4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
22 #include "qemu-common.h"
27 #include "host-utils.h"
33 #ifdef CONFIG_KVM_PARA
34 #include <linux/kvm_para.h>
40 #define DPRINTF(fmt, ...) \
41 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
43 #define DPRINTF(fmt, ...) \
47 #define MSR_KVM_WALL_CLOCK 0x11
48 #define MSR_KVM_SYSTEM_TIME 0x12
51 #define BUS_MCEERR_AR 4
54 #define BUS_MCEERR_AO 5
57 const KVMCapabilityInfo kvm_arch_required_capabilities
[] = {
58 KVM_CAP_INFO(SET_TSS_ADDR
),
59 KVM_CAP_INFO(EXT_CPUID
),
60 KVM_CAP_INFO(MP_STATE
),
64 static bool has_msr_star
;
65 static bool has_msr_hsave_pa
;
66 #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
67 static bool has_msr_async_pf_en
;
69 static int lm_capable_kernel
;
71 static struct kvm_cpuid2
*try_get_cpuid(KVMState
*s
, int max
)
73 struct kvm_cpuid2
*cpuid
;
76 size
= sizeof(*cpuid
) + max
* sizeof(*cpuid
->entries
);
77 cpuid
= (struct kvm_cpuid2
*)qemu_mallocz(size
);
79 r
= kvm_ioctl(s
, KVM_GET_SUPPORTED_CPUID
, cpuid
);
80 if (r
== 0 && cpuid
->nent
>= max
) {
88 fprintf(stderr
, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
96 uint32_t kvm_arch_get_supported_cpuid(CPUState
*env
, uint32_t function
,
97 uint32_t index
, int reg
)
99 struct kvm_cpuid2
*cpuid
;
102 uint32_t cpuid_1_edx
;
105 while ((cpuid
= try_get_cpuid(env
->kvm_state
, max
)) == NULL
) {
109 for (i
= 0; i
< cpuid
->nent
; ++i
) {
110 if (cpuid
->entries
[i
].function
== function
&&
111 cpuid
->entries
[i
].index
== index
) {
114 ret
= cpuid
->entries
[i
].eax
;
117 ret
= cpuid
->entries
[i
].ebx
;
120 ret
= cpuid
->entries
[i
].ecx
;
123 ret
= cpuid
->entries
[i
].edx
;
126 /* KVM before 2.6.30 misreports the following features */
127 ret
|= CPUID_MTRR
| CPUID_PAT
| CPUID_MCE
| CPUID_MCA
;
130 /* On Intel, kvm returns cpuid according to the Intel spec,
131 * so add missing bits according to the AMD spec:
133 cpuid_1_edx
= kvm_arch_get_supported_cpuid(env
, 1, 0, R_EDX
);
134 ret
|= cpuid_1_edx
& 0x183f7ff;
147 #ifdef CONFIG_KVM_PARA
148 struct kvm_para_features
{
151 } para_features
[] = {
152 { KVM_CAP_CLOCKSOURCE
, KVM_FEATURE_CLOCKSOURCE
},
153 { KVM_CAP_NOP_IO_DELAY
, KVM_FEATURE_NOP_IO_DELAY
},
154 { KVM_CAP_PV_MMU
, KVM_FEATURE_MMU_OP
},
155 #ifdef KVM_CAP_ASYNC_PF
156 { KVM_CAP_ASYNC_PF
, KVM_FEATURE_ASYNC_PF
},
161 static int get_para_features(CPUState
*env
)
165 for (i
= 0; i
< ARRAY_SIZE(para_features
) - 1; i
++) {
166 if (kvm_check_extension(env
->kvm_state
, para_features
[i
].cap
)) {
167 features
|= (1 << para_features
[i
].feature
);
170 #ifdef KVM_CAP_ASYNC_PF
171 has_msr_async_pf_en
= features
& (1 << KVM_FEATURE_ASYNC_PF
);
178 static int kvm_get_mce_cap_supported(KVMState
*s
, uint64_t *mce_cap
,
183 r
= kvm_check_extension(s
, KVM_CAP_MCE
);
186 return kvm_ioctl(s
, KVM_X86_GET_MCE_CAP_SUPPORTED
, mce_cap
);
191 static int kvm_setup_mce(CPUState
*env
, uint64_t *mcg_cap
)
193 return kvm_vcpu_ioctl(env
, KVM_X86_SETUP_MCE
, mcg_cap
);
196 static int kvm_set_mce(CPUState
*env
, struct kvm_x86_mce
*m
)
198 return kvm_vcpu_ioctl(env
, KVM_X86_SET_MCE
, m
);
201 static int kvm_get_msr(CPUState
*env
, struct kvm_msr_entry
*msrs
, int n
)
203 struct kvm_msrs
*kmsrs
= qemu_malloc(sizeof *kmsrs
+ n
* sizeof *msrs
);
207 memcpy(kmsrs
->entries
, msrs
, n
* sizeof *msrs
);
208 r
= kvm_vcpu_ioctl(env
, KVM_GET_MSRS
, kmsrs
);
209 memcpy(msrs
, kmsrs
->entries
, n
* sizeof *msrs
);
214 /* FIXME: kill this and kvm_get_msr, use env->mcg_status instead */
215 static int kvm_mce_in_progress(CPUState
*env
)
217 struct kvm_msr_entry msr_mcg_status
= {
218 .index
= MSR_MCG_STATUS
,
222 r
= kvm_get_msr(env
, &msr_mcg_status
, 1);
223 if (r
== -1 || r
== 0) {
224 fprintf(stderr
, "Failed to get MCE status\n");
227 return !!(msr_mcg_status
.data
& MCG_STATUS_MCIP
);
230 struct kvm_x86_mce_data
233 struct kvm_x86_mce
*mce
;
237 static void kvm_do_inject_x86_mce(void *_data
)
239 struct kvm_x86_mce_data
*data
= _data
;
242 /* If there is an MCE exception being processed, ignore this SRAO MCE */
243 if ((data
->env
->mcg_cap
& MCG_SER_P
) &&
244 !(data
->mce
->status
& MCI_STATUS_AR
)) {
245 if (kvm_mce_in_progress(data
->env
)) {
250 r
= kvm_set_mce(data
->env
, data
->mce
);
252 perror("kvm_set_mce FAILED");
253 if (data
->abort_on_error
) {
259 static void kvm_inject_x86_mce_on(CPUState
*env
, struct kvm_x86_mce
*mce
,
262 struct kvm_x86_mce_data data
= {
265 .abort_on_error
= (flag
& ABORT_ON_ERROR
),
269 fprintf(stderr
, "MCE support is not enabled!\n");
273 run_on_cpu(env
, kvm_do_inject_x86_mce
, &data
);
276 static void kvm_mce_broadcast_rest(CPUState
*env
);
279 void kvm_inject_x86_mce(CPUState
*cenv
, int bank
, uint64_t status
,
280 uint64_t mcg_status
, uint64_t addr
, uint64_t misc
,
284 struct kvm_x86_mce mce
= {
287 .mcg_status
= mcg_status
,
292 if (flag
& MCE_BROADCAST
) {
293 kvm_mce_broadcast_rest(cenv
);
296 kvm_inject_x86_mce_on(cenv
, &mce
, flag
);
298 if (flag
& ABORT_ON_ERROR
) {
304 int kvm_arch_init_vcpu(CPUState
*env
)
307 struct kvm_cpuid2 cpuid
;
308 struct kvm_cpuid_entry2 entries
[100];
309 } __attribute__((packed
)) cpuid_data
;
310 uint32_t limit
, i
, j
