vmdk: Return extent's file in bdrv_get_block_status
[qemu.git] / hw / i386 / intel_iommu.c
blobc25b1fd2421b7ba73b1c41c315930072b3ccd200
1 /*
2 * QEMU emulation of an Intel IOMMU (VT-d)
3 * (DMA Remapping device)
5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
22 #include "qemu/osdep.h"
23 #include "hw/sysbus.h"
24 #include "exec/address-spaces.h"
25 #include "intel_iommu_internal.h"
26 #include "hw/pci/pci.h"
28 /*#define DEBUG_INTEL_IOMMU*/
29 #ifdef DEBUG_INTEL_IOMMU
30 enum {
31 DEBUG_GENERAL, DEBUG_CSR, DEBUG_INV, DEBUG_MMU, DEBUG_FLOG,
32 DEBUG_CACHE,
34 #define VTD_DBGBIT(x) (1 << DEBUG_##x)
35 static int vtd_dbgflags = VTD_DBGBIT(GENERAL) | VTD_DBGBIT(CSR);
37 #define VTD_DPRINTF(what, fmt, ...) do { \
38 if (vtd_dbgflags & VTD_DBGBIT(what)) { \
39 fprintf(stderr, "(vtd)%s: " fmt "\n", __func__, \
40 ## __VA_ARGS__); } \
41 } while (0)
42 #else
43 #define VTD_DPRINTF(what, fmt, ...) do {} while (0)
44 #endif
46 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
47 uint64_t wmask, uint64_t w1cmask)
49 stq_le_p(&s->csr[addr], val);
50 stq_le_p(&s->wmask[addr], wmask);
51 stq_le_p(&s->w1cmask[addr], w1cmask);
54 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
56 stq_le_p(&s->womask[addr], mask);
59 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
60 uint32_t wmask, uint32_t w1cmask)
62 stl_le_p(&s->csr[addr], val);
63 stl_le_p(&s->wmask[addr], wmask);
64 stl_le_p(&s->w1cmask[addr], w1cmask);
67 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
69 stl_le_p(&s->womask[addr], mask);
72 /* "External" get/set operations */
73 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
75 uint64_t oldval = ldq_le_p(&s->csr[addr]);
76 uint64_t wmask = ldq_le_p(&s->wmask[addr]);
77 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
78 stq_le_p(&s->csr[addr],
79 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
82 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
84 uint32_t oldval = ldl_le_p(&s->csr[addr]);
85 uint32_t wmask = ldl_le_p(&s->wmask[addr]);
86 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
87 stl_le_p(&s->csr[addr],
88 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
91 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
93 uint64_t val = ldq_le_p(&s->csr[addr]);
94 uint64_t womask = ldq_le_p(&s->womask[addr]);
95 return val & ~womask;
98 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
100 uint32_t val = ldl_le_p(&s->csr[addr]);
101 uint32_t womask = ldl_le_p(&s->womask[addr]);
102 return val & ~womask;
105 /* "Internal" get/set operations */
106 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
108 return ldq_le_p(&s->csr[addr]);
111 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
113 return ldl_le_p(&s->csr[addr]);
116 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
118 stq_le_p(&s->csr[addr], val);
121 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
122 uint32_t clear, uint32_t mask)
124 uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
125 stl_le_p(&s->csr[addr], new_val);
126 return new_val;
129 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
130 uint64_t clear, uint64_t mask)
132 uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
133 stq_le_p(&s->csr[addr], new_val);
134 return new_val;
137 /* GHashTable functions */
138 static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
140 return *((const uint64_t *)v1) == *((const uint64_t *)v2);
143 static guint vtd_uint64_hash(gconstpointer v)
145 return (guint)*(const uint64_t *)v;
148 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
149 gpointer user_data)
151 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
152 uint16_t domain_id = *(uint16_t *)user_data;
153 return entry->domain_id == domain_id;
156 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
157 gpointer user_data)
159 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
160 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
161 uint64_t gfn = info->gfn & info->mask;
162 return (entry->domain_id == info->domain_id) &&
163 ((entry->gfn & info->mask) == gfn);
166 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
167 * IntelIOMMUState to 1.
169 static void vtd_reset_context_cache(IntelIOMMUState *s)
171 VTDAddressSpace *vtd_as;
172 VTDBus *vtd_bus;
173 GHashTableIter bus_it;
174 uint32_t devfn_it;
176 g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
178 VTD_DPRINTF(CACHE, "global context_cache_gen=1");
179 while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
180 for (devfn_it = 0; devfn_it < VTD_PCI_DEVFN_MAX; ++devfn_it) {
181 vtd_as = vtd_bus->dev_as[devfn_it];
182 if (!vtd_as) {
183 continue;
185 vtd_as->context_cache_entry.context_cache_gen = 0;
188 s->context_cache_gen = 1;
191 static void vtd_reset_iotlb(IntelIOMMUState *s)
193 assert(s->iotlb);
194 g_hash_table_remove_all(s->iotlb);
197 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
198 hwaddr addr)
200 uint64_t key;
202 key = (addr >> VTD_PAGE_SHIFT_4K) |
203 ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT);
204 return g_hash_table_lookup(s->iotlb, &key);
208 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
209 uint16_t domain_id, hwaddr addr, uint64_t slpte,
210 bool read_flags, bool write_flags)
212 VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
213 uint64_t *key = g_malloc(sizeof(*key));
214 uint64_t gfn = addr >> VTD_PAGE_SHIFT_4K;
216 VTD_DPRINTF(CACHE, "update iotlb sid 0x%"PRIx16 " gpa 0x%"PRIx64
217 " slpte 0x%"PRIx64 " did 0x%"PRIx16, source_id, addr, slpte,
218 domain_id);
219 if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
220 VTD_DPRINTF(CACHE, "iotlb exceeds size limit, forced to reset");
221 vtd_reset_iotlb(s);
224 entry->gfn = gfn;
225 entry->domain_id = domain_id;
226 entry->slpte = slpte;
227 entry->read_flags = read_flags;
228 entry->write_flags = write_flags;
229 *key = gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT);
230 g_hash_table_replace(s->iotlb, key, entry);
233 /* Given the reg addr of both the message data and address, generate an
234 * interrupt via MSI.
236 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
237 hwaddr mesg_data_reg)
239 hwaddr addr;
240 uint32_t data;
242 assert(mesg_data_reg < DMAR_REG_SIZE);
243 assert(mesg_addr_reg < DMAR_REG_SIZE);
245 addr = vtd_get_long_raw(s, mesg_addr_reg);
246 data = vtd_get_long_raw(s, mesg_data_reg);
248 VTD_DPRINTF(FLOG, "msi: addr 0x%"PRIx64 " data 0x%"PRIx32, addr, data);
249 address_space_stl_le(&address_space_memory, addr, data,
250 MEMTXATTRS_UNSPECIFIED, NULL);
253 /* Generate a fault event to software via MSI if conditions are met.
254 * Notice that the value of FSTS_REG being passed to it should be the one
255 * before any update.
257 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
259 if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
260 pre_fsts & VTD_FSTS_IQE) {
261 VTD_DPRINTF(FLOG, "there are previous interrupt conditions "
262 "to be serviced by software, fault event is not generated "
263 "(FSTS_REG 0x%"PRIx32 ")", pre_fsts);
264 return;
266 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
267 if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
268 VTD_DPRINTF(FLOG, "Interrupt Mask set, fault event is not generated");
269 } else {
270 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
271 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
275 /* Check if the Fault (F) field of the Fault Recording Register referenced by
276 * @index is Set.
278 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
280 /* Each reg is 128-bit */
281 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
282 addr += 8; /* Access the high 64-bit half */
284 assert(index < DMAR_FRCD_REG_NR);
286 return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
289 /* Update the PPF field of Fault Status Register.
290 * Should be called whenever change the F field of any fault recording
291 * registers.
