caught later on), and so split
6092 * the target value up between env->regs[15] and env->thumb in
6093 * gen_bx(). Reconstitute it.
6095 type
= env
->regs
[15];
6100 qemu_log_mask(CPU_LOG_INT
, "Exception return: magic PC %" PRIx32
6101 " previous exception %d\n",
6102 type
, env
->v7m
.exception
);
6104 if (extract32(type
, 5, 23) != extract32(-1, 5, 23)) {
6105 qemu_log_mask(LOG_GUEST_ERROR
, "M profile: zero high bits in exception "
6106 "exit PC value 0x%" PRIx32
" are UNPREDICTABLE\n", type
);
6109 if (env
->v7m
.exception
!= ARMV7M_EXCP_NMI
) {
6110 /* Auto-clear FAULTMASK on return from other than NMI */
6111 env
->daif
&= ~PSTATE_F
;
6114 switch (armv7m_nvic_complete_irq(env
->nvic
, env
->v7m
.exception
)) {
6116 /* attempt to exit an exception that isn't active */
6120 /* still an irq active now */
6123 /* we returned to base exception level, no nesting.
6124 * (In the pseudocode this is written using "NestedActivation != 1"
6125 * where we have 'rettobase == false'.)
6130 g_assert_not_reached();
6133 switch (type
& 0xf) {
6134 case 1: /* Return to Handler */
6135 return_to_handler
= true;
6137 case 13: /* Return to Thread using Process stack */
6138 return_to_sp_process
= true;
6140 case 9: /* Return to Thread using Main stack */
6142 !(env
->v7m
.ccr
& R_V7M_CCR_NONBASETHRDENA_MASK
)) {
6151 /* Bad exception return: instead of popping the exception
6152 * stack, directly take a usage fault on the current stack.
6154 env
->v7m
.cfsr
|= R_V7M_CFSR_INVPC_MASK
;
6155 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
);
6156 v7m_exception_taken(cpu
, type
| 0xf0000000);
6157 qemu_log_mask(CPU_LOG_INT
, "...taking UsageFault on existing "
6158 "stackframe: failed exception return integrity check\n");
6162 /* Switch to the target stack. */
6163 switch_v7m_sp(env
, return_to_sp_process
);
6164 /* Pop registers. */
6165 env
->regs
[0] = v7m_pop(env
);
6166 env
->regs
[1] = v7m_pop(env
);
6167 env
->regs
[2] = v7m_pop(env
);
6168 env
->regs
[3] = v7m_pop(env
);
6169 env
->regs
[12] = v7m_pop(env
);
6170 env
->regs
[14] = v7m_pop(env
);
6171 env
->regs
[15] = v7m_pop(env
);
6172 if (env
->regs
[15] & 1) {
6173 qemu_log_mask(LOG_GUEST_ERROR
,
6174 "M profile return from interrupt with misaligned "
6175 "PC is UNPREDICTABLE\n");
6176 /* Actual hardware seems to ignore the lsbit, and there are several
6177 * RTOSes out there which incorrectly assume the r15 in the stack
6178 * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
6180 env
->regs
[15] &= ~1U;
6182 xpsr
= v7m_pop(env
);
6183 xpsr_write(env
, xpsr
, 0xfffffdff);
6184 /* Undo stack alignment. */
6188 /* The restored xPSR exception field will be zero if we're
6189 * resuming in Thread mode. If that doesn't match what the
6190 * exception return type specified then this is a UsageFault.
6192 if (return_to_handler
== (env
->v7m
.exception
== 0)) {
6193 /* Take an INVPC UsageFault by pushing the stack again. */
6194 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
);
6195 env
->v7m
.cfsr
|= R_V7M_CFSR_INVPC_MASK
;
6196 v7m_push_stack(cpu
);
6197 v7m_exception_taken(cpu
, type
| 0xf0000000);
6198 qemu_log_mask(CPU_LOG_INT
, "...taking UsageFault on new stackframe: "
6199 "failed exception return integrity check\n");
6203 /* Otherwise, we have a successful exception exit. */
6204 qemu_log_mask(CPU_LOG_INT
, "...successful exception return\n");
6207 static void arm_log_exception(int idx
)
6209 if (qemu_loglevel_mask(CPU_LOG_INT
)) {
6210 const char *exc
= NULL
;
6212 if (idx
>= 0 && idx
< ARRAY_SIZE(excnames
)) {
6213 exc
= excnames
[idx
];
6218 qemu_log_mask(CPU_LOG_INT
, "Taking exception %d [%s]\n", idx
, exc
);
6222 void arm_v7m_cpu_do_interrupt(CPUState
*cs
)
6224 ARMCPU
*cpu
= ARM_CPU(cs
);
6225 CPUARMState
*env
= &cpu
->env
;
6228 arm_log_exception(cs
->exception_index
);
6231 if (env
->v7m
.control
& R_V7M_CONTROL_SPSEL_MASK
) {
6234 if (env
->v7m
.exception
== 0)
6237 /* For exceptions we just mark as pending on the NVIC, and let that
6239 switch (cs
->exception_index
) {
6241 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
);
6242 env
->v7m
.cfsr
|= R_V7M_CFSR_UNDEFINSTR_MASK
;
6245 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
);
6246 env
->v7m
.cfsr
|= R_V7M_CFSR_NOCP_MASK
;
6249 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
);
6250 env
->v7m
.cfsr
|= R_V7M_CFSR_INVSTATE_MASK
;
6253 /* The PC already points to the next instruction. */
6254 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SVC
);
6256 case EXCP_PREFETCH_ABORT
:
6257 case EXCP_DATA_ABORT
:
6258 /* TODO: if we implemented the MPU registers, this is where we
6259 * should set the MMFAR, etc from exception.fsr and exception.vaddress.
6261 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_MEM
);
6264 if (semihosting_enabled()) {
6266 nr
= arm_lduw_code(env
, env
->regs
[15], arm_sctlr_b(env
)) & 0xff;
6269 qemu_log_mask(CPU_LOG_INT
,
6270 "...handling as semihosting call 0x%x\n",
6272 env
->regs
[0] = do_arm_semihosting(env
);
6276 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_DEBUG
);
6280 case EXCP_EXCEPTION_EXIT
:
6281 do_v7m_exception_exit(cpu
);
6284 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
6285 return; /* Never happens. Keep compiler happy. */
6288 v7m_push_stack(cpu
);
6289 v7m_exception_taken(cpu
, lr
);
6290 qemu_log_mask(CPU_LOG_INT
, "... as %d\n", env
->v7m
.exception
);
6293 /* Function used to synchronize QEMU's AArch64 register set with AArch32
6294 * register set. This is necessary when switching between AArch32 and AArch64
6297 void aarch64_sync_32_to_64(CPUARMState
*env
)
6300 uint32_t mode
= env
->uncached_cpsr
& CPSR_M
;
6302 /* We can blanket copy R[0:7] to X[0:7] */
6303 for (i
= 0; i
< 8; i
++) {
6304 env
->xregs
[i
] = env
->regs
[i
];
6307 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
6308 * Otherwise, they come from the banked user regs.
6310 if (mode
== ARM_CPU_MODE_FIQ
) {
6311 for (i
= 8; i
< 13; i
++) {
6312 env
->xregs
[i
] = env
->usr_regs
[i
- 8];
6315 for (i
= 8; i
< 13; i
++) {
6316 env
->xregs
[i
] = env
->regs
[i
];
6320 /* Registers x13-x23 are the various mode SP and FP registers. Registers
6321 * r13 and r14 are only copied if we are in that mode, otherwise we copy
6322 * from the mode banked register.
6324 if (mode
== ARM_CPU_MODE_USR
|| mode
== ARM_CPU_MODE_SYS
) {
6325 env
->xregs
[13] = env
->regs
[13];
6326 env
->xregs
[14] = env
->regs
[14];
6328 env
->xregs
[13] = env
->banked_r13
[bank_number(ARM_CPU_MODE_USR
)];
6329 /* HYP is an exception in that it is copied from r14 */
6330 if (mode
== ARM_CPU_MODE_HYP
) {
6331 env
->xregs
[14] = env
->regs
[14];
6333 env
->xregs
[14] = env
->banked_r14
[bank_number(ARM_CPU_MODE_USR
)];
6337 if (mode
== ARM_CPU_MODE_HYP
) {
6338 env
->xregs
[15] = env
->regs
[13];
6340 env
->xregs
[15] = env
->banked_r13
[bank_number(ARM_CPU_MODE_HYP
)];
6343 if (mode
== ARM_CPU_MODE_IRQ
) {
6344 env
->xregs
[16] = env
->regs
[14];
6345 env
->xregs
[17] = env
->regs
[13];
6347 env
->xregs
[16] = env
->banked_r14
[bank_number(ARM_CPU_MODE_IRQ
)];
6348 env
->xregs
[17] = env
->banked_r13
[bank_number(ARM_CPU_MODE_IRQ
)];
6351 if (mode
== ARM_CPU_MODE_SVC
) {
6352 env
->xregs
[18] = env
->regs
[14];
6353 env
->xregs
[19] = env
->regs
[13];
6355 env
->xregs
[18] = env
->banked_r14
[bank_number(ARM_CPU_MODE_SVC
)];
6356 env
->xregs
[19] = env
->banked_r13
[bank_number(ARM_CPU_MODE_SVC
)];
6359 if (mode
== ARM_CPU_MODE_ABT
) {
6360 env
->xregs
[20] = env
->regs
[14];
6361 env
->xregs
[21] = env
->regs
[13];
6363 env
->xregs
[20] = env
->banked_r14
[bank_number(ARM_CPU_MODE_ABT
)];
6364 env
->xregs
[21] = env
->banked_r13
[bank_number(ARM_CPU_MODE_ABT
)];
6367 if (mode
== ARM_CPU_MODE_UND
) {
6368 env
->xregs
[22] = env
->regs
[14];
6369 env
->xregs
[23] = env
->regs
[13];
6371 env
->xregs
[22] = env
->banked_r14
[bank_number(ARM_CPU_MODE_UND
)];
6372 env
->xregs
[23] = env
->banked_r13
[bank_number(ARM_CPU_MODE_UND
)];
6375 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
6376 * mode, then we can copy from r8-r14. Otherwise, we copy from the
6377 * FIQ bank for r8-r14.
6379 if (mode
== ARM_CPU_MODE_FIQ
) {
6380 for (i
= 24; i
< 31; i
++) {
6381 env
->xregs
[i
] = env
->regs
[i
- 16]; /* X[24:30] <- R[8:14] */
6384 for (i
= 24; i
< 29; i
++) {
6385 env
->xregs
[i
] = env
->fiq_regs
[i
- 24];
6387 env
->xregs
[29] = env
->banked_r13
[bank_number(ARM_CPU_MODE_FIQ
)];
6388 env
->xregs
[30] = env
->banked_r14
[bank_number(ARM_CPU_MODE_FIQ
)];
6391 env
->pc
= env
->regs
[15];
6394 /* Function used to synchronize QEMU's AArch32 register set with AArch64
6395 * register set. This is necessary when switching between AArch32 and AArch64
6398 void aarch64_sync_64_to_32(CPUARMState
*env
)
6401 uint32_t mode
= env
->uncached_cpsr
& CPSR_M
;
6403 /* We can blanket copy X[0:7] to R[0:7] */
6404 for (i
= 0; i
< 8; i
++) {
6405 env
->regs
[i
] = env
->xregs
[i
];
6408 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
6409 * Otherwise, we copy x8-x12 into the banked user regs.
6411 if (mode
== ARM_CPU_MODE_FIQ
) {
6412 for (i
= 8; i
< 13; i
++) {
6413 env
->usr_regs
[i
- 8] = env
->xregs
[i
];
6416 for (i
= 8; i
< 13; i
++) {
6417 env
->regs
[i
] = env
->xregs
[i
];
6421 /* Registers r13 & r14 depend on the current mode.
6422 * If we are in a given mode, we copy the corresponding x registers to r13
6423 * and r14. Otherwise, we copy the x register to the banked r13 and r14
6426 if (mode
== ARM_CPU_MODE_USR
|| mode
== ARM_CPU_MODE_SYS
) {
6427 env
->regs
[13] = env
->xregs
[13];
6428 env
->regs
[14] = env
->xregs
[14];
6430 env
->banked_r13
[bank_number(ARM_CPU_MODE_USR
)] = env
->xregs
[13];
6432 /* HYP is an exception in that it does not have its own banked r14 but
6433 * shares the USR r14
6435 if (mode
== ARM_CPU_MODE_HYP
) {
6436 env
->regs
[14] = env
->xregs
[14];
6438 env
->banked_r14
[bank_number(ARM_CPU_MODE_USR
)] = env
->xregs
[14];
6442 if (mode
== ARM_CPU_MODE_HYP
) {
6443 env
->regs
[13] = env
->xregs
[15];
6445 env
->banked_r13
[bank_number(ARM_CPU_MODE_HYP
)] = env
->xregs
[15];
6448 if (mode
== ARM_CPU_MODE_IRQ
) {
6449 env
->regs
[14] = env
->xregs
[16];
6450 env
->regs
[13] = env
->xregs
[17];
6452 env
->banked_r14
[bank_number(ARM_CPU_MODE_IRQ
)] = env
->xregs
[16];
6453 env
->banked_r13
[bank_number(ARM_CPU_MODE_IRQ
)] = env
->xregs
[17];
6456 if (mode
== ARM_CPU_MODE_SVC
) {
6457 env
->regs
[14] = env
->xregs
[18];
6458 env
->regs
[13] = env
->xregs
[19];
6460 env
->banked_r14
[bank_number(ARM_CPU_MODE_SVC
)] = env
->xregs
[18];
6461 env
->banked_r13
[bank_number(ARM_CPU_MODE_SVC
)] = env
->xregs
[19];
6464 if (mode
== ARM_CPU_MODE_ABT
) {
6465 env
->regs
[14] = env
->xregs
[20];
6466 env
->regs
[13] = env
->xregs
[21];
6468 env
->banked_r14
[bank_number(ARM_CPU_MODE_ABT
)] = env
->xregs
[20];
6469 env
->banked_r13
[bank_number(ARM_CPU_MODE_ABT
)] = env
->xregs
[21];
6472 if (mode
== ARM_CPU_MODE_UND
) {
6473 env
->regs
[14] = env
->xregs
[22];
6474 env
->regs
[13] = env
->xregs
[23];
6476 env
->banked_r14
[bank_number(ARM_CPU_MODE_UND
)] = env
->xregs
[22];
6477 env
->banked_r13
[bank_number(ARM_CPU_MODE_UND
)] = env
->xregs
[23];
6480 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
6481 * mode, then we can copy to r8-r14. Otherwise, we copy to the
6482 * FIQ bank for r8-r14.
