4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
29 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
30 #define PAGE_SIZE TARGET_PAGE_SIZE
35 #define dprintf(fmt, ...) \
36 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
38 #define dprintf(fmt, ...) \
42 typedef struct KVMSlot
44 target_phys_addr_t start_addr
;
45 ram_addr_t memory_size
;
46 ram_addr_t phys_offset
;
51 typedef struct kvm_dirty_log KVMDirtyLog
;
62 int broken_set_mem_region
;
64 #ifdef KVM_CAP_SET_GUEST_DEBUG
65 struct kvm_sw_breakpoint_head kvm_sw_breakpoints
;
67 int irqchip_in_kernel
;
71 static KVMState
*kvm_state
;
73 static KVMSlot
*kvm_alloc_slot(KVMState
*s
)
77 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
78 /* KVM private memory slots */
81 if (s
->slots
[i
].memory_size
== 0)
85 fprintf(stderr
, "%s: no free slot available\n", __func__
);
89 static KVMSlot
*kvm_lookup_matching_slot(KVMState
*s
,
90 target_phys_addr_t start_addr
,
91 target_phys_addr_t end_addr
)
95 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
96 KVMSlot
*mem
= &s
->slots
[i
];
98 if (start_addr
== mem
->start_addr
&&
99 end_addr
== mem
->start_addr
+ mem
->memory_size
) {
108 * Find overlapping slot with lowest start address
110 static KVMSlot
*kvm_lookup_overlapping_slot(KVMState
*s
,
111 target_phys_addr_t start_addr
,
112 target_phys_addr_t end_addr
)
114 KVMSlot
*found
= NULL
;
117 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
118 KVMSlot
*mem
= &s
->slots
[i
];
120 if (mem
->memory_size
== 0 ||
121 (found
&& found
->start_addr
< mem
->start_addr
)) {
125 if (end_addr
> mem
->start_addr
&&
126 start_addr
< mem
->start_addr
+ mem
->memory_size
) {
134 static int kvm_set_user_memory_region(KVMState
*s
, KVMSlot
*slot
)
136 struct kvm_userspace_memory_region mem
;
138 mem
.slot
= slot
->slot
;
139 mem
.guest_phys_addr
= slot
->start_addr
;
140 mem
.memory_size
= slot
->memory_size
;
141 mem
.userspace_addr
= (unsigned long)qemu_get_ram_ptr(slot
->phys_offset
);
142 mem
.flags
= slot
->flags
;
143 if (s
->migration_log
) {
144 mem
.flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
146 return kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
149 static void kvm_reset_vcpu(void *opaque
)
151 CPUState
*env
= opaque
;
153 if (kvm_arch_put_registers(env
)) {
154 fprintf(stderr
, "Fatal: kvm vcpu reset failed\n");
159 int kvm_irqchip_in_kernel(void)
161 return kvm_state
->irqchip_in_kernel
;
164 int kvm_pit_in_kernel(void)
166 return kvm_state
->pit_in_kernel
;
170 int kvm_init_vcpu(CPUState
*env
)
172 KVMState
*s
= kvm_state
;
176 dprintf("kvm_init_vcpu\n");
178 ret
= kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, env
->cpu_index
);
180 dprintf("kvm_create_vcpu failed\n");
187 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
189 dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
193 env
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
195 if (env
->kvm_run
== MAP_FAILED
) {
197 dprintf("mmap'ing vcpu state failed\n");
201 ret
= kvm_arch_init_vcpu(env
);
203 qemu_register_reset(kvm_reset_vcpu
, env
);
204 ret
= kvm_arch_put_registers(env
);
210 int kvm_put_mp_state(CPUState
*env
)
212 struct kvm_mp_state mp_state
= { .mp_state
= env
->mp_state
};
214 return kvm_vcpu_ioctl(env
, KVM_SET_MP_STATE
, &mp_state
);
217 int kvm_get_mp_state(CPUState
