nbd: enable use of TLS with nbd-server-start command
[qemu.git] / hw / net / ne2000.c
blobe408083a58b8ff4b319b612442556361c47d0ae5
1 /*
2 * QEMU NE2000 emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "qemu/osdep.h"
25 #include "hw/hw.h"
26 #include "hw/pci/pci.h"
27 #include "net/net.h"
28 #include "ne2000.h"
29 #include "hw/loader.h"
30 #include "sysemu/sysemu.h"
32 /* debug NE2000 card */
33 //#define DEBUG_NE2000
35 #define MAX_ETH_FRAME_SIZE 1514
37 #define E8390_CMD 0x00 /* The command register (for all pages) */
38 /* Page 0 register offsets. */
39 #define EN0_CLDALO 0x01 /* Low byte of current local dma addr RD */
40 #define EN0_STARTPG 0x01 /* Starting page of ring bfr WR */
41 #define EN0_CLDAHI 0x02 /* High byte of current local dma addr RD */
42 #define EN0_STOPPG 0x02 /* Ending page +1 of ring bfr WR */
43 #define EN0_BOUNDARY 0x03 /* Boundary page of ring bfr RD WR */
44 #define EN0_TSR 0x04 /* Transmit status reg RD */
45 #define EN0_TPSR 0x04 /* Transmit starting page WR */
46 #define EN0_NCR 0x05 /* Number of collision reg RD */
47 #define EN0_TCNTLO 0x05 /* Low byte of tx byte count WR */
48 #define EN0_FIFO 0x06 /* FIFO RD */
49 #define EN0_TCNTHI 0x06 /* High byte of tx byte count WR */
50 #define EN0_ISR 0x07 /* Interrupt status reg RD WR */
51 #define EN0_CRDALO 0x08 /* low byte of current remote dma address RD */
52 #define EN0_RSARLO 0x08 /* Remote start address reg 0 */
53 #define EN0_CRDAHI 0x09 /* high byte, current remote dma address RD */
54 #define EN0_RSARHI 0x09 /* Remote start address reg 1 */
55 #define EN0_RCNTLO 0x0a /* Remote byte count reg WR */
56 #define EN0_RTL8029ID0 0x0a /* Realtek ID byte #1 RD */
57 #define EN0_RCNTHI 0x0b /* Remote byte count reg WR */
58 #define EN0_RTL8029ID1 0x0b /* Realtek ID byte #2 RD */
59 #define EN0_RSR 0x0c /* rx status reg RD */
60 #define EN0_RXCR 0x0c /* RX configuration reg WR */
61 #define EN0_TXCR 0x0d /* TX configuration reg WR */
62 #define EN0_COUNTER0 0x0d /* Rcv alignment error counter RD */
63 #define EN0_DCFG 0x0e /* Data configuration reg WR */
64 #define EN0_COUNTER1 0x0e /* Rcv CRC error counter RD */
65 #define EN0_IMR 0x0f /* Interrupt mask reg WR */
66 #define EN0_COUNTER2 0x0f /* Rcv missed frame error counter RD */
68 #define EN1_PHYS 0x11
69 #define EN1_CURPAG 0x17
70 #define EN1_MULT 0x18
72 #define EN2_STARTPG 0x21 /* Starting page of ring bfr RD */
73 #define EN2_STOPPG 0x22 /* Ending page +1 of ring bfr RD */
75 #define EN3_CONFIG0 0x33
76 #define EN3_CONFIG1 0x34
77 #define EN3_CONFIG2 0x35
78 #define EN3_CONFIG3 0x36
80 /* Register accessed at EN_CMD, the 8390 base addr. */
81 #define E8390_STOP 0x01 /* Stop and reset the chip */
82 #define E8390_START 0x02 /* Start the chip, clear reset */
83 #define E8390_TRANS 0x04 /* Transmit a frame */
84 #define E8390_RREAD 0x08 /* Remote read */
85 #define E8390_RWRITE 0x10 /* Remote write */
86 #define E8390_NODMA 0x20 /* Remote DMA */
87 #define E8390_PAGE0 0x00 /* Select page chip registers */
88 #define E8390_PAGE1 0x40 /* using the two high-order bits */
89 #define E8390_PAGE2 0x80 /* Page 3 is invalid. */
91 /* Bits in EN0_ISR - Interrupt status register */
92 #define ENISR_RX 0x01 /* Receiver, no error */
93 #define ENISR_TX 0x02 /* Transmitter, no error */
94 #define ENISR_RX_ERR 0x04 /* Receiver, with error */
95 #define ENISR_TX_ERR 0x08 /* Transmitter, with error */
96 #define ENISR_OVER 0x10 /* Receiver overwrote the ring */