6484 if (mode
== ARM_CPU_MODE_FIQ
) {
6485 for (i
= 24; i
< 31; i
++) {
6486 env
->regs
[i
- 16] = env
->xregs
[i
]; /* X[24:30] -> R[8:14] */
6489 for (i
= 24; i
< 29; i
++) {
6490 env
->fiq_regs
[i
- 24] = env
->xregs
[i
];
6492 env
->banked_r13
[bank_number(ARM_CPU_MODE_FIQ
)] = env
->xregs
[29];
6493 env
->banked_r14
[bank_number(ARM_CPU_MODE_FIQ
)] = env
->xregs
[30];
6496 env
->regs
[15] = env
->pc
;
6499 static void arm_cpu_do_interrupt_aarch32(CPUState
*cs
)
6501 ARMCPU
*cpu
= ARM_CPU(cs
);
6502 CPUARMState
*env
= &cpu
->env
;
6509 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
6510 switch (env
->exception
.syndrome
>> ARM_EL_EC_SHIFT
) {
6512 case EC_BREAKPOINT_SAME_EL
:
6516 case EC_WATCHPOINT_SAME_EL
:
6522 case EC_VECTORCATCH
:
6531 env
->cp15
.mdscr_el1
= deposit64(env
->cp15
.mdscr_el1
, 2, 4, moe
);
6534 /* TODO: Vectored interrupt controller. */
6535 switch (cs
->exception_index
) {
6537 new_mode
= ARM_CPU_MODE_UND
;
6546 new_mode
= ARM_CPU_MODE_SVC
;
6549 /* The PC already points to the next instruction. */
6553 env
->exception
.fsr
= 2;
6554 /* Fall through to prefetch abort. */
6555 case EXCP_PREFETCH_ABORT
:
6556 A32_BANKED_CURRENT_REG_SET(env
, ifsr
, env
->exception
.fsr
);
6557 A32_BANKED_CURRENT_REG_SET(env
, ifar
, env
->exception
.vaddress
);
6558 qemu_log_mask(CPU_LOG_INT
, "...with IFSR 0x%x IFAR 0x%x\n",
6559 env
->exception
.fsr
, (uint32_t)env
->exception
.vaddress
);
6560 new_mode
= ARM_CPU_MODE_ABT
;
6562 mask
= CPSR_A
| CPSR_I
;
6565 case EXCP_DATA_ABORT
:
6566 A32_BANKED_CURRENT_REG_SET(env
, dfsr
, env
->exception
.fsr
);
6567 A32_BANKED_CURRENT_REG_SET(env
, dfar
, env
->exception
.vaddress
);
6568 qemu_log_mask(CPU_LOG_INT
, "...with DFSR 0x%x DFAR 0x%x\n",
6570 (uint32_t)env
->exception
.vaddress
);
6571 new_mode
= ARM_CPU_MODE_ABT
;
6573 mask
= CPSR_A
| CPSR_I
;
6577 new_mode
= ARM_CPU_MODE_IRQ
;
6579 /* Disable IRQ and imprecise data aborts. */
6580 mask
= CPSR_A
| CPSR_I
;
6582 if (env
->cp15
.scr_el3
& SCR_IRQ
) {
6583 /* IRQ routed to monitor mode */
6584 new_mode
= ARM_CPU_MODE_MON
;
6589 new_mode
= ARM_CPU_MODE_FIQ
;
6591 /* Disable FIQ, IRQ and imprecise data aborts. */
6592 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
6593 if (env
->cp15
.scr_el3
& SCR_FIQ
) {
6594 /* FIQ routed to monitor mode */
6595 new_mode
= ARM_CPU_MODE_MON
;
6600 new_mode
= ARM_CPU_MODE_IRQ
;
6602 /* Disable IRQ and imprecise data aborts. */
6603 mask
= CPSR_A
| CPSR_I
;
6607 new_mode
= ARM_CPU_MODE_FIQ
;
6609 /* Disable FIQ, IRQ and imprecise data aborts. */
6610 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
6614 new_mode
= ARM_CPU_MODE_MON
;
6616 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
6620 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
6621 return; /* Never happens. Keep compiler happy. */
6624 if (new_mode
== ARM_CPU_MODE_MON
) {
6625 addr
+= env
->cp15
.mvbar
;
6626 } else if (A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_V
) {
6627 /* High vectors. When enabled, base address cannot be remapped. */
6630 /* ARM v7 architectures provide a vector base address register to remap
6631 * the interrupt vector table.
6632 * This register is only followed in non-monitor mode, and is banked.
6633 * Note: only bits 31:5 are valid.
6635 addr
+= A32_BANKED_CURRENT_REG_GET(env
, vbar
);
6638 if ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_MON
) {
6639 env
->cp15
.scr_el3
&= ~SCR_NS
;
6642 switch_mode (env
, new_mode
);
6643 /* For exceptions taken to AArch32 we must clear the SS bit in both
6644 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
6646 env
->uncached_cpsr
&= ~PSTATE_SS
;
6647 env
->spsr
= cpsr_read(env
);
6648 /* Clear IT bits. */
6649 env
->condexec_bits
= 0;
6650 /* Switch to the new mode, and to the correct instruction set. */
6651 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~CPSR_M
) | new_mode
;
6652 /* Set new mode endianness */
6653 env
->uncached_cpsr
&= ~CPSR_E
;
6654 if (env
->cp15
.sctlr_el
[arm_current_el(env
)] & SCTLR_EE
) {
6655 env
->uncached_cpsr
|= CPSR_E
;
6658 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
6659 * and we should just guard the thumb mode on V4 */
6660 if (arm_feature(env
, ARM_FEATURE_V4T
)) {
6661 env
->thumb
= (A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_TE
) != 0;
6663 env
->regs
[14] = env
->regs
[15] + offset
;
6664 env
->regs
[15] = addr
;
6667 /* Handle exception entry to a target EL which is using AArch64 */
6668 static void arm_cpu_do_interrupt_aarch64(CPUState
*cs
)
6670 ARMCPU
*cpu
= ARM_CPU(cs
);
6671 CPUARMState
*env
= &cpu
->env
;
6672 unsigned int new_el
= env
->exception
.target_el
;
6673 target_ulong addr
= env
->cp15
.vbar_el
[new_el
];
6674 unsigned int new_mode
= aarch64_pstate_mode(new_el
, true);
6676 if (arm_current_el(env
) < new_el
) {
6677 /* Entry vector offset depends on whether the implemented EL
6678 * immediately lower than the target level is using AArch32 or AArch64
6684 is_aa64
= (env
->cp15
.scr_el3
& SCR_RW
) != 0;
6687 is_aa64
= (env
->cp15
.hcr_el2
& HCR_RW
) != 0;
6690 is_aa64
= is_a64(env
);
6693 g_assert_not_reached();
6701 } else if (pstate_read(env
) & PSTATE_SP
) {
6705 switch (cs
->exception_index
) {
6706 case EXCP_PREFETCH_ABORT
:
6707 case EXCP_DATA_ABORT
:
6708 env
->cp15
.far_el
[new_el
] = env
->exception
.vaddress
;
6709 qemu_log_mask(CPU_LOG_INT
, "...with FAR 0x%" PRIx64
"\n",
6710 env
->cp15
.far_el
[new_el
]);
6718 env
->cp15
.esr_el
[new_el
] = env
->exception
.syndrome
;
6729 qemu_log_mask(CPU_LOG_INT
,
6730 "...handling as semihosting call 0x%" PRIx64
"\n",
6732 env
->xregs
[0] = do_arm_semihosting(env
);
6735 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
6739 env
->banked_spsr
[aarch64_banked_spsr_index(new_el
)] = pstate_read(env
);
6740 aarch64_save_sp(env
, arm_current_el(env
));
6741 env
->elr_el
[new_el
] = env
->pc
;
6743 env
->banked_spsr
[aarch64_banked_spsr_index(new_el
)] = cpsr_read(env
);
6744 env
->elr_el
[new_el
] = env
->regs
[15];
6746 aarch64_sync_32_to_64(env
);
6748 env
->condexec_bits
= 0;
6750 qemu_log_mask(CPU_LOG_INT
, "...with ELR 0x%" PRIx64
"\n",
6751 env
->elr_el
[new_el
]);
6753 pstate_write(env
, PSTATE_DAIF
| new_mode
);
6755 aarch64_restore_sp(env
, new_el
);
6759 qemu_log_mask(CPU_LOG_INT
, "...to EL%d PC 0x%" PRIx64
" PSTATE 0x%x\n",
6760 new_el
, env
->pc
, pstate_read(env
));
6763 static inline bool check_for_semihosting(CPUState
*cs
)
6765 /* Check whether this exception is a semihosting call; if so
6766 * then handle it and return true; otherwise return false.
6768 ARMCPU
*cpu
= ARM_CPU(cs
);
6769 CPUARMState
*env
= &cpu
->env
;
6772 if (cs
->exception_index
== EXCP_SEMIHOST
) {
6773 /* This is always the 64-bit semihosting exception.
6774 * The "is this usermode" and "is semihosting enabled"
6775 * checks have been done at translate time.
6777 qemu_log_mask(CPU_LOG_INT
,
6778 "...handling as semihosting call 0x%" PRIx64
"\n",
6780 env
->xregs
[0] = do_arm_semihosting(env
);
6787 /* Only intercept calls from privileged modes, to provide some
6788 * semblance of security.
6790 if (cs
->exception_index
!= EXCP_SEMIHOST
&&
6791 (!semihosting_enabled() ||
6792 ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_USR
))) {
6796 switch (cs
->exception_index
) {
6798 /* This is always a semihosting call; the "is this usermode"
6799 * and "is semihosting enabled" checks have been done at
6804 /* Check for semihosting interrupt. */
6806 imm
= arm_lduw_code(env
, env
->regs
[15] - 2, arm_sctlr_b(env
))
6812 imm
= arm_ldl_code(env
, env
->regs
[15] - 4, arm_sctlr_b(env
))
6814 if (imm
== 0x123456) {
6820 /* See if this is a semihosting syscall. */
6822 imm
= arm_lduw_code(env
, env
->regs
[15], arm_sctlr_b(env
))
6834 qemu_log_mask(CPU_LOG_INT
,
6835 "...handling as semihosting call 0x%x\n",
6837 env
->regs
[0] = do_arm_semihosting(env
);
6842 /* Handle a CPU exception for A and R profile CPUs.
6843 * Do any appropriate logging, handle PSCI calls, and then hand off
6844 * to the AArch64-entry or AArch32-entry function depending on the
6845 * target exception level's register width.
6847 void arm_cpu_do_interrupt(CPUState
*cs
)
6849 ARMCPU
*cpu
= ARM_CPU(cs
);
6850 CPUARMState
*env
= &cpu
->env
;
6851 unsigned int new_el
= env
->exception
.target_el
;
6853 assert(!arm_feature(env
, ARM_FEATURE_M
));
6855 arm_log_exception(cs
->exception_index
);
6856 qemu_log_mask(CPU_LOG_INT
, "...from EL%d to EL%d\n", arm_current_el(env
),
6858 if (qemu_loglevel_mask(CPU_LOG_INT
)
6859 && !excp_is_internal(cs
->exception_index
)) {
6860 qemu_log_mask(CPU_LOG_INT
, "...with ESR %x/0x%" PRIx32
"\n",
6861 env
->exception
.syndrome
>> ARM_EL_EC_SHIFT
,
6862 env
->exception
.syndrome
);
6865 if (arm_is_psci_call(cpu
, cs
->exception_index
)) {
6866 arm_handle_psci_call(cpu
);
6867 qemu_log_mask(CPU_LOG_INT
, "...handled as PSCI call\n");
6871 /* Semihosting semantics depend on the register width of the
6872 * code that caused the exception, not the target exception level,
6873 * so must be handled here.
6875 if (check_for_semihosting(cs
)) {
6879 assert(!excp_is_internal(cs
->exception_index
));
6880 if (arm_el_is_aa64(env
, new_el
)) {
6881 arm_cpu_do_interrupt_aarch64(cs
);
6883 arm_cpu_do_interrupt_aarch32(cs
);
6886 /* Hooks may change global state so BQL should be held, also the
6887 * BQL needs to be held for any modification of
6888 * cs->interrupt_request.