*env
)
219 struct kvm_mp_state mp_state
;
222 ret
= kvm_vcpu_ioctl(env
, KVM_GET_MP_STATE
, &mp_state
);
226 env
->mp_state
= mp_state
.mp_state
;
231 * dirty pages logging control
233 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr
,
234 ram_addr_t size
, int flags
, int mask
)
236 KVMState
*s
= kvm_state
;
237 KVMSlot
*mem
= kvm_lookup_matching_slot(s
, phys_addr
, phys_addr
+ size
);
241 fprintf(stderr
, "BUG: %s: invalid parameters " TARGET_FMT_plx
"-"
242 TARGET_FMT_plx
"\n", __func__
, phys_addr
,
243 (target_phys_addr_t
)(phys_addr
+ size
- 1));
247 old_flags
= mem
->flags
;
249 flags
= (mem
->flags
& ~mask
) | flags
;
252 /* If nothing changed effectively, no need to issue ioctl */
253 if (s
->migration_log
) {
254 flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
256 if (flags
== old_flags
) {
260 return kvm_set_user_memory_region(s
, mem
);
263 int kvm_log_start(target_phys_addr_t phys_addr
, ram_addr_t size
)
265 return kvm_dirty_pages_log_change(phys_addr
, size
,
266 KVM_MEM_LOG_DIRTY_PAGES
,
267 KVM_MEM_LOG_DIRTY_PAGES
);
270 int kvm_log_stop(target_phys_addr_t phys_addr
, ram_addr_t size
)
272 return kvm_dirty_pages_log_change(phys_addr
, size
,
274 KVM_MEM_LOG_DIRTY_PAGES
);
277 int kvm_set_migration_log(int enable
)
279 KVMState
*s
= kvm_state
;
283 s
->migration_log
= enable
;
285 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
288 if (!!(mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) == enable
) {
291 err
= kvm_set_user_memory_region(s
, mem
);
299 static int test_le_bit(unsigned long nr
, unsigned char *addr
)
301 return (addr
[nr
>> 3] >> (nr
& 7)) & 1;
305 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
306 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
307 * This means all bits are set to dirty.
309 * @start_add: start of logged region.
310 * @end_addr: end of logged region.
312 int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr
,
313 target_phys_addr_t end_addr
)
315 KVMState
*s
= kvm_state
;
316 unsigned long size
, allocated_size
= 0;
317 target_phys_addr_t phys_addr
;
323 d
.dirty_bitmap
= NULL
;
324 while (start_addr
< end_addr
) {
325 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, end_addr
);
330 size
= ((mem
->memory_size
>> TARGET_PAGE_BITS
) + 7) / 8;
331 if (!d
.dirty_bitmap
) {
332 d
.dirty_bitmap
= qemu_malloc(size
);
333 } else if (size
> allocated_size
) {
334 d
.dirty_bitmap
= qemu_realloc(d
.dirty_bitmap
, size
);
336 allocated_size
= size
;
337 memset(d
.dirty_bitmap
, 0, allocated_size
);
341 if (kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
) == -1) {
342 dprintf("ioctl failed %d\n", errno
);
347 for (phys_addr
= mem
->start_addr
, addr
= mem
->phys_offset
;
348 phys_addr
< mem
->start_addr
+ mem
->memory_size
;
349 phys_addr
+= TARGET_PAGE_SIZE
, addr
+= TARGET_PAGE_SIZE
) {
350 unsigned char *bitmap
= (unsigned char *)d
.dirty_bitmap
;
351 unsigned nr
= (phys_addr
- mem
->start_addr
) >> TARGET_PAGE_BITS
;
353 if (test_le_bit(nr
, bitmap
)) {
354 cpu_physical_memory_set_dirty(addr
);
357 start_addr
= phys_addr
;
359 qemu_free(d
.dirty_bitmap
);
364 int kvm_coalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
367 #ifdef KVM_CAP_COALESCED_MMIO
368 KVMState
*s
= kvm_state
;
370 if (s
->coalesced_mmio
) {
371 struct kvm_coalesced_mmio_zone zone