293 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
295 uint32_t i;
296 uint32_t ppf_mask = 0;
298 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
299 if (vtd_is_frcd_set(s, i)) {
300 ppf_mask = VTD_FSTS_PPF;
301 break;
304 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
305 VTD_DPRINTF(FLOG, "set PPF of FSTS_REG to %d", ppf_mask ? 1 : 0);
308 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
310 /* Each reg is 128-bit */
311 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
312 addr += 8; /* Access the high 64-bit half */
314 assert(index < DMAR_FRCD_REG_NR);
316 vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
317 vtd_update_fsts_ppf(s);
320 /* Must not update F field now, should be done later */
321 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
322 uint16_t source_id, hwaddr addr,
323 VTDFaultReason fault, bool is_write)
325 uint64_t hi = 0, lo;
326 hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
328 assert(index < DMAR_FRCD_REG_NR);
330 lo = VTD_FRCD_FI(addr);
331 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
332 if (!is_write) {
333 hi |= VTD_FRCD_T;
335 vtd_set_quad_raw(s, frcd_reg_addr, lo);
336 vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
337 VTD_DPRINTF(FLOG, "record to FRCD_REG #%"PRIu16 ": hi 0x%"PRIx64
338 ", lo 0x%"PRIx64, index, hi, lo);
341 /* Try to collapse multiple pending faults from the same requester */
342 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
344 uint32_t i;
345 uint64_t frcd_reg;
346 hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
348 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
349 frcd_reg = vtd_get_quad_raw(s, addr);
350 VTD_DPRINTF(FLOG, "frcd_reg #%d 0x%"PRIx64, i, frcd_reg);
351 if ((frcd_reg & VTD_FRCD_F) &&
352 ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
353 return true;
355 addr += 16; /* 128-bit for each */
357 return false;
360 /* Log and report an DMAR (address translation) fault to software */
361 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
362 hwaddr addr, VTDFaultReason fault,
363 bool is_write)
365 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
367 assert(fault < VTD_FR_MAX);
369 if (fault == VTD_FR_RESERVED_ERR) {
370 /* This is not a normal fault reason case. Drop it. */
371 return;
373 VTD_DPRINTF(FLOG, "sid 0x%"PRIx16 ", fault %d, addr 0x%"PRIx64
374 ", is_write %d", source_id, fault, addr, is_write);
375 if (fsts_reg & VTD_FSTS_PFO) {
376 VTD_DPRINTF(FLOG, "new fault is not recorded due to "
377 "Primary Fault Overflow");
378 return;
380 if (vtd_try_collapse_fault(s, source_id)) {
381 VTD_DPRINTF(FLOG, "new fault is not recorded due to "
382 "compression of faults");
383 return;
385 if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
386 VTD_DPRINTF(FLOG, "Primary Fault Overflow and "
387 "new fault is not recorded, set PFO field");
388 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
389 return;
392 vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
394 if (fsts_reg & VTD_FSTS_PPF) {
395 VTD_DPRINTF(FLOG, "there are pending faults already, "
396 "fault event is not generated");
397 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
398 s->next_frcd_reg++;
399 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
400 s->next_frcd_reg = 0;
402 } else {
403 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
404 VTD_FSTS_FRI(s->next_frcd_reg));
405 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
406 s->next_frcd_reg++;
407 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
408 s->next_frcd_reg = 0;
410 /* This case actually cause the PPF to be Set.
411 * So generate fault event (interrupt).
413 vtd_generate_fault_event(s, fsts_reg);
417 /* Handle Invalidation Queue Errors of queued invalidation interface error
418 * conditions.
420 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
422 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
424 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
425 vtd_generate_fault_event(s, fsts_reg);
428 /* Set the IWC field and try to generate an invalidation completion interrupt */
429 static void vtd_generate_completion_event(IntelIOMMUState *s)
431 VTD_DPRINTF(INV, "completes an invalidation wait command with "
432 "Interrupt Flag");
433 if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
434 VTD_DPRINTF(INV, "there is a previous interrupt condition to be "
435 "serviced by software, "
436 "new invalidation event is not generated");
437 return;
439 vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
440 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
441 if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
442 VTD_DPRINTF(INV, "IM filed in IECTL_REG is set, new invalidation "
443 "event is not generated");
444 return;
445 } else {
446 /* Generate the interrupt event */
447 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
448 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
452 static inline bool vtd_root_entry_present(VTDRootEntry *root)
454 return root->val & VTD_ROOT_ENTRY_P;
457 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
458 VTDRootEntry *re)
460 dma_addr_t addr;
462 addr = s->root + index * sizeof(*re);
463 if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
464 VTD_DPRINTF(GENERAL, "error: fail to access root-entry at 0x%"PRIx64
465 " + %"PRIu8, s->root, index);
466 re->val = 0;
467 return -VTD_FR_ROOT_TABLE_INV;
469 re->val = le64_to_cpu(re->val);
470 return 0;
473 static inline bool vtd_context_entry_present(VTDContextEntry *context)
475 return context->lo & VTD_CONTEXT_ENTRY_P;
478 static int vtd_get_context_entry_from_root(VTDRootEntry *root, uint8_t index,
479 VTDContextEntry *ce)
481 dma_addr_t addr;
483 if (!vtd_root_entry_present(root)) {
484 VTD_DPRINTF(GENERAL, "error: root-entry is not present");
485 return -VTD_FR_ROOT_ENTRY_P;
487 addr = (root->val & VTD_ROOT_ENTRY_CTP) + index * sizeof(*ce);
488 if (dma_memory_read(&address_space_memory, addr, ce, sizeof(*ce))) {
489 VTD_DPRINTF(GENERAL, "error: fail to access context-entry at 0x%"PRIx64
490 " + %"PRIu8,
491 (uint64_t)(root->val & VTD_ROOT_ENTRY_CTP), index);
492 return -VTD_FR_CONTEXT_TABLE_INV;
494 ce->lo = le64_to_cpu(ce->lo);
495 ce->hi = le64_to_cpu(ce->hi);
496 return 0;
499 static inline dma_addr_t vtd_get_slpt_base_from_context(VTDContextEntry *ce)
501 return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
504 /* The shift of an addr for a certain level of paging structure */
505 static inline uint32_t vtd_slpt_level_shift(uint32_t level)
507 return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
510 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte)
512 return slpte & VTD_SL_PT_BASE_ADDR_MASK;
515 /* Whether the pte indicates the address of the page frame */
516 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
518 return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
521 /* Get the content of a spte located in @base_addr[@index] */
522 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
524 uint64_t slpte;
526 assert(index < VTD_SL_PT_ENTRY_NR);
528 if (dma_memory_read(&address_space_memory,
529 base_addr + index * sizeof(slpte), &slpte,
530 sizeof(slpte))) {
531 slpte = (uint64_t)-1;
532 return slpte;
534 slpte = le64_to_cpu(slpte);
535 return slpte;
538 /* Given a gpa and the level of paging structure, return the offset of current
539 * level.
541 static inline uint32_t vtd_gpa_level_offset(uint64_t gpa, uint32_t level)
543 return (gpa >> vtd_slpt_level_shift(level)) &
544 ((1ULL << VTD_SL_LEVEL_BITS) - 1);
547 /* Check Capability Register to see if the @level of page-table is supported */
548 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
550 return VTD_CAP_SAGAW_MASK & s->cap &
551 (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
554 /* Get the page-table level that hardware should use for the second-level
555 * page-table walk from the Address Width field of context-entry.
557 static inline uint32_t vtd_get_level_from_context_entry(VTDContextEntry *ce)
559 return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
562 static inline uint32_t vtd_get_agaw_from_context_entry(VTDContextEntry *ce)
564 return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
567 static const uint64_t vtd_paging_entry_rsvd_field[] = {
568 [0] = ~0ULL,
569 /* For not large page */
570 [1] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
571 [2] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
572 [3] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
573 [4] = 0x880ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
574 /* For large page */
575 [5] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
576 [6] = 0x1ff800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
577 [7] = 0x3ffff800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
578 [8] = 0x880ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
581 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
583 if (slpte & VTD_SL_PT_PAGE_SIZE_MASK) {
584 /* Maybe large page */
585 return slpte & vtd_paging_entry_rsvd_field[level + 4];
586 } else {
587 return slpte & vtd_paging_entry_rsvd_field[level];
591 /* Given the @gpa, get relevant @slptep. @slpte_level will be the last level
592 * of the translation, can be used for deciding the size of large page.
594 static int vtd_gpa_to_slpte(VTDContextEntry *ce, uint64_t gpa, bool is_write,
595 uint64_t *slptep, uint32_t *slpte_level,
596 bool *reads, bool *writes)
598 dma_addr_t addr = vtd_get_slpt_base_from_context(ce);
599 uint32_t level = vtd_get_level_from_context_entry(ce);
600 uint32_t offset;
601 uint64_t slpte;
602 uint32_t ce_agaw = vtd_get_agaw_from_context_entry(ce);
603 uint64_t access_right_check;
605 /* Check if @gpa is above 2^X-1, where X is the minimum of MGAW in CAP_REG
606 * and AW in context-entry.