6890 g_assert(qemu_mutex_iothread_locked());
6892 arm_call_el_change_hook(cpu
);
6894 if (!kvm_enabled()) {
6895 cs
->interrupt_request
|= CPU_INTERRUPT_EXITTB
;
6899 /* Return the exception level which controls this address translation regime */
6900 static inline uint32_t regime_el(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
6903 case ARMMMUIdx_S2NS
:
6904 case ARMMMUIdx_S1E2
:
6906 case ARMMMUIdx_S1E3
:
6908 case ARMMMUIdx_S1SE0
:
6909 return arm_el_is_aa64(env
, 3) ? 1 : 3;
6910 case ARMMMUIdx_S1SE1
:
6911 case ARMMMUIdx_S1NSE0
:
6912 case ARMMMUIdx_S1NSE1
:
6915 g_assert_not_reached();
6919 /* Return true if this address translation regime is secure */
6920 static inline bool regime_is_secure(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
6923 case ARMMMUIdx_S12NSE0
:
6924 case ARMMMUIdx_S12NSE1
:
6925 case ARMMMUIdx_S1NSE0
:
6926 case ARMMMUIdx_S1NSE1
:
6927 case ARMMMUIdx_S1E2
:
6928 case ARMMMUIdx_S2NS
:
6930 case ARMMMUIdx_S1E3
:
6931 case ARMMMUIdx_S1SE0
:
6932 case ARMMMUIdx_S1SE1
:
6935 g_assert_not_reached();
6939 /* Return the SCTLR value which controls this address translation regime */
6940 static inline uint32_t regime_sctlr(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
6942 return env
->cp15
.sctlr_el
[regime_el(env
, mmu_idx
)];
6945 /* Return true if the specified stage of address translation is disabled */
6946 static inline bool regime_translation_disabled(CPUARMState
*env
,
6949 if (mmu_idx
== ARMMMUIdx_S2NS
) {
6950 return (env
->cp15
.hcr_el2
& HCR_VM
) == 0;
6952 return (regime_sctlr(env
, mmu_idx
) & SCTLR_M
) == 0;
6955 static inline bool regime_translation_big_endian(CPUARMState
*env
,
6958 return (regime_sctlr(env
, mmu_idx
) & SCTLR_EE
) != 0;
6961 /* Return the TCR controlling this translation regime */
6962 static inline TCR
*regime_tcr(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
6964 if (mmu_idx
== ARMMMUIdx_S2NS
) {
6965 return &env
->cp15
.vtcr_el2
;
6967 return &env
->cp15
.tcr_el
[regime_el(env
, mmu_idx
)];
6970 /* Returns TBI0 value for current regime el */
6971 uint32_t arm_regime_tbi0(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
6976 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
6977 * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
6979 if (mmu_idx
== ARMMMUIdx_S12NSE0
|| mmu_idx
== ARMMMUIdx_S12NSE1
) {
6980 mmu_idx
+= ARMMMUIdx_S1NSE0
;
6983 tcr
= regime_tcr(env
, mmu_idx
);
6984 el
= regime_el(env
, mmu_idx
);
6987 return extract64(tcr
->raw_tcr
, 20, 1);
6989 return extract64(tcr
->raw_tcr
, 37, 1);
6993 /* Returns TBI1 value for current regime el */
6994 uint32_t arm_regime_tbi1(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
6999 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
7000 * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
7002 if (mmu_idx
== ARMMMUIdx_S12NSE0
|| mmu_idx
== ARMMMUIdx_S12NSE1
) {
7003 mmu_idx
+= ARMMMUIdx_S1NSE0
;
7006 tcr
= regime_tcr(env
, mmu_idx
);
7007 el
= regime_el(env
, mmu_idx
);
7012 return extract64(tcr
->raw_tcr
, 38, 1);
7016 /* Return the TTBR associated with this translation regime */
7017 static inline uint64_t regime_ttbr(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
7020 if (mmu_idx
== ARMMMUIdx_S2NS
) {
7021 return env
->cp15
.vttbr_el2
;
7024 return env
->cp15
.ttbr0_el
[regime_el(env
, mmu_idx
)];
7026 return env
->cp15
.ttbr1_el
[regime_el(env
, mmu_idx
)];
7030 /* Return true if the translation regime is using LPAE format page tables */
7031 static inline bool regime_using_lpae_format(CPUARMState
*env
,
7034 int el
= regime_el(env
, mmu_idx
);
7035 if (el
== 2 || arm_el_is_aa64(env
, el
)) {
7038 if (arm_feature(env
, ARM_FEATURE_LPAE
)
7039 && (regime_tcr(env
, mmu_idx
)->raw_tcr
& TTBCR_EAE
)) {
7045 /* Returns true if the stage 1 translation regime is using LPAE format page
7046 * tables. Used when raising alignment exceptions, whose FSR changes depending
7047 * on whether the long or short descriptor format is in use. */
7048 bool arm_s1_regime_using_lpae_format(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
7050 if (mmu_idx
== ARMMMUIdx_S12NSE0
|| mmu_idx
== ARMMMUIdx_S12NSE1
) {
7051 mmu_idx
+= ARMMMUIdx_S1NSE0
;
7054 return regime_using_lpae_format(env
, mmu_idx
);
7057 static inline bool regime_is_user(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
7060 case ARMMMUIdx_S1SE0
:
7061 case ARMMMUIdx_S1NSE0
:
7065 case ARMMMUIdx_S12NSE0
:
7066 case ARMMMUIdx_S12NSE1
:
7067 g_assert_not_reached();
7071 /* Translate section/page access permissions to page
7072 * R/W protection flags
7075 * @mmu_idx: MMU index indicating required translation regime
7076 * @ap: The 3-bit access permissions (AP[2:0])
7077 * @domain_prot: The 2-bit domain access permissions
7079 static inline int ap_to_rw_prot(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
7080 int ap
, int domain_prot
)
7082 bool is_user
= regime_is_user(env
, mmu_idx
);
7084 if (domain_prot
== 3) {
7085 return PAGE_READ
| PAGE_WRITE
;
7090 if (arm_feature(env
, ARM_FEATURE_V7
)) {
7093 switch (regime_sctlr(env
, mmu_idx
) & (SCTLR_S
| SCTLR_R
)) {
7095 return is_user
? 0 : PAGE_READ
;
7102 return is_user
? 0 : PAGE_READ
| PAGE_WRITE
;
7107 return PAGE_READ
| PAGE_WRITE
;
7110 return PAGE_READ
| PAGE_WRITE
;
7111 case 4: /* Reserved. */
7114 return is_user
? 0 : PAGE_READ
;
7118 if (!arm_feature(env
, ARM_FEATURE_V6K
)) {
7123 g_assert_not_reached();
7127 /* Translate section/page access permissions to page
7128 * R/W protection flags.
7130 * @ap: The 2-bit simple AP (AP[2:1])
7131 * @is_user: TRUE if accessing from PL0
7133 static inline int simple_ap_to_rw_prot_is_user(int ap
, bool is_user
)
7137 return is_user
? 0 : PAGE_READ
| PAGE_WRITE
;
7139 return PAGE_READ
| PAGE_WRITE
;
7141 return is_user
? 0 : PAGE_READ
;
7145 g_assert_not_reached();
7150 simple_ap_to_rw_prot(CPUARMState
*env
, ARMMMUIdx mmu_idx
, int ap
)
7152 return simple_ap_to_rw_prot_is_user(ap
, regime_is_user(env
, mmu_idx
));
7155 /* Translate S2 section/page access permissions to protection flags
7158 * @s2ap: The 2-bit stage2 access permissions (S2AP)
7159 * @xn: XN (execute-never) bit
7161 static int get_S2prot(CPUARMState
*env
, int s2ap
, int xn
)
7172 if (arm_el_is_aa64(env
, 2) || prot
& PAGE_READ
) {
7179 /* Translate section/page access permissions to protection flags
7182 * @mmu_idx: MMU index indicating required translation regime
7183 * @is_aa64: TRUE if AArch64
7184 * @ap: The 2-bit simple AP (AP[2:1])
7185 * @ns: NS (non-secure) bit
7186 * @xn: XN (execute-never) bit
7187 * @pxn: PXN (privileged execute-never) bit
7189 static int get_S1prot(CPUARMState
*env
, ARMMMUIdx mmu_idx
, bool is_aa64
,
7190 int ap
, int ns
, int xn
, int pxn
)
7192 bool is_user
= regime_is_user(env
, mmu_idx
);
7193 int prot_rw
, user_rw
;
7197 assert(mmu_idx
!= ARMMMUIdx_S2NS
);
7199 user_rw
= simple_ap_to_rw_prot_is_user(ap
, true);
7203 prot_rw
= simple_ap_to_rw_prot_is_user(ap
, false);
7206 if (ns
&& arm_is_secure(env
) && (env
->cp15
.scr_el3
& SCR_SIF
)) {
7210 /* TODO have_wxn should be replaced with
7211 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
7212 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
7213 * compatible processors have EL2, which is required for [U]WXN.
7215 have_wxn
= arm_feature(env
, ARM_FEATURE_LPAE
);
7218 wxn
= regime_sctlr(env
, mmu_idx
) & SCTLR_WXN
;
7222 switch (regime_el(env
, mmu_idx
)) {
7225 xn
= pxn
|| (user_rw
& PAGE_WRITE
);
7232 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
7233 switch (regime_el(env
, mmu_idx
)) {
7237 xn
= xn
|| !(user_rw
& PAGE_READ
);
7241 uwxn
= regime_sctlr(env
, mmu_idx
) & SCTLR_UWXN
;
7243 xn
= xn
|| !(prot_rw
& PAGE_READ
) || pxn
||
7244 (uwxn
&& (user_rw
& PAGE_WRITE
));
7254 if (xn
|| (wxn
&& (prot_rw
& PAGE_WRITE
))) {
7257 return prot_rw
| PAGE_EXEC
;
7260 static bool get_level1_table_address(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
7261 uint32_t *table
, uint32_t address
)
7263 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
7264 TCR
*tcr
= regime_tcr(env
, mmu_idx
);
7266 if (address
& tcr
->mask
) {
7267 if (tcr
->raw_tcr
& TTBCR_PD1
) {
7268 /* Translation table walk disabled for TTBR1 */
7271 *table
= regime_ttbr(env
, mmu_idx
, 1) & 0xffffc000;
7273 if (tcr
->raw_tcr
& TTBCR_PD0
) {
7274 /* Translation table walk disabled for TTBR0 */
7277 *table
= regime_ttbr(env
, mmu_idx
, 0) & tcr
->base_mask
;
7279 *table
|= (address
>> 18) & 0x3ffc;
7283 /* Translate a S1 pagetable walk through S2 if needed. */
7284 static hwaddr
S1_ptw_translate(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
7285 hwaddr addr
, MemTxAttrs txattrs
,
7287 ARMMMUFaultInfo
*fi
)
7289 if ((mmu_idx
== ARMMMUIdx_S1NSE0
|| mmu_idx
== ARMMMUIdx_S1NSE1
) &&
7290 !regime_translation_disabled(env
, ARMMMUIdx_S2NS
)) {
7291 target_ulong s2size
;
7296 ret
= get_phys_addr_lpae(env
, addr
, 0, ARMMMUIdx_S2NS
, &s2pa
,
7297 &txattrs
, &s2prot
, &s2size
, fsr
, fi
);
7309 /* All loads done in the course of a page table walk go through here.
7310 * TODO: rather than ignoring errors from physical memory reads (which
7311 * are external aborts in ARM terminology) we should propagate this
7312 * error out so that we can turn it into a Data Abort if this walk
7313 * was being done for a CPU load/store or an address translation instruction
7314 * (but not if it was for a debug access).
7316 static uint32_t arm_ldl_ptw(CPUState
*cs
, hwaddr addr
, bool is_secure
,
7317 ARMMMUIdx mmu_idx
, uint32_t *fsr
,
7318 ARMMMUFaultInfo
*fi
)
7320 ARMCPU
*cpu
= ARM_CPU(cs
);
7321 CPUARMState
*env
= &cpu
->env
;
7322 MemTxAttrs attrs
= {};
7325 attrs
.secure
= is_secure
;
7326 as
= arm_addressspace(cs
, attrs
);
7327 addr
= S1_ptw_translate(env
, mmu_idx
, addr
, attrs
, fsr
, fi
);
7331 if (regime_translation_big_endian(env
, mmu_idx
)) {
7332 return address_space_ldl_be(as
, addr
, attrs
, NULL
);
7334 return address_space_ldl_le(as
, addr
, attrs
, NULL
);
7338 static uint64_t arm_ldq_ptw(CPUState
*cs
, hwaddr addr
, bool is_secure
,
7339 ARMMMUIdx mmu_idx
, uint32_t *fsr
,
7340 ARMMMUFaultInfo
*fi
)
7342 ARMCPU
*cpu
= ARM_CPU(cs
);
7343 CPUARMState
*env
= &cpu
->env
;
7344 MemTxAttrs attrs
= {};
7347 attrs
.secure
= is_secure
;
7348 as
= arm_addressspace(cs
, attrs
);
7349 addr
= S1_ptw_translate(env
, mmu_idx
, addr
, attrs
, fsr
, fi
);
7353 if (regime_translation_big_endian(env
, mmu_idx
)) {
7354 return address_space_ldq_be(as
, addr
, attrs
, NULL
);
7356 return address_space_ldq_le(as
, addr
, attrs
, NULL
);
7360 static bool get_phys_addr_v5(CPUARMState
*env
, uint32_t address
,
7361 int access_type
, ARMMMUIdx mmu_idx
,
7362 hwaddr
*phys_ptr
, int *prot
,
7363 target_ulong
*page_size
, uint32_t *fsr
,
7364 ARMMMUFaultInfo
*fi
)
7366 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
7377 /* Pagetable walk. */
7378 /* Lookup l1 descriptor. */
7379 if (!get_level1_table_address(env
, mmu_idx
, &table
, address
)) {
7380 /* Section translation fault if page walk is disabled by PD0 or PD1 */
7384 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
),
7387 domain
= (desc
>> 5) & 0x0f;
7388 if (regime_el(env
, mmu_idx
) == 1) {
7389 dacr
= env
->cp15
.dacr_ns
;
7391 dacr
= env
->cp15
.dacr_s
;
7393 domain_prot
= (dacr
>> (domain
* 2)) & 3;
7395 /* Section translation fault. */
7399 if (domain_prot
== 0 || domain_prot
== 2) {
7401 code
= 9; /* Section domain fault. */
7403 code
= 11; /* Page domain fault. */
7408 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
7409 ap
= (desc
>> 10) & 3;
7411 *page_size
= 1024 * 1024;
7413 /* Lookup l2 entry. */
7415 /* Coarse pagetable. */
7416 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
7418 /* Fine pagetable. */
7419 table
= (desc
& 0xfffff000) | ((address
>> 8) & 0xffc);
7421 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
),
7424 case 0: /* Page translation fault. */
7427 case 1: /* 64k page. */
7428 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
7429 ap
= (desc
>> (4 + ((address
>> 13) & 6))) & 3;
7430 *page_size
= 0x10000;
7432 case 2: /* 4k page. */
7433 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
7434 ap
= (desc
>> (4 + ((address
>> 9) & 6))) & 3;
7435 *page_size
= 0x1000;
7437 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
7439 /* ARMv6/XScale extended small page format */
7440 if (arm_feature(env
, ARM_FEATURE_XSCALE
)
7441 || arm_feature(env
, ARM_FEATURE_V6
)) {
7442 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
7443 *page_size
= 0x1000;
7445 /* UNPREDICTABLE in ARMv5; we choose to take a
7446 * page translation fault.