;
376 ret
= kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
383 int kvm_uncoalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
386 #ifdef KVM_CAP_COALESCED_MMIO
387 KVMState
*s
= kvm_state
;
389 if (s
->coalesced_mmio
) {
390 struct kvm_coalesced_mmio_zone zone
;
395 ret
= kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
402 int kvm_check_extension(KVMState
*s
, unsigned int extension
)
406 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
414 int kvm_init(int smp_cpus
)
416 static const char upgrade_note
[] =
417 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
418 "(see http://sourceforge.net/projects/kvm).\n";
424 fprintf(stderr
, "No SMP KVM support, use '-smp 1'\n");
428 s
= qemu_mallocz(sizeof(KVMState
));
430 #ifdef KVM_CAP_SET_GUEST_DEBUG
431 QTAILQ_INIT(&s
->kvm_sw_breakpoints
);
433 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++)
434 s
->slots
[i
].slot
= i
;
437 s
->fd
= open("/dev/kvm", O_RDWR
);
439 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
444 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
445 if (ret
< KVM_API_VERSION
) {
448 fprintf(stderr
, "kvm version too old\n");
452 if (ret
> KVM_API_VERSION
) {
454 fprintf(stderr
, "kvm version not supported\n");
458 s
->vmfd
= kvm_ioctl(s
, KVM_CREATE_VM
, 0);
462 /* initially, KVM allocated its own memory and we had to jump through
463 * hooks to make phys_ram_base point to this. Modern versions of KVM
464 * just use a user allocated buffer so we can use regular pages
465 * unmodified. Make sure we have a sufficiently modern version of KVM.
467 if (!kvm_check_extension(s
, KVM_CAP_USER_MEMORY
)) {
469 fprintf(stderr
, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
474 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
475 * destroyed properly. Since we rely on this capability, refuse to work
476 * with any kernel without this capability. */
477 if (!kvm_check_extension(s
, KVM_CAP_DESTROY_MEMORY_REGION_WORKS
)) {
481 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
486 #ifdef KVM_CAP_COALESCED_MMIO
487 s
->coalesced_mmio
= kvm_check_extension(s
, KVM_CAP_COALESCED_MMIO
);
489 s
->coalesced_mmio
= 0;
492 s
->broken_set_mem_region
= 1;
493 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
494 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
);
496 s
->broken_set_mem_region
= 0;
500 ret
= kvm_arch_init(s
, smp_cpus
);
520 static int kvm_handle_io(CPUState
*env
, uint16_t port
, void *data
,
521 int direction
, int size
, uint32_t count
)
526 for (i
= 0; i
< count
; i
++) {
527 if (direction
== KVM_EXIT_IO_IN
) {
530 stb_p(ptr
, cpu_inb(env
, port
));
533 stw_p(ptr
, cpu_inw(env
, port
));
536 stl_p(ptr
, cpu_inl(env
, port
));
542 cpu_outb(env
, port
, ldub_p(ptr
));
545 cpu_outw(env
, port
, lduw_p(ptr
));
548 cpu_outl(env
, port
, ldl_p(ptr
));
559 static void kvm_run_coalesced_mmio(CPUState
*env
, struct kvm_run
*run
)
561 #ifdef KVM_CAP_COALESCED_MMIO
562 KVMState
*s
= kvm_state
;
563 if (s
->coalesced_mmio
) {
564 struct kvm_coalesced_mmio_ring
*ring
;
566 ring
= (void *)run
+ (s
->coalesced_mmio
* TARGET_PAGE_SIZE
);
567 while (ring
->first
!= ring
->last
) {
568 struct kvm_coalesced_mmio
*ent
;
570 ent
= &ring
->coalesced_mmio
[ring
->first
];
572 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