608 if (gpa & ~((1ULL << MIN(ce_agaw, VTD_MGAW)) - 1)) {
609 VTD_DPRINTF(GENERAL, "error: gpa 0x%"PRIx64 " exceeds limits", gpa);
610 return -VTD_FR_ADDR_BEYOND_MGAW;
613 /* FIXME: what is the Atomics request here? */
614 access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
616 while (true) {
617 offset = vtd_gpa_level_offset(gpa, level);
618 slpte = vtd_get_slpte(addr, offset);
620 if (slpte == (uint64_t)-1) {
621 VTD_DPRINTF(GENERAL, "error: fail to access second-level paging "
622 "entry at level %"PRIu32 " for gpa 0x%"PRIx64,
623 level, gpa);
624 if (level == vtd_get_level_from_context_entry(ce)) {
625 /* Invalid programming of context-entry */
626 return -VTD_FR_CONTEXT_ENTRY_INV;
627 } else {
628 return -VTD_FR_PAGING_ENTRY_INV;
631 *reads = (*reads) && (slpte & VTD_SL_R);
632 *writes = (*writes) && (slpte & VTD_SL_W);
633 if (!(slpte & access_right_check)) {
634 VTD_DPRINTF(GENERAL, "error: lack of %s permission for "
635 "gpa 0x%"PRIx64 " slpte 0x%"PRIx64,
636 (is_write ? "write" : "read"), gpa, slpte);
637 return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
639 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
640 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in second "
641 "level paging entry level %"PRIu32 " slpte 0x%"PRIx64,
642 level, slpte);
643 return -VTD_FR_PAGING_ENTRY_RSVD;
646 if (vtd_is_last_slpte(slpte, level)) {
647 *slptep = slpte;
648 *slpte_level = level;
649 return 0;
651 addr = vtd_get_slpte_addr(slpte);
652 level--;
656 /* Map a device to its corresponding domain (context-entry) */
657 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
658 uint8_t devfn, VTDContextEntry *ce)
660 VTDRootEntry re;
661 int ret_fr;
663 ret_fr = vtd_get_root_entry(s, bus_num, &re);
664 if (ret_fr) {
665 return ret_fr;
668 if (!vtd_root_entry_present(&re)) {
669 VTD_DPRINTF(GENERAL, "error: root-entry #%"PRIu8 " is not present",
670 bus_num);
671 return -VTD_FR_ROOT_ENTRY_P;
672 } else if (re.rsvd || (re.val & VTD_ROOT_ENTRY_RSVD)) {
673 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in root-entry "
674 "hi 0x%"PRIx64 " lo 0x%"PRIx64, re.rsvd, re.val);
675 return -VTD_FR_ROOT_ENTRY_RSVD;
678 ret_fr = vtd_get_context_entry_from_root(&re, devfn, ce);
679 if (ret_fr) {
680 return ret_fr;
683 if (!vtd_context_entry_present(ce)) {
684 VTD_DPRINTF(GENERAL,
685 "error: context-entry #%"PRIu8 "(bus #%"PRIu8 ") "
686 "is not present", devfn, bus_num);
687 return -VTD_FR_CONTEXT_ENTRY_P;
688 } else if ((ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI) ||
689 (ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO)) {
690 VTD_DPRINTF(GENERAL,
691 "error: non-zero reserved field in context-entry "
692 "hi 0x%"PRIx64 " lo 0x%"PRIx64, ce->hi, ce->lo);
693 return -VTD_FR_CONTEXT_ENTRY_RSVD;
695 /* Check if the programming of context-entry is valid */
696 if (!vtd_is_level_supported(s, vtd_get_level_from_context_entry(ce))) {
697 VTD_DPRINTF(GENERAL, "error: unsupported Address Width value in "
698 "context-entry hi 0x%"PRIx64 " lo 0x%"PRIx64,
699 ce->hi, ce->lo);
700 return -VTD_FR_CONTEXT_ENTRY_INV;
701 } else if (ce->lo & VTD_CONTEXT_ENTRY_TT) {
702 VTD_DPRINTF(GENERAL, "error: unsupported Translation Type in "
703 "context-entry hi 0x%"PRIx64 " lo 0x%"PRIx64,
704 ce->hi, ce->lo);
705 return -VTD_FR_CONTEXT_ENTRY_INV;
707 return 0;
710 static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
712 return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
715 static const bool vtd_qualified_faults[] = {
716 [VTD_FR_RESERVED] = false,
717 [VTD_FR_ROOT_ENTRY_P] = false,
718 [VTD_FR_CONTEXT_ENTRY_P] = true,
719 [VTD_FR_CONTEXT_ENTRY_INV] = true,
720 [VTD_FR_ADDR_BEYOND_MGAW] = true,
721 [VTD_FR_WRITE] = true,
722 [VTD_FR_READ] = true,
723 [VTD_FR_PAGING_ENTRY_INV] = true,
724 [VTD_FR_ROOT_TABLE_INV] = false,
725 [VTD_FR_CONTEXT_TABLE_INV] = false,
726 [VTD_FR_ROOT_ENTRY_RSVD] = false,
727 [VTD_FR_PAGING_ENTRY_RSVD] = true,
728 [VTD_FR_CONTEXT_ENTRY_TT] = true,
729 [VTD_FR_RESERVED_ERR] = false,
730 [VTD_FR_MAX] = false,
733 /* To see if a fault condition is "qualified", which is reported to software
734 * only if the FPD field in the context-entry used to process the faulting
735 * request is 0.
737 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
739 return vtd_qualified_faults[fault];
742 static inline bool vtd_is_interrupt_addr(hwaddr addr)
744 return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
747 /* Map dev to context-entry then do a paging-structures walk to do a iommu
748 * translation.
750 * Called from RCU critical section.
752 * @bus_num: The bus number
753 * @devfn: The devfn, which is the combined of device and function number
754 * @is_write: The access is a write operation
755 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
757 static void vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
758 uint8_t devfn, hwaddr addr, bool is_write,
759 IOMMUTLBEntry *entry)
761 IntelIOMMUState *s = vtd_as->iommu_state;
762 VTDContextEntry ce;
763 uint8_t bus_num = pci_bus_num(bus);
764 VTDContextCacheEntry *cc_entry = &vtd_as->context_cache_entry;
765 uint64_t slpte;
766 uint32_t level;
767 uint16_t source_id = vtd_make_source_id(bus_num, devfn);
768 int ret_fr;
769 bool is_fpd_set = false;
770 bool reads = true;
771 bool writes = true;
772 VTDIOTLBEntry *iotlb_entry;
774 /* Check if the request is in interrupt address range */
775 if (vtd_is_interrupt_addr(addr)) {
776 if (is_write) {
777 /* FIXME: since we don't know the length of the access here, we
778 * treat Non-DWORD length write requests without PASID as
779 * interrupt requests, too. Withoud interrupt remapping support,
780 * we just use 1:1 mapping.