7452 phys_addr
= (desc
& 0xfffffc00) | (address
& 0x3ff);
7455 ap
= (desc
>> 4) & 3;
7458 /* Never happens, but compiler isn't smart enough to tell. */
7463 *prot
= ap_to_rw_prot(env
, mmu_idx
, ap
, domain_prot
);
7464 *prot
|= *prot
? PAGE_EXEC
: 0;
7465 if (!(*prot
& (1 << access_type
))) {
7466 /* Access permission fault. */
7469 *phys_ptr
= phys_addr
;
7472 *fsr
= code
| (domain
<< 4);
7476 static bool get_phys_addr_v6(CPUARMState
*env
, uint32_t address
,
7477 int access_type
, ARMMMUIdx mmu_idx
,
7478 hwaddr
*phys_ptr
, MemTxAttrs
*attrs
, int *prot
,
7479 target_ulong
*page_size
, uint32_t *fsr
,
7480 ARMMMUFaultInfo
*fi
)
7482 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
7496 /* Pagetable walk. */
7497 /* Lookup l1 descriptor. */
7498 if (!get_level1_table_address(env
, mmu_idx
, &table
, address
)) {
7499 /* Section translation fault if page walk is disabled by PD0 or PD1 */
7503 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
),
7506 if (type
== 0 || (type
== 3 && !arm_feature(env
, ARM_FEATURE_PXN
))) {
7507 /* Section translation fault, or attempt to use the encoding
7508 * which is Reserved on implementations without PXN.
7513 if ((type
== 1) || !(desc
& (1 << 18))) {
7514 /* Page or Section. */
7515 domain
= (desc
>> 5) & 0x0f;
7517 if (regime_el(env
, mmu_idx
) == 1) {
7518 dacr
= env
->cp15
.dacr_ns
;
7520 dacr
= env
->cp15
.dacr_s
;
7522 domain_prot
= (dacr
>> (domain
* 2)) & 3;
7523 if (domain_prot
== 0 || domain_prot
== 2) {
7525 code
= 9; /* Section domain fault. */
7527 code
= 11; /* Page domain fault. */
7532 if (desc
& (1 << 18)) {
7534 phys_addr
= (desc
& 0xff000000) | (address
& 0x00ffffff);
7535 phys_addr
|= (uint64_t)extract32(desc
, 20, 4) << 32;
7536 phys_addr
|= (uint64_t)extract32(desc
, 5, 4) << 36;
7537 *page_size
= 0x1000000;
7540 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
7541 *page_size
= 0x100000;
7543 ap
= ((desc
>> 10) & 3) | ((desc
>> 13) & 4);
7544 xn
= desc
& (1 << 4);
7547 ns
= extract32(desc
, 19, 1);
7549 if (arm_feature(env
, ARM_FEATURE_PXN
)) {
7550 pxn
= (desc
>> 2) & 1;
7552 ns
= extract32(desc
, 3, 1);
7553 /* Lookup l2 entry. */
7554 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
7555 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
),
7557 ap
= ((desc
>> 4) & 3) | ((desc
>> 7) & 4);
7559 case 0: /* Page translation fault. */
7562 case 1: /* 64k page. */
7563 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
7564 xn
= desc
& (1 << 15);
7565 *page_size
= 0x10000;
7567 case 2: case 3: /* 4k page. */
7568 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
7570 *page_size
= 0x1000;
7573 /* Never happens, but compiler isn't smart enough to tell. */
7578 if (domain_prot
== 3) {
7579 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
7581 if (pxn
&& !regime_is_user(env
, mmu_idx
)) {
7584 if (xn
&& access_type
== 2)
7587 if (arm_feature(env
, ARM_FEATURE_V6K
) &&
7588 (regime_sctlr(env
, mmu_idx
) & SCTLR_AFE
)) {
7589 /* The simplified model uses AP[0] as an access control bit. */
7590 if ((ap
& 1) == 0) {
7591 /* Access flag fault. */
7592 code
= (code
== 15) ? 6 : 3;
7595 *prot
= simple_ap_to_rw_prot(env
, mmu_idx
, ap
>> 1);
7597 *prot
= ap_to_rw_prot(env
, mmu_idx
, ap
, domain_prot
);
7602 if (!(*prot
& (1 << access_type
))) {
7603 /* Access permission fault. */
7608 /* The NS bit will (as required by the architecture) have no effect if
7609 * the CPU doesn't support TZ or this is a non-secure translation
7610 * regime, because the attribute will already be non-secure.
7612 attrs
->secure
= false;
7614 *phys_ptr
= phys_addr
;
7617 *fsr
= code
| (domain
<< 4);
7621 /* Fault type for long-descriptor MMU fault reporting; this corresponds
7622 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
7625 translation_fault
= 1,
7627 permission_fault
= 3,
7631 * check_s2_mmu_setup
7633 * @is_aa64: True if the translation regime is in AArch64 state
7634 * @startlevel: Suggested starting level
7635 * @inputsize: Bitsize of IPAs
7636 * @stride: Page-table stride (See the ARM ARM)
7638 * Returns true if the suggested S2 translation parameters are OK and
7641 static bool check_s2_mmu_setup(ARMCPU
*cpu
, bool is_aa64
, int level
,
7642 int inputsize
, int stride
)
7644 const int grainsize
= stride
+ 3;
7647 /* Negative levels are never allowed. */
7652 startsizecheck
= inputsize
- ((3 - level
) * stride
+ grainsize
);
7653 if (startsizecheck
< 1 || startsizecheck
> stride
+ 4) {
7658 CPUARMState
*env
= &cpu
->env
;
7659 unsigned int pamax
= arm_pamax(cpu
);
7662 case 13: /* 64KB Pages. */
7663 if (level
== 0 || (level
== 1 && pamax
<= 42)) {
7667 case 11: /* 16KB Pages. */
7668 if (level
== 0 || (level
== 1 && pamax
<= 40)) {
7672 case 9: /* 4KB Pages. */
7673 if (level
== 0 && pamax
<= 42) {
7678 g_assert_not_reached();
7681 /* Inputsize checks. */
7682 if (inputsize
> pamax
&&
7683 (arm_el_is_aa64(env
, 1) || inputsize
> 40)) {
7684 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
7688 /* AArch32 only supports 4KB pages. Assert on that. */
7689 assert(stride
== 9);
7698 static bool get_phys_addr_lpae(CPUARMState
*env
, target_ulong address
,
7699 int access_type
, ARMMMUIdx mmu_idx
,
7700 hwaddr
*phys_ptr
, MemTxAttrs
*txattrs
, int *prot
,
7701 target_ulong
*page_size_ptr
, uint32_t *fsr
,
7702 ARMMMUFaultInfo
*fi
)
7704 ARMCPU
*cpu
= arm_env_get_cpu(env
);
7705 CPUState
*cs
= CPU(cpu
);
7706 /* Read an LPAE long-descriptor translation table. */
7707 MMUFaultType fault_type
= translation_fault
;
7714 hwaddr descaddr
, indexmask
, indexmask_grainsize
;
7715 uint32_t tableattrs
;
7716 target_ulong page_size
;
7722 TCR
*tcr
= regime_tcr(env
, mmu_idx
);
7723 int ap
, ns
, xn
, pxn
;
7724 uint32_t el
= regime_el(env
, mmu_idx
);
7725 bool ttbr1_valid
= true;
7726 uint64_t descaddrmask
;
7727 bool aarch64
= arm_el_is_aa64(env
, el
);
7730 * This code does not handle the different format TCR for VTCR_EL2.
7731 * This code also does not support shareability levels.
7732 * Attribute and permission bit handling should also be checked when adding
7733 * support for those page table walks.
7739 if (mmu_idx
!= ARMMMUIdx_S2NS
) {
7740 tbi
= extract64(tcr
->raw_tcr
, 20, 1);
7743 if (extract64(address
, 55, 1)) {
7744 tbi
= extract64(tcr
->raw_tcr
, 38, 1);
7746 tbi
= extract64(tcr
->raw_tcr
, 37, 1);
7751 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
7755 ttbr1_valid
= false;
7760 /* There is no TTBR1 for EL2 */
7762 ttbr1_valid
= false;
7766 /* Determine whether this address is in the region controlled by
7767 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
7768 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
7769 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
7772 /* AArch64 translation. */
7773 t0sz
= extract32(tcr
->raw_tcr
, 0, 6);
7774 t0sz
= MIN(t0sz
, 39);
7775 t0sz
= MAX(t0sz
, 16);
7776 } else if (mmu_idx
!= ARMMMUIdx_S2NS
) {
7777 /* AArch32 stage 1 translation. */
7778 t0sz
= extract32(tcr
->raw_tcr
, 0, 3);
7780 /* AArch32 stage 2 translation. */
7781 bool sext
= extract32(tcr
->raw_tcr
, 4, 1);
7782 bool sign
= extract32(tcr
->raw_tcr
, 3, 1);
7783 /* Address size is 40-bit for a stage 2 translation,
7784 * and t0sz can be negative (from -8 to 7),
7785 * so we need to adjust it to use the TTBR selecting logic below.
7788 t0sz
= sextract32(tcr
->raw_tcr
, 0, 4) + 8;
7790 /* If the sign-extend bit is not the same as t0sz[3], the result
7791 * is unpredictable. Flag this as a guest error. */
7793 qemu_log_mask(LOG_GUEST_ERROR
,
7794 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
7797 t1sz
= extract32(tcr
->raw_tcr
, 16, 6);
7799 t1sz
= MIN(t1sz
, 39);
7800 t1sz
= MAX(t1sz
, 16);
7802 if (t0sz
&& !extract64(address
, addrsize
- t0sz
, t0sz
- tbi
)) {
7803 /* there is a ttbr0 region and we are in it (high bits all zero) */
7805 } else if (ttbr1_valid
&& t1sz
&&
7806 !extract64(~address
, addrsize
- t1sz
, t1sz
- tbi
)) {
7807 /* there is a ttbr1 region and we are in it (high bits all one) */
7810 /* ttbr0 region is "everything not in the ttbr1 region" */
7812 } else if (!t1sz
&& ttbr1_valid
) {
7813 /* ttbr1 region is "everything not in the ttbr0 region" */
7816 /* in the gap between the two regions, this is a Translation fault */
7817 fault_type
= translation_fault
;
7821 /* Note that QEMU ignores shareability and cacheability attributes,
7822 * so we don't need to do anything with the SH, ORGN, IRGN fields
7823 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
7824 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
7825 * implement any ASID-like capability so we can ignore it (instead
7826 * we will always flush the TLB any time the ASID is changed).
7828 if (ttbr_select
== 0) {
7829 ttbr
= regime_ttbr(env
, mmu_idx
, 0);
7831 epd
= extract32(tcr
->raw_tcr
, 7, 1);
7833 inputsize
= addrsize
- t0sz
;
7835 tg
= extract32(tcr
->raw_tcr
, 14, 2);
7836 if (tg
== 1) { /* 64KB pages */
7839 if (tg
== 2) { /* 16KB pages */
7843 /* We should only be here if TTBR1 is valid */
7844 assert(ttbr1_valid
);
7846 ttbr
= regime_ttbr(env
, mmu_idx
, 1);
7847 epd
= extract32(tcr
->raw_tcr
, 23, 1);
7848 inputsize
= addrsize
- t1sz
;
7850 tg
= extract32(tcr
->raw_tcr
, 30, 2);
7851 if (tg
== 3) { /* 64KB pages */
7854 if (tg
== 1) { /* 16KB pages */
7859 /* Here we should have set up all the parameters for the translation:
7860 * inputsize, ttbr, epd, stride, tbi
7864 /* Translation table walk disabled => Translation fault on TLB miss
7865 * Note: This is always 0 on 64-bit EL2 and EL3.
7870 if (mmu_idx
!= ARMMMUIdx_S2NS
) {
7871 /* The starting level depends on the virtual address size (which can
7872 * be up to 48 bits) and the translation granule size. It indicates
7873 * the number of strides (stride bits at a time) needed to
7874 * consume the bits of the input address. In the pseudocode this is:
7875 * level = 4 - RoundUp((inputsize - grainsize) / stride)
7876 * where their 'inputsize' is our 'inputsize', 'grainsize' is
7877 * our 'stride + 3' and 'stride' is our 'stride'.
7878 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
7879 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
7880 * = 4 - (inputsize - 4) / stride;
7882 level
= 4 - (inputsize
- 4) / stride
;
7884 /* For stage 2 translations the starting level is specified by the
7885 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
7887 uint32_t sl0
= extract32(tcr
->raw_tcr
, 6, 2);
7888 uint32_t startlevel
;
7891 if (!aarch64
|| stride
== 9) {
7892 /* AArch32 or 4KB pages */
7893 startlevel
= 2 - sl0
;
7895 /* 16KB or 64KB pages */
7896 startlevel
= 3 - sl0
;
7899 /* Check that the starting level is valid. */
7900 ok
= check_s2_mmu_setup(cpu
, aarch64
, startlevel
,
7903 fault_type
= translation_fault
;
7909 indexmask_grainsize
= (1ULL << (stride
+ 3)) - 1;
7910 indexmask
= (1ULL << (inputsize
- (stride
* (4 - level
)))) - 1;
7912 /* Now we can extract the actual base address from the TTBR */
7913 descaddr
= extract64(ttbr
, 0, 48);
7914 descaddr
&= ~indexmask
;
7916 /* The address field in the descriptor goes up to bit 39 for ARMv7
7917 * but up to bit 47 for ARMv8, but we use the descaddrmask
7918 * up to bit 39 for AArch32, because we don't need other bits in that case
7919 * to construct next descriptor address (anyway they should be all zeroes).
7921 descaddrmask
= ((1ull << (aarch64
? 48 : 40)) - 1) &
7922 ~indexmask_grainsize
;
7924 /* Secure accesses start with the page table in secure memory and
7925 * can be downgraded to non-secure at any step. Non-secure accesses
7926 * remain non-secure. We implement this by just ORing in the NSTable/NS
7927 * bits at each step.
7929 tableattrs
= regime_is_secure(env
, mmu_idx
) ? 0 : (1 << 4);
7931 uint64_t descriptor
;
7934 descaddr
|= (address
>> (stride
* (4 - level
))) & indexmask
;
7936 nstable
= extract32(tableattrs
, 4, 1);
7937 descriptor
= arm_ldq_ptw(cs
, descaddr
, !nstable
, mmu_idx
, fsr
, fi
);
7942 if (!(descriptor
& 1) ||
7943 (!(descriptor
& 2) && (level
== 3))) {
7944 /* Invalid, or the Reserved level 3 encoding */
7947 descaddr
= descriptor
& descaddrmask
;
7949 if ((descriptor
& 2) && (level
< 3)) {
7950 /* Table entry. The top five bits are attributes which may
7951 * propagate down through lower levels of the table (and
7952 * which are all arranged so that 0 means "no effect", so
7953 * we can gather them up by ORing in the bits at each level).