, cpuid_i
;
312 struct kvm_cpuid_entry2
*c
;
313 #ifdef CONFIG_KVM_PARA
314 uint32_t signature
[3];
317 env
->cpuid_features
&= kvm_arch_get_supported_cpuid(env
, 1, 0, R_EDX
);
319 i
= env
->cpuid_ext_features
& CPUID_EXT_HYPERVISOR
;
320 env
->cpuid_ext_features
&= kvm_arch_get_supported_cpuid(env
, 1, 0, R_ECX
);
321 env
->cpuid_ext_features
|= i
;
323 env
->cpuid_ext2_features
&= kvm_arch_get_supported_cpuid(env
, 0x80000001,
325 env
->cpuid_ext3_features
&= kvm_arch_get_supported_cpuid(env
, 0x80000001,
327 env
->cpuid_svm_features
&= kvm_arch_get_supported_cpuid(env
, 0x8000000A,
333 #ifdef CONFIG_KVM_PARA
334 /* Paravirtualization CPUIDs */
335 memcpy(signature
, "KVMKVMKVM\0\0\0", 12);
336 c
= &cpuid_data
.entries
[cpuid_i
++];
337 memset(c
, 0, sizeof(*c
));
338 c
->function
= KVM_CPUID_SIGNATURE
;
340 c
->ebx
= signature
[0];
341 c
->ecx
= signature
[1];
342 c
->edx
= signature
[2];
344 c
= &cpuid_data
.entries
[cpuid_i
++];
345 memset(c
, 0, sizeof(*c
));
346 c
->function
= KVM_CPUID_FEATURES
;
347 c
->eax
= env
->cpuid_kvm_features
& get_para_features(env
);
350 cpu_x86_cpuid(env
, 0, 0, &limit
, &unused
, &unused
, &unused
);
352 for (i
= 0; i
<= limit
; i
++) {
353 c
= &cpuid_data
.entries
[cpuid_i
++];
357 /* Keep reading function 2 till all the input is received */
361 c
->flags
= KVM_CPUID_FLAG_STATEFUL_FUNC
|
362 KVM_CPUID_FLAG_STATE_READ_NEXT
;
363 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
364 times
= c
->eax
& 0xff;
366 for (j
= 1; j
< times
; ++j
) {
367 c
= &cpuid_data
.entries
[cpuid_i
++];
369 c
->flags
= KVM_CPUID_FLAG_STATEFUL_FUNC
;
370 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
379 c
->flags
= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
381 cpu_x86_cpuid(env
, i
, j
, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
383 if (i
== 4 && c
->eax
== 0) {
386 if (i
== 0xb && !(c
->ecx
& 0xff00)) {
389 if (i
== 0xd && c
->eax
== 0) {
392 c
= &cpuid_data
.entries
[cpuid_i
++];
398 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
402 cpu_x86_cpuid(env
, 0x80000000, 0, &limit
, &unused
, &unused
, &unused
);
404 for (i
= 0x80000000; i
<= limit
; i
++) {
405 c
= &cpuid_data
.entries
[cpuid_i
++];
409 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
412 cpuid_data
.cpuid
.nent
= cpuid_i
;
415 if (((env
->cpuid_version
>> 8)&0xF) >= 6
416 && (env
->cpuid_features
&(CPUID_MCE
|CPUID_MCA
)) == (CPUID_MCE
|CPUID_MCA
)
417 && kvm_check_extension(env
->kvm_state
, KVM_CAP_MCE
) > 0) {
421 if (kvm_get_mce_cap_supported(env
->kvm_state
, &mcg_cap
, &banks
)) {
422 perror("kvm_get_mce_cap_supported FAILED");
424 if (banks
> MCE_BANKS_DEF
)
425 banks
= MCE_BANKS_DEF
;
426 mcg_cap
&= MCE_CAP_DEF
;
428 if (kvm_setup_mce(env
, &mcg_cap
)) {
429 perror("kvm_setup_mce FAILED");
431 env
->mcg_cap
= mcg_cap
;
437 return kvm_vcpu_ioctl(env
, KVM_SET_CPUID2
, &cpuid_data
);
440 void kvm_arch_reset_vcpu(CPUState
*env
)
442 env
->exception_injected
= -1;
443 env
->interrupt_injected
= -1;
445 if (kvm_irqchip_in_kernel()) {
446 env
->mp_state
= cpu_is_bsp(env
) ? KVM_MP_STATE_RUNNABLE
:
447 KVM_MP_STATE_UNINITIALIZED
;
449 env
->mp_state
= KVM_MP_STATE_RUNNABLE
;
453 static int kvm_get_supported_msrs(KVMState
*s
)
455 static int kvm_supported_msrs
;
459 if (kvm_supported_msrs
== 0) {
460 struct kvm_msr_list msr_list
, *kvm_msr_list
;
462 kvm_supported_msrs
= -1;
464 /* Obtain MSR list from KVM. These are the MSRs that we must
467 ret
= kvm_ioctl(s
, KVM_GET_MSR_INDEX_LIST
, &msr_list
);
468 if (ret
< 0 && ret
!= -E2BIG
) {
471 /* Old kernel modules had a bug and could write beyond the provided
472 memory. Allocate at least a safe amount of 1K. */
473 kvm_msr_list
= qemu_mallocz(MAX(1024, sizeof(msr_list
) +
475 sizeof(msr_list
.indices
[0])));
477 kvm_msr_list
->nmsrs
= msr_list
.nmsrs
;
478 ret
= kvm_ioctl(s
, KVM_GET_MSR_INDEX_LIST
, kvm_msr_list
);
482 for (i
= 0; i
< kvm_msr_list
->nmsrs
; i
++) {
483 if (kvm_msr_list
->indices
[i
] == MSR_STAR
) {
487 if (kvm_msr_list
->indices
[i
] == MSR_VM_HSAVE_PA
) {
488 has_msr_hsave_pa
= true;
500 int kvm_arch_init(KVMState
*s
)
502 uint64_t identity_base
= 0xfffbc000;
504 struct utsname utsname
;
506 ret
= kvm_get_supported_msrs(s
);
512 lm_capable_kernel
= strcmp(utsname
.machine
, "x86_64") == 0;
515 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
516 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
517 * Since these must be part of guest physical memory, we need to allocate
518 * them, both by setting their start addresses in the kernel and by
519 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
521 * Older KVM versions may not support setting the identity map base. In
522 * that case we need to stick with the default, i.e. a 256K maximum BIOS
525 #ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
526 if (kvm_check_extension(s
, KVM_CAP_SET_IDENTITY_MAP_ADDR
)) {
527 /* Allows up to 16M BIOSes. */
528 identity_base
= 0xfeffc000;
530 ret
= kvm_vm_ioctl(s
, KVM_SET_IDENTITY_MAP_ADDR
, &identity_base
);
536 /* Set TSS base one page after EPT identity map. */
537 ret
= kvm_vm_ioctl(s
, KVM_SET_TSS_ADDR
, identity_base
+ 0x1000);