782 VTD_DPRINTF(MMU, "write request to interrupt address "
783 "gpa 0x%"PRIx64, addr);
784 entry->iova = addr & VTD_PAGE_MASK_4K;
785 entry->translated_addr = addr & VTD_PAGE_MASK_4K;
786 entry->addr_mask = ~VTD_PAGE_MASK_4K;
787 entry->perm = IOMMU_WO;
788 return;
789 } else {
790 VTD_DPRINTF(GENERAL, "error: read request from interrupt address "
791 "gpa 0x%"PRIx64, addr);
792 vtd_report_dmar_fault(s, source_id, addr, VTD_FR_READ, is_write);
793 return;
796 /* Try to fetch slpte form IOTLB */
797 iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
798 if (iotlb_entry) {
799 VTD_DPRINTF(CACHE, "hit iotlb sid 0x%"PRIx16 " gpa 0x%"PRIx64
800 " slpte 0x%"PRIx64 " did 0x%"PRIx16, source_id, addr,
801 iotlb_entry->slpte, iotlb_entry->domain_id);
802 slpte = iotlb_entry->slpte;
803 reads = iotlb_entry->read_flags;
804 writes = iotlb_entry->write_flags;
805 goto out;
807 /* Try to fetch context-entry from cache first */
808 if (cc_entry->context_cache_gen == s->context_cache_gen) {
809 VTD_DPRINTF(CACHE, "hit context-cache bus %d devfn %d "
810 "(hi %"PRIx64 " lo %"PRIx64 " gen %"PRIu32 ")",
811 bus_num, devfn, cc_entry->context_entry.hi,
812 cc_entry->context_entry.lo, cc_entry->context_cache_gen);
813 ce = cc_entry->context_entry;
814 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
815 } else {
816 ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
817 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
818 if (ret_fr) {
819 ret_fr = -ret_fr;
820 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
821 VTD_DPRINTF(FLOG, "fault processing is disabled for DMA "
822 "requests through this context-entry "
823 "(with FPD Set)");
824 } else {
825 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
827 return;
829 /* Update context-cache */
830 VTD_DPRINTF(CACHE, "update context-cache bus %d devfn %d "
831 "(hi %"PRIx64 " lo %"PRIx64 " gen %"PRIu32 "->%"PRIu32 ")",
832 bus_num, devfn, ce.hi, ce.lo,
833 cc_entry->context_cache_gen, s->context_cache_gen);
834 cc_entry->context_entry = ce;
835 cc_entry->context_cache_gen = s->context_cache_gen;
838 ret_fr = vtd_gpa_to_slpte(&ce, addr, is_write, &slpte, &level,
839 &reads, &writes);
840 if (ret_fr) {
841 ret_fr = -ret_fr;
842 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
843 VTD_DPRINTF(FLOG, "fault processing is disabled for DMA requests "
844 "through this context-entry (with FPD Set)");
845 } else {
846 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
848 return;
851 vtd_update_iotlb(s, source_id, VTD_CONTEXT_ENTRY_DID(ce.hi), addr, slpte,
852 reads, writes);
853 out:
854 entry->iova = addr & VTD_PAGE_MASK_4K;
855 entry->translated_addr = vtd_get_slpte_addr(slpte) & VTD_PAGE_MASK_4K;
856 entry->addr_mask = ~VTD_PAGE_MASK_4K;
857 entry->perm = (writes ? 2 : 0) + (reads ? 1 : 0);
860 static void vtd_root_table_setup(IntelIOMMUState *s)
862 s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
863 s->root_extended = s->root & VTD_RTADDR_RTT;
864 s->root &= VTD_RTADDR_ADDR_MASK;
866 VTD_DPRINTF(CSR, "root_table addr 0x%"PRIx64 " %s", s->root,
867 (s->root_extended ? "(extended)" : ""));
870 static void vtd_context_global_invalidate(IntelIOMMUState *s)
872 s->context_cache_gen++;
873 if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
874 vtd_reset_context_cache(s);
879 /* Find the VTD address space currently associated with a given bus number,
881 static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
883 VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
884 if (!vtd_bus) {
885 /* Iterate over the registered buses to find the one
886 * which currently hold this bus number, and update the bus_num lookup table:
888 GHashTableIter iter;
890 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
891 while (g_hash_table_iter_next (&iter, NULL, (void**)&vtd_bus)) {
892 if (pci_bus_num(vtd_bus->bus) == bus_num) {
893 s->vtd_as_by_bus_num[bus_num] = vtd_bus;
894 return vtd_bus;
898 return vtd_bus;
901 /* Do a context-cache device-selective invalidation.
902 * @func_mask: FM field after shifting
904 static void vtd_context_device_invalidate(IntelIOMMUState *s,
905 uint16_t source_id,
906 uint16_t func_mask)
908 uint16_t mask;
909 VTDBus *vtd_bus;
910 VTDAddressSpace *vtd_as;
911 uint16_t devfn;
912 uint16_t devfn_it;
914 switch (func_mask & 3) {
915 case 0:
916 mask = 0; /* No bits in the SID field masked */
917 break;
918 case 1:
919 mask = 4; /* Mask bit 2 in the SID field */
920 break;
921 case 2:
922 mask = 6; /* Mask bit 2:1 in the SID field */
923 break;
924 case 3:
925 mask = 7; /* Mask bit 2:0 in the SID field */
926 break;
928 VTD_DPRINTF(INV, "device-selective invalidation source 0x%"PRIx16
929 " mask %"PRIu16, source_id, mask);
930 vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
931 if (vtd_bus) {
932 devfn = VTD_SID_TO_DEVFN(source_id);
933 for (devfn_it = 0; devfn_it < VTD_PCI_DEVFN_MAX; ++devfn_it) {
934 vtd_as = vtd_bus->dev_as[devfn_it];
935 if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
936 VTD_DPRINTF(INV, "invalidate context-cahce of devfn 0x%"PRIx16,
937 devfn_it);
938 vtd_as->context_cache_entry.context_cache_gen = 0;
944 /* Context-cache invalidation
945 * Returns the Context Actual Invalidation Granularity.
946 * @val: the content of the CCMD_REG
948 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
950 uint64_t caig;
951 uint64_t type = val & VTD_CCMD_CIRG_MASK;
953 switch (type) {
954 case VTD_CCMD_DOMAIN_INVL:
955 VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
956 (uint16_t)VTD_CCMD_DID(val));
957 /* Fall through */
958 case VTD_CCMD_GLOBAL_INVL:
959 VTD_DPRINTF(INV, "global invalidation");
960 caig = VTD_CCMD_GLOBAL_INVL_A;
961 vtd_context_global_invalidate(s);
962 break;
964 case VTD_CCMD_DEVICE_INVL:
965 caig = VTD_CCMD_DEVICE_INVL_A;
966 vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
967 break;
969 default:
970 VTD_DPRINTF(GENERAL, "error: invalid granularity");
971 caig = 0;
973 return caig;
976 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
978 vtd_reset_iotlb(s);
981 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
983 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
984 &domain_id);
987 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
988 hwaddr addr, uint8_t am)
990 VTDIOTLBPageInvInfo info;
992 assert(am <= VTD_MAMV);
993 info.domain_id = domain_id;
994 info.gfn = addr >> VTD_PAGE_SHIFT_4K;
995 info.mask = ~((1 << am) - 1);
996 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
999 /* Flush IOTLB
1000 * Returns the IOTLB Actual Invalidation Granularity.
