2 * TI OMAP general purpose memory controller emulation.
4 * Copyright (C) 2007-2009 Nokia Corporation
5 * Original code written by Andrzej Zaborowski <andrew@openedhand.com>
6 * Enhancements for OMAP3 and NAND support written by Juha Riihimäki
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 or
11 * (at your option) any later version of the License.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
25 #include "exec-memory.h"
27 /* General-Purpose Memory Controller */
41 struct omap_gpmc_cs_file_s
{
44 MemoryRegion container
;
45 MemoryRegion nandiomem
;
53 uint32_t config1
; /* GPMC_PREFETCH_CONFIG1 */
54 uint32_t transfercount
; /* GPMC_PREFETCH_CONFIG2:TRANSFERCOUNT */
55 int startengine
; /* GPMC_PREFETCH_CONTROL:STARTENGINE */
56 int fifopointer
; /* GPMC_PREFETCH_STATUS:FIFOPOINTER */
57 int count
; /* GPMC_PREFETCH_STATUS:COUNTVALUE */
63 #define OMAP_GPMC_8BIT 0
64 #define OMAP_GPMC_16BIT 1
65 #define OMAP_GPMC_NOR 0
66 #define OMAP_GPMC_NAND 2
68 static int omap_gpmc_devtype(struct omap_gpmc_cs_file_s
*f
)
70 return (f
->config
[0] >> 10) & 3;
73 static int omap_gpmc_devsize(struct omap_gpmc_cs_file_s
*f
)
75 /* devsize field is really 2 bits but we ignore the high
76 * bit to ensure consistent behaviour if the guest sets
77 * it (values 2 and 3 are reserved in the TRM)
79 return (f
->config
[0] >> 12) & 1;
82 /* Extract the chip-select value from the prefetch config1 register */
83 static int prefetch_cs(uint32_t config1
)
85 return (config1
>> 24) & 7;
88 static int prefetch_threshold(uint32_t config1
)
90 return (config1
>> 8) & 0x7f;
93 static void omap_gpmc_int_update(struct omap_gpmc_s
*s
)
95 /* The TRM is a bit unclear, but it seems to say that
96 * the TERMINALCOUNTSTATUS bit is set only on the
97 * transition when the prefetch engine goes from
98 * active to inactive, whereas the FIFOEVENTSTATUS
99 * bit is held high as long as the fifo has at
100 * least THRESHOLD bytes available.
101 * So we do the latter here, but TERMINALCOUNTSTATUS
104 if (s
->prefetch
.fifopointer
>= prefetch_threshold(s
->prefetch
.config1
)) {
107 if ((s
->irqen
& s
->irqst
) != s
->lastirq
) {
108 s
->lastirq
= s
->irqen
& s
->irqst
;
109 qemu_set_irq(s
->irq
, s
->lastirq
);
113 static void omap_gpmc_dma_update(struct omap_gpmc_s
*s
, int value
)
115 if (s
->prefetch
.config1
& 4) {
116 qemu_set_irq(s
->drq
, value
);
120 /* Access functions for when a NAND-like device is mapped into memory:
121 * all addresses in the region behave like accesses to the relevant
122 * GPMC_NAND_DATA_i register (which is actually implemented to call these)
124 static uint64_t omap_nand_read(void *opaque
, target_phys_addr_t addr
,
127 struct omap_gpmc_cs_file_s
*f
= (struct omap_gpmc_cs_file_s
*)opaque
;
129 nand_setpins(f
->dev
, 0, 0, 0, 1, 0);
130 switch (omap_gpmc_devsize(f
)) {
132 v
= nand_getio(f
->dev
);
136 v
|= (nand_getio(f
->dev
) << 8);
140 v
|= (nand_getio(f
->dev
) << 16);
141 v
|= (nand_getio(f
->dev
) << 24);
143 case OMAP_GPMC_16BIT
:
144 v
= nand_getio(f
->dev
);
146 /* 8 bit read from 16 bit device : probably a guest bug */
152 v
|= (nand_getio(f
->dev
) << 16);
159 static void omap_nand_setio(DeviceState
*dev
, uint64_t value
,
160 int nandsize
, int size
)
162 /* Write the specified value to the NAND device, respecting
163 * both size of the NAND device and size of the write access.