7955 tableattrs
|= extract64(descriptor
, 59, 5);
7957 indexmask
= indexmask_grainsize
;
7960 /* Block entry at level 1 or 2, or page entry at level 3.
7961 * These are basically the same thing, although the number
7962 * of bits we pull in from the vaddr varies.
7964 page_size
= (1ULL << ((stride
* (4 - level
)) + 3));
7965 descaddr
|= (address
& (page_size
- 1));
7966 /* Extract attributes from the descriptor */
7967 attrs
= extract64(descriptor
, 2, 10)
7968 | (extract64(descriptor
, 52, 12) << 10);
7970 if (mmu_idx
== ARMMMUIdx_S2NS
) {
7971 /* Stage 2 table descriptors do not include any attribute fields */
7974 /* Merge in attributes from table descriptors */
7975 attrs
|= extract32(tableattrs
, 0, 2) << 11; /* XN, PXN */
7976 attrs
|= extract32(tableattrs
, 3, 1) << 5; /* APTable[1] => AP[2] */
7977 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
7978 * means "force PL1 access only", which means forcing AP[1] to 0.
7980 if (extract32(tableattrs
, 2, 1)) {
7983 attrs
|= nstable
<< 3; /* NS */
7986 /* Here descaddr is the final physical address, and attributes
7989 fault_type
= access_fault
;
7990 if ((attrs
& (1 << 8)) == 0) {
7995 ap
= extract32(attrs
, 4, 2);
7996 xn
= extract32(attrs
, 12, 1);
7998 if (mmu_idx
== ARMMMUIdx_S2NS
) {
8000 *prot
= get_S2prot(env
, ap
, xn
);
8002 ns
= extract32(attrs
, 3, 1);
8003 pxn
= extract32(attrs
, 11, 1);
8004 *prot
= get_S1prot(env
, mmu_idx
, aarch64
, ap
, ns
, xn
, pxn
);
8007 fault_type
= permission_fault
;
8008 if (!(*prot
& (1 << access_type
))) {
8013 /* The NS bit will (as required by the architecture) have no effect if
8014 * the CPU doesn't support TZ or this is a non-secure translation
8015 * regime, because the attribute will already be non-secure.
8017 txattrs
->secure
= false;
8019 *phys_ptr
= descaddr
;
8020 *page_size_ptr
= page_size
;
8024 /* Long-descriptor format IFSR/DFSR value */
8025 *fsr
= (1 << 9) | (fault_type
<< 2) | level
;
8026 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
8027 fi
->stage2
= fi
->s1ptw
|| (mmu_idx
== ARMMMUIdx_S2NS
);
8031 static inline void get_phys_addr_pmsav7_default(CPUARMState
*env
,
8033 int32_t address
, int *prot
)
8035 *prot
= PAGE_READ
| PAGE_WRITE
;
8037 case 0xF0000000 ... 0xFFFFFFFF:
8038 if (regime_sctlr(env
, mmu_idx
) & SCTLR_V
) { /* hivecs execing is ok */
8042 case 0x00000000 ... 0x7FFFFFFF:
8049 static bool get_phys_addr_pmsav7(CPUARMState
*env
, uint32_t address
,
8050 int access_type
, ARMMMUIdx mmu_idx
,
8051 hwaddr
*phys_ptr
, int *prot
, uint32_t *fsr
)
8053 ARMCPU
*cpu
= arm_env_get_cpu(env
);
8055 bool is_user
= regime_is_user(env
, mmu_idx
);
8057 *phys_ptr
= address
;
8060 if (regime_translation_disabled(env
, mmu_idx
)) { /* MPU disabled */
8061 get_phys_addr_pmsav7_default(env
, mmu_idx
, address
, prot
);
8062 } else { /* MPU enabled */
8063 for (n
= (int)cpu
->pmsav7_dregion
- 1; n
>= 0; n
--) {
8065 uint32_t base
= env
->pmsav7
.drbar
[n
];
8066 uint32_t rsize
= extract32(env
->pmsav7
.drsr
[n
], 1, 5);
8070 if (!(env
->pmsav7
.drsr
[n
] & 0x1)) {
8075 qemu_log_mask(LOG_GUEST_ERROR
, "DRSR.Rsize field can not be 0");
8079 rmask
= (1ull << rsize
) - 1;
8082 qemu_log_mask(LOG_GUEST_ERROR
, "DRBAR %" PRIx32
" misaligned "
8083 "to DRSR region size, mask = %" PRIx32
,
8088 if (address
< base
|| address
> base
+ rmask
) {
8092 /* Region matched */
8094 if (rsize
>= 8) { /* no subregions for regions < 256 bytes */
8096 uint32_t srdis_mask
;
8098 rsize
-= 3; /* sub region size (power of 2) */
8099 snd
= ((address
- base
) >> rsize
) & 0x7;
8100 srdis
= extract32(env
->pmsav7
.drsr
[n
], snd
+ 8, 1);
8102 srdis_mask
= srdis
? 0x3 : 0x0;
8103 for (i
= 2; i
<= 8 && rsize
< TARGET_PAGE_BITS
; i
*= 2) {
8104 /* This will check in groups of 2, 4 and then 8, whether
8105 * the subregion bits are consistent. rsize is incremented
8106 * back up to give the region size, considering consistent
8107 * adjacent subregions as one region. Stop testing if rsize
8108 * is already big enough for an entire QEMU page.
8110 int snd_rounded
= snd
& ~(i
- 1);
8111 uint32_t srdis_multi
= extract32(env
->pmsav7
.drsr
[n
],
8112 snd_rounded
+ 8, i
);
8113 if (srdis_mask
^ srdis_multi
) {
8116 srdis_mask
= (srdis_mask
<< i
) | srdis_mask
;
8120 if (rsize
< TARGET_PAGE_BITS
) {
8121 qemu_log_mask(LOG_UNIMP
, "No support for MPU (sub)region"
8122 "alignment of %" PRIu32
" bits. Minimum is %d\n",
8123 rsize
, TARGET_PAGE_BITS
);
8132 if (n
== -1) { /* no hits */
8133 if (cpu
->pmsav7_dregion
&&
8134 (is_user
|| !(regime_sctlr(env
, mmu_idx
) & SCTLR_BR
))) {
8135 /* background fault */
8139 get_phys_addr_pmsav7_default(env
, mmu_idx
, address
, prot
);
8140 } else { /* a MPU hit! */
8141 uint32_t ap
= extract32(env
->pmsav7
.dracr
[n
], 8, 3);
8143 if (is_user
) { /* User mode AP bit decoding */
8148 break; /* no access */
8150 *prot
|= PAGE_WRITE
;
8154 *prot
|= PAGE_READ
| PAGE_EXEC
;
8157 qemu_log_mask(LOG_GUEST_ERROR
,
8158 "Bad value for AP bits in DRACR %"
8161 } else { /* Priv. mode AP bits decoding */
8164 break; /* no access */
8168 *prot
|= PAGE_WRITE
;
8172 *prot
|= PAGE_READ
| PAGE_EXEC
;
8175 qemu_log_mask(LOG_GUEST_ERROR
,
8176 "Bad value for AP bits in DRACR %"
8182 if (env
->pmsav7
.dracr
[n
] & (1 << 12)) {
8183 *prot
&= ~PAGE_EXEC
;
8188 *fsr
= 0x00d; /* Permission fault */
8189 return !(*prot
& (1 << access_type
));
8192 static bool get_phys_addr_pmsav5(CPUARMState
*env
, uint32_t address
,
8193 int access_type
, ARMMMUIdx mmu_idx
,
8194 hwaddr
*phys_ptr
, int *prot
, uint32_t *fsr
)
8199 bool is_user
= regime_is_user(env
, mmu_idx
);
8201 *phys_ptr
= address
;
8202 for (n
= 7; n
>= 0; n
--) {
8203 base
= env
->cp15
.c6_region
[n
];
8204 if ((base
& 1) == 0) {
8207 mask
= 1 << ((base
>> 1) & 0x1f);
8208 /* Keep this shift separate from the above to avoid an
8209 (undefined) << 32. */
8210 mask
= (mask
<< 1) - 1;
8211 if (((base
^ address
) & ~mask
) == 0) {
8220 if (access_type
== 2) {
8221 mask
= env
->cp15
.pmsav5_insn_ap
;
8223 mask
= env
->cp15
.pmsav5_data_ap
;
8225 mask
= (mask
>> (n
* 4)) & 0xf;
8235 *prot
= PAGE_READ
| PAGE_WRITE
;
8240 *prot
|= PAGE_WRITE
;
8244 *prot
= PAGE_READ
| PAGE_WRITE
;
8257 /* Bad permission. */
8265 /* get_phys_addr - get the physical address for this virtual address
8267 * Find the physical address corresponding to the given virtual address,
8268 * by doing a translation table walk on MMU based systems or using the
8269 * MPU state on MPU based systems.
8271 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
8272 * prot and page_size may not be filled in, and the populated fsr value provides
8273 * information on why the translation aborted, in the format of a
8274 * DFSR/IFSR fault register, with the following caveats:
8275 * * we honour the short vs long DFSR format differences.
8276 * * the WnR bit is never set (the caller must do this).
8277 * * for PSMAv5 based systems we don't bother to return a full FSR format
8281 * @address: virtual address to get physical address for
8282 * @access_type: 0 for read, 1 for write, 2 for execute
8283 * @mmu_idx: MMU index indicating required translation regime
8284 * @phys_ptr: set to the physical address corresponding to the virtual address
8285 * @attrs: set to the memory transaction attributes to use
8286 * @prot: set to the permissions for the page containing phys_ptr
8287 * @page_size: set to the size of the page containing phys_ptr
8288 * @fsr: set to the DFSR/IFSR value on failure
8290 static bool get_phys_addr(CPUARMState
*env
, target_ulong address
,
8291 int access_type
, ARMMMUIdx mmu_idx
,
8292 hwaddr
*phys_ptr
, MemTxAttrs
*attrs
, int *prot
,
8293 target_ulong
*page_size
, uint32_t *fsr
,
8294 ARMMMUFaultInfo
*fi
)
8296 if (mmu_idx
== ARMMMUIdx_S12NSE0
|| mmu_idx
== ARMMMUIdx_S12NSE1
) {
8297 /* Call ourselves recursively to do the stage 1 and then stage 2
8300 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
8305 ret
= get_phys_addr(env
, address
, access_type
,
8306 mmu_idx
+ ARMMMUIdx_S1NSE0
, &ipa
, attrs
,
8307 prot
, page_size
, fsr
, fi
);
8309 /* If S1 fails or S2 is disabled, return early. */
8310 if (ret
|| regime_translation_disabled(env
, ARMMMUIdx_S2NS
)) {
8315 /* S1 is done. Now do S2 translation. */
8316 ret
= get_phys_addr_lpae(env
, ipa
, access_type
, ARMMMUIdx_S2NS
,
8317 phys_ptr
, attrs
, &s2_prot
,
8318 page_size
, fsr
, fi
);
8320 /* Combine the S1 and S2 perms. */
8325 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
8327 mmu_idx
+= ARMMMUIdx_S1NSE0
;
8331 /* The page table entries may downgrade secure to non-secure, but
8332 * cannot upgrade an non-secure translation regime's attributes
8335 attrs
->secure
= regime_is_secure(env
, mmu_idx
);
8336 attrs
->user
= regime_is_user(env
, mmu_idx
);
8338 /* Fast Context Switch Extension. This doesn't exist at all in v8.
8339 * In v7 and earlier it affects all stage 1 translations.
8341 if (address
< 0x02000000 && mmu_idx
!= ARMMMUIdx_S2NS
8342 && !arm_feature(env
, ARM_FEATURE_V8
)) {
8343 if (regime_el(env
, mmu_idx
) == 3) {
8344 address
+= env
->cp15
.fcseidr_s
;
8346 address
+= env
->cp15
.fcseidr_ns
;
8350 /* pmsav7 has special handling for when MPU is disabled so call it before
8351 * the common MMU/MPU disabled check below.
8353 if (arm_feature(env
, ARM_FEATURE_MPU
) &&
8354 arm_feature(env
, ARM_FEATURE_V7
)) {
8355 *page_size
= TARGET_PAGE_SIZE
;
8356 return get_phys_addr_pmsav7(env
, address
, access_type
, mmu_idx
,
8357 phys_ptr
, prot
, fsr
);
8360 if (regime_translation_disabled(env
, mmu_idx
)) {
8361 /* MMU/MPU disabled. */
8362 *phys_ptr
= address
;
8363 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
8364 *page_size
= TARGET_PAGE_SIZE
;
8368 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
8370 *page_size
= TARGET_PAGE_SIZE
;
8371 return get_phys_addr_pmsav5(env
, address
, access_type
, mmu_idx
,
8372 phys_ptr
, prot
, fsr
);
8375 if (regime_using_lpae_format(env
, mmu_idx
)) {
8376 return get_phys_addr_lpae(env
, address
, access_type
, mmu_idx
, phys_ptr
,
8377 attrs
, prot
, page_size
, fsr
, fi
);
8378 } else if (regime_sctlr(env
, mmu_idx
) & SCTLR_XP
) {
8379 return get_phys_addr_v6(env
, address
, access_type
, mmu_idx
, phys_ptr
,
8380 attrs
, prot
, page_size
, fsr
, fi
);
8382 return get_phys_addr_v5(env
, address
, access_type
, mmu_idx
, phys_ptr
,
8383 prot
, page_size
, fsr
, fi
);
8387 /* Walk the page table and (if the mapping exists) add the page
8388 * to the TLB. Return false on success, or true on failure. Populate
8389 * fsr with ARM DFSR/IFSR fault register format value on failure.