1001 * @val: the content of the IOTLB_REG
1003 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
1005 uint64_t iaig;
1006 uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
1007 uint16_t domain_id;
1008 hwaddr addr;
1009 uint8_t am;
1011 switch (type) {
1012 case VTD_TLB_GLOBAL_FLUSH:
1013 VTD_DPRINTF(INV, "global invalidation");
1014 iaig = VTD_TLB_GLOBAL_FLUSH_A;
1015 vtd_iotlb_global_invalidate(s);
1016 break;
1018 case VTD_TLB_DSI_FLUSH:
1019 domain_id = VTD_TLB_DID(val);
1020 VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1021 domain_id);
1022 iaig = VTD_TLB_DSI_FLUSH_A;
1023 vtd_iotlb_domain_invalidate(s, domain_id);
1024 break;
1026 case VTD_TLB_PSI_FLUSH:
1027 domain_id = VTD_TLB_DID(val);
1028 addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
1029 am = VTD_IVA_AM(addr);
1030 addr = VTD_IVA_ADDR(addr);
1031 VTD_DPRINTF(INV, "page-selective invalidation domain 0x%"PRIx16
1032 " addr 0x%"PRIx64 " mask %"PRIu8, domain_id, addr, am);
1033 if (am > VTD_MAMV) {
1034 VTD_DPRINTF(GENERAL, "error: supported max address mask value is "
1035 "%"PRIu8, (uint8_t)VTD_MAMV);
1036 iaig = 0;
1037 break;
1039 iaig = VTD_TLB_PSI_FLUSH_A;
1040 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1041 break;
1043 default:
1044 VTD_DPRINTF(GENERAL, "error: invalid granularity");
1045 iaig = 0;
1047 return iaig;
1050 static inline bool vtd_queued_inv_enable_check(IntelIOMMUState *s)
1052 return s->iq_tail == 0;
1055 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
1057 return s->qi_enabled && (s->iq_tail == s->iq_head) &&
1058 (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
1061 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
1063 uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
1065 VTD_DPRINTF(INV, "Queued Invalidation Enable %s", (en ? "on" : "off"));
1066 if (en) {
1067 if (vtd_queued_inv_enable_check(s)) {
1068 s->iq = iqa_val & VTD_IQA_IQA_MASK;
1069 /* 2^(x+8) entries */
1070 s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8);
1071 s->qi_enabled = true;
1072 VTD_DPRINTF(INV, "DMAR_IQA_REG 0x%"PRIx64, iqa_val);
1073 VTD_DPRINTF(INV, "Invalidation Queue addr 0x%"PRIx64 " size %d",
1074 s->iq, s->iq_size);
1075 /* Ok - report back to driver */
1076 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
1077 } else {
1078 VTD_DPRINTF(GENERAL, "error: can't enable Queued Invalidation: "
1079 "tail %"PRIu16, s->iq_tail);
1081 } else {
1082 if (vtd_queued_inv_disable_check(s)) {
1083 /* disable Queued Invalidation */
1084 vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
1085 s->iq_head = 0;
1086 s->qi_enabled = false;
1087 /* Ok - report back to driver */
1088 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
1089 } else {
1090 VTD_DPRINTF(GENERAL, "error: can't disable Queued Invalidation: "
1091 "head %"PRIu16 ", tail %"PRIu16
1092 ", last_descriptor %"PRIu8,
1093 s->iq_head, s->iq_tail, s->iq_last_desc_type);
1098 /* Set Root Table Pointer */
1099 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
1101 VTD_DPRINTF(CSR, "set Root Table Pointer");
1103 vtd_root_table_setup(s);
1104 /* Ok - report back to driver */
1105 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
1108 /* Handle Translation Enable/Disable */
1109 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
1111 VTD_DPRINTF(CSR, "Translation Enable %s", (en ? "on" : "off"));
1113 if (en) {
1114 s->dmar_enabled = true;
1115 /* Ok - report back to driver */
1116 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
1117 } else {
1118 s->dmar_enabled = false;
1120 /* Clear the index of Fault Recording Register */
1121 s->next_frcd_reg = 0;
1122 /* Ok - report back to driver */
1123 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
1127 /* Handle write to Global Command Register */
1128 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
1130 uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
1131 uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
1132 uint32_t changed = status ^ val;
1134 VTD_DPRINTF(CSR, "value 0x%"PRIx32 " status 0x%"PRIx32, val, status);
1135 if (changed & VTD_GCMD_TE) {
1136 /* Translation enable/disable */
1137 vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
1139 if (val & VTD_GCMD_SRTP) {
1140 /* Set/update the root-table pointer */
1141 vtd_handle_gcmd_srtp(s);
1143 if (changed & VTD_GCMD_QIE) {
1144 /* Queued Invalidation Enable */
1145 vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
1149 /* Handle write to Context Command Register */
1150 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
1152 uint64_t ret;
1153 uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
1155 /* Context-cache invalidation request */
1156 if (val & VTD_CCMD_ICC) {
1157 if (s->qi_enabled) {
1158 VTD_DPRINTF(GENERAL, "error: Queued Invalidation enabled, "
1159 "should not use register-based invalidation");
1160 return;
1162 ret = vtd_context_cache_invalidate(s, val);
1163 /* Invalidation completed. Change something to show */
1164 vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
1165 ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
1166 ret);
1167 VTD_DPRINTF(INV, "CCMD_REG write-back val: 0x%"PRIx64, ret);
1171 /* Handle write to IOTLB Invalidation Register */
1172 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
1174 uint64_t ret;
1175 uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
1177 /* IOTLB invalidation request */
1178 if (val & VTD_TLB_IVT) {
1179 if (s->qi_enabled) {
1180 VTD_DPRINTF(GENERAL, "error: Queued Invalidation enabled, "
1181 "should not use register-based invalidation");
1182 return;
1184 ret = vtd_iotlb_flush(s, val);
1185 /* Invalidation completed. Change something to show */
1186 vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
1187 ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
1188 VTD_TLB_FLUSH_GRANU_MASK_A, ret);
1189 VTD_DPRINTF(INV, "IOTLB_REG write-back val: 0x%"PRIx64, ret);
1193 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
1194 static bool vtd_get_inv_desc(dma_addr_t base_addr, uint32_t offset,
1195 VTDInvDesc *inv_desc)
1197 dma_addr_t addr = base_addr + offset * sizeof(*inv_desc);
1198 if (dma_memory_read(&address_space_memory, addr, inv_desc,
1199 sizeof(*inv_desc))) {
1200 VTD_DPRINTF(GENERAL, "error: fail to fetch Invalidation Descriptor "
1201 "base_addr 0x%"PRIx64 " offset %"PRIu32, base_addr, offset);
1202 inv_desc->lo = 0;
1203 inv_desc->hi = 0;
1205 return false;
1207 inv_desc->lo = le64_to_cpu(inv_desc->lo);
1208 inv_desc->hi = le64_to_cpu(inv_desc->hi);
1209 return true;
1212 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1214 if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
1215 (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
1216 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in Invalidation "
1217 "Wait Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1218 inv_desc->hi, inv_desc->lo);
1219 return false;
1221 if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
1222 /* Status Write */
1223 uint32_t status_data = (uint32_t)(inv_desc->lo >>
1224 VTD_INV_DESC_WAIT_DATA_SHIFT);
1226 assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
1228 /* FIXME: need to be masked with HAW? */
1229 dma_addr_t status_addr = inv_desc->hi;
1230 VTD_DPRINTF(INV, "status data 0x%x, status addr 0x%"PRIx64,
1231 status_data, status_addr);
1232 status_data = cpu_to_le32(status_data);
1233 if (dma_memory_write(&address_space_memory, status_addr, &status_data,
1234 sizeof(status_data))) {
1235 VTD_DPRINTF(GENERAL, "error: fail to perform a coherent write");
1236 return false;
1238 } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
1239 /* Interrupt flag */
1240 VTD_DPRINTF(INV, "Invalidation Wait Descriptor interrupt completion");
1241 vtd_generate_completion_event(s);
1242 } else {
1243 VTD_DPRINTF(GENERAL, "error: invalid Invalidation Wait Descriptor: "
1244 "hi 0x%"PRIx64 " lo 0x%"PRIx64, inv_desc->hi, inv_desc->lo);
1245 return false;
1247 return true;
1250 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