169 nand_setio(dev
, value
& 0xff);
172 nand_setio(dev
, value
& 0xff);
173 nand_setio(dev
, (value
>> 8) & 0xff);
177 nand_setio(dev
, value
& 0xff);
178 nand_setio(dev
, (value
>> 8) & 0xff);
179 nand_setio(dev
, (value
>> 16) & 0xff);
180 nand_setio(dev
, (value
>> 24) & 0xff);
183 case OMAP_GPMC_16BIT
:
186 /* writing to a 16bit device with 8bit access is probably a guest
187 * bug; pass the value through anyway.
190 nand_setio(dev
, value
& 0xffff);
194 nand_setio(dev
, value
& 0xffff);
195 nand_setio(dev
, (value
>> 16) & 0xffff);
201 static void omap_nand_write(void *opaque
, target_phys_addr_t addr
,
202 uint64_t value
, unsigned size
)
204 struct omap_gpmc_cs_file_s
*f
= (struct omap_gpmc_cs_file_s
*)opaque
;
205 nand_setpins(f
->dev
, 0, 0, 0, 1, 0);
206 omap_nand_setio(f
->dev
, value
, omap_gpmc_devsize(f
), size
);
209 static const MemoryRegionOps omap_nand_ops
= {
210 .read
= omap_nand_read
,
211 .write
= omap_nand_write
,
212 .endianness
= DEVICE_NATIVE_ENDIAN
,
215 static void fill_prefetch_fifo(struct omap_gpmc_s
*s
)
217 /* Fill the prefetch FIFO by reading data from NAND.
218 * We do this synchronously, unlike the hardware which
219 * will do this asynchronously. We refill when the
220 * FIFO has THRESHOLD bytes free, and we always refill
221 * as much data as possible starting at the top end
223 * (We have to refill at THRESHOLD rather than waiting
224 * for the FIFO to empty to allow for the case where
225 * the FIFO size isn't an exact multiple of THRESHOLD
226 * and we're doing DMA transfers.)
227 * This means we never need to handle wrap-around in
228 * the fifo-reading code, and the next byte of data
229 * to read is always fifo[63 - fifopointer].
232 int cs
= prefetch_cs(s
->prefetch
.config1
);
233 int is16bit
= (((s
->cs_file
[cs
].config
[0] >> 12) & 3) != 0);
235 /* Don't believe the bit of the OMAP TRM that says that COUNTVALUE
236 * and TRANSFERCOUNT are in units of 16 bit words for 16 bit NAND.
237 * Instead believe the bit that says it is always a byte count.
239 bytes
= 64 - s
->prefetch
.fifopointer
;
240 if (bytes
> s
->prefetch
.count
) {
241 bytes
= s
->prefetch
.count
;
243 s
->prefetch
.count
-= bytes
;
244 s
->prefetch
.fifopointer
+= bytes
;
245 fptr
= 64 - s
->prefetch
.fifopointer
;
246 /* Move the existing data in the FIFO so it sits just
247 * before what we're about to read in
249 while (fptr
< (64 - bytes
)) {
250 s
->prefetch
.fifo
[fptr
] = s
->prefetch
.fifo
[fptr
+ bytes
];
255 uint32_t v
= omap_nand_read(&s
->cs_file
[cs
], 0, 2);
256 s
->prefetch
.fifo
[fptr
++] = v
& 0xff;
257 s
->prefetch
.fifo
[fptr
++] = (v
>> 8) & 0xff;
259 s
->prefetch
.fifo
[fptr
++] = omap_nand_read(&s
->cs_file
[cs
], 0, 1);
262 if (s
->prefetch
.startengine
&& (s
->prefetch
.count
== 0)) {
263 /* This was the final transfer: raise TERMINALCOUNTSTATUS */
265 s
->prefetch
.startengine
= 0;
267 /* If there are any bytes in the FIFO at this point then
268 * we must raise a DMA request (either this is a final part
269 * transfer, or we filled the FIFO in which case we certainly
270 * have THRESHOLD bytes available)
272 if (s
->prefetch
.fifopointer
!= 0) {
273 omap_gpmc_dma_update(s
, 1);
275 omap_gpmc_int_update(s
);
278 /* Access functions for a NAND-like device when the prefetch/postwrite
279 * engine is enabled -- all addresses in the region behave alike:
280 * data is read or written to the FIFO.