542 /* Tell fw_cfg to notify the BIOS to reserve the range. */
543 ret
= e820_add_entry(identity_base
, 0x4000, E820_RESERVED
);
545 fprintf(stderr
, "e820_add_entry() table is full\n");
552 static void set_v8086_seg(struct kvm_segment
*lhs
, const SegmentCache
*rhs
)
554 lhs
->selector
= rhs
->selector
;
555 lhs
->base
= rhs
->base
;
556 lhs
->limit
= rhs
->limit
;
568 static void set_seg(struct kvm_segment
*lhs
, const SegmentCache
*rhs
)
570 unsigned flags
= rhs
->flags
;
571 lhs
->selector
= rhs
->selector
;
572 lhs
->base
= rhs
->base
;
573 lhs
->limit
= rhs
->limit
;
574 lhs
->type
= (flags
>> DESC_TYPE_SHIFT
) & 15;
575 lhs
->present
= (flags
& DESC_P_MASK
) != 0;
576 lhs
->dpl
= (flags
>> DESC_DPL_SHIFT
) & 3;
577 lhs
->db
= (flags
>> DESC_B_SHIFT
) & 1;
578 lhs
->s
= (flags
& DESC_S_MASK
) != 0;
579 lhs
->l
= (flags
>> DESC_L_SHIFT
) & 1;
580 lhs
->g
= (flags
& DESC_G_MASK
) != 0;
581 lhs
->avl
= (flags
& DESC_AVL_MASK
) != 0;
585 static void get_seg(SegmentCache
*lhs
, const struct kvm_segment
*rhs
)
587 lhs
->selector
= rhs
->selector
;
588 lhs
->base
= rhs
->base
;
589 lhs
->limit
= rhs
->limit
;
590 lhs
->flags
= (rhs
->type
<< DESC_TYPE_SHIFT
) |
591 (rhs
->present
* DESC_P_MASK
) |
592 (rhs
->dpl
<< DESC_DPL_SHIFT
) |
593 (rhs
->db
<< DESC_B_SHIFT
) |
594 (rhs
->s
* DESC_S_MASK
) |
595 (rhs
->l
<< DESC_L_SHIFT
) |
596 (rhs
->g
* DESC_G_MASK
) |
597 (rhs
->avl
* DESC_AVL_MASK
);
600 static void kvm_getput_reg(__u64
*kvm_reg
, target_ulong
*qemu_reg
, int set
)
603 *kvm_reg
= *qemu_reg
;
605 *qemu_reg
= *kvm_reg
;
609 static int kvm_getput_regs(CPUState
*env
, int set
)
611 struct kvm_regs regs
;
615 ret
= kvm_vcpu_ioctl(env
, KVM_GET_REGS
, ®s
);
621 kvm_getput_reg(®s
.rax
, &env
->regs
[R_EAX
], set
);
622 kvm_getput_reg(®s
.rbx
, &env
->regs
[R_EBX
], set
);
623 kvm_getput_reg(®s
.rcx
, &env
->regs
[R_ECX
], set
);
624 kvm_getput_reg(®s
.rdx
, &env
->regs
[R_EDX
], set
);
625 kvm_getput_reg(®s
.rsi
, &env
->regs
[R_ESI
], set
);
626 kvm_getput_reg(®s
.rdi
, &env
->regs
[R_EDI
], set
);
627 kvm_getput_reg(®s
.rsp
, &env
->regs
[R_ESP
], set
);
628 kvm_getput_reg(®s
.rbp
, &env
->regs
[R_EBP
], set
);
630 kvm_getput_reg(®s
.r8
, &env
->regs
[8], set
);
631 kvm_getput_reg(®s
.r9
, &env
->regs
[9], set
);
632 kvm_getput_reg(®s
.r10
, &env
->regs
[10], set
);
633 kvm_getput_reg(®s
.r11
, &env
->regs
[11], set
);
634 kvm_getput_reg(®s
.r12
, &env
->regs
[12], set
);
635 kvm_getput_reg(®s
.r13
, &env
->regs
[13], set
);
636 kvm_getput_reg(®s
.r14
, &env
->regs
[14], set
);
637 kvm_getput_reg(®s
.r15
, &env
->regs
[15], set
);
640 kvm_getput_reg(®s
.rflags
, &env
->eflags
, set
);
641 kvm_getput_reg(®s
.rip
, &env
->eip
, set
);
644 ret
= kvm_vcpu_ioctl(env
, KVM_SET_REGS
, ®s
);
650 static int kvm_put_fpu(CPUState
*env
)
655 memset(&fpu
, 0, sizeof fpu
);
656 fpu
.fsw
= env
->fpus
& ~(7 << 11);
657 fpu
.fsw
|= (env
->fpstt
& 7) << 11;
659 for (i
= 0; i
< 8; ++i
) {
660 fpu
.ftwx
|= (!env
->fptags
[i
]) << i
;
662 memcpy(fpu
.fpr
, env
->fpregs
, sizeof env
->fpregs
);
663 memcpy(fpu
.xmm
, env
->xmm_regs
, sizeof env
->xmm_regs
);
664 fpu
.mxcsr
= env
->mxcsr
;
666 return kvm_vcpu_ioctl(env
, KVM_SET_FPU
, &fpu
);
670 #define XSAVE_CWD_RIP 2
671 #define XSAVE_CWD_RDP 4
672 #define XSAVE_MXCSR 6
673 #define XSAVE_ST_SPACE 8
674 #define XSAVE_XMM_SPACE 40
675 #define XSAVE_XSTATE_BV 128
676 #define XSAVE_YMMH_SPACE 144
679 static int kvm_put_xsave(CPUState
*env
)
683 struct kvm_xsave
* xsave
;
684 uint16_t cwd
, swd
, twd
, fop
;
686 if (!kvm_has_xsave()) {
687 return kvm_put_fpu(env
);
690 xsave
= qemu_memalign(4096, sizeof(struct kvm_xsave
));
691 memset(xsave
, 0, sizeof(struct kvm_xsave
));
692 cwd
= swd
= twd
= fop
= 0;
693 swd
= env
->fpus
& ~(7 << 11);
694 swd
|= (env
->fpstt
& 7) << 11;
696 for (i
= 0; i
< 8; ++i
) {
697 twd
|= (!env
->fptags
[i
]) << i
;
699 xsave
->region
[0] = (uint32_t)(swd
<< 16) + cwd
;
700 xsave
->region
[1] = (uint32_t)(fop
<< 16) + twd
;
701 memcpy(&xsave
->region
[XSAVE_ST_SPACE
], env
->fpregs
,
703 memcpy(&xsave
->region
[XSAVE_XMM_SPACE
], env
->xmm_regs
,
704 sizeof env
->xmm_regs
);
705 xsave
->region
[XSAVE_MXCSR
] = env
->mxcsr
;
706 *(uint64_t *)&xsave
->region
[XSAVE_XSTATE_BV
] = env
->xstate_bv
;
707 memcpy(&xsave
->region
[XSAVE_YMMH_SPACE
], env
->ymmh_regs
,
708 sizeof env
->ymmh_regs
);
709 r
= kvm_vcpu_ioctl(env
, KVM_SET_XSAVE
, xsave
);
713 return kvm_put_fpu(env
);
717 static int kvm_put_xcrs(CPUState
*env
)
720 struct kvm_xcrs xcrs
;
722 if (!kvm_has_xcrs()) {
728 xcrs
.xcrs
[0].xcr
= 0;
729 xcrs
.xcrs
[0].value
= env
->xcr0
;
730 return kvm_vcpu_ioctl(env
, KVM_SET_XCRS
, &xcrs
);
736 static int kvm_put_sregs(CPUState
*env
)
738 struct kvm_sregs sregs
;
740 memset(sregs
.interrupt_bitmap
, 0, sizeof(sregs
.interrupt_bitmap
));
741 if (env
->interrupt_injected
>= 0) {
742 sregs
.interrupt_bitmap
[env
->interrupt_injected
/ 64] |=
743 (uint64_t)1 << (env
->interrupt_injected
% 64);
746 if ((env
->eflags
& VM_MASK
)) {
747 set_v8086_seg(&sregs
.cs
, &env
->segs
[R_CS
]);
748 set_v8086_seg(&sregs
.ds
, &env
->segs
[R_DS
]);
749 set_v8086_seg(&sregs
.es
, &env
->segs
[R_ES
]);
750 set_v8086_seg(&sregs