97 #define ENISR_COUNTERS 0x20 /* Counters need emptying */
98 #define ENISR_RDC 0x40 /* remote dma complete */
99 #define ENISR_RESET 0x80 /* Reset completed */
100 #define ENISR_ALL 0x3f /* Interrupts we will enable */
102 /* Bits in received packet status byte and EN0_RSR*/
103 #define ENRSR_RXOK 0x01 /* Received a good packet */
104 #define ENRSR_CRC 0x02 /* CRC error */
105 #define ENRSR_FAE 0x04 /* frame alignment error */
106 #define ENRSR_FO 0x08 /* FIFO overrun */
107 #define ENRSR_MPA 0x10 /* missed pkt */
108 #define ENRSR_PHY 0x20 /* physical/multicast address */
109 #define ENRSR_DIS 0x40 /* receiver disable. set in monitor mode */
110 #define ENRSR_DEF 0x80 /* deferring */
112 /* Transmitted packet status, EN0_TSR. */
113 #define ENTSR_PTX 0x01 /* Packet transmitted without error */
114 #define ENTSR_ND 0x02 /* The transmit wasn't deferred. */
115 #define ENTSR_COL 0x04 /* The transmit collided at least once. */
116 #define ENTSR_ABT 0x08 /* The transmit collided 16 times, and was deferred. */
117 #define ENTSR_CRS 0x10 /* The carrier sense was lost. */
118 #define ENTSR_FU 0x20 /* A "FIFO underrun" occurred during transmit. */
119 #define ENTSR_CDH 0x40 /* The collision detect "heartbeat" signal was lost. */
120 #define ENTSR_OWC 0x80 /* There was an out-of-window collision. */
122 typedef struct PCINE2000State {
123 PCIDevice dev;
124 NE2000State ne2000;
125 } PCINE2000State;
127 void ne2000_reset(NE2000State *s)
129 int i;
131 s->isr = ENISR_RESET;
132 memcpy(s->mem, &s->c.macaddr, 6);
133 s->mem[14] = 0x57;
134 s->mem[15] = 0x57;
136 /* duplicate prom data */
137 for(i = 15;i >= 0; i--) {
138 s->mem[2 * i] = s->mem[i];
139 s->mem[2 * i + 1] = s->mem[i];
143 static void ne2000_update_irq(NE2000State *s)
145 int isr;
146 isr = (s->isr & s->imr) & 0x7f;
147 #if defined(DEBUG_NE2000)
148 printf("NE2000: Set IRQ to %d (%02x %02x)\n",
149 isr ? 1 : 0, s->isr, s->imr);
150 #endif
151 qemu_set_irq(s->irq, (isr != 0));
154 static int ne2000_buffer_full(NE2000State *s)
156 int avail, index, boundary;
158 index = s->curpag << 8;
159 boundary = s->boundary << 8;
160 if (index < boundary)
161 avail = boundary - index;
162 else
163 avail = (s->stop - s->start) - (index - boundary);
164 if (avail < (MAX_ETH_FRAME_SIZE + 4))
165 return 1;
166 return 0;
169 #define MIN_BUF_SIZE 60
171 ssize_t ne2000_receive(NetClientState *nc, const uint8_t *buf, size_t size_)
173 NE2000State *s = qemu_get_nic_opaque(nc);
174 int size = size_;
175 uint8_t *p;
176 unsigned int total_len, next, avail, len, index, mcast_idx;
177 uint8_t buf1[60];
178 static const uint8_t broadcast_macaddr[6] =
179 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
181 #if defined(DEBUG_NE2000)
182 printf("NE2000: received len=%d\n", size);
183 #endif
185 if (s->cmd & E8390_STOP || ne2000_buffer_full(s))
186 return -1;
188 /* XXX: check this */
189 if (s->rxcr & 0x10) {
190 /* promiscuous: receive all */
191 } else {
192 if (!memcmp(buf, broadcast_macaddr, 6)) {
193 /* broadcast address */
194 if (!(s->rxcr & 0x04))
195 return size;
196 } else if (buf[0] & 0x01) {
197 /* multicast */
198 if (!(s->rxcr & 0x08))
199 return size;
200 mcast_idx = compute_mcast_idx(buf);
201 if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
202 return size;
203 } else if (s->mem[0] == buf[0] &&
204 s->mem[2] == buf[1] &&
205 s->mem[4] == buf[2] &&
206 s->mem[6] == buf[3] &&
207 s->mem[8] == buf[4] &&
208 s->mem[10] == buf[5]) {
209 /* match */
210 } else {