282 static uint64_t omap_gpmc_prefetch_read(void *opaque
, target_phys_addr_t addr
,
285 struct omap_gpmc_s
*s
= (struct omap_gpmc_s
*) opaque
;
287 if (s
->prefetch
.config1
& 1) {
288 /* The TRM doesn't define the behaviour if you read from the
289 * FIFO when the prefetch engine is in write mode. We choose
290 * to always return zero.
294 /* Note that trying to read an empty fifo repeats the last byte */
295 if (s
->prefetch
.fifopointer
) {
296 s
->prefetch
.fifopointer
--;
298 data
= s
->prefetch
.fifo
[63 - s
->prefetch
.fifopointer
];
299 if (s
->prefetch
.fifopointer
==
300 (64 - prefetch_threshold(s
->prefetch
.config1
))) {
301 /* We've drained THRESHOLD bytes now. So deassert the
302 * DMA request, then refill the FIFO (which will probably
305 omap_gpmc_dma_update(s
, 0);
306 fill_prefetch_fifo(s
);
308 omap_gpmc_int_update(s
);
312 static void omap_gpmc_prefetch_write(void *opaque
, target_phys_addr_t addr
,
313 uint64_t value
, unsigned size
)
315 struct omap_gpmc_s
*s
= (struct omap_gpmc_s
*) opaque
;
316 int cs
= prefetch_cs(s
->prefetch
.config1
);
317 if ((s
->prefetch
.config1
& 1) == 0) {
318 /* The TRM doesn't define the behaviour of writing to the
319 * FIFO when the prefetch engine is in read mode. We
320 * choose to ignore the write.
324 if (s
->prefetch
.count
== 0) {
325 /* The TRM doesn't define the behaviour of writing to the
326 * FIFO if the transfer is complete. We choose to ignore.
330 /* The only reason we do any data buffering in postwrite
331 * mode is if we are talking to a 16 bit NAND device, in
332 * which case we need to buffer the first byte of the
333 * 16 bit word until the other byte arrives.
335 int is16bit
= (((s
->cs_file
[cs
].config
[0] >> 12) & 3) != 0);
337 /* fifopointer alternates between 64 (waiting for first
338 * byte of word) and 63 (waiting for second byte)
340 if (s
->prefetch
.fifopointer
== 64) {
341 s
->prefetch
.fifo
[0] = value
;
342 s
->prefetch
.fifopointer
--;
344 value
= (value
<< 8) | s
->prefetch
.fifo
[0];
345 omap_nand_write(&s
->cs_file
[cs
], 0, value
, 2);
347 s
->prefetch
.fifopointer
= 64;
350 /* Just write the byte : fifopointer remains 64 at all times */
351 omap_nand_write(&s
->cs_file
[cs
], 0, value
, 1);
354 if (s
->prefetch
.count
== 0) {
355 /* Final transfer: raise TERMINALCOUNTSTATUS */
357 s
->prefetch
.startengine
= 0;
359 omap_gpmc_int_update(s
);
362 static const MemoryRegionOps omap_prefetch_ops
= {
363 .read
= omap_gpmc_prefetch_read
,
364 .write
= omap_gpmc_prefetch_write
,
365 .endianness
= DEVICE_NATIVE_ENDIAN
,
366 .impl
.min_access_size
= 1,
367 .impl
.max_access_size
= 1,
370 static MemoryRegion
*omap_gpmc_cs_memregion(struct omap_gpmc_s
*s
, int cs
)
372 /* Return the MemoryRegion* to map/unmap for this chipselect */
373 struct omap_gpmc_cs_file_s
*f
= &s
->cs_file
[cs
];
374 if (omap_gpmc_devtype(f
) == OMAP_GPMC_NOR
) {
377 if ((s
->prefetch
.config1
& 0x80) &&
378 (prefetch_cs(s
->prefetch
.config1
) == cs
)) {