573 /* FIXME smp_wmb() */
574 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
580 void kvm_cpu_synchronize_state(CPUState
*env
)
582 if (!env
->kvm_state
->regs_modified
) {
583 kvm_arch_get_registers(env
);
584 env
->kvm_state
->regs_modified
= 1;
588 int kvm_cpu_exec(CPUState
*env
)
590 struct kvm_run
*run
= env
->kvm_run
;
593 dprintf("kvm_cpu_exec()\n");
596 if (env
->exit_request
) {
597 dprintf("interrupt exit requested\n");
602 if (env
->kvm_state
->regs_modified
) {
603 kvm_arch_put_registers(env
);
604 env
->kvm_state
->regs_modified
= 0;
607 kvm_arch_pre_run(env
, run
);
608 ret
= kvm_vcpu_ioctl(env
, KVM_RUN
, 0);
609 kvm_arch_post_run(env
, run
);
611 if (ret
== -EINTR
|| ret
== -EAGAIN
) {
612 dprintf("io window exit\n");
618 dprintf("kvm run failed %s\n", strerror(-ret
));
622 kvm_run_coalesced_mmio(env
, run
);
624 ret
= 0; /* exit loop */
625 switch (run
->exit_reason
) {
627 dprintf("handle_io\n");
628 ret
= kvm_handle_io(env
, run
->io
.port
,
629 (uint8_t *)run
+ run
->io
.data_offset
,
635 dprintf("handle_mmio\n");
636 cpu_physical_memory_rw(run
->mmio
.phys_addr
,
642 case KVM_EXIT_IRQ_WINDOW_OPEN
:
643 dprintf("irq_window_open\n");
645 case KVM_EXIT_SHUTDOWN
:
646 dprintf("shutdown\n");
647 qemu_system_reset_request();
650 case KVM_EXIT_UNKNOWN
:
651 dprintf("kvm_exit_unknown\n");
653 case KVM_EXIT_FAIL_ENTRY
:
654 dprintf("kvm_exit_fail_entry\n");
656 case KVM_EXIT_EXCEPTION
:
657 dprintf("kvm_exit_exception\n");
660 dprintf("kvm_exit_debug\n");
661 #ifdef KVM_CAP_SET_GUEST_DEBUG
662 if (kvm_arch_debug(&run
->debug
.arch
)) {
663 gdb_set_stop_cpu(env
);
665 env
->exception_index
= EXCP_DEBUG
;
668 /* re-enter, this exception was guest-internal */
670 #endif /* KVM_CAP_SET_GUEST_DEBUG */
673 dprintf("kvm_arch_handle_exit\n");
674 ret
= kvm_arch_handle_exit(env
, run
);
679 if (env
->exit_request
) {
680 env
->exit_request
= 0;
681 env
->exception_index
= EXCP_INTERRUPT
;
687 void kvm_set_phys_mem(target_phys_addr_t start_addr
,
689 ram_addr_t phys_offset
)
691 KVMState
*s
= kvm_state
;
692 ram_addr_t flags
= phys_offset
& ~TARGET_PAGE_MASK
;
696 if (start_addr
& ~TARGET_PAGE_MASK
) {
697 if (flags
>= IO_MEM_UNASSIGNED
) {
698 if (!kvm_lookup_overlapping_slot(s
, start_addr
,
699 start_addr
+ size
)) {
702 fprintf(stderr
, "Unaligned split of a KVM memory slot\n");
704 fprintf(stderr
, "Only page-aligned memory slots supported\n");
709 /* KVM does not support read-only slots */
710 phys_offset
&= ~IO_MEM_ROM
;
713 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, start_addr
+ size
);
718 if (flags
< IO_MEM_UNASSIGNED
&& start_addr
>= mem
->start_addr
&&
719 (start_addr
+ size
<= mem
->start_addr
+ mem
->memory_size
) &&
720 (phys_offset
- start_addr
== mem
->phys_offset
- mem
->start_addr
)) {
721 /* The new slot fits into the existing one and comes with
722 * identical parameters - nothing to be done. */
728 /* unregister the overlapping slot */
729 mem
->memory_size
= 0;
730 err
= kvm_set_user_memory_region(s
, mem
);
732 fprintf(stderr
, "%s: error unregistering overlapping slot: %s\n",
733 __func__
, strerror(-err
));
737 /* Workaround for older KVM versions: we can't join slots, even not by
738 * unregistering the previous ones and then registering the larger
739 * slot. We have to maintain the existing fragmentation. Sigh.