8391 bool arm_tlb_fill(CPUState
*cs
, vaddr address
,
8392 int access_type
, int mmu_idx
, uint32_t *fsr
,
8393 ARMMMUFaultInfo
*fi
)
8395 ARMCPU
*cpu
= ARM_CPU(cs
);
8396 CPUARMState
*env
= &cpu
->env
;
8398 target_ulong page_size
;
8401 MemTxAttrs attrs
= {};
8403 ret
= get_phys_addr(env
, address
, access_type
, mmu_idx
, &phys_addr
,
8404 &attrs
, &prot
, &page_size
, fsr
, fi
);
8406 /* Map a single [sub]page. */
8407 phys_addr
&= TARGET_PAGE_MASK
;
8408 address
&= TARGET_PAGE_MASK
;
8409 tlb_set_page_with_attrs(cs
, address
, phys_addr
, attrs
,
8410 prot
, mmu_idx
, page_size
);
8417 hwaddr
arm_cpu_get_phys_page_attrs_debug(CPUState
*cs
, vaddr addr
,
8420 ARMCPU
*cpu
= ARM_CPU(cs
);
8421 CPUARMState
*env
= &cpu
->env
;
8423 target_ulong page_size
;
8427 ARMMMUFaultInfo fi
= {};
8429 *attrs
= (MemTxAttrs
) {};
8431 ret
= get_phys_addr(env
, addr
, 0, cpu_mmu_index(env
, false), &phys_addr
,
8432 attrs
, &prot
, &page_size
, &fsr
, &fi
);
8440 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
8443 unsigned el
= arm_current_el(env
);
8445 /* First handle registers which unprivileged can read */
8448 case 0 ... 7: /* xPSR sub-fields */
8450 if ((reg
& 1) && el
) {
8451 mask
|= 0x000001ff; /* IPSR (unpriv. reads as zero) */
8454 mask
|= 0xf8000000; /* APSR */
8456 /* EPSR reads as zero */
8457 return xpsr_read(env
) & mask
;
8459 case 20: /* CONTROL */
8460 return env
->v7m
.control
;
8464 return 0; /* unprivileged reads others as zero */
8469 return (env
->v7m
.control
& R_V7M_CONTROL_SPSEL_MASK
) ?
8470 env
->v7m
.other_sp
: env
->regs
[13];
8472 return (env
->v7m
.control
& R_V7M_CONTROL_SPSEL_MASK
) ?
8473 env
->regs
[13] : env
->v7m
.other_sp
;
8474 case 16: /* PRIMASK */
8475 return (env
->daif
& PSTATE_I
) != 0;
8476 case 17: /* BASEPRI */
8477 case 18: /* BASEPRI_MAX */
8478 return env
->v7m
.basepri
;
8479 case 19: /* FAULTMASK */
8480 return (env
->daif
& PSTATE_F
) != 0;
8482 qemu_log_mask(LOG_GUEST_ERROR
, "Attempt to read unknown special"
8483 " register %d\n", reg
);
8488 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t reg
, uint32_t val
)
8490 if (arm_current_el(env
) == 0 && reg
> 7) {
8491 /* only xPSR sub-fields may be written by unprivileged */
8496 case 0 ... 7: /* xPSR sub-fields */
8497 /* only APSR is actually writable */
8499 xpsr_write(env
, val
, 0xf8000000); /* APSR */
8503 if (env
->v7m
.control
& R_V7M_CONTROL_SPSEL_MASK
) {
8504 env
->v7m
.other_sp
= val
;
8506 env
->regs
[13] = val
;
8510 if (env
->v7m
.control
& R_V7M_CONTROL_SPSEL_MASK
) {
8511 env
->regs
[13] = val
;
8513 env
->v7m
.other_sp
= val
;
8516 case 16: /* PRIMASK */
8518 env
->daif
|= PSTATE_I
;
8520 env
->daif
&= ~PSTATE_I
;
8523 case 17: /* BASEPRI */
8524 env
->v7m
.basepri
= val
& 0xff;
8526 case 18: /* BASEPRI_MAX */
8528 if (val
!= 0 && (val
< env
->v7m
.basepri
|| env
->v7m
.basepri
== 0))
8529 env
->v7m
.basepri
= val
;
8531 case 19: /* FAULTMASK */
8533 env
->daif
|= PSTATE_F
;
8535 env
->daif
&= ~PSTATE_F
;
8538 case 20: /* CONTROL */
8539 switch_v7m_sp(env
, (val
& R_V7M_CONTROL_SPSEL_MASK
) != 0);
8540 env
->v7m
.control
= val
& (R_V7M_CONTROL_SPSEL_MASK
|
8541 R_V7M_CONTROL_NPRIV_MASK
);
8544 qemu_log_mask(LOG_GUEST_ERROR
, "Attempt to write unknown special"
8545 " register %d\n", reg
);
8552 void HELPER(dc_zva
)(CPUARMState
*env
, uint64_t vaddr_in
)
8554 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
8555 * Note that we do not implement the (architecturally mandated)
8556 * alignment fault for attempts to use this on Device memory
8557 * (which matches the usual QEMU behaviour of not implementing either
8558 * alignment faults or any memory attribute handling).
8561 ARMCPU
*cpu
= arm_env_get_cpu(env
);
8562 uint64_t blocklen
= 4 << cpu
->dcz_blocksize
;
8563 uint64_t vaddr
= vaddr_in
& ~(blocklen
- 1);
8565 #ifndef CONFIG_USER_ONLY
8567 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
8568 * the block size so we might have to do more than one TLB lookup.
8569 * We know that in fact for any v8 CPU the page size is at least 4K
8570 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
8571 * 1K as an artefact of legacy v5 subpage support being present in the
8572 * same QEMU executable.
8574 int maxidx
= DIV_ROUND_UP(blocklen
, TARGET_PAGE_SIZE
);
8575 void *hostaddr
[maxidx
];
8577 unsigned mmu_idx
= cpu_mmu_index(env
, false);
8578 TCGMemOpIdx oi
= make_memop_idx(MO_UB
, mmu_idx
);
8580 for (try = 0; try < 2; try++) {
8582 for (i
= 0; i
< maxidx
; i
++) {
8583 hostaddr
[i
] = tlb_vaddr_to_host(env
,
8584 vaddr
+ TARGET_PAGE_SIZE
* i
,
8591 /* If it's all in the TLB it's fair game for just writing to;
8592 * we know we don't need to update dirty status, etc.
8594 for (i
= 0; i
< maxidx
- 1; i
++) {
8595 memset(hostaddr
[i
], 0, TARGET_PAGE_SIZE
);
8597 memset(hostaddr
[i
], 0, blocklen
- (i
* TARGET_PAGE_SIZE
));
8600 /* OK, try a store and see if we can populate the tlb. This
8601 * might cause an exception if the memory isn't writable,
8602 * in which case we will longjmp out of here. We must for
8603 * this purpose use the actual register value passed to us
8604 * so that we get the fault address right.
8606 helper_ret_stb_mmu(env
, vaddr_in
, 0, oi
, GETPC());
8607 /* Now we can populate the other TLB entries, if any */
8608 for (i
= 0; i
< maxidx
; i
++) {
8609 uint64_t va
= vaddr
+ TARGET_PAGE_SIZE
* i
;
8610 if (va
!= (vaddr_in
& TARGET_PAGE_MASK
)) {
8611 helper_ret_stb_mmu(env
, va
, 0, oi
, GETPC());
8616 /* Slow path (probably attempt to do this to an I/O device or
8617 * similar, or clearing of a block of code we have translations
8618 * cached for). Just do a series of byte writes as the architecture
8619 * demands. It's not worth trying to use a cpu_physical_memory_map(),
8620 * memset(), unmap() sequence here because:
8621 * + we'd need to account for the blocksize being larger than a page
8622 * + the direct-RAM access case is almost always going to be dealt
8623 * with in the fastpath code above, so there's no speed benefit
8624 * + we would have to deal with the map returning NULL because the
8625 * bounce buffer was in use
8627 for (i
= 0; i
< blocklen
; i
++) {
8628 helper_ret_stb_mmu(env
, vaddr
+ i
, 0, oi
, GETPC());
8632 memset(g2h(vaddr
), 0, blocklen
);
8636 /* Note that signed overflow is undefined in C. The following routines are
8637 careful to use unsigned types where modulo arithmetic is required.
8638 Failure to do so _will_ break on newer gcc. */
8640 /* Signed saturating arithmetic. */
8642 /* Perform 16-bit signed saturating addition. */
8643 static inline uint16_t add16_sat(uint16_t a
, uint16_t b
)
8648 if (((res
^ a
) & 0x8000) && !((a
^ b
) & 0x8000)) {
8657 /* Perform 8-bit signed saturating addition. */
8658 static inline uint8_t add8_sat(uint8_t a
, uint8_t b
)
8663 if (((res
^ a
) & 0x80) && !((a
^ b
) & 0x80)) {
8672 /* Perform 16-bit signed saturating subtraction. */
8673 static inline uint16_t sub16_sat(uint16_t a
, uint16_t b
)
8678 if (((res
^ a
) & 0x8000) && ((a
^ b
) & 0x8000)) {
8687 /* Perform 8-bit signed saturating subtraction. */
8688 static inline uint8_t sub8_sat(uint8_t a
, uint8_t b
)
8693 if (((res
^ a
) & 0x80) && ((a
^ b
) & 0x80)) {
8702 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
8703 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
8704 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
8705 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
8708 #include "op_addsub.h"
8710 /* Unsigned saturating arithmetic. */
8711 static inline uint16_t add16_usat(uint16_t a
, uint16_t b
)
8720 static inline uint16_t sub16_usat(uint16_t a
, uint16_t b
)
8728 static inline uint8_t add8_usat(uint8_t a
, uint8_t b
)
8737 static inline uint8_t sub8_usat(uint8_t a
, uint8_t b
)
8745 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
8746 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
8747 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
8748 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
8751 #include "op_addsub.h"
8753 /* Signed modulo arithmetic. */
8754 #define SARITH16(a, b, n, op) do { \
8756 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
8757 RESULT(sum, n, 16); \
8759 ge |= 3 << (n * 2); \
8762 #define SARITH8(a, b, n, op) do { \
8764 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
8765 RESULT(sum, n, 8); \
8771 #define ADD16(a, b, n) SARITH16(a, b, n, +)
8772 #define SUB16(a, b, n) SARITH16(a, b, n, -)
8773 #define ADD8(a, b, n) SARITH8(a, b, n, +)
8774 #define SUB8(a, b, n) SARITH8(a, b, n, -)
8778 #include "op_addsub.h"
8780 /* Unsigned modulo arithmetic. */
8781 #define ADD16(a, b, n) do { \
8783 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
8784 RESULT(sum, n, 16); \
8785 if ((sum >> 16) == 1) \
8786 ge |= 3 << (n * 2); \
8789 #define ADD8(a, b, n) do { \
8791 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
8792 RESULT(sum, n, 8); \
8793 if ((sum >> 8) == 1) \
8797 #define SUB16(a, b, n) do { \
8799 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
8800 RESULT(sum, n, 16); \
8801 if ((sum >> 16) == 0) \
8802 ge |= 3 << (n * 2); \
8805 #define SUB8(a, b, n) do { \
8807 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
8808 RESULT(sum, n, 8); \
8809 if ((sum >> 8) == 0) \
8816 #include "op_addsub.h"
8818 /* Halved signed arithmetic. */
8819 #define ADD16(a, b, n) \
8820 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
8821 #define SUB16(a, b, n) \
8822 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
8823 #define ADD8(a, b, n) \
8824 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
8825 #define SUB8(a, b, n) \
8826 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
8829 #include "op_addsub.h"
8831 /* Halved unsigned arithmetic. */
8832 #define ADD16(a, b, n) \
8833 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
8834 #define SUB16(a, b, n) \
8835 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
8836 #define ADD8(a, b, n) \
8837 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
8838 #define SUB8(a, b, n) \
8839 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
8842 #include "op_addsub.h"
8844 static inline uint8_t do_usad(uint8_t a
, uint8_t b
)
8852 /* Unsigned sum of absolute byte differences. */
8853 uint32_t HELPER(usad8
)(uint32_t a
, uint32_t b
)
8856 sum
= do_usad(a
, b
);
8857 sum
+= do_usad(a
>> 8, b
>> 8);
8858 sum
+= do_usad(a
>> 16, b
>>16);
8859 sum
+= do_usad(a
>> 24, b
>> 24);
8863 /* For ARMv6 SEL instruction. */
8864 uint32_t HELPER(sel_flags
)(uint32_t flags
, uint32_t a
, uint32_t b
)
8877 return (a
& mask
) | (b
& ~mask
);
8880 /* VFP support. We follow the convention used for VFP instructions:
8881 Single precision routines have a "s" suffix, double precision a
8884 /* Convert host exception flags to vfp form. */
8885 static inline int vfp_exceptbits_from_host(int host_bits
)
8887 int target_bits
= 0;
8889 if (host_bits
& float_flag_invalid
)
8891 if (host_bits
& float_flag_divbyzero
)
8893 if (host_bits
& float_flag_overflow
)
8895 if (host_bits
& (float_flag_underflow
| float_flag_output_denormal
))
8897 if (host_bits
& float_flag_inexact
)
8898 target_bits
|= 0x10;
8899 if (host_bits
& float_flag_input_denormal
)
8900 target_bits
|= 0x80;
8904 uint32_t HELPER(vfp_get_fpscr
)(CPUARMState
*env
)
8909 fpscr
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & 0xffc8ffff)
8910 | (env
->vfp
.vec_len
<< 16)
8911 | (env
->vfp
.vec_stride
<< 20);
8912 i
= get_float_exception_flags(&env
->vfp
.fp_status
);
8913 i
|= get_float_exception_flags(&env
->vfp
.standard_fp_status
);
8914 fpscr
|= vfp_exceptbits_from_host(i
);
8918 uint32_t vfp_get_fpscr(CPUARMState
*env
)
8920 return HELPER(vfp_get_fpscr
)(env
);
8923 /* Convert vfp exception flags to target form. */
8924 static inline int vfp_exceptbits_to_host(int target_bits
)
8928 if (target_bits
& 1)
8929 host_bits
|= float_flag_invalid
;
8930 if (target_bits
& 2)
8931 host_bits
|= float_flag_divbyzero
;
8932 if (target_bits
& 4)
8933 host_bits
|= float_flag_overflow
;
8934 if (target_bits
& 8)
8935 host_bits
|= float_flag_underflow
;
8936 if (target_bits
& 0x10)
8937 host_bits
|= float_flag_inexact
;
8938 if (target_bits
& 0x80)
8939 host_bits
|= float_flag_input_denormal
;
8943 void HELPER(vfp_set_fpscr
)(CPUARMState
*env
, uint32_t val
)
8948 changed
= env
->vfp
.xregs
[ARM_VFP_FPSCR
];
8949 env
->vfp
.xregs
[ARM_VFP_FPSCR
] = (val
& 0xffc8ffff);
8950 env
->vfp
.vec_len
= (val
>> 16) & 7;
8951 env
->vfp
.vec_stride
= (val
>> 20) & 3;
8954 if (changed
& (3 << 22)) {
8955 i
= (val
>> 22) & 3;
8957 case FPROUNDING_TIEEVEN
:
8958 i
= float_round_nearest_even
;
8960 case FPROUNDING_POSINF
:
8963 case FPROUNDING_NEGINF
:
8964 i
= float_round_down
;
8966 case FPROUNDING_ZERO
:
8967 i
= float_round_to_zero
;
8970 set_float_rounding_mode(i
, &env
->vfp
.fp_status
);
8972 if (changed
& (1 << 24)) {
8973 set_flush_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
8974 set_flush_inputs_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
8976 if (changed
& (1 << 25))
8977 set_default_nan_mode((val
& (1 << 25)) != 0, &env
->vfp
.fp_status
);
8979 i
= vfp_exceptbits_to_host(val
);
8980 set_float_exception_flags(i
, &env
->vfp
.fp_status
);
8981 set_float_exception_flags(0, &env
->vfp
.standard_fp_status
);
8984 void vfp_set_fpscr(CPUARMState
*env
, uint32_t val
)
8986 HELPER(vfp_set_fpscr
)(env
, val
);
8989 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
8991 #define VFP_BINOP(name) \
8992 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
8994 float_status *fpst = fpstp; \
8995 return float32_ ## name(a, b, fpst); \
8997 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
8999 float_status *fpst = fpstp; \
9000 return float64_ ## name(a, b, fpst); \
9012 float32
VFP_HELPER(neg
, s
)(float32 a
)
9014 return float32_chs(a
);
9017 float64
VFP_HELPER(neg
, d
)(float64 a
)
9019 return float64_chs(a
);
9022 float32
VFP_HELPER(abs
, s
)(float32 a
)
9024 return float32_abs(a
);
9027 float64
VFP_HELPER(abs
, d
)(float64 a
)
9029 return float64_abs(a
);
9032 float32
VFP_HELPER(sqrt
, s
)(float32 a
, CPUARMState
*env
)
9034 return float32_sqrt(a
, &env
->vfp
.fp_status
);
9037 float64
VFP_HELPER(sqrt
, d
)(float64 a
, CPUARMState
*env
)
9039 return float64_sqrt(a
, &env
->vfp
.fp_status
);
9042 /* XXX: check quiet/signaling case */
9043 #define DO_VFP_cmp(p, type) \
9044 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
9047 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
9048 case 0: flags = 0x6; break; \
9049 case -1: flags = 0x8; break; \
9050 case 1: flags = 0x2; break; \
9051 default: case 2: flags = 0x3; break; \
9053 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
9054 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
9056 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
9059 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
9060 case 0: flags = 0x6; break; \
9061 case -1: flags = 0x8; break; \
9062 case 1: flags = 0x2; break; \
9063 default: case 2: flags = 0x3; break; \
9065 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
9066 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
9068 DO_VFP_cmp(s
, float32
)
9069 DO_VFP_cmp(d
, float64
)
9072 /* Integer to float and float to integer conversions */
9074 #define CONV_ITOF(name, fsz, sign) \
9075 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
9077 float_status *fpst = fpstp; \
9078 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
9081 #define CONV_FTOI(name, fsz, sign, round) \
9082 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
9084 float_status *fpst = fpstp; \
9085 if (float##fsz##_is_any_nan(x)) { \
9086 float_raise(float_flag_invalid, fpst); \
9089 return float##fsz##_to_##sign##int32##round(x, fpst); \
9092 #define FLOAT_CONVS(name, p, fsz, sign) \
9093 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
9094 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
9095 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
9097 FLOAT_CONVS(si
, s
, 32, )
9098 FLOAT_CONVS(si
, d
, 64, )
9099 FLOAT_CONVS(ui
, s
, 32, u
)
9100 FLOAT_CONVS(ui
, d
, 64, u
)
9106 /* floating point conversion */
9107 float64
VFP_HELPER(fcvtd
, s
)(float32 x
, CPUARMState
*env
)
9109 float64 r
= float32_to_float64(x
, &env
->vfp
.fp_status
);
9110 /* ARM requires that S<->D conversion of any kind of NaN generates
9111 * a quiet NaN by forcing the most significant frac bit to 1.