.fs
, &env
->segs
[R_FS
]);
751 set_v8086_seg(&sregs
.gs
, &env
->segs
[R_GS
]);
752 set_v8086_seg(&sregs
.ss
, &env
->segs
[R_SS
]);
754 set_seg(&sregs
.cs
, &env
->segs
[R_CS
]);
755 set_seg(&sregs
.ds
, &env
->segs
[R_DS
]);
756 set_seg(&sregs
.es
, &env
->segs
[R_ES
]);
757 set_seg(&sregs
.fs
, &env
->segs
[R_FS
]);
758 set_seg(&sregs
.gs
, &env
->segs
[R_GS
]);
759 set_seg(&sregs
.ss
, &env
->segs
[R_SS
]);
762 set_seg(&sregs
.tr
, &env
->tr
);
763 set_seg(&sregs
.ldt
, &env
->ldt
);
765 sregs
.idt
.limit
= env
->idt
.limit
;
766 sregs
.idt
.base
= env
->idt
.base
;
767 sregs
.gdt
.limit
= env
->gdt
.limit
;
768 sregs
.gdt
.base
= env
->gdt
.base
;
770 sregs
.cr0
= env
->cr
[0];
771 sregs
.cr2
= env
->cr
[2];
772 sregs
.cr3
= env
->cr
[3];
773 sregs
.cr4
= env
->cr
[4];
775 sregs
.cr8
= cpu_get_apic_tpr(env
->apic_state
);
776 sregs
.apic_base
= cpu_get_apic_base(env
->apic_state
);
778 sregs
.efer
= env
->efer
;
780 return kvm_vcpu_ioctl(env
, KVM_SET_SREGS
, &sregs
);
783 static void kvm_msr_entry_set(struct kvm_msr_entry
*entry
,
784 uint32_t index
, uint64_t value
)
786 entry
->index
= index
;
790 static int kvm_put_msrs(CPUState
*env
, int level
)
793 struct kvm_msrs info
;
794 struct kvm_msr_entry entries
[100];
796 struct kvm_msr_entry
*msrs
= msr_data
.entries
;
799 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_SYSENTER_CS
, env
->sysenter_cs
);
800 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_SYSENTER_ESP
, env
->sysenter_esp
);
801 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_SYSENTER_EIP
, env
->sysenter_eip
);
803 kvm_msr_entry_set(&msrs
[n
++], MSR_STAR
, env
->star
);
805 if (has_msr_hsave_pa
) {
806 kvm_msr_entry_set(&msrs
[n
++], MSR_VM_HSAVE_PA
, env
->vm_hsave
);
809 if (lm_capable_kernel
) {
810 kvm_msr_entry_set(&msrs
[n
++], MSR_CSTAR
, env
->cstar
);
811 kvm_msr_entry_set(&msrs
[n
++], MSR_KERNELGSBASE
, env
->kernelgsbase
);
812 kvm_msr_entry_set(&msrs
[n
++], MSR_FMASK
, env
->fmask
);
813 kvm_msr_entry_set(&msrs
[n
++], MSR_LSTAR
, env
->lstar
);
816 if (level
== KVM_PUT_FULL_STATE
) {
818 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
819 * writeback. Until this is fixed, we only write the offset to SMP
820 * guests after migration, desynchronizing the VCPUs, but avoiding
821 * huge jump-backs that would occur without any writeback at all.
823 if (smp_cpus
== 1 || env
->tsc
!= 0) {
824 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_TSC
, env
->tsc
);
828 * The following paravirtual MSRs have side effects on the guest or are
829 * too heavy for normal writeback. Limit them to reset or full state
832 if (level
>= KVM_PUT_RESET_STATE
) {
833 kvm_msr_entry_set(&msrs
[n
++], MSR_KVM_SYSTEM_TIME
,
834 env
->system_time_msr
);
835 kvm_msr_entry_set(&msrs
[n
++], MSR_KVM_WALL_CLOCK
, env
->wall_clock_msr
);
836 #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
837 if (has_msr_async_pf_en
) {
838 kvm_msr_entry_set(&msrs
[n
++], MSR_KVM_ASYNC_PF_EN
,
839 env
->async_pf_en_msr
);
847 if (level
== KVM_PUT_RESET_STATE
) {
848 kvm_msr_entry_set(&msrs
[n
++], MSR_MCG_STATUS
, env
->mcg_status
);
849 } else if (level
== KVM_PUT_FULL_STATE
) {
850 kvm_msr_entry_set(&msrs
[n
++], MSR_MCG_STATUS
, env
->mcg_status
);
851 kvm_msr_entry_set(&msrs
[n
++], MSR_MCG_CTL
, env
->mcg_ctl
);
852 for (i
= 0; i
< (env
->mcg_cap
& 0xff) * 4; i
++) {
853 kvm_msr_entry_set(&msrs
[n
++], MSR_MC0_CTL
+ i
, env
->mce_banks
[i
]);
859 msr_data
.info
.nmsrs
= n
;
861 return kvm_vcpu_ioctl(env
, KVM_SET_MSRS
, &msr_data
);
866 static int kvm_get_fpu(CPUState
*env
)
871 ret
= kvm_vcpu_ioctl(env
, KVM_GET_FPU
, &fpu
);
876 env
->fpstt
= (fpu
.fsw
>> 11) & 7;
879 for (i
= 0; i
< 8; ++i
) {
880 env
->fptags
[i
] = !((fpu
.ftwx
>> i
) & 1);
882 memcpy(env
->fpregs
, fpu
.fpr
, sizeof env
->fpregs
);
883 memcpy(env
->xmm_regs
, fpu
.xmm
, sizeof env
->xmm_regs
);
884 env
->mxcsr
= fpu
.mxcsr
;
889 static int kvm_get_xsave(CPUState
*env
)
892 struct kvm_xsave
* xsave
;
894 uint16_t cwd
, swd
, twd
, fop
;
896 if (!kvm_has_xsave()) {
897 return kvm_get_fpu(env
);
900 xsave
= qemu_memalign(4096, sizeof(struct kvm_xsave
));
901 ret
= kvm_vcpu_ioctl(env
, KVM_GET_XSAVE
, xsave
);
907 cwd
= (uint16_t)xsave
->region
[0];
908 swd
= (uint16_t)(xsave
->region
[0] >> 16);
909 twd
= (uint16_t)xsave
->region
[1];
910 fop
= (uint16_t)(xsave
->region
[1] >> 16);
911 env
->fpstt
= (swd
>> 11) & 7;
914 for (i
= 0; i
< 8; ++i
) {
915 env
->fptags
[i
] = !((twd
>> i
) & 1);
917 env
->mxcsr
= xsave
->region
[XSAVE_MXCSR
];
918 memcpy(env
->fpregs
, &xsave
->region
[XSAVE_ST_SPACE
],
920 memcpy(env
->xmm_regs
, &xsave
->region
[XSAVE_XMM_SPACE
],
921 sizeof env
->xmm_regs
);
922 env
->xstate_bv
= *(uint64_t *)&xsave
->region
[XSAVE_XSTATE_BV
];
923 memcpy(env
->ymmh_regs
, &xsave
->region
[XSAVE_YMMH_SPACE
],
924 sizeof env
->ymmh_regs
);
928 return kvm_get_fpu(env
);
932 static int kvm_get_xcrs(CPUState
*env
)
936 struct kvm_xcrs xcrs
;
938 if (!kvm_has_xcrs()) {
942 ret
= kvm_vcpu_ioctl(env
, KVM_GET_XCRS
, &xcrs
);
947 for (i
= 0; i
< xcrs
.nr_xcrs
; i
++) {
948 /* Only support xcr0 now */
949 if (xcrs
.xcrs
[0].xcr
== 0) {
950 env