379 /* The prefetch engine is enabled for this CS: map the FIFO */
380 return &s
->prefetch
.iomem
;
382 return &f
->nandiomem
;
385 static void omap_gpmc_cs_map(struct omap_gpmc_s
*s
, int cs
)
387 struct omap_gpmc_cs_file_s
*f
= &s
->cs_file
[cs
];
388 uint32_t mask
= (f
->config
[6] >> 8) & 0xf;
389 uint32_t base
= f
->config
[6] & 0x3f;
392 if (!f
->iomem
&& !f
->dev
) {
396 if (!(f
->config
[6] & (1 << 6))) {
397 /* Do nothing unless CSVALID */
401 /* TODO: check for overlapping regions and report access errors */
402 if (mask
!= 0x8 && mask
!= 0xc && mask
!= 0xe && mask
!= 0xf
403 && !(s
->accept_256
&& !mask
)) {
404 fprintf(stderr
, "%s: invalid chip-select mask address (0x%x)\n",
409 size
= (0x0fffffff & ~(mask
<< 24)) + 1;
410 /* TODO: rather than setting the size of the mapping (which should be
411 * constant), the mask should cause wrapping of the address space, so
412 * that the same memory becomes accessible at every <i>size</i> bytes
413 * starting from <i>base</i>. */
414 memory_region_init(&f
->container
, "omap-gpmc-file", size
);
415 memory_region_add_subregion(&f
->container
, 0,
416 omap_gpmc_cs_memregion(s
, cs
));
417 memory_region_add_subregion(get_system_memory(), base
,
421 static void omap_gpmc_cs_unmap(struct omap_gpmc_s
*s
, int cs
)
423 struct omap_gpmc_cs_file_s
*f
= &s
->cs_file
[cs
];
424 if (!(f
->config
[6] & (1 << 6))) {
425 /* Do nothing unless CSVALID */
428 if (!f
->iomem
&& !f
->dev
) {
431 memory_region_del_subregion(get_system_memory(), &f
->container
);
432 memory_region_del_subregion(&f
->container
, omap_gpmc_cs_memregion(s
, cs
));
433 memory_region_destroy(&f
->container
);
436 void omap_gpmc_reset(struct omap_gpmc_s
*s
)
443 omap_gpmc_int_update(s
);
446 s
->prefetch
.config1
= 0x00004000;
447 s
->prefetch
.transfercount
= 0x00000000;
448 s
->prefetch
.startengine
= 0;
449 s
->prefetch
.fifopointer
= 0;
450 s
->prefetch
.count
= 0;
451 for (i
= 0; i
< 8; i
++) {
452 omap_gpmc_cs_unmap(s
, i
);
453 s
->cs_file
[i
].config
[1] = 0x101001;
454 s
->cs_file
[i
].config
[2] = 0x020201;
455 s
->cs_file
[i
].config
[3] = 0x10031003;
456 s
->cs_file
[i
].config
[4] = 0x10f1111;
457 s
->cs_file
[i
].config
[5] = 0;
458 s
->cs_file
[i
].config
[6] = 0xf00 | (i
? 0 : 1 << 6);
460 s
->cs_file
[i
].config
[6] = 0xf00;
461 /* In theory we could probe attached devices for some CFG1
462 * bits here, but we just retain them across resets as they
463 * were set initially by omap_gpmc_attach().
466 s
->cs_file
[i
].config
[0] &= 0x00433e00;
467 s
->cs_file
[i
].config
[6] |= 1 << 6; /* CSVALID */
468 omap_gpmc_cs_map(s
, i
);
470 s
->cs_file
[i
].config
[0] &= 0x00403c00;
475 s
->ecc_cfg
= 0x3fcff000;
476 for (i
= 0; i
< 9; i
++)
477 ecc_reset(&s
->ecc
[i
]);
480 static int gpmc_wordaccess_only(target_phys_addr_t addr
)
482 /* Return true if the register offset is to a register that
483 * only permits word width accesses.
484 * Non-word accesses are only OK for GPMC_NAND_DATA/ADDRESS/COMMAND
485 * for any chipselect.