741 * This workaround assumes that the new slot starts at the same
742 * address as the first existing one. If not or if some overlapping
743 * slot comes around later, we will fail (not seen in practice so far)
744 * - and actually require a recent KVM version. */
745 if (s
->broken_set_mem_region
&&
746 old
.start_addr
== start_addr
&& old
.memory_size
< size
&&
747 flags
< IO_MEM_UNASSIGNED
) {
748 mem
= kvm_alloc_slot(s
);
749 mem
->memory_size
= old
.memory_size
;
750 mem
->start_addr
= old
.start_addr
;
751 mem
->phys_offset
= old
.phys_offset
;
754 err
= kvm_set_user_memory_region(s
, mem
);
756 fprintf(stderr
, "%s: error updating slot: %s\n", __func__
,
761 start_addr
+= old
.memory_size
;
762 phys_offset
+= old
.memory_size
;
763 size
-= old
.memory_size
;
767 /* register prefix slot */
768 if (old
.start_addr
< start_addr
) {
769 mem
= kvm_alloc_slot(s
);
770 mem
->memory_size
= start_addr
- old
.start_addr
;
771 mem
->start_addr
= old
.start_addr
;
772 mem
->phys_offset
= old
.phys_offset
;
775 err
= kvm_set_user_memory_region(s
, mem
);
777 fprintf(stderr
, "%s: error registering prefix slot: %s\n",
778 __func__
, strerror(-err
));
783 /* register suffix slot */
784 if (old
.start_addr
+ old
.memory_size
> start_addr
+ size
) {
785 ram_addr_t size_delta
;
787 mem
= kvm_alloc_slot(s
);
788 mem
->start_addr
= start_addr
+ size
;
789 size_delta
= mem
->start_addr
- old
.start_addr
;
790 mem
->memory_size
= old
.memory_size
- size_delta
;
791 mem
->phys_offset
= old
.phys_offset
+ size_delta
;
794 err
= kvm_set_user_memory_region(s
, mem
);
796 fprintf(stderr
, "%s: error registering suffix slot: %s\n",
797 __func__
, strerror(-err
));
803 /* in case the KVM bug workaround already "consumed" the new slot */
807 /* KVM does not need to know about this memory */
808 if (flags
>= IO_MEM_UNASSIGNED
)
811 mem
= kvm_alloc_slot(s
);
812 mem
->memory_size
= size
;
813 mem
->start_addr
= start_addr
;
814 mem
->phys_offset
= phys_offset
;
817 err
= kvm_set_user_memory_region(s
, mem
);
819 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
825 int kvm_ioctl(KVMState
*s
, int type
, ...)
832 arg
= va_arg(ap
, void *);
835 ret
= ioctl(s
->fd
, type
, arg
);
842 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
849 arg
= va_arg(ap
, void *);
852 ret
= ioctl(s
->vmfd
, type
, arg
);
859 int kvm_vcpu_ioctl(CPUState
*env
, int type
, ...)