->xcr0
= xcrs
.xcrs
[0].value
;
960 static int kvm_get_sregs(CPUState
*env
)
962 struct kvm_sregs sregs
;
966 ret
= kvm_vcpu_ioctl(env
, KVM_GET_SREGS
, &sregs
);
971 /* There can only be one pending IRQ set in the bitmap at a time, so try
972 to find it and save its number instead (-1 for none). */
973 env
->interrupt_injected
= -1;
974 for (i
= 0; i
< ARRAY_SIZE(sregs
.interrupt_bitmap
); i
++) {
975 if (sregs
.interrupt_bitmap
[i
]) {
976 bit
= ctz64(sregs
.interrupt_bitmap
[i
]);
977 env
->interrupt_injected
= i
* 64 + bit
;
982 get_seg(&env
->segs
[R_CS
], &sregs
.cs
);
983 get_seg(&env
->segs
[R_DS
], &sregs
.ds
);
984 get_seg(&env
->segs
[R_ES
], &sregs
.es
);
985 get_seg(&env
->segs
[R_FS
], &sregs
.fs
);
986 get_seg(&env
->segs
[R_GS
], &sregs
.gs
);
987 get_seg(&env
->segs
[R_SS
], &sregs
.ss
);
989 get_seg(&env
->tr
, &sregs
.tr
);
990 get_seg(&env
->ldt
, &sregs
.ldt
);
992 env
->idt
.limit
= sregs
.idt
.limit
;
993 env
->idt
.base
= sregs
.idt
.base
;
994 env
->gdt
.limit
= sregs
.gdt
.limit
;
995 env
->gdt
.base
= sregs
.gdt
.base
;
997 env
->cr
[0] = sregs
.cr0
;
998 env
->cr
[2] = sregs
.cr2
;
999 env
->cr
[3] = sregs
.cr3
;
1000 env
->cr
[4] = sregs
.cr4
;
1002 cpu_set_apic_base(env
->apic_state
, sregs
.apic_base
);
1004 env
->efer
= sregs
.efer
;
1005 //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
1007 #define HFLAG_COPY_MASK \
1008 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1009 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1010 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1011 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1013 hflags
= (env
->segs
[R_CS
].flags
>> DESC_DPL_SHIFT
) & HF_CPL_MASK
;
1014 hflags
|= (env
->cr
[0] & CR0_PE_MASK
) << (HF_PE_SHIFT
- CR0_PE_SHIFT
);
1015 hflags
|= (env
->cr
[0] << (HF_MP_SHIFT
- CR0_MP_SHIFT
)) &
1016 (HF_MP_MASK
| HF_EM_MASK
| HF_TS_MASK
);
1017 hflags
|= (env
->eflags
& (HF_TF_MASK
| HF_VM_MASK
| HF_IOPL_MASK
));
1018 hflags
|= (env
->cr
[4] & CR4_OSFXSR_MASK
) <<
1019 (HF_OSFXSR_SHIFT
- CR4_OSFXSR_SHIFT
);
1021 if (env
->efer
& MSR_EFER_LMA
) {
1022 hflags
|= HF_LMA_MASK
;
1025 if ((hflags
& HF_LMA_MASK
) && (env
->segs
[R_CS
].flags
& DESC_L_MASK
)) {
1026 hflags
|= HF_CS32_MASK
| HF_SS32_MASK
| HF_CS64_MASK
;
1028 hflags
|= (env
->segs
[R_CS
].flags
& DESC_B_MASK
) >>
1029 (DESC_B_SHIFT
- HF_CS32_SHIFT
);
1030 hflags
|= (env
->segs
[R_SS
].flags
& DESC_B_MASK
) >>
1031 (DESC_B_SHIFT
- HF_SS32_SHIFT
);
1032 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
) ||
1033 !(hflags
& HF_CS32_MASK
)) {
1034 hflags
|= HF_ADDSEG_MASK
;
1036 hflags
|= ((env
->segs
[R_DS
].base
| env
->segs
[R_ES
].base
|
1037 env
->segs
[R_SS
].base
) != 0) << HF_ADDSEG_SHIFT
;
1040 env
->hflags
= (env
->hflags
& HFLAG_COPY_MASK
) | hflags
;
1045 static int kvm_get_msrs(CPUState
*env
)
1048 struct kvm_msrs info
;
1049 struct kvm_msr_entry entries
[100];
1051 struct kvm_msr_entry
*msrs
= msr_data
.entries
;
1055 msrs
[n
++].index
= MSR_IA32_SYSENTER_CS
;
1056 msrs
[n
++].index
= MSR_IA32_SYSENTER_ESP
;
1057 msrs
[n
++].index
= MSR_IA32_SYSENTER_EIP
;
1059 msrs
[n
++].index
= MSR_STAR
;
1061 if (has_msr_hsave_pa
) {
1062 msrs
[n
++].index
= MSR_VM_HSAVE_PA
;
1064 msrs
[n
++].index
= MSR_IA32_TSC
;
1065 #ifdef TARGET_X86_64
1066 if (lm_capable_kernel
) {
1067 msrs
[n
++].index
= MSR_CSTAR
;
1068 msrs
[n
++].index
= MSR_KERNELGSBASE
;
1069 msrs
[n
++].index
= MSR_FMASK
;
1070 msrs
[n
++].index
= MSR_LSTAR
;
1073 msrs
[n
++].index
= MSR_KVM_SYSTEM_TIME
;
1074 msrs
[n
++].index
= MSR_KVM_WALL_CLOCK
;
1075 #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
1076 if (has_msr_async_pf_en
) {
1077 msrs
[n
++].index
= MSR_KVM_ASYNC_PF_EN
;
1083 msrs
[n
++].index
= MSR_MCG_STATUS
;
1084 msrs
[n
++].index
= MSR_MCG_CTL
;
1085 for (i
= 0; i
< (env
->mcg_cap
& 0xff) * 4; i
++) {
1086 msrs
[n
++].index
= MSR_MC0_CTL
+ i
;
1091 msr_data
.info
.nmsrs
= n
;
1092 ret
= kvm_vcpu_ioctl(env
, KVM_GET_MSRS
, &msr_data
);
1097 for (i
= 0; i
< ret
; i
++) {
1098 switch (msrs
[i
].index
) {
1099 case MSR_IA32_SYSENTER_CS
:
1100 env
->sysenter_cs
= msrs
[i
].data
;
1102 case MSR_IA32_SYSENTER_ESP
:
1103 env
->sysenter_esp
= msrs
[i
].data
;
1105 case MSR_IA32_SYSENTER_EIP
:
1106 env
->sysenter_eip
= msrs
[i
].data
;
1109 env
->star
= msrs
[i
].data
;
1111 #ifdef TARGET_X86_64
1113 env
->cstar
= msrs
[i
].data
;
1115 case MSR_KERNELGSBASE
:
1116 env
->kernelgsbase
= msrs
[i
].data
;
1119 env
->fmask
= msrs
[i
].data
;
1122 env
->lstar
= msrs
[i
].data
;
1126 env
->tsc
= msrs
[i
].data
;
1128 case MSR_VM_HSAVE_PA
:
1129 env
->vm_hsave
= msrs
[i
].data
;
1131 case MSR_KVM_SYSTEM_TIME
:
1132 env
->system_time_msr
= msrs
[i
].data
;
1134 case MSR_KVM_WALL_CLOCK
:
1135 env
->wall_clock_msr
= msrs
[i
].data
;
1138 case MSR_MCG_STATUS
:
1139 env
->mcg_status
= msrs
[i
].data
;
1142 env
->mcg_ctl
= msrs
[i
].data
;
1147 if (msrs
[i
].index
>= MSR_MC0_CTL
&&
1148 msrs
[i
].index
< MSR_MC0_CTL
+ (env
->mcg_cap
& 0xff) * 4) {
1149 env
->mce_banks
[msrs
[i
].index
- MSR_MC0_CTL
] = msrs
[i
].data
;
1153 #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
1154 case MSR_KVM_ASYNC_PF_EN
:
1155 env