487 if (addr
>= 0x60 && addr
<= 0x1d4) {
488 int cs
= (addr
- 0x60) / 0x30;
490 if (addr
>= 0x7c && addr
< 0x88) {
491 /* GPMC_NAND_COMMAND, GPMC_NAND_ADDRESS, GPMC_NAND_DATA */
498 static uint64_t omap_gpmc_read(void *opaque
, target_phys_addr_t addr
,
501 struct omap_gpmc_s
*s
= (struct omap_gpmc_s
*) opaque
;
503 struct omap_gpmc_cs_file_s
*f
;
505 if (size
!= 4 && gpmc_wordaccess_only(addr
)) {
506 return omap_badwidth_read32(opaque
, addr
);
510 case 0x000: /* GPMC_REVISION */
513 case 0x010: /* GPMC_SYSCONFIG */
516 case 0x014: /* GPMC_SYSSTATUS */
517 return 1; /* RESETDONE */
519 case 0x018: /* GPMC_IRQSTATUS */
522 case 0x01c: /* GPMC_IRQENABLE */
525 case 0x040: /* GPMC_TIMEOUT_CONTROL */
528 case 0x044: /* GPMC_ERR_ADDRESS */
529 case 0x048: /* GPMC_ERR_TYPE */
532 case 0x050: /* GPMC_CONFIG */
535 case 0x054: /* GPMC_STATUS */
538 case 0x060 ... 0x1d4:
539 cs
= (addr
- 0x060) / 0x30;
543 case 0x60: /* GPMC_CONFIG1 */
545 case 0x64: /* GPMC_CONFIG2 */
547 case 0x68: /* GPMC_CONFIG3 */
549 case 0x6c: /* GPMC_CONFIG4 */
551 case 0x70: /* GPMC_CONFIG5 */
553 case 0x74: /* GPMC_CONFIG6 */
555 case 0x78: /* GPMC_CONFIG7 */
557 case 0x84 ... 0x87: /* GPMC_NAND_DATA */
558 if (omap_gpmc_devtype(f
) == OMAP_GPMC_NAND
) {
559 return omap_nand_read(f
, 0, size
);
565 case 0x1e0: /* GPMC_PREFETCH_CONFIG1 */
566 return s
->prefetch
.config1
;
567 case 0x1e4: /* GPMC_PREFETCH_CONFIG2 */
568 return s
->prefetch
.transfercount
;
569 case 0x1ec: /* GPMC_PREFETCH_CONTROL */
570 return s
->prefetch
.startengine
;
571 case 0x1f0: /* GPMC_PREFETCH_STATUS */
572 /* NB: The OMAP3 TRM is inconsistent about whether the GPMC
573 * FIFOTHRESHOLDSTATUS bit should be set when
574 * FIFOPOINTER > FIFOTHRESHOLD or when it is >= FIFOTHRESHOLD.
575 * Apparently the underlying functional spec from which the TRM was
576 * created states that the behaviour is ">=", and this also
577 * makes more conceptual sense.
579 return (s
->prefetch
.fifopointer
<< 24) |
580 ((s
->prefetch
.fifopointer
>=
581 ((s
->prefetch
.config1
>> 8) & 0x7f) ? 1 : 0) << 16) |
584 case 0x1f4: /* GPMC_ECC_CONFIG */
586 case 0x1f8: /* GPMC_ECC_CONTROL */
588 case 0x1fc: /* GPMC_ECC_SIZE_CONFIG */
590 case 0x200 ... 0x220: /* GPMC_ECC_RESULT */
591 cs
= (addr
& 0x1f) >> 2;
592 /* TODO: check correctness */
594 ((s
->ecc
[cs
].cp
& 0x07) << 0) |
595 ((s
->ecc
[cs
].cp
& 0x38) << 13) |
596 ((s
->ecc
[cs
].lp
[0] & 0x1ff) << 3) |
597 ((s
->ecc
[cs
].lp
[1] & 0x1ff) << 19);
599 case 0x230: /* GPMC_TESTMODE_CTRL */
601 case 0x234: /* GPMC_PSA_LSB */
602 case 0x238: /* GPMC_PSA_MSB */
610 static void omap_gpmc_write(void *opaque
, target_phys_addr_t addr
,
611 uint64_t value
, unsigned size
)
613 struct omap_gpmc_s
*s
= (struct omap_gpmc_s
*) opaque
;
615 struct omap_gpmc_cs_file_s
*f
;
617 if (size
!= 4 && gpmc_wordaccess_only(addr
)) {
618 return omap_badwidth_write32(opaque
, addr
, value
);
622 case 0x000: /* GPMC_REVISION */
623 case 0x014: /* GPMC_SYSSTATUS */
624 case 0x054: /* GPMC_STATUS */
625 case 0x1f0: /* GPMC_PREFETCH_STATUS */
626 case 0x200 ... 0x220: /* GPMC_ECC_RESULT */
627 case 0x234: /* GPMC_PSA_LSB */
628 case 0x238: /* GPMC_PSA_MSB */
632 case 0x010: /* GPMC_SYSCONFIG */
633 if ((value