211 return size;
216 /* if too small buffer, then expand it */
217 if (size < MIN_BUF_SIZE) {
218 memcpy(buf1, buf, size);
219 memset(buf1 + size, 0, MIN_BUF_SIZE - size);
220 buf = buf1;
221 size = MIN_BUF_SIZE;
224 index = s->curpag << 8;
225 if (index >= NE2000_PMEM_END) {
226 index = s->start;
228 /* 4 bytes for header */
229 total_len = size + 4;
230 /* address for next packet (4 bytes for CRC) */
231 next = index + ((total_len + 4 + 255) & ~0xff);
232 if (next >= s->stop)
233 next -= (s->stop - s->start);
234 /* prepare packet header */
235 p = s->mem + index;
236 s->rsr = ENRSR_RXOK; /* receive status */
237 /* XXX: check this */
238 if (buf[0] & 0x01)
239 s->rsr |= ENRSR_PHY;
240 p[0] = s->rsr;
241 p[1] = next >> 8;
242 p[2] = total_len;
243 p[3] = total_len >> 8;
244 index += 4;
246 /* write packet data */
247 while (size > 0) {
248 if (index <= s->stop)
249 avail = s->stop - index;
250 else
251 break;
252 len = size;
253 if (len > avail)
254 len = avail;
255 memcpy(s->mem + index, buf, len);
256 buf += len;
257 index += len;
258 if (index == s->stop)
259 index = s->start;
260 size -= len;
262 s->curpag = next >> 8;
264 /* now we can signal we have received something */
265 s->isr |= ENISR_RX;
266 ne2000_update_irq(s);
268 return size_;
271 static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
273 NE2000State *s = opaque;
274 int offset, page, index;
276 addr &= 0xf;
277 #ifdef DEBUG_NE2000
278 printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
279 #endif
280 if (addr == E8390_CMD) {
281 /* control register */
282 s->cmd = val;
283 if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
284 s->isr &= ~ENISR_RESET;
285 /* test specific case: zero length transfer */
286 if ((val & (E8390_RREAD | E8390_RWRITE)) &&
287 s->rcnt == 0) {
288 s->isr |= ENISR_RDC;
289 ne2000_update_irq(s);
291 if (val & E8390_TRANS) {
292 index = (s->tpsr << 8);
293 /* XXX: next 2 lines are a hack to make netware 3.11 work */
294 if (index >= NE2000_PMEM_END)
295 index -= NE2000_PMEM_SIZE;
296 /* fail safe: check range on the transmitted length */
297 if (index + s->tcnt <= NE2000_PMEM_END) {
298 qemu_send_packet(qemu_get_queue(s->nic), s->mem + index,
299 s->tcnt);
301 /* signal end of transfer */
302 s->tsr = ENTSR_PTX;
303 s->isr |= ENISR_TX;
304 s->cmd &= ~E8390_TRANS;
305 ne2000_update_irq(s);
308 } else {
309 page = s->cmd >> 6;
310 offset = addr | (page << 4);
311 switch(offset) {
312 case EN0_STARTPG:
313 if (val << 8 <= NE2000_PMEM_END) {
314 s->start = val << 8;
316 break;
317 case EN0_STOPPG:
318 if (val << 8 <= NE2000_PMEM_END) {
319 s->stop = val << 8;
321 break;
322 case EN0_BOUNDARY:
323 if (val << 8 < NE2000_PMEM_END) {
324 s->boundary = val;
326 break;
327 case EN0_IMR:
328 s->imr = val;
329 ne2000_update_irq(s);
330 break;
331 case EN0_TPSR:
332 s->tpsr = val;
333 break;
334 case EN0_TCNTLO:
335 s->tcnt = (s->tcnt & 0xff00) | val;
336 break;
337 case EN0_TCNTHI:
338 s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
339 break;
340 case EN0_RSARLO:
341 s->rsar = (s->rsar & 0xff00) | val;
342 break;
343 case EN0_RSARHI:
344 s->rsar = (s->rsar & 0x00ff) | (val << 8);
345 break;
346 case EN0_RCNTLO:
347 s->rcnt = (s->rcnt & 0xff00) | val;
348 break;
349 case EN0_RCNTHI:
350 s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
351 break;
352 case EN0_RXCR:
353 s->rxcr = val;
354 break;
355 case EN0_DCFG:
356 s->dcfg = val;
357 break;
358 case EN0_ISR:
359 s->isr &= ~(val & 0x7f);