->async_pf_en_msr
= msrs
[i
].data
;
1164 static int kvm_put_mp_state(CPUState
*env
)
1166 struct kvm_mp_state mp_state
= { .mp_state
= env
->mp_state
};
1168 return kvm_vcpu_ioctl(env
, KVM_SET_MP_STATE
, &mp_state
);
1171 static int kvm_get_mp_state(CPUState
*env
)
1173 struct kvm_mp_state mp_state
;
1176 ret
= kvm_vcpu_ioctl(env
, KVM_GET_MP_STATE
, &mp_state
);
1180 env
->mp_state
= mp_state
.mp_state
;
1181 if (kvm_irqchip_in_kernel()) {
1182 env
->halted
= (mp_state
.mp_state
== KVM_MP_STATE_HALTED
);
1187 static int kvm_put_vcpu_events(CPUState
*env
, int level
)
1189 #ifdef KVM_CAP_VCPU_EVENTS
1190 struct kvm_vcpu_events events
;
1192 if (!kvm_has_vcpu_events()) {
1196 events
.exception
.injected
= (env
->exception_injected
>= 0);
1197 events
.exception
.nr
= env
->exception_injected
;
1198 events
.exception
.has_error_code
= env
->has_error_code
;
1199 events
.exception
.error_code
= env
->error_code
;
1201 events
.interrupt
.injected
= (env
->interrupt_injected
>= 0);
1202 events
.interrupt
.nr
= env
->interrupt_injected
;
1203 events
.interrupt
.soft
= env
->soft_interrupt
;
1205 events
.nmi
.injected
= env
->nmi_injected
;
1206 events
.nmi
.pending
= env
->nmi_pending
;
1207 events
.nmi
.masked
= !!(env
->hflags2
& HF2_NMI_MASK
);
1209 events
.sipi_vector
= env
->sipi_vector
;
1212 if (level
>= KVM_PUT_RESET_STATE
) {
1214 KVM_VCPUEVENT_VALID_NMI_PENDING
| KVM_VCPUEVENT_VALID_SIPI_VECTOR
;
1217 return kvm_vcpu_ioctl(env
, KVM_SET_VCPU_EVENTS
, &events
);
1223 static int kvm_get_vcpu_events(CPUState
*env
)
1225 #ifdef KVM_CAP_VCPU_EVENTS
1226 struct kvm_vcpu_events events
;
1229 if (!kvm_has_vcpu_events()) {
1233 ret
= kvm_vcpu_ioctl(env
, KVM_GET_VCPU_EVENTS
, &events
);
1237 env
->exception_injected
=
1238 events
.exception
.injected
? events
.exception
.nr
: -1;
1239 env
->has_error_code
= events
.exception
.has_error_code
;
1240 env
->error_code
= events
.exception
.error_code
;
1242 env
->interrupt_injected
=
1243 events
.interrupt
.injected
? events
.interrupt
.nr
: -1;
1244 env
->soft_interrupt
= events
.interrupt
.soft
;
1246 env
->nmi_injected
= events
.nmi
.injected
;
1247 env
->nmi_pending
= events
.nmi
.pending
;
1248 if (events
.nmi
.masked
) {
1249 env
->hflags2
|= HF2_NMI_MASK
;
1251 env
->hflags2
&= ~HF2_NMI_MASK
;
1254 env
->sipi_vector
= events
.sipi_vector
;
1260 static int kvm_guest_debug_workarounds(CPUState
*env
)
1263 #ifdef KVM_CAP_SET_GUEST_DEBUG
1264 unsigned long reinject_trap
= 0;
1266 if (!kvm_has_vcpu_events()) {
1267 if (env
->exception_injected
== 1) {
1268 reinject_trap
= KVM_GUESTDBG_INJECT_DB
;
1269 } else if (env
->exception_injected
== 3) {
1270 reinject_trap
= KVM_GUESTDBG_INJECT_BP
;
1272 env
->exception_injected
= -1;
1276 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1277 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1278 * by updating the debug state once again if single-stepping is on.
1279 * Another reason to call kvm_update_guest_debug here is a pending debug
1280 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1281 * reinject them via SET_GUEST_DEBUG.
1283 if (reinject_trap
||
1284 (!kvm_has_robust_singlestep() && env
->singlestep_enabled
)) {
1285 ret
= kvm_update_guest_debug(env
, reinject_trap
);
1287 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1291 static int kvm_put_debugregs(CPUState
*env
)
1293 #ifdef KVM_CAP_DEBUGREGS
1294 struct kvm_debugregs dbgregs
;
1297 if (!kvm_has_debugregs()) {
1301 for (i
= 0; i
< 4; i
++) {
1302 dbgregs
.db
[i
] = env
->dr
[i
];
1304 dbgregs
.dr6
= env
->dr
[6];
1305 dbgregs
.dr7
= env
->dr
[7];
1308 return kvm_vcpu_ioctl(env
, KVM_SET_DEBUGREGS
, &dbgregs
);
1314 static int kvm_get_debugregs(CPUState
*env
)
1316 #ifdef KVM_CAP_DEBUGREGS
1317 struct kvm_debugregs dbgregs
;
1320 if (!kvm_has_debugregs()) {
1324 ret
= kvm_vcpu_ioctl(env
, KVM_GET_DEBUGREGS
, &dbgregs
);
1328 for (i
= 0; i
< 4; i
++) {
1329 env
->dr
[i
] = dbgregs
.db
[i
];
1331 env
->dr
[4] = env
->dr
[6] = dbgregs
.dr6
;
1332 env
->dr
[5] = env
->dr
[7] = dbgregs
.dr7
;
1338 int kvm_arch_put_registers(CPUState
*env
, int level
)
1342 assert(cpu_is_stopped(env
) || qemu_cpu_self(env
));
1344 ret
= kvm_getput_regs(env
, 1);
1348 ret
= kvm_put_xsave(env
);
1352 ret
= kvm_put_xcrs(env
);
1356 ret
= kvm_put_sregs(env
);
1360 ret
= kvm_put_msrs(env
, level
);
1364 if (level
>= KVM_PUT_RESET_STATE
) {
1365 ret
= kvm_put_mp_state(env
);
1370 ret
= kvm_put_vcpu_events(env
, level
);
1374 ret
= kvm_put_debugregs(env
);
1379 ret
= kvm_guest_debug_workarounds(env
);
1386 int kvm_arch_get_registers(CPUState
*env
)
1390 assert(cpu_is_stopped(env
) || qemu_cpu_self(env
));
1392 ret
= kvm_getput_regs(env
, 0);
1396 ret
= kvm_get_xsave(env
);
1400 ret
= kvm_get_xcrs(env
);
1404 ret
= kvm_get_sregs(env
);
1408 ret
= kvm_get_msrs(env
);
1412 ret
= kvm_get_mp_state(env
);
1416 ret
= kvm_get_vcpu_events(env
);
1420 ret
= kvm_get_debugregs(env
);
1427 int kvm_arch_pre_run(CPUState
*env
, struct kvm_run
*run
)
1430 if (env
->interrupt_request
& CPU_INTERRUPT_NMI
) {
1431 env
->interrupt_request
&= ~CPU_INTERRUPT_NMI
;
1432 DPRINTF("injected NMI\n");
1433 kvm_vcpu_ioctl(env
, KVM_NMI
);