>> 3) == 0x3)
634 fprintf(stderr
, "%s: bad SDRAM idle mode %"PRIi64
"\n",
635 __FUNCTION__
, value
>> 3);
638 s
->sysconfig
= value
& 0x19;
641 case 0x018: /* GPMC_IRQSTATUS */
643 omap_gpmc_int_update(s
);
646 case 0x01c: /* GPMC_IRQENABLE */
647 s
->irqen
= value
& 0xf03;
648 omap_gpmc_int_update(s
);
651 case 0x040: /* GPMC_TIMEOUT_CONTROL */
652 s
->timeout
= value
& 0x1ff1;
655 case 0x044: /* GPMC_ERR_ADDRESS */
656 case 0x048: /* GPMC_ERR_TYPE */
659 case 0x050: /* GPMC_CONFIG */
660 s
->config
= value
& 0xf13;
663 case 0x060 ... 0x1d4:
664 cs
= (addr
- 0x060) / 0x30;
668 case 0x60: /* GPMC_CONFIG1 */
669 f
->config
[0] = value
& 0xffef3e13;
671 case 0x64: /* GPMC_CONFIG2 */
672 f
->config
[1] = value
& 0x001f1f8f;
674 case 0x68: /* GPMC_CONFIG3 */
675 f
->config
[2] = value
& 0x001f1f8f;
677 case 0x6c: /* GPMC_CONFIG4 */
678 f
->config
[3] = value
& 0x1f8f1f8f;
680 case 0x70: /* GPMC_CONFIG5 */
681 f
->config
[4] = value
& 0x0f1f1f1f;
683 case 0x74: /* GPMC_CONFIG6 */
684 f
->config
[5] = value
& 0x00000fcf;
686 case 0x78: /* GPMC_CONFIG7 */
687 if ((f
->config
[6] ^ value
) & 0xf7f) {
688 omap_gpmc_cs_unmap(s
, cs
);
689 f
->config
[6] = value
& 0x00000f7f;
690 omap_gpmc_cs_map(s
, cs
);
693 case 0x7c ... 0x7f: /* GPMC_NAND_COMMAND */
694 if (omap_gpmc_devtype(f
) == OMAP_GPMC_NAND
) {
695 nand_setpins(f
->dev
, 1, 0, 0, 1, 0); /* CLE */
696 omap_nand_setio(f
->dev
, value
, omap_gpmc_devsize(f
), size
);
699 case 0x80 ... 0x83: /* GPMC_NAND_ADDRESS */
700 if (omap_gpmc_devtype(f
) == OMAP_GPMC_NAND
) {
701 nand_setpins(f
->dev
, 0, 1, 0, 1, 0); /* ALE */
702 omap_nand_setio(f
->dev
, value
, omap_gpmc_devsize(f
), size
);
705 case 0x84 ... 0x87: /* GPMC_NAND_DATA */
706 if (omap_gpmc_devtype(f
) == OMAP_GPMC_NAND
) {
707 omap_nand_write(f
, 0, value
, size
);
715 case 0x1e0: /* GPMC_PREFETCH_CONFIG1 */
716 if (!s
->prefetch
.startengine
) {
717 uint32_t oldconfig1
= s
->prefetch
.config1
;
719 s
->prefetch
.config1
= value
& 0x7f8f7fbf;
720 changed
= oldconfig1
^ s
->prefetch
.config1
;
721 if (changed
& (0x80 | 0x7000000)) {
722 /* Turning the engine on or off, or mapping it somewhere else.
723 * cs_map() and cs_unmap() check the prefetch config and
724 * overall CSVALID bits, so it is sufficient to unmap-and-map
725 * both the old cs and the new one.
727 int oldcs
= prefetch_cs(oldconfig1
);
728 int newcs
= prefetch_cs(s
->prefetch
.config1
);
729 omap_gpmc_cs_unmap(s
, oldcs
);
730 omap_gpmc_cs_map(s
, oldcs
);
731 if (newcs
!= oldcs
) {
732 omap_gpmc_cs_unmap(s
, newcs
);
733 omap_gpmc_cs_map(s
, newcs
);
739 case 0x1e4: /* GPMC_PREFETCH_CONFIG2 */
740 if (!s
->prefetch
.startengine
) {
741 s
->prefetch
.transfercount
= value
& 0x3fff;
745 case 0x1ec: /* GPMC_PREFETCH_CONTROL */
746 if (s
->prefetch
.startengine
!= (value
& 1)) {
747 s
->prefetch
.startengine
= value
& 1;
748 if (s
->prefetch
.startengine
) {
749 /* Prefetch engine start */
750 s
->prefetch
.count
= s
->prefetch
.transfercount
;
751 if (s
->prefetch
.config1
& 1) {
753 s
->prefetch
.fifopointer
= 64;
756 s
->prefetch
.fifopointer
= 0;
757 fill_prefetch_fifo(s
);
760 /* Prefetch engine forcibly stopped. The TRM
761 * doesn't define the behaviour if you do this.