9113 return float64_maybe_silence_nan(r
, &env
->vfp
.fp_status
);
9116 float32
VFP_HELPER(fcvts
, d
)(float64 x
, CPUARMState
*env
)
9118 float32 r
= float64_to_float32(x
, &env
->vfp
.fp_status
);
9119 /* ARM requires that S<->D conversion of any kind of NaN generates
9120 * a quiet NaN by forcing the most significant frac bit to 1.
9122 return float32_maybe_silence_nan(r
, &env
->vfp
.fp_status
);
9125 /* VFP3 fixed point conversion. */
9126 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
9127 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
9130 float_status *fpst = fpstp; \
9132 tmp = itype##_to_##float##fsz(x, fpst); \
9133 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
9136 /* Notice that we want only input-denormal exception flags from the
9137 * scalbn operation: the other possible flags (overflow+inexact if
9138 * we overflow to infinity, output-denormal) aren't correct for the
9139 * complete scale-and-convert operation.
9141 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
9142 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
9146 float_status *fpst = fpstp; \
9147 int old_exc_flags = get_float_exception_flags(fpst); \
9149 if (float##fsz##_is_any_nan(x)) { \
9150 float_raise(float_flag_invalid, fpst); \
9153 tmp = float##fsz##_scalbn(x, shift, fpst); \
9154 old_exc_flags |= get_float_exception_flags(fpst) \
9155 & float_flag_input_denormal; \
9156 set_float_exception_flags(old_exc_flags, fpst); \
9157 return float##fsz##_to_##itype##round(tmp, fpst); \
9160 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
9161 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
9162 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
9163 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
9165 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
9166 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
9167 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
9169 VFP_CONV_FIX(sh
, d
, 64, 64, int16
)
9170 VFP_CONV_FIX(sl
, d
, 64, 64, int32
)
9171 VFP_CONV_FIX_A64(sq
, d
, 64, 64, int64
)
9172 VFP_CONV_FIX(uh
, d
, 64, 64, uint16
)
9173 VFP_CONV_FIX(ul
, d
, 64, 64, uint32
)
9174 VFP_CONV_FIX_A64(uq
, d
, 64, 64, uint64
)
9175 VFP_CONV_FIX(sh
, s
, 32, 32, int16
)
9176 VFP_CONV_FIX(sl
, s
, 32, 32, int32
)
9177 VFP_CONV_FIX_A64(sq
, s
, 32, 64, int64
)
9178 VFP_CONV_FIX(uh
, s
, 32, 32, uint16
)
9179 VFP_CONV_FIX(ul
, s
, 32, 32, uint32
)
9180 VFP_CONV_FIX_A64(uq
, s
, 32, 64, uint64
)
9182 #undef VFP_CONV_FIX_FLOAT
9183 #undef VFP_CONV_FLOAT_FIX_ROUND
9185 /* Set the current fp rounding mode and return the old one.
9186 * The argument is a softfloat float_round_ value.
9188 uint32_t HELPER(set_rmode
)(uint32_t rmode
, CPUARMState
*env
)
9190 float_status
*fp_status
= &env
->vfp
.fp_status
;
9192 uint32_t prev_rmode
= get_float_rounding_mode(fp_status
);
9193 set_float_rounding_mode(rmode
, fp_status
);
9198 /* Set the current fp rounding mode in the standard fp status and return
9199 * the old one. This is for NEON instructions that need to change the
9200 * rounding mode but wish to use the standard FPSCR values for everything
9201 * else. Always set the rounding mode back to the correct value after
9203 * The argument is a softfloat float_round_ value.
9205 uint32_t HELPER(set_neon_rmode
)(uint32_t rmode
, CPUARMState
*env
)
9207 float_status
*fp_status
= &env
->vfp
.standard_fp_status
;
9209 uint32_t prev_rmode
= get_float_rounding_mode(fp_status
);
9210 set_float_rounding_mode(rmode
, fp_status
);
9215 /* Half precision conversions. */
9216 static float32
do_fcvt_f16_to_f32(uint32_t a
, CPUARMState
*env
, float_status
*s
)
9218 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
9219 float32 r
= float16_to_float32(make_float16(a
), ieee
, s
);
9221 return float32_maybe_silence_nan(r
, s
);
9226 static uint32_t do_fcvt_f32_to_f16(float32 a
, CPUARMState
*env
, float_status
*s
)
9228 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
9229 float16 r
= float32_to_float16(a
, ieee
, s
);
9231 r
= float16_maybe_silence_nan(r
, s
);
9233 return float16_val(r
);
9236 float32
HELPER(neon_fcvt_f16_to_f32
)(uint32_t a
, CPUARMState
*env
)
9238 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.standard_fp_status
);
9241 uint32_t HELPER(neon_fcvt_f32_to_f16
)(float32 a
, CPUARMState
*env
)
9243 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.standard_fp_status
);
9246 float32
HELPER(vfp_fcvt_f16_to_f32
)(uint32_t a
, CPUARMState
*env
)
9248 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.fp_status
);
9251 uint32_t HELPER(vfp_fcvt_f32_to_f16
)(float32 a
, CPUARMState
*env
)
9253 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.fp_status
);
9256 float64
HELPER(vfp_fcvt_f16_to_f64
)(uint32_t a
, CPUARMState
*env
)
9258 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
9259 float64 r
= float16_to_float64(make_float16(a
), ieee
, &env
->vfp
.fp_status
);
9261 return float64_maybe_silence_nan(r
, &env
->vfp
.fp_status
);
9266 uint32_t HELPER(vfp_fcvt_f64_to_f16
)(float64 a
, CPUARMState
*env
)
9268 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
9269 float16 r
= float64_to_float16(a
, ieee
, &env
->vfp
.fp_status
);
9271 r
= float16_maybe_silence_nan(r
, &env
->vfp
.fp_status
);
9273 return float16_val(r
);
9276 #define float32_two make_float32(0x40000000)
9277 #define float32_three make_float32(0x40400000)
9278 #define float32_one_point_five make_float32(0x3fc00000)
9280 float32
HELPER(recps_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
9282 float_status
*s
= &env
->vfp
.standard_fp_status
;
9283 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
9284 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
9285 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
9286 float_raise(float_flag_input_denormal
, s
);
9290 return float32_sub(float32_two
, float32_mul(a
, b
, s
), s
);
9293 float32
HELPER(rsqrts_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
9295 float_status
*s
= &env
->vfp
.standard_fp_status
;
9297 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
9298 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
9299 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
9300 float_raise(float_flag_input_denormal
, s
);
9302 return float32_one_point_five
;
9304 product
= float32_mul(a
, b
, s
);
9305 return float32_div(float32_sub(float32_three
, product
, s
), float32_two
, s
);
9310 /* Constants 256 and 512 are used in some helpers; we avoid relying on
9311 * int->float conversions at run-time. */
9312 #define float64_256 make_float64(0x4070000000000000LL)
9313 #define float64_512 make_float64(0x4080000000000000LL)
9314 #define float32_maxnorm make_float32(0x7f7fffff)
9315 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
9317 /* Reciprocal functions
9319 * The algorithm that must be used to calculate the estimate
9320 * is specified by the ARM ARM, see FPRecipEstimate()
9323 static float64
recip_estimate(float64 a
, float_status
*real_fp_status
)
9325 /* These calculations mustn't set any fp exception flags,
9326 * so we use a local copy of the fp_status.