866 arg
= va_arg(ap
, void *);
869 ret
= ioctl(env
->kvm_fd
, type
, arg
);
876 int kvm_has_sync_mmu(void)
878 #ifdef KVM_CAP_SYNC_MMU
879 KVMState
*s
= kvm_state
;
881 return kvm_check_extension(s
, KVM_CAP_SYNC_MMU
);
887 void kvm_setup_guest_memory(void *start
, size_t size
)
889 if (!kvm_has_sync_mmu()) {
891 int ret
= madvise(start
, size
, MADV_DONTFORK
);
899 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
905 #ifdef KVM_CAP_SET_GUEST_DEBUG
906 static void on_vcpu(CPUState
*env
, void (*func
)(void *data
), void *data
)
908 if (env
== cpu_single_env
) {
915 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUState
*env
,
918 struct kvm_sw_breakpoint
*bp
;
920 QTAILQ_FOREACH(bp
, &env
->kvm_state
->kvm_sw_breakpoints
, entry
) {
927 int kvm_sw_breakpoints_active(CPUState
*env
)
929 return !QTAILQ_EMPTY(&env
->kvm_state
->kvm_sw_breakpoints
);
932 struct kvm_set_guest_debug_data
{
933 struct kvm_guest_debug dbg
;
938 static void kvm_invoke_set_guest_debug(void *data
)
940 struct kvm_set_guest_debug_data
*dbg_data
= data
;
941 dbg_data
->err
= kvm_vcpu_ioctl(dbg_data
->env
, KVM_SET_GUEST_DEBUG
, &dbg_data
->dbg
);
944 int kvm_update_guest_debug(CPUState
*env
, unsigned long reinject_trap
)
946 struct kvm_set_guest_debug_data data
;
948 data
.dbg
.control
= 0;
949 if (env
->singlestep_enabled
)
950 data
.dbg
.control
= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
952 kvm_arch_update_guest_debug(env
, &data
.dbg
);
953 data
.dbg
.control
|= reinject_trap
;
956 on_vcpu(env
, kvm_invoke_set_guest_debug
, &data
);
960 int kvm_insert_breakpoint(CPUState
*current_env
, target_ulong addr
,
961 target_ulong len
, int type
)
963 struct kvm_sw_breakpoint
*bp
;
967 if (type
== GDB_BREAKPOINT_SW
) {
968 bp
= kvm_find_sw_breakpoint(current_env
, addr
);
974 bp
= qemu_malloc(sizeof(struct kvm_sw_breakpoint
));
980 err
= kvm_arch_insert_sw_breakpoint(current_env
, bp
);
986 QTAILQ_INSERT_HEAD(¤t_env
->kvm_state
->kvm_sw_breakpoints
,
989 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
994 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
995 err
= kvm_update_guest_debug(env
, 0);
1002 int kvm_remove_breakpoint(CPUState
*current_env
, target_ulong addr
,
1003 target_ulong len
, int type
)
1005 struct kvm_sw_breakpoint
*bp
;
1009 if (type
== GDB_BREAKPOINT_SW
) {
1010 bp
= kvm_find_sw_breakpoint(current_env
, addr
);
1014 if (bp
->use_count
> 1) {
1019 err
= kvm_arch_remove_sw_breakpoint(current_env
, bp
);
1023 QTAILQ_REMOVE(¤t_env
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
1026 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
1031 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1032 err
= kvm_update_guest_debug(env
, 0);
1039 void kvm_remove_all_breakpoints(CPUState
*current_env
)
1041 struct kvm_sw_breakpoint
*bp
, *next
;
1042 KVMState
*s
= current_env
->kvm_state
;
1045 QTAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
1046 if (kvm_arch_remove_sw_breakpoint(current_env
, bp
) != 0) {
1047 /* Try harder to find a CPU that currently sees the breakpoint. */
1048 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1049 if (kvm_arch_remove_sw_breakpoint(env
, bp
) == 0)
1054 kvm_arch_remove_all_hw_breakpoints();
1056 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
)
1057 kvm_update_guest_debug(env
, 0);
1060 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1062 int kvm_update_guest_debug(CPUState
*env
, unsigned long reinject_trap
)
1067 int kvm_insert_breakpoint(CPUState
*current_env
, target_ulong addr
,
1068 target_ulong len
, int type
)
1073 int kvm_remove_breakpoint(CPUState
*current_env
, target_ulong addr
,
1074 target_ulong len
, int type
)
1079 void kvm_remove_all_breakpoints(CPUState
*current_env
)
1082 #endif /* !KVM_CAP_SET_GUEST_DEBUG */