1251 VTDInvDesc *inv_desc)
1253 if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
1254 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in Context-cache "
1255 "Invalidate Descriptor");
1256 return false;
1258 switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
1259 case VTD_INV_DESC_CC_DOMAIN:
1260 VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1261 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
1262 /* Fall through */
1263 case VTD_INV_DESC_CC_GLOBAL:
1264 VTD_DPRINTF(INV, "global invalidation");
1265 vtd_context_global_invalidate(s);
1266 break;
1268 case VTD_INV_DESC_CC_DEVICE:
1269 vtd_context_device_invalidate(s, VTD_INV_DESC_CC_SID(inv_desc->lo),
1270 VTD_INV_DESC_CC_FM(inv_desc->lo));
1271 break;
1273 default:
1274 VTD_DPRINTF(GENERAL, "error: invalid granularity in Context-cache "
1275 "Invalidate Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1276 inv_desc->hi, inv_desc->lo);
1277 return false;
1279 return true;
1282 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1284 uint16_t domain_id;
1285 uint8_t am;
1286 hwaddr addr;
1288 if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
1289 (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
1290 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in IOTLB "
1291 "Invalidate Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1292 inv_desc->hi, inv_desc->lo);
1293 return false;
1296 switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
1297 case VTD_INV_DESC_IOTLB_GLOBAL:
1298 VTD_DPRINTF(INV, "global invalidation");
1299 vtd_iotlb_global_invalidate(s);
1300 break;
1302 case VTD_INV_DESC_IOTLB_DOMAIN:
1303 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1304 VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1305 domain_id);
1306 vtd_iotlb_domain_invalidate(s, domain_id);
1307 break;
1309 case VTD_INV_DESC_IOTLB_PAGE:
1310 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1311 addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
1312 am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
1313 VTD_DPRINTF(INV, "page-selective invalidation domain 0x%"PRIx16
1314 " addr 0x%"PRIx64 " mask %"PRIu8, domain_id, addr, am);
1315 if (am > VTD_MAMV) {
1316 VTD_DPRINTF(GENERAL, "error: supported max address mask value is "
1317 "%"PRIu8, (uint8_t)VTD_MAMV);
1318 return false;
1320 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1321 break;
1323 default:
1324 VTD_DPRINTF(GENERAL, "error: invalid granularity in IOTLB Invalidate "
1325 "Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1326 inv_desc->hi, inv_desc->lo);
1327 return false;
1329 return true;
1332 static bool vtd_process_inv_desc(IntelIOMMUState *s)
1334 VTDInvDesc inv_desc;
1335 uint8_t desc_type;
1337 VTD_DPRINTF(INV, "iq head %"PRIu16, s->iq_head);
1338 if (!vtd_get_inv_desc(s->iq, s->iq_head, &inv_desc)) {
1339 s->iq_last_desc_type = VTD_INV_DESC_NONE;
1340 return false;
1342 desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
1343 /* FIXME: should update at first or at last? */
1344 s->iq_last_desc_type = desc_type;
1346 switch (desc_type) {
1347 case VTD_INV_DESC_CC:
1348 VTD_DPRINTF(INV, "Context-cache Invalidate Descriptor hi 0x%"PRIx64
1349 " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
1350 if (!vtd_process_context_cache_desc(s, &inv_desc)) {
1351 return false;
1353 break;
1355 case VTD_INV_DESC_IOTLB:
1356 VTD_DPRINTF(INV, "IOTLB Invalidate Descriptor hi 0x%"PRIx64
1357 " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
1358 if (!vtd_process_iotlb_desc(s, &inv_desc)) {
1359 return false;
1361 break;
1363 case VTD_INV_DESC_WAIT:
1364 VTD_DPRINTF(INV, "Invalidation Wait Descriptor hi 0x%"PRIx64
1365 " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
1366 if (!vtd_process_wait_desc(s, &inv_desc)) {
1367 return false;
1369 break;
1371 default:
1372 VTD_DPRINTF(GENERAL, "error: unkonw Invalidation Descriptor type "
1373 "hi 0x%"PRIx64 " lo 0x%"PRIx64 " type %"PRIu8,
1374 inv_desc.hi, inv_desc.lo, desc_type);
1375 return false;
1377 s->iq_head++;
1378 if (s->iq_head == s->iq_size) {
1379 s->iq_head = 0;
1381 return true;
1384 /* Try to fetch and process more Invalidation Descriptors */
1385 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
1387 VTD_DPRINTF(INV, "fetch Invalidation Descriptors");
1388 if (s->iq_tail >= s->iq_size) {
1389 /* Detects an invalid Tail pointer */
1390 VTD_DPRINTF(GENERAL, "error: iq_tail is %"PRIu16
1391 " while iq_size is %"PRIu16, s->iq_tail, s->iq_size);
1392 vtd_handle_inv_queue_error(s);
1393 return;
1395 while (s->iq_head != s->iq_tail) {
1396 if (!vtd_process_inv_desc(s)) {
1397 /* Invalidation Queue Errors */
1398 vtd_handle_inv_queue_error(s);
1399 break;
1401 /* Must update the IQH_REG in time */
1402 vtd_set_quad_raw(s, DMAR_IQH_REG,
1403 (((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) &
1404 VTD_IQH_QH_MASK);
1408 /* Handle write to Invalidation Queue Tail Register */
1409 static void vtd_handle_iqt_write(IntelIOMMUState *s)
1411 uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
1413 s->iq_tail = VTD_IQT_QT(val);
1414 VTD_DPRINTF(INV, "set iq tail %"PRIu16, s->iq_tail);
1415 if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
1416 /* Process Invalidation Queue here */
1417 vtd_fetch_inv_desc(s);
1421 static void vtd_handle_fsts_write(IntelIOMMUState *s)
1423 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
1424 uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
1425 uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
1427 if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
1428 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
1429 VTD_DPRINTF(FLOG, "all pending interrupt conditions serviced, clear "
1430 "IP field of FECTL_REG");
1432 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
1433 * Descriptors if there are any when Queued Invalidation is enabled?
1437 static void vtd_handle_fectl_write(IntelIOMMUState *s)
1439 uint32_t fectl_reg;
1440 /* FIXME: when software clears the IM field, check the IP field. But do we
1441 * need to compare the old value and the new value to conclude that
1442 * software clears the IM field? Or just check if the IM field is zero?
1444 fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
1445 if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
1446 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
1447 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
1448 VTD_DPRINTF(FLOG, "IM field is cleared, generate "
1449 "fault event interrupt");
1453 static void vtd_handle_ics_write(IntelIOMMUState *s)
1455 uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
1456 uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
1458 if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
1459 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
1460 VTD_DPRINTF(INV, "pending completion interrupt condition serviced, "
1461 "clear IP field of IECTL_REG");
1465 static void vtd_handle_iectl_write(IntelIOMMUState *s)
1467 uint32_t iectl_reg;
1468 /* FIXME: when software clears the IM field, check the IP field. But do we
1469 * need to compare the old value and the new value to conclude that
1470 * software clears the IM field? Or just check if the IM field is zero?
1472 iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
1473 if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
1474 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
1475 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
1476 VTD_DPRINTF(INV, "IM field is cleared, generate "
1477 "invalidation event interrupt");
1481 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
1483 IntelIOMMUState *s = opaque;
1484 uint64_t val;
1486 if (addr + size > DMAR_REG_SIZE) {
1487 VTD_DPRINTF(GENERAL, "error: addr outside region: max 0x%"PRIx64
1488 ", got 0x%"PRIx64 " %d",
1489 (uint64_t)DMAR_REG_SIZE, addr, size);
1490 return (uint64_t)-1;
1493 switch (addr) {
1494 /* Root Table Address Register, 64-bit */
1495 case DMAR_RTADDR_REG:
1496 if (size == 4) {
1497 val = s->root & ((1ULL << 32) - 1);