9328 float_status dummy_status
= *real_fp_status
;
9329 float_status
*s
= &dummy_status
;
9330 /* q = (int)(a * 512.0) */
9331 float64 q
= float64_mul(float64_512
, a
, s
);
9332 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
9334 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
9335 q
= int64_to_float64(q_int
, s
);
9336 q
= float64_add(q
, float64_half
, s
);
9337 q
= float64_div(q
, float64_512
, s
);
9338 q
= float64_div(float64_one
, q
, s
);
9340 /* s = (int)(256.0 * r + 0.5) */
9341 q
= float64_mul(q
, float64_256
, s
);
9342 q
= float64_add(q
, float64_half
, s
);
9343 q_int
= float64_to_int64_round_to_zero(q
, s
);
9345 /* return (double)s / 256.0 */
9346 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
9349 /* Common wrapper to call recip_estimate */
9350 static float64
call_recip_estimate(float64 num
, int off
, float_status
*fpst
)
9352 uint64_t val64
= float64_val(num
);
9353 uint64_t frac
= extract64(val64
, 0, 52);
9354 int64_t exp
= extract64(val64
, 52, 11);
9356 float64 scaled
, estimate
;
9358 /* Generate the scaled number for the estimate function */
9360 if (extract64(frac
, 51, 1) == 0) {
9362 frac
= extract64(frac
, 0, 50) << 2;
9364 frac
= extract64(frac
, 0, 51) << 1;
9368 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
9369 scaled
= make_float64((0x3feULL
<< 52)
9370 | extract64(frac
, 44, 8) << 44);
9372 estimate
= recip_estimate(scaled
, fpst
);
9374 /* Build new result */
9375 val64
= float64_val(estimate
);
9376 sbit
= 0x8000000000000000ULL
& val64
;
9378 frac
= extract64(val64
, 0, 52);
9381 frac
= 1ULL << 51 | extract64(frac
, 1, 51);
9382 } else if (exp
== -1) {
9383 frac
= 1ULL << 50 | extract64(frac
, 2, 50);
9387 return make_float64(sbit
| (exp
<< 52) | frac
);
9390 static bool round_to_inf(float_status
*fpst
, bool sign_bit
)
9392 switch (fpst
->float_rounding_mode
) {
9393 case float_round_nearest_even
: /* Round to Nearest */
9395 case float_round_up
: /* Round to +Inf */
9397 case float_round_down
: /* Round to -Inf */
9399 case float_round_to_zero
: /* Round to Zero */
9403 g_assert_not_reached();
9406 float32
HELPER(recpe_f32
)(float32 input
, void *fpstp
)
9408 float_status
*fpst
= fpstp
;
9409 float32 f32
= float32_squash_input_denormal(input
, fpst
);
9410 uint32_t f32_val
= float32_val(f32
);
9411 uint32_t f32_sbit
= 0x80000000ULL
& f32_val
;
9412 int32_t f32_exp
= extract32(f32_val
, 23, 8);
9413 uint32_t f32_frac
= extract32(f32_val
, 0, 23);
9419 if (float32_is_any_nan(f32
)) {
9421 if (float32_is_signaling_nan(f32
, fpst
)) {
9422 float_raise(float_flag_invalid
, fpst
);
9423 nan
= float32_maybe_silence_nan(f32
, fpst
);
9425 if (fpst
->default_nan_mode
) {
9426 nan
= float32_default_nan(fpst
);
9429 } else if (float32_is_infinity(f32
)) {
9430 return float32_set_sign(float32_zero
, float32_is_neg(f32
));
9431 } else if (float32_is_zero(f32
)) {
9432 float_raise(float_flag_divbyzero
, fpst
);
9433 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
9434 } else if ((f32_val
& ~(1ULL << 31)) < (1ULL << 21)) {
9435 /* Abs(value) < 2.0^-128 */
9436 float_raise(float_flag_overflow
| float_flag_inexact
, fpst
);
9437 if (round_to_inf(fpst
, f32_sbit
)) {
9438 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
9440 return float32_set_sign(float32_maxnorm
, float32_is_neg(f32
));
9442 } else if (f32_exp
>= 253 && fpst
->flush_to_zero
) {
9443 float_raise(float_flag_underflow
, fpst
);
9444 return float32_set_sign(float32_zero
, float32_is_neg(f32
));
9448 f64
= make_float64(((int64_t)(f32_exp
) << 52) | (int64_t)(f32_frac
) << 29);
9449 r64
= call_recip_estimate(f64
, 253, fpst
);
9450 r64_val
= float64_val(r64
);
9451 r64_exp
= extract64(r64_val
, 52, 11);
9452 r64_frac
= extract64(r64_val
, 0, 52);
9454 /* result = sign : result_exp<7:0> : fraction<51:29>; */
9455 return make_float32(f32_sbit
|
9456 (r64_exp
& 0xff) << 23 |
9457 extract64(r64_frac
, 29, 24));
9460 float64
HELPER(recpe_f64
)(float64 input
, void *fpstp
)
9462 float_status
*fpst
= fpstp
;
9463 float64 f64
= float64_squash_input_denormal(input
, fpst
);
9464 uint64_t f64_val
= float64_val(f64
);
9465 uint64_t f64_sbit
= 0x8000000000000000ULL
& f64_val
;
9466 int64_t f64_exp
= extract64(f64_val
, 52, 11);
9472 /* Deal with any special cases */
9473 if (float64_is_any_nan(f64
)) {
9475 if (float64_is_signaling_nan(f64
, fpst
)) {
9476 float_raise(float_flag_invalid
, fpst
);
9477 nan
= float64_maybe_silence_nan(f64
, fpst
);
9479 if (fpst
->default_nan_mode
) {
9480 nan
= float64_default_nan(fpst
);
9483 } else if (float64_is_infinity(f64
)) {
9484 return float64_set_sign(float64_zero
, float64_is_neg(f64
));
9485 } else if (float64_is_zero(f64
)) {
9486 float_raise(float_flag_divbyzero
, fpst
);
9487 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
9488 } else if ((f64_val
& ~(1ULL << 63)) < (1ULL << 50)) {
9489 /* Abs(value) < 2.0^-1024 */
9490 float_raise(float_flag_overflow
| float_flag_inexact
, fpst
);
9491 if (round_to_inf(fpst
, f64_sbit
)) {
9492 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
9494 return float64_set_sign(float64_maxnorm
, float64_is_neg(f64
));
9496 } else if (f64_exp
>= 2045 && fpst
->flush_to_zero
) {
9497 float_raise(float_flag_underflow
, fpst
);
9498 return float64_set_sign(float64_zero
, float64_is_neg(f64
));
9501 r64
= call_recip_estimate(f64
, 2045, fpst
);
9502 r64_val
= float64_val(r64
);
9503 r64_exp
= extract64(r64_val
, 52, 11);
9504 r64_frac
= extract64(r64_val
, 0, 52);
9506 /* result = sign : result_exp<10:0> : fraction<51:0> */
9507 return make_float64(f64_sbit
|
9508 ((r64_exp
& 0x7ff) << 52) |
9512 /* The algorithm that must be used to calculate the estimate
9513 * is specified by the ARM ARM.
9515 static float64
recip_sqrt_estimate(float64 a
, float_status
*real_fp_status
)
9517 /* These calculations mustn't set any fp exception flags,
9518 * so we use a local copy of the fp_status.
9520 float_status dummy_status
= *real_fp_status
;
9521 float_status
*s
= &dummy_status
;
9525 if (float64_lt(a
, float64_half
, s
)) {
9526 /* range 0.25 <= a < 0.5 */
9528 /* a in units of 1/512 rounded down */
9529 /* q0 = (int)(a * 512.0); */
9530 q
= float64_mul(float64_512
, a
, s
);
9531 q_int
= float64_to_int64_round_to_zero(q
, s
);
9533 /* reciprocal root r */
9534 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
9535 q
= int64_to_float64(q_int
, s
);
9536 q
= float64_add(q
, float64_half
, s
);
9537 q
= float64_div(q
, float64_512
, s
);
9538 q
= float64_sqrt(q
, s
);
9539 q
= float64_div(float64_one
, q
, s
);
9541 /* range 0.5 <= a < 1.0 */
9543 /* a in units of 1/256 rounded down */
9544 /* q1 = (int)(a * 256.0); */
9545 q
= float64_mul(float64_256
, a
, s
);
9546 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
9548 /* reciprocal root r */
9549 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
9550 q
= int64_to_float64(q_int
, s
);
9551 q
= float64_add(q
, float64_half
, s
);
9552 q
= float64_div(q
, float64_256
, s
);
9553 q
= float64_sqrt(q
, s
);
9554 q
= float64_div(float64_one
, q
, s
);
9556 /* r in units of 1/256 rounded to nearest */
9557 /* s = (int)(256.0 * r + 0.5); */
9559 q
= float64_mul(q
, float64_256
,s
);
9560 q
= float64_add(q
, float64_half
, s
);
9561 q_int
= float64_to_int64_round_to_zero(q
, s
);
9563 /* return (double)s / 256.0;*/
9564 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
9567 float32
HELPER(rsqrte_f32
)(float32 input
, void *fpstp
)
9569 float_status
*s
= fpstp
;
9570 float32 f32
= float32_squash_input_denormal(input
, s
);
9571 uint32_t val
= float32_val(f32
);
9572 uint32_t f32_sbit
= 0x80000000 & val
;
9573 int32_t f32_exp
= extract32(val
, 23, 8);
9574 uint32_t f32_frac
= extract32(val
, 0, 23);
9580 if (float32_is_any_nan(f32
)) {
9582 if (float32_is_signaling_nan(f32
, s
)) {
9583 float_raise(float_flag_invalid
, s
);
9584 nan
= float32_maybe_silence_nan(f32
, s
);
9586 if (s
->default_nan_mode
) {
9587 nan
= float32_default_nan(s
);
9590 } else if (float32_is_zero(f32
)) {
9591 float_raise(float_flag_divbyzero
, s
);
9592 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
9593 } else if (float32_is_neg(f32
)) {
9594 float_raise(float_flag_invalid
, s
);
9595 return float32_default_nan(s
);
9596 } else if (float32_is_infinity(f32
)) {
9597 return float32_zero
;
9600 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
9601 * preserving the parity of the exponent. */
9603 f64_frac
= ((uint64_t) f32_frac
) << 29;
9605 while (extract64(f64_frac
, 51, 1) == 0) {
9606 f64_frac
= f64_frac
<< 1;
9607 f32_exp
= f32_exp
-1;
9609 f64_frac
= extract64(f64_frac
, 0, 51) << 1;
9612 if (extract64(f32_exp
, 0, 1) == 0) {
9613 f64
= make_float64(((uint64_t) f32_sbit
) << 32
9617 f64
= make_float64(((uint64_t) f32_sbit
) << 32
9622 result_exp
= (380 - f32_exp
) / 2;
9624 f64
= recip_sqrt_estimate(f64
, s
);
9626 val64
= float64_val(f64
);
9628 val
= ((result_exp
& 0xff) << 23)
9629 | ((val64
>> 29) & 0x7fffff);
9630 return make_float32(val
);
9633 float64
HELPER(rsqrte_f64
)(float64 input
, void *fpstp
)
9635 float_status
*s
= fpstp
;
9636 float64 f64
= float64_squash_input_denormal(input
, s
);
9637 uint64_t val
= float64_val(f64
);
9638 uint64_t f64_sbit
= 0x8000000000000000ULL
& val
;
9639 int64_t f64_exp
= extract64(val
, 52, 11);
9640 uint64_t f64_frac
= extract64(val
, 0, 52);
9642 uint64_t result_frac
;
9644 if (float64_is_any_nan(f64
)) {
9646 if (float64_is_signaling_nan(f64
, s
)) {
9647 float_raise(float_flag_invalid
, s
);
9648 nan
= float64_maybe_silence_nan(f64
, s
);
9650 if (s
->default_nan_mode
) {
9651 nan
= float64_default_nan(s
);
9654 } else if (float64_is_zero(f64
)) {
9655 float_raise(float_flag_divbyzero
, s
);
9656 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
9657 } else if (float64_is_neg(f64
)) {
9658 float_raise(float_flag_invalid
, s
);
9659 return float64_default_nan(s
);
9660 } else if (float64_is_infinity(f64
)) {
9661 return float64_zero
;
9664 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
9665 * preserving the parity of the exponent. */
9668 while (extract64(f64_frac
, 51, 1) == 0) {
9669 f64_frac
= f64_frac
<< 1;
9670 f64_exp
= f64_exp
- 1;
9672 f64_frac
= extract64(f64_frac
, 0, 51) << 1;
9675 if (extract64(f64_exp
, 0, 1) == 0) {
9676 f64
= make_float64(f64_sbit
9680 f64
= make_float64(f64_sbit
9685 result_exp
= (3068 - f64_exp
) / 2;
9687 f64
= recip_sqrt_estimate(f64
, s
);
9689 result_frac
= extract64(float64_val(f64
), 0, 52);
9691 return make_float64(f64_sbit
|
9692 ((result_exp
& 0x7ff) << 52) |
9696 uint32_t HELPER(recpe_u32
)(uint32_t a
, void *fpstp
)
9698 float_status
*s
= fpstp
;
9701 if ((a
& 0x80000000) == 0) {
9705 f64
= make_float64((0x3feULL
<< 52)
9706 | ((int64_t)(a
& 0x7fffffff) << 21));
9708 f64
= recip_estimate(f64
, s
);
9710 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
9713 uint32_t HELPER(rsqrte_u32
)(uint32_t a
, void *fpstp
)
9715 float_status
*fpst
= fpstp
;
9718 if ((a
& 0xc0000000) == 0) {
9722 if (a
& 0x80000000) {
9723 f64
= make_float64((0x3feULL
<< 52)
9724 | ((uint64_t)(a
& 0x7fffffff) << 21));
9725 } else { /* bits 31-30 == '01' */
9726 f64
= make_float64((0x3fdULL
<< 52)
9727 | ((uint64_t)(a
& 0x3fffffff) << 22));
9730 f64
= recip_sqrt_estimate(f64
, fpst
);
9732 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
9735 /* VFPv4 fused multiply-accumulate */
9736 float32
VFP_HELPER(muladd
, s
)(float32 a
, float32 b
, float32 c
, void *fpstp
)
9738 float_status
*fpst
= fpstp
;
9739 return float32_muladd(a
, b
, c
, 0, fpst
);
9742 float64
VFP_HELPER(muladd
, d
)(float64 a
, float64 b
, float64 c
, void *fpstp
)
9744 float_status
*fpst
= fpstp
;
9745 return float64_muladd(a
, b
, c
, 0, fpst
);
9748 /* ARMv8 round to integral */
9749 float32
HELPER(rints_exact
)(float32 x
, void *fp_status
)
9751 return float32_round_to_int(x
, fp_status
);
9754 float64
HELPER(rintd_exact
)(float64 x
, void *fp_status
)
9756 return float64_round_to_int(x
, fp_status
);
9759 float32
HELPER(rints
)(float32 x
, void *fp_status
)
9761 int old_flags
= get_float_exception_flags(fp_status
), new_flags
;
9764 ret
= float32_round_to_int(x
, fp_status
);
9766 /* Suppress any inexact exceptions the conversion produced */
9767 if (!(old_flags
& float_flag_inexact
)) {
9768 new_flags
= get_float_exception_flags(fp_status
);
9769 set_float_exception_flags(new_flags
& ~float_flag_inexact
, fp_status
);
9775 float64
HELPER(rintd
)(float64 x
, void *fp_status
)
9777 int old_flags
= get_float_exception_flags(fp_status
), new_flags
;
9780 ret
= float64_round_to_int(x
, fp_status
);
9782 new_flags
= get_float_exception_flags(fp_status
);
9784 /* Suppress any inexact exceptions the conversion produced */
9785 if (!(old_flags
& float_flag_inexact
)) {
9786 new_flags
= get_float_exception_flags(fp_status
);
9787 set_float_exception_flags(new_flags
& ~float_flag_inexact
, fp_status
);
9793 /* Convert ARM rounding mode to softfloat */
9794 int arm_rmode_to_sf(int rmode
)
9797 case FPROUNDING_TIEAWAY
:
9798 rmode
= float_round_ties_away
;
9800 case FPROUNDING_ODD
:
9801 /* FIXME: add support for TIEAWAY and ODD */
9802 qemu_log_mask(LOG_UNIMP
, "arm: unimplemented rounding mode: %d\n",
9804 case FPROUNDING_TIEEVEN
:
9806 rmode
= float_round_nearest_even
;
9808 case FPROUNDING_POSINF
:
9809 rmode
= float_round_up
;
9811 case FPROUNDING_NEGINF
:
9812 rmode
= float_round_down
;
9814 case FPROUNDING_ZERO
:
9815 rmode
= float_round_to_zero
;
9822 * The upper bytes of val (above the number specified by 'bytes') must have
9823 * been zeroed out by the caller.
9825 uint32_t HELPER(crc32
)(uint32_t acc
, uint32_t val
, uint32_t bytes
)
9831 /* zlib crc32 converts the accumulator and output to one's complement. */
9832 return crc32(acc
^ 0xffffffff, buf
, bytes
) ^ 0xffffffff;
9835 uint32_t HELPER(crc32c
)(uint32_t acc
, uint32_t val
, uint32_t bytes
)
9841 /* Linux crc32c converts the output to one's complement. */
9842 return crc32c(acc
, buf
, bytes
) ^ 0xffffffff;