762 * We clear the prefetch count, which means that
763 * we permit no more writes, and don't read any
764 * more data from NAND. The CPU can still drain
765 * the FIFO of unread data.
767 s
->prefetch
.count
= 0;
769 omap_gpmc_int_update(s
);
773 case 0x1f4: /* GPMC_ECC_CONFIG */
776 case 0x1f8: /* GPMC_ECC_CONTROL */
777 if (value
& (1 << 8))
778 for (cs
= 0; cs
< 9; cs
++)
779 ecc_reset(&s
->ecc
[cs
]);
780 s
->ecc_ptr
= value
& 0xf;
781 if (s
->ecc_ptr
== 0 || s
->ecc_ptr
> 9) {
786 case 0x1fc: /* GPMC_ECC_SIZE_CONFIG */
787 s
->ecc_cfg
= value
& 0x3fcff1ff;
789 case 0x230: /* GPMC_TESTMODE_CTRL */
791 fprintf(stderr
, "%s: test mode enable attempt\n", __FUNCTION__
);
801 static const MemoryRegionOps omap_gpmc_ops
= {
802 .read
= omap_gpmc_read
,
803 .write
= omap_gpmc_write
,
804 .endianness
= DEVICE_NATIVE_ENDIAN
,
807 struct omap_gpmc_s
*omap_gpmc_init(struct omap_mpu_state_s
*mpu
,
808 target_phys_addr_t base
,
809 qemu_irq irq
, qemu_irq drq
)
812 struct omap_gpmc_s
*s
= (struct omap_gpmc_s
*)
813 g_malloc0(sizeof(struct omap_gpmc_s
));
815 memory_region_init_io(&s
->iomem
, &omap_gpmc_ops
, s
, "omap-gpmc", 0x1000);
816 memory_region_add_subregion(get_system_memory(), base
, &s
->iomem
);
820 s
->accept_256
= cpu_is_omap3630(mpu
);
821 s
->revision
= cpu_class_omap3(mpu
) ? 0x50 : 0x20;
825 /* We have to register a different IO memory handler for each
826 * chip select region in case a NAND device is mapped there. We
827 * make the region the worst-case size of 256MB and rely on the
828 * container memory region in cs_map to chop it down to the actual
829 * guest-requested size.
831 for (cs
= 0; cs
< 8; cs
++) {
832 memory_region_init_io(&s
->cs_file
[cs
].nandiomem
,
839 memory_region_init_io(&s
->prefetch
.iomem
, &omap_prefetch_ops
, s
,
840 "omap-gpmc-prefetch", 256 * 1024 * 1024);
844 void omap_gpmc_attach(struct omap_gpmc_s
*s
, int cs
, MemoryRegion
*iomem
)
846 struct omap_gpmc_cs_file_s
*f
;
849 if (cs
< 0 || cs
>= 8) {
850 fprintf(stderr
, "%s: bad chip-select %i\n", __FUNCTION__
, cs
);
855 omap_gpmc_cs_unmap(s
, cs
);
856 f
->config
[0] &= ~(0xf << 10);
858 omap_gpmc_cs_map(s
, cs
);
861 void omap_gpmc_attach_nand(struct omap_gpmc_s
*s
, int cs
, DeviceState
*nand
)
863 struct omap_gpmc_cs_file_s
*f
;
866 if (cs
< 0 || cs
>= 8) {
867 fprintf(stderr
, "%s: bad chip-select %i\n", __func__
, cs
);
872 omap_gpmc_cs_unmap(s
, cs
);
873 f
->config
[0] &= ~(0xf << 10);
874 f
->config
[0] |= (OMAP_GPMC_NAND
<< 10);
876 if (nand_getbuswidth(f
->dev
) == 16) {
877 f
->config
[0] |= OMAP_GPMC_16BIT
<< 12;
879 omap_gpmc_cs_map(s
, cs
);