360 ne2000_update_irq(s);
361 break;
362 case EN1_PHYS ... EN1_PHYS + 5:
363 s->phys[offset - EN1_PHYS] = val;
364 break;
365 case EN1_CURPAG:
366 if (val << 8 < NE2000_PMEM_END) {
367 s->curpag = val;
369 break;
370 case EN1_MULT ... EN1_MULT + 7:
371 s->mult[offset - EN1_MULT] = val;
372 break;
377 static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
379 NE2000State *s = opaque;
380 int offset, page, ret;
382 addr &= 0xf;
383 if (addr == E8390_CMD) {
384 ret = s->cmd;
385 } else {
386 page = s->cmd >> 6;
387 offset = addr | (page << 4);
388 switch(offset) {
389 case EN0_TSR:
390 ret = s->tsr;
391 break;
392 case EN0_BOUNDARY:
393 ret = s->boundary;
394 break;
395 case EN0_ISR:
396 ret = s->isr;
397 break;
398 case EN0_RSARLO:
399 ret = s->rsar & 0x00ff;
400 break;
401 case EN0_RSARHI:
402 ret = s->rsar >> 8;
403 break;
404 case EN1_PHYS ... EN1_PHYS + 5:
405 ret = s->phys[offset - EN1_PHYS];
406 break;
407 case EN1_CURPAG:
408 ret = s->curpag;
409 break;
410 case EN1_MULT ... EN1_MULT + 7:
411 ret = s->mult[offset - EN1_MULT];
412 break;
413 case EN0_RSR:
414 ret = s->rsr;
415 break;
416 case EN2_STARTPG:
417 ret = s->start >> 8;
418 break;
419 case EN2_STOPPG:
420 ret = s->stop >> 8;
421 break;
422 case EN0_RTL8029ID0:
423 ret = 0x50;
424 break;
425 case EN0_RTL8029ID1:
426 ret = 0x43;
427 break;
428 case EN3_CONFIG0:
429 ret = 0; /* 10baseT media */
430 break;
431 case EN3_CONFIG2:
432 ret = 0x40; /* 10baseT active */
433 break;
434 case EN3_CONFIG3:
435 ret = 0x40; /* Full duplex */
436 break;
437 default:
438 ret = 0x00;
439 break;
442 #ifdef DEBUG_NE2000
443 printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
444 #endif
445 return ret;
448 static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr,
449 uint32_t val)
451 if (addr < 32 ||
452 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
453 s->mem[addr] = val;
457 static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr,
458 uint32_t val)
460 addr &= ~1; /* XXX: check exact behaviour if not even */
461 if (addr < 32 ||
462 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
463 *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
467 static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr,
468 uint32_t val)
470 addr &= ~1; /* XXX: check exact behaviour if not even */
471 if (addr < 32
472 || (addr >= NE2000_PMEM_START
473 && addr + sizeof(uint32_t) <= NE2000_MEM_SIZE)) {
474 stl_le_p(s->mem + addr, val);
478 static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
480 if (addr < 32 ||
481 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
482 return s->mem[addr];
483 } else {
484 return 0xff;
488 static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
490 addr &= ~1; /* XXX: check exact behaviour if not even */
491 if (addr < 32 ||
492 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
493 return le16_to_cpu(*(uint16_t *)(s->mem + addr));
494 } else {
495 return 0xffff;
499 static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
501 addr &= ~1; /* XXX: check exact behaviour if not even */
502 if (addr < 32
503 || (addr >= NE2000_PMEM_START
504 && addr + sizeof(uint32_t) <= NE2000_MEM_SIZE)) {
505 return ldl_le_p(s->mem + addr);
506 } else {
507 return 0xffffffff;
511 static inline void ne2000_dma_update(NE2000State *s, int len)
513 s->rsar += len;
514 /* wrap */
515 /* XXX: check what to do if rsar > stop */
516 if (s->rsar == s->stop)
517 s->rsar = s->start;
519 if (s->rcnt <= len) {
520 s->rcnt = 0;