1436 /* Try to inject an interrupt if the guest can accept it */
1437 if (run
->ready_for_interrupt_injection
&&
1438 (env
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
1439 (env
->eflags
& IF_MASK
)) {
1442 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
1443 irq
= cpu_get_pic_interrupt(env
);
1445 struct kvm_interrupt intr
;
1448 DPRINTF("injected interrupt %d\n", irq
);
1449 kvm_vcpu_ioctl(env
, KVM_INTERRUPT
, &intr
);
1453 /* If we have an interrupt but the guest is not ready to receive an
1454 * interrupt, request an interrupt window exit. This will
1455 * cause a return to userspace as soon as the guest is ready to
1456 * receive interrupts. */
1457 if ((env
->interrupt_request
& CPU_INTERRUPT_HARD
)) {
1458 run
->request_interrupt_window
= 1;
1460 run
->request_interrupt_window
= 0;
1463 DPRINTF("setting tpr\n");
1464 run
->cr8
= cpu_get_apic_tpr(env
->apic_state
);
1469 int kvm_arch_post_run(CPUState
*env
, struct kvm_run
*run
)
1472 env
->eflags
|= IF_MASK
;
1474 env
->eflags
&= ~IF_MASK
;
1476 cpu_set_apic_tpr(env
->apic_state
, run
->cr8
);
1477 cpu_set_apic_base(env
->apic_state
, run
->apic_base
);
1482 int kvm_arch_process_irqchip_events(CPUState
*env
)
1484 if (env
->interrupt_request
& CPU_INTERRUPT_INIT
) {
1485 kvm_cpu_synchronize_state(env
);
1487 env
->exception_index
= EXCP_HALTED
;
1490 if (env
->interrupt_request
& CPU_INTERRUPT_SIPI
) {
1491 kvm_cpu_synchronize_state(env
);
1498 static int kvm_handle_halt(CPUState
*env
)
1500 if (!((env
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
1501 (env
->eflags
& IF_MASK
)) &&
1502 !(env
->interrupt_request
& CPU_INTERRUPT_NMI
)) {
1504 env
->exception_index
= EXCP_HLT
;
1511 static bool host_supports_vmx(void)
1513 uint32_t ecx
, unused
;
1515 host_cpuid(1, 0, &unused
, &unused
, &ecx
, &unused
);
1516 return ecx
& CPUID_EXT_VMX
;
1519 #define VMX_INVALID_GUEST_STATE 0x80000021
1521 int kvm_arch_handle_exit(CPUState
*env
, struct kvm_run
*run
)
1526 switch (run
->exit_reason
) {
1528 DPRINTF("handle_hlt\n");
1529 ret
= kvm_handle_halt(env
);
1531 case KVM_EXIT_SET_TPR
:
1534 case KVM_EXIT_FAIL_ENTRY
:
1535 code
= run
->fail_entry
.hardware_entry_failure_reason
;
1536 fprintf(stderr
, "KVM: entry failed, hardware error 0x%" PRIx64
"\n",
1538 if (host_supports_vmx() && code
== VMX_INVALID_GUEST_STATE
) {
1540 "\nIf you're runnning a guest on an Intel machine without "
1541 "unrestricted mode\n"
1542 "support, the failure can be most likely due to the guest "
1543 "entering an invalid\n"
1544 "state for Intel VT. For example, the guest maybe running "
1545 "in big real mode\n"
1546 "which is not supported on less recent Intel processors."
1551 case KVM_EXIT_EXCEPTION
:
1552 fprintf(stderr
, "KVM: exception %d exit (error code 0x%x)\n",
1553 run
->ex
.exception
, run
->ex
.error_code
);
1557 fprintf(stderr
, "KVM: unknown exit reason %d\n", run
->exit_reason
);
1565 #ifdef KVM_CAP_SET_GUEST_DEBUG
1566 int kvm_arch_insert_sw_breakpoint(CPUState
*env
, struct kvm_sw_breakpoint
*bp
)
1568 static const uint8_t int3
= 0xcc;
1570 if (cpu_memory_rw_debug(env
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 1, 0) ||
1571 cpu_memory_rw_debug(env
, bp
->pc
, (uint8_t *)&int3
, 1, 1)) {
1577 int kvm_arch_remove_sw_breakpoint(CPUState
*env
, struct kvm_sw_breakpoint
*bp
)
1581 if (cpu_memory_rw_debug(env
, bp
->pc
, &int3
, 1, 0) || int3
!= 0xcc ||
1582 cpu_memory_rw_debug(env
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 1, 1)) {
1594 static int nb_hw_breakpoint
;
1596 static int find_hw_breakpoint(target_ulong addr
, int len
, int type
)
1600 for (n
= 0; n
< nb_hw_breakpoint
; n
++) {
1601 if (hw_breakpoint
[n
].addr
== addr
&& hw_breakpoint
[n
].type
== type
&&
1602 (hw_breakpoint
[n
].len
== len
|| len
== -1)) {
1609 int kvm_arch_insert_hw_breakpoint(target_ulong addr
,
1610 target_ulong len
, int type
)
1613 case GDB_BREAKPOINT_HW
:
1616 case GDB_WATCHPOINT_WRITE
:
1617 case GDB_WATCHPOINT_ACCESS
:
1624 if (addr
& (len
- 1)) {
1636 if (nb_hw_breakpoint
== 4) {
1639 if (find_hw_breakpoint(addr
, len
, type
) >= 0) {
1642 hw_breakpoint
[nb_hw_breakpoint
].addr
= addr
;
1643 hw_breakpoint
[nb_hw_breakpoint
].len
= len
;
1644 hw_breakpoint
[nb_hw_breakpoint
].type
= type
;
1650 int kvm_arch_remove_hw_breakpoint(target_ulong addr
,
1651 target_ulong len
, int type
)
1655 n
= find_hw_breakpoint(addr
, (type
== GDB_BREAKPOINT_HW
) ? 1 : len
, type
);
1660 hw_breakpoint
[n
] = hw_breakpoint
[nb_hw_breakpoint
];
1665 void kvm_arch_remove_all_hw_breakpoints(void)
1667 nb_hw_breakpoint
= 0;
1670 static CPUWatchpoint hw_watchpoint
;
1672 int kvm_arch_debug(struct kvm_debug_exit_arch
*arch_info
)
1677 if (arch_info
->exception
== 1) {
1678 if (arch_info
->dr6
& (1 << 14)) {
1679 if (cpu_single_env
->singlestep_enabled
) {
1683 for (n
= 0; n
< 4; n
++) {
1684 if (arch_info
->dr6
& (1 << n
)) {
1685 switch ((arch_info
->dr7
>> (16 + n
*4)) & 0x3) {
1691 cpu_single_env
->watchpoint_hit
= &hw_watchpoint
;
1692 hw_watchpoint
.vaddr
= hw_breakpoint
[n
].addr
;
1693 hw_watchpoint
.flags
= BP_MEM_WRITE
;
1697 cpu_single_env
->watchpoint_hit
= &hw_watchpoint
;
1698 hw_watchpoint