1498 } else {
1499 val = s->root;
1501 break;
1503 case DMAR_RTADDR_REG_HI:
1504 assert(size == 4);
1505 val = s->root >> 32;
1506 break;
1508 /* Invalidation Queue Address Register, 64-bit */
1509 case DMAR_IQA_REG:
1510 val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
1511 if (size == 4) {
1512 val = val & ((1ULL << 32) - 1);
1514 break;
1516 case DMAR_IQA_REG_HI:
1517 assert(size == 4);
1518 val = s->iq >> 32;
1519 break;
1521 default:
1522 if (size == 4) {
1523 val = vtd_get_long(s, addr);
1524 } else {
1525 val = vtd_get_quad(s, addr);
1528 VTD_DPRINTF(CSR, "addr 0x%"PRIx64 " size %d val 0x%"PRIx64,
1529 addr, size, val);
1530 return val;
1533 static void vtd_mem_write(void *opaque, hwaddr addr,
1534 uint64_t val, unsigned size)
1536 IntelIOMMUState *s = opaque;
1538 if (addr + size > DMAR_REG_SIZE) {
1539 VTD_DPRINTF(GENERAL, "error: addr outside region: max 0x%"PRIx64
1540 ", got 0x%"PRIx64 " %d",
1541 (uint64_t)DMAR_REG_SIZE, addr, size);
1542 return;
1545 switch (addr) {
1546 /* Global Command Register, 32-bit */
1547 case DMAR_GCMD_REG:
1548 VTD_DPRINTF(CSR, "DMAR_GCMD_REG write addr 0x%"PRIx64
1549 ", size %d, val 0x%"PRIx64, addr, size, val);
1550 vtd_set_long(s, addr, val);
1551 vtd_handle_gcmd_write(s);
1552 break;
1554 /* Context Command Register, 64-bit */
1555 case DMAR_CCMD_REG:
1556 VTD_DPRINTF(CSR, "DMAR_CCMD_REG write addr 0x%"PRIx64
1557 ", size %d, val 0x%"PRIx64, addr, size, val);
1558 if (size == 4) {
1559 vtd_set_long(s, addr, val);
1560 } else {
1561 vtd_set_quad(s, addr, val);
1562 vtd_handle_ccmd_write(s);
1564 break;
1566 case DMAR_CCMD_REG_HI:
1567 VTD_DPRINTF(CSR, "DMAR_CCMD_REG_HI write addr 0x%"PRIx64
1568 ", size %d, val 0x%"PRIx64, addr, size, val);
1569 assert(size == 4);
1570 vtd_set_long(s, addr, val);
1571 vtd_handle_ccmd_write(s);
1572 break;
1574 /* IOTLB Invalidation Register, 64-bit */
1575 case DMAR_IOTLB_REG:
1576 VTD_DPRINTF(INV, "DMAR_IOTLB_REG write addr 0x%"PRIx64
1577 ", size %d, val 0x%"PRIx64, addr, size, val);
1578 if (size == 4) {
1579 vtd_set_long(s, addr, val);
1580 } else {
1581 vtd_set_quad(s, addr, val);
1582 vtd_handle_iotlb_write(s);
1584 break;
1586 case DMAR_IOTLB_REG_HI:
1587 VTD_DPRINTF(INV, "DMAR_IOTLB_REG_HI write addr 0x%"PRIx64
1588 ", size %d, val 0x%"PRIx64, addr, size, val);
1589 assert(size == 4);
1590 vtd_set_long(s, addr, val);
1591 vtd_handle_iotlb_write(s);
1592 break;
1594 /* Invalidate Address Register, 64-bit */
1595 case DMAR_IVA_REG:
1596 VTD_DPRINTF(INV, "DMAR_IVA_REG write addr 0x%"PRIx64
1597 ", size %d, val 0x%"PRIx64, addr, size, val);
1598 if (size == 4) {
1599 vtd_set_long(s, addr, val);
1600 } else {
1601 vtd_set_quad(s, addr, val);
1603 break;
1605 case DMAR_IVA_REG_HI:
1606 VTD_DPRINTF(INV, "DMAR_IVA_REG_HI write addr 0x%"PRIx64
1607 ", size %d, val 0x%"PRIx64, addr, size, val);
1608 assert(size == 4);
1609 vtd_set_long(s, addr, val);
1610 break;
1612 /* Fault Status Register, 32-bit */
1613 case DMAR_FSTS_REG:
1614 VTD_DPRINTF(FLOG, "DMAR_FSTS_REG write addr 0x%"PRIx64
1615 ", size %d, val 0x%"PRIx64, addr, size, val);
1616 assert(size == 4);
1617 vtd_set_long(s, addr, val);
1618 vtd_handle_fsts_write(s);
1619 break;
1621 /* Fault Event Control Register, 32-bit */
1622 case DMAR_FECTL_REG:
1623 VTD_DPRINTF(FLOG, "DMAR_FECTL_REG write addr 0x%"PRIx64
1624 ", size %d, val 0x%"PRIx64, addr, size, val);
1625 assert(size == 4);
1626 vtd_set_long(s, addr, val);
1627 vtd_handle_fectl_write(s);
1628 break;
1630 /* Fault Event Data Register, 32-bit */
1631 case DMAR_FEDATA_REG:
1632 VTD_DPRINTF(FLOG, "DMAR_FEDATA_REG write addr 0x%"PRIx64
1633 ", size %d, val 0x%"PRIx64, addr, size, val);
1634 assert(size == 4);
1635 vtd_set_long(s, addr, val);
1636 break;
1638 /* Fault Event Address Register, 32-bit */
1639 case DMAR_FEADDR_REG:
1640 VTD_DPRINTF(FLOG, "DMAR_FEADDR_REG write addr 0x%"PRIx64
1641 ", size %d, val 0x%"PRIx64, addr, size, val);
1642 assert(size == 4);
1643 vtd_set_long(s, addr, val);
1644 break;
1646 /* Fault Event Upper Address Register, 32-bit */
1647 case DMAR_FEUADDR_REG:
1648 VTD_DPRINTF(FLOG, "DMAR_FEUADDR_REG write addr 0x%"PRIx64
1649 ", size %d, val 0x%"PRIx64, addr, size, val);
1650 assert(size == 4);
1651 vtd_set_long(s, addr, val);
1652 break;
1654 /* Protected Memory Enable Register, 32-bit */
1655 case DMAR_PMEN_REG:
1656 VTD_DPRINTF(CSR, "DMAR_PMEN_REG write addr 0x%"PRIx64
1657 ", size %d, val 0x%"PRIx64, addr, size, val);
1658 assert(size == 4);
1659 vtd_set_long(s, addr, val);
1660 break;
1662 /* Root Table Address Register, 64-bit */
1663 case DMAR_RTADDR_REG:
1664 VTD_DPRINTF(CSR, "DMAR_RTADDR_REG write addr 0x%"PRIx64
1665 ", size %d, val 0x%"PRIx64, addr, size, val);
1666 if (size == 4) {
1667 vtd_set_long(s, addr, val);
1668 } else {
1669 vtd_set_quad(s, addr, val);
1671 break;
1673 case DMAR_RTADDR_REG_HI:
1674 VTD_DPRINTF(CSR, "DMAR_RTADDR_REG_HI write addr 0x%"PRIx64
1675 ", size %d, val 0x%"PRIx64, addr, size, val);
1676 assert(size == 4);
1677 vtd_set_long(s, addr, val);
1678 break;
1680 /* Invalidation Queue Tail Register, 64-bit */
1681 case DMAR_IQT_REG:
1682 VTD_DPRINTF(INV, "DMAR_IQT_REG write addr 0x%"PRIx64
1683 ", size %d, val 0x%"PRIx64, addr, size, val);
1684 if (size == 4) {
1685 vtd_set_long(s, addr, val);
1686 } else {
1687 vtd_set_quad(s, addr, val);
1689 vtd_handle_iqt_write(s);
1690 break;
1692 case DMAR_IQT_REG_HI:
1693 VTD_DPRINTF(INV, "DMAR_IQT_REG_HI write addr 0x%"PRIx64
1694 ", size %d, val 0x%"PRIx64, addr, size, val);
1695 assert(size == 4);
1696 vtd_set_long(s, addr, val);
1697 /* 19:63 of IQT_REG is RsvdZ, do nothing here */
1698 break;
1700 /* Invalidation Queue Address Register, 64-bit */
1701 case DMAR_IQA_REG:
1702 VTD_DPRINTF(INV, "DMAR_IQA_REG write addr 0x%"PRIx64
1703 ", size %d, val 0x%"PRIx64, addr, size, val);
1704 if (size == 4) {
1705 vtd_set_long(s, addr, val);
1706 } else {
1707 vtd_set_quad(s, addr, val);
1709 break;
1711 case DMAR_IQA_REG_HI:
1712 VTD_DPRINTF(INV, "DMAR_IQA_REG_HI write addr 0x%"PRIx64
1713 ", size %d, val 0x%"PRIx64, addr, size, val);
1714 assert(size == 4);
1715 vtd_set_long(s, addr, val);
1716 break;
1718 /* Invalidation Completion Status Register, 32-bit */
1719 case DMAR_ICS_REG:
1720 VTD_DPRINTF(INV, "DMAR_ICS_REG write addr 0x%"PRIx64
1721 ", size %d, val 0x%"PRIx64, addr, size, val);
1722 assert(size == 4);
1723 vtd_set_long(s, addr, val);
1724 vtd_handle_ics_write(s);
1725 break;
1727 /* Invalidation Event Control Register, 32-bit */
1728 case DMAR_IECTL_REG:
1729 VTD_DPRINTF(INV, "DMAR_IECTL_REG write addr 0x%"PRIx64
1730 ", size %d, val 0x%"PRIx64, addr, size, val);
1731 assert(size == 4);
1732 vtd_set_long(s, addr, val);
1733 vtd_handle_iectl_write(s);
1734 break;
1736 /* Invalidation Event Data Register, 32-bit */
1737 case DMAR_IEDATA_REG:
1738 VTD_DPRINTF(INV, "DMAR_IEDATA_REG write addr 0x%"PRIx64
1739 ", size %d, val 0x%"PRIx64, addr, size, val);
1740 assert(size == 4);
1741 vtd_set_long(s, addr, val);
1742 break;
1744 /* Invalidation Event Address Register, 32-bit */
1745 case DMAR_IEADDR_REG:
1746 VTD_DPRINTF(INV, "DMAR_IEADDR_REG write addr 0x%"PRIx64
1747 ", size %d, val 0x%"PRIx64, addr, size, val);
1748 assert(size == 4);
1749 vtd_set_long(s, addr, val);
1750 break;
1752 /* Invalidation Event Upper Address Register, 32-bit */
1753 case DMAR_IEUADDR_REG:
1754 VTD_DPRINTF(INV, "DMAR_IEUADDR_REG write addr 0x%"PRIx64
1755 ", size %d, val 0x%"PRIx64, addr, size, val);
1756 assert(size == 4);
1757 vtd_set_long(s, addr, val);
1758 break;
1760 /* Fault Recording Registers, 128-bit */
1761 case DMAR_FRCD_REG_0_0:
1762 VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_0 write addr 0x%"PRIx64
1763 ", size %d, val 0x%"PRIx64, addr, size, val);
1764 if (size == 4) {
1765 vtd_set_long(s, addr, val);
1766 } else {
1767 vtd_set_quad(s, addr, val);
1769 break;
1771 case DMAR_FRCD_REG_0_1:
1772 VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_1 write addr 0x%"PRIx64
1773 ", size %d, val 0x%"PRIx64, addr, size, val);
1774 assert(size == 4);