521 /* signal end of transfer */
522 s->isr |= ENISR_RDC;
523 ne2000_update_irq(s);
524 } else {
525 s->rcnt -= len;
529 static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
531 NE2000State *s = opaque;
533 #ifdef DEBUG_NE2000
534 printf("NE2000: asic write val=0x%04x\n", val);
535 #endif
536 if (s->rcnt == 0)
537 return;
538 if (s->dcfg & 0x01) {
539 /* 16 bit access */
540 ne2000_mem_writew(s, s->rsar, val);
541 ne2000_dma_update(s, 2);
542 } else {
543 /* 8 bit access */
544 ne2000_mem_writeb(s, s->rsar, val);
545 ne2000_dma_update(s, 1);
549 static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
551 NE2000State *s = opaque;
552 int ret;
554 if (s->dcfg & 0x01) {
555 /* 16 bit access */
556 ret = ne2000_mem_readw(s, s->rsar);
557 ne2000_dma_update(s, 2);
558 } else {
559 /* 8 bit access */
560 ret = ne2000_mem_readb(s, s->rsar);
561 ne2000_dma_update(s, 1);
563 #ifdef DEBUG_NE2000
564 printf("NE2000: asic read val=0x%04x\n", ret);
565 #endif
566 return ret;
569 static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
571 NE2000State *s = opaque;
573 #ifdef DEBUG_NE2000
574 printf("NE2000: asic writel val=0x%04x\n", val);
575 #endif
576 if (s->rcnt == 0)
577 return;
578 /* 32 bit access */
579 ne2000_mem_writel(s, s->rsar, val);
580 ne2000_dma_update(s, 4);
583 static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
585 NE2000State *s = opaque;
586 int ret;
588 /* 32 bit access */
589 ret = ne2000_mem_readl(s, s->rsar);
590 ne2000_dma_update(s, 4);
591 #ifdef DEBUG_NE2000
592 printf("NE2000: asic readl val=0x%04x\n", ret);
593 #endif
594 return ret;
597 static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
599 /* nothing to do (end of reset pulse) */
602 static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
604 NE2000State *s = opaque;
605 ne2000_reset(s);
606 return 0;
609 static int ne2000_post_load(void* opaque, int version_id)
611 NE2000State* s = opaque;
613 if (version_id < 2) {
614 s->rxcr = 0x0c;
616 return 0;
619 const VMStateDescription vmstate_ne2000 = {
620 .name = "ne2000",
621 .version_id = 2,
622 .minimum_version_id = 0,
623 .post_load = ne2000_post_load,
624 .fields = (VMStateField[]) {
625 VMSTATE_UINT8_V(rxcr, NE2000State, 2),
626 VMSTATE_UINT8(cmd, NE2000State),
627 VMSTATE_UINT32(start, NE2000State),
628 VMSTATE_UINT32(stop, NE2000State),
629 VMSTATE_UINT8(boundary, NE2000State),
630 VMSTATE_UINT8(tsr, NE2000State),
631 VMSTATE_UINT8(tpsr, NE2000State),
632 VMSTATE_UINT16(tcnt, NE2000State),
633 VMSTATE_UINT16(rcnt, NE2000State),
634 VMSTATE_UINT32(rsar, NE2000State),
635 VMSTATE_UINT8(rsr, NE2000State),
636 VMSTATE_UINT8(isr, NE2000State),
637 VMSTATE_UINT8(dcfg, NE2000State),
638 VMSTATE_UINT8(imr, NE2000State),
639 VMSTATE_BUFFER(phys, NE2000State),
640 VMSTATE_UINT8(curpag, NE2000State),
641 VMSTATE_BUFFER(mult, NE2000State),
642 VMSTATE_UNUSED(4), /* was irq */
643 VMSTATE_BUFFER(mem, NE2000State),
644 VMSTATE_END_OF_LIST()
648 static const VMStateDescription vmstate_pci_ne2000 = {
649 .name = "ne2000",
650 .version_id = 3,
651 .minimum_version_id = 3,
652 .fields = (VMStateField[]) {
653 VMSTATE_PCI_DEVICE(dev, PCINE2000State),
654 VMSTATE_STRUCT(ne2000, PCINE2000State, 0, vmstate_ne2000, NE2000State),
655 VMSTATE_END_OF_LIST()
659 static uint64_t ne2000_read(void *opaque, hwaddr addr,
660 unsigned size)
662 NE2000State *s = opaque;
664 if (addr < 0x10 && size == 1) {
665 return ne2000_ioport_read(s, addr);
666 } else if (addr == 0x10) {