.vaddr
= hw_breakpoint
[n
].addr
;
1699 hw_watchpoint
.flags
= BP_MEM_ACCESS
;
1705 } else if (kvm_find_sw_breakpoint(cpu_single_env
, arch_info
->pc
)) {
1709 cpu_synchronize_state(cpu_single_env
);
1710 assert(cpu_single_env
->exception_injected
== -1);
1712 cpu_single_env
->exception_injected
= arch_info
->exception
;
1713 cpu_single_env
->has_error_code
= 0;
1719 void kvm_arch_update_guest_debug(CPUState
*env
, struct kvm_guest_debug
*dbg
)
1721 const uint8_t type_code
[] = {
1722 [GDB_BREAKPOINT_HW
] = 0x0,
1723 [GDB_WATCHPOINT_WRITE
] = 0x1,
1724 [GDB_WATCHPOINT_ACCESS
] = 0x3
1726 const uint8_t len_code
[] = {
1727 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1731 if (kvm_sw_breakpoints_active(env
)) {
1732 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
;
1734 if (nb_hw_breakpoint
> 0) {
1735 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
;
1736 dbg
->arch
.debugreg
[7] = 0x0600;
1737 for (n
= 0; n
< nb_hw_breakpoint
; n
++) {
1738 dbg
->arch
.debugreg
[n
] = hw_breakpoint
[n
].addr
;
1739 dbg
->arch
.debugreg
[7] |= (2 << (n
* 2)) |
1740 (type_code
[hw_breakpoint
[n
].type
] << (16 + n
*4)) |
1741 ((uint32_t)len_code
[hw_breakpoint
[n
].len
] << (18 + n
*4));
1745 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1747 bool kvm_arch_stop_on_emulation_error(CPUState
*env
)
1749 return !(env
->cr
[0] & CR0_PE_MASK
) ||
1750 ((env
->segs
[R_CS
].selector
& 3) != 3);
1753 static void hardware_memory_error(void)
1755 fprintf(stderr
, "Hardware memory error!\n");
1760 static void kvm_mce_broadcast_rest(CPUState
*env
)
1762 struct kvm_x86_mce mce
= {
1764 .status
= MCI_STATUS_VAL
| MCI_STATUS_UC
,
1765 .mcg_status
= MCG_STATUS_MCIP
| MCG_STATUS_RIPV
,
1771 /* Broadcast MCA signal for processor version 06H_EH and above */
1772 if (cpu_x86_support_mca_broadcast(env
)) {
1773 for (cenv
= first_cpu
; cenv
!= NULL
; cenv
= cenv
->next_cpu
) {
1777 kvm_inject_x86_mce_on(cenv
, &mce
, ABORT_ON_ERROR
);
1782 static void kvm_mce_inj_srar_dataload(CPUState
*env
, target_phys_addr_t paddr
)
1784 struct kvm_x86_mce mce
= {
1786 .status
= MCI_STATUS_VAL
| MCI_STATUS_UC
| MCI_STATUS_EN
1787 | MCI_STATUS_MISCV
| MCI_STATUS_ADDRV
| MCI_STATUS_S
1788 | MCI_STATUS_AR
| 0x134,
1789 .mcg_status
= MCG_STATUS_MCIP
| MCG_STATUS_EIPV
,
1791 .misc
= (MCM_ADDR_PHYS
<< 6) | 0xc,
1795 r
= kvm_set_mce(env
, &mce
);
1797 fprintf(stderr
, "kvm_set_mce: %s\n", strerror(errno
));
1800 kvm_mce_broadcast_rest(env
);
1803 static void kvm_mce_inj_srao_memscrub(CPUState
*env
, target_phys_addr_t paddr
)
1805 struct kvm_x86_mce mce
= {
1807 .status
= MCI_STATUS_VAL
| MCI_STATUS_UC
| MCI_STATUS_EN
1808 | MCI_STATUS_MISCV
| MCI_STATUS_ADDRV
| MCI_STATUS_S
1810 .mcg_status
= MCG_STATUS_MCIP
| MCG_STATUS_RIPV
,
1812 .misc
= (MCM_ADDR_PHYS
<< 6) | 0xc,
1816 r
= kvm_set_mce(env
, &mce
);
1818 fprintf(stderr
, "kvm_set_mce: %s\n", strerror(errno
));
1821 kvm_mce_broadcast_rest(env
);
1824 static void kvm_mce_inj_srao_memscrub2(CPUState
*env
, target_phys_addr_t paddr
)
1826 struct kvm_x86_mce mce
= {
1828 .status
= MCI_STATUS_VAL
| MCI_STATUS_UC
| MCI_STATUS_EN
1829 | MCI_STATUS_MISCV
| MCI_STATUS_ADDRV
| MCI_STATUS_S
1831 .mcg_status
= MCG_STATUS_MCIP
| MCG_STATUS_RIPV
,
1833 .misc
= (MCM_ADDR_PHYS
<< 6) | 0xc,
1836 kvm_inject_x86_mce_on(env
, &mce
, ABORT_ON_ERROR
);
1837 kvm_mce_broadcast_rest(env
);
1842 int kvm_arch_on_sigbus_vcpu(CPUState
*env
, int code
, void *addr
)
1844 #if defined(KVM_CAP_MCE)
1846 ram_addr_t ram_addr
;
1847 target_phys_addr_t paddr
;
1849 if ((env
->mcg_cap
& MCG_SER_P
) && addr
1850 && (code
== BUS_MCEERR_AR
1851 || code
== BUS_MCEERR_AO
)) {
1852 vaddr
= (void *)addr
;
1853 if (qemu_ram_addr_from_host(vaddr
, &ram_addr
) ||
1854 !kvm_physical_memory_addr_from_ram(env
->kvm_state
, ram_addr
, &paddr
)) {
1855 fprintf(stderr
, "Hardware memory error for memory used by "
1856 "QEMU itself instead of guest system!\n");
1857 /* Hope we are lucky for AO MCE */
1858 if (code
== BUS_MCEERR_AO
) {
1861 hardware_memory_error();
1865 if (code
== BUS_MCEERR_AR
) {
1866 /* Fake an Intel architectural Data Load SRAR UCR */
1867 kvm_mce_inj_srar_dataload(env
, paddr
);
1870 * If there is an MCE excpetion being processed, ignore
1873 if (!kvm_mce_in_progress(env
)) {
1874 /* Fake an Intel architectural Memory scrubbing UCR */
1875 kvm_mce_inj_srao_memscrub(env
, paddr
);
1881 if (code
== BUS_MCEERR_AO
) {
1883 } else if (code
== BUS_MCEERR_AR
) {
1884 hardware_memory_error();
1892 int kvm_arch_on_sigbus(int code
, void *addr
)
1894 #if defined(KVM_CAP_MCE)
1895 if ((first_cpu
->mcg_cap
& MCG_SER_P
) && addr
&& code
== BUS_MCEERR_AO
) {
1897 ram_addr_t ram_addr
;
1898 target_phys_addr_t paddr
;
1900 /* Hope we are lucky for AO MCE */
1902 if (qemu_ram_addr_from_host(vaddr
, &ram_addr
) ||
1903 !kvm_physical_memory_addr_from_ram(first_cpu
->kvm_state
, ram_addr
, &paddr
)) {
1904 fprintf(stderr
, "Hardware memory error for memory used by "
1905 "QEMU itself instead of guest system!: %p\n", addr
);
1908 kvm_mce_inj_srao_memscrub2(first_cpu
, paddr
);
1912 if (code
== BUS_MCEERR_AO
) {
1914 } else if (code
== BUS_MCEERR_AR
) {
1915 hardware_memory_error();