1775 vtd_set_long(s, addr, val);
1776 break;
1778 case DMAR_FRCD_REG_0_2:
1779 VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_2 write addr 0x%"PRIx64
1780 ", size %d, val 0x%"PRIx64, addr, size, val);
1781 if (size == 4) {
1782 vtd_set_long(s, addr, val);
1783 } else {
1784 vtd_set_quad(s, addr, val);
1785 /* May clear bit 127 (Fault), update PPF */
1786 vtd_update_fsts_ppf(s);
1788 break;
1790 case DMAR_FRCD_REG_0_3:
1791 VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_3 write addr 0x%"PRIx64
1792 ", size %d, val 0x%"PRIx64, addr, size, val);
1793 assert(size == 4);
1794 vtd_set_long(s, addr, val);
1795 /* May clear bit 127 (Fault), update PPF */
1796 vtd_update_fsts_ppf(s);
1797 break;
1799 default:
1800 VTD_DPRINTF(GENERAL, "error: unhandled reg write addr 0x%"PRIx64
1801 ", size %d, val 0x%"PRIx64, addr, size, val);
1802 if (size == 4) {
1803 vtd_set_long(s, addr, val);
1804 } else {
1805 vtd_set_quad(s, addr, val);
1810 static IOMMUTLBEntry vtd_iommu_translate(MemoryRegion *iommu, hwaddr addr,
1811 bool is_write)
1813 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
1814 IntelIOMMUState *s = vtd_as->iommu_state;
1815 IOMMUTLBEntry ret = {
1816 .target_as = &address_space_memory,
1817 .iova = addr,
1818 .translated_addr = 0,
1819 .addr_mask = ~(hwaddr)0,
1820 .perm = IOMMU_NONE,
1823 if (!s->dmar_enabled) {
1824 /* DMAR disabled, passthrough, use 4k-page*/
1825 ret.iova = addr & VTD_PAGE_MASK_4K;
1826 ret.translated_addr = addr & VTD_PAGE_MASK_4K;
1827 ret.addr_mask = ~VTD_PAGE_MASK_4K;
1828 ret.perm = IOMMU_RW;
1829 return ret;
1832 vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn, addr,
1833 is_write, &ret);
1834 VTD_DPRINTF(MMU,
1835 "bus %"PRIu8 " slot %"PRIu8 " func %"PRIu8 " devfn %"PRIu8
1836 " gpa 0x%"PRIx64 " hpa 0x%"PRIx64, pci_bus_num(vtd_as->bus),
1837 VTD_PCI_SLOT(vtd_as->devfn), VTD_PCI_FUNC(vtd_as->devfn),
1838 vtd_as->devfn, addr, ret.translated_addr);
1839 return ret;
1842 static const VMStateDescription vtd_vmstate = {
1843 .name = "iommu-intel",
1844 .unmigratable = 1,
1847 static const MemoryRegionOps vtd_mem_ops = {
1848 .read = vtd_mem_read,
1849 .write = vtd_mem_write,
1850 .endianness = DEVICE_LITTLE_ENDIAN,
1851 .impl = {
1852 .min_access_size = 4,
1853 .max_access_size = 8,
1855 .valid = {
1856 .min_access_size = 4,
1857 .max_access_size = 8,
1861 static Property vtd_properties[] = {
1862 DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
1863 DEFINE_PROP_END_OF_LIST(),
1867 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
1869 uintptr_t key = (uintptr_t)bus;
1870 VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
1871 VTDAddressSpace *vtd_dev_as;
1873 if (!vtd_bus) {
1874 /* No corresponding free() */
1875 vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * VTD_PCI_DEVFN_MAX);
1876 vtd_bus->bus = bus;
1877 key = (uintptr_t)bus;
1878 g_hash_table_insert(s->vtd_as_by_busptr, &key, vtd_bus);
1881 vtd_dev_as = vtd_bus->dev_as[devfn];
1883 if (!vtd_dev_as) {
1884 vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
1886 vtd_dev_as->bus = bus;
1887 vtd_dev_as->devfn = (uint8_t)devfn;
1888 vtd_dev_as->iommu_state = s;
1889 vtd_dev_as->context_cache_entry.context_cache_gen = 0;
1890 memory_region_init_iommu(&vtd_dev_as->iommu, OBJECT(s),
1891 &s->iommu_ops, "intel_iommu", UINT64_MAX);
1892 address_space_init(&vtd_dev_as->as,
1893 &vtd_dev_as->iommu, "intel_iommu");
1895 return vtd_dev_as;
1898 /* Do the initialization. It will also be called when reset, so pay
1899 * attention when adding new initialization stuff.
1901 static void vtd_init(IntelIOMMUState *s)
1903 memset(s->csr, 0, DMAR_REG_SIZE);
1904 memset(s->wmask, 0, DMAR_REG_SIZE);
1905 memset(s->w1cmask, 0, DMAR_REG_SIZE);
1906 memset(s->womask, 0, DMAR_REG_SIZE);
1908 s->iommu_ops.translate = vtd_iommu_translate;
1909 s->root = 0;
1910 s->root_extended = false;
1911 s->dmar_enabled = false;
1912 s->iq_head = 0;
1913 s->iq_tail = 0;
1914 s->iq = 0;
1915 s->iq_size = 0;
1916 s->qi_enabled = false;
1917 s->iq_last_desc_type = VTD_INV_DESC_NONE;
1918 s->next_frcd_reg = 0;
1919 s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND | VTD_CAP_MGAW |
1920 VTD_CAP_SAGAW | VTD_CAP_MAMV | VTD_CAP_PSI;
1921 s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
1923 vtd_reset_context_cache(s);
1924 vtd_reset_iotlb(s);
1926 /* Define registers with default values and bit semantics */
1927 vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
1928 vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
1929 vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
1930 vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
1931 vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
1932 vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
1933 vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffff000ULL, 0);
1934 vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
1935 vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
1937 /* Advanced Fault Logging not supported */
1938 vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
1939 vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
1940 vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
1941 vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
1943 /* Treated as RsvdZ when EIM in ECAP_REG is not supported
1944 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
1946 vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
1948 /* Treated as RO for implementations that PLMR and PHMR fields reported
1949 * as Clear in the CAP_REG.
1950 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
1952 vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
1954 vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
1955 vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
1956 vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff007ULL, 0);
1957 vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
1958 vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
1959 vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
1960 vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
1961 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
1962 vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
1964 /* IOTLB registers */
1965 vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
1966 vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
1967 vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
1969 /* Fault Recording Registers, 128-bit */
1970 vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
1971 vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
1974 /* Should not reset address_spaces when reset because devices will still use
1975 * the address space they got at first (won't ask the bus again).
1977 static void vtd_reset(DeviceState *dev)
1979 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
1981 VTD_DPRINTF(GENERAL, "");
1982 vtd_init(s);
1985 static void vtd_realize(DeviceState *dev, Error **errp)
1987 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
1989 VTD_DPRINTF(GENERAL, "");
1990 memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
1991 memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
1992 "intel_iommu", DMAR_REG_SIZE);
1993 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
1994 /* No corresponding destroy */
1995 s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
1996 g_free, g_free);
1997 s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
1998 g_free, g_free);
1999 vtd_init(s);
2002 static void vtd_class_init(ObjectClass *klass, void *data)
2004 DeviceClass *dc = DEVICE_CLASS(klass);
2006 dc->reset = vtd_reset;
2007 dc->realize = vtd_realize;
2008 dc->vmsd = &vtd_vmstate;
2009 dc->props = vtd_properties;
2012 static const TypeInfo vtd_info = {
2013 .name = TYPE_INTEL_IOMMU_DEVICE,
2014 .parent = TYPE_SYS_BUS_DEVICE,
2015 .instance_size = sizeof(IntelIOMMUState),
2016 .class_init = vtd_class_init,
2019 static void vtd_register_types(void)
2021 VTD_DPRINTF(GENERAL, "");
2022 type_register_static(&vtd_info);
2025 type_init(vtd_register_types)