667 if (size <= 2) {
668 return ne2000_asic_ioport_read(s, addr);
669 } else {
670 return ne2000_asic_ioport_readl(s, addr);
672 } else if (addr == 0x1f && size == 1) {
673 return ne2000_reset_ioport_read(s, addr);
675 return ((uint64_t)1 << (size * 8)) - 1;
678 static void ne2000_write(void *opaque, hwaddr addr,
679 uint64_t data, unsigned size)
681 NE2000State *s = opaque;
683 if (addr < 0x10 && size == 1) {
684 ne2000_ioport_write(s, addr, data);
685 } else if (addr == 0x10) {
686 if (size <= 2) {
687 ne2000_asic_ioport_write(s, addr, data);
688 } else {
689 ne2000_asic_ioport_writel(s, addr, data);
691 } else if (addr == 0x1f && size == 1) {
692 ne2000_reset_ioport_write(s, addr, data);
696 static const MemoryRegionOps ne2000_ops = {
697 .read = ne2000_read,
698 .write = ne2000_write,
699 .endianness = DEVICE_LITTLE_ENDIAN,
702 /***********************************************************/
703 /* PCI NE2000 definitions */
705 void ne2000_setup_io(NE2000State *s, DeviceState *dev, unsigned size)
707 memory_region_init_io(&s->io, OBJECT(dev), &ne2000_ops, s, "ne2000", size);
710 static NetClientInfo net_ne2000_info = {
711 .type = NET_CLIENT_OPTIONS_KIND_NIC,
712 .size = sizeof(NICState),
713 .receive = ne2000_receive,
716 static void pci_ne2000_realize(PCIDevice *pci_dev, Error **errp)
718 PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
719 NE2000State *s;
720 uint8_t *pci_conf;
722 pci_conf = d->dev.config;
723 pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */
725 s = &d->ne2000;
726 ne2000_setup_io(s, DEVICE(pci_dev), 0x100);
727 pci_register_bar(&d->dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->io);
728 s->irq = pci_allocate_irq(&d->dev);
730 qemu_macaddr_default_if_unset(&s->c.macaddr);
731 ne2000_reset(s);
733 s->nic = qemu_new_nic(&net_ne2000_info, &s->c,
734 object_get_typename(OBJECT(pci_dev)), pci_dev->qdev.id, s);
735 qemu_format_nic_info_str(qemu_get_queue(s->nic), s->c.macaddr.a);
738 static void pci_ne2000_exit(PCIDevice *pci_dev)
740 PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
741 NE2000State *s = &d->ne2000;
743 qemu_del_nic(s->nic);
744 qemu_free_irq(s->irq);
747 static void ne2000_instance_init(Object *obj)
749 PCIDevice *pci_dev = PCI_DEVICE(obj);
750 PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
751 NE2000State *s = &d->ne2000;
753 device_add_bootindex_property(obj, &s->c.bootindex,
754 "bootindex", "/ethernet-phy@0",
755 &pci_dev->qdev, NULL);
758 static Property ne2000_properties[] = {
759 DEFINE_NIC_PROPERTIES(PCINE2000State, ne2000.c),
760 DEFINE_PROP_END_OF_LIST(),
763 static void ne2000_class_init(ObjectClass *klass, void *data)
765 DeviceClass *dc = DEVICE_CLASS(klass);
766 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
768 k->realize = pci_ne2000_realize;
769 k->exit = pci_ne2000_exit;
770 k->romfile = "efi-ne2k_pci.rom",
771 k->vendor_id = PCI_VENDOR_ID_REALTEK;
772 k->device_id = PCI_DEVICE_ID_REALTEK_8029;
773 k->class_id = PCI_CLASS_NETWORK_ETHERNET;
774 dc->vmsd = &vmstate_pci_ne2000;
775 dc->props = ne2000_properties;
776 set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
779 static const TypeInfo ne2000_info = {
780 .name = "ne2k_pci",
781 .parent = TYPE_PCI_DEVICE,
782 .instance_size = sizeof(PCINE2000State),
783 .class_init = ne2000_class_init,
784 .instance_init = ne2000_instance_init,
787 static void ne2000_register_types(void)
789 type_register_static(&ne2000_info);
792 type_init(ne2000_register_types)