migration/ram: Consolidate variable reset after placement in ram_load_postcopy()
[qemu.git] / migration / ram.c
blob08eb382f539130dbdf6ad6883c243f7ddd1b39f7
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2011-2015 Red Hat Inc
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
29 #include "qemu/osdep.h"
30 #include "cpu.h"
31 #include "qemu/cutils.h"
32 #include "qemu/bitops.h"
33 #include "qemu/bitmap.h"
34 #include "qemu/main-loop.h"
35 #include "xbzrle.h"
36 #include "ram.h"
37 #include "migration.h"
38 #include "migration/register.h"
39 #include "migration/misc.h"
40 #include "qemu-file.h"
41 #include "postcopy-ram.h"
42 #include "page_cache.h"
43 #include "qemu/error-report.h"
44 #include "qapi/error.h"
45 #include "qapi/qapi-types-migration.h"
46 #include "qapi/qapi-events-migration.h"
47 #include "qapi/qmp/qerror.h"
48 #include "trace.h"
49 #include "exec/ram_addr.h"
50 #include "exec/target_page.h"
51 #include "qemu/rcu_queue.h"
52 #include "migration/colo.h"
53 #include "block.h"
54 #include "sysemu/sysemu.h"
55 #include "savevm.h"
56 #include "qemu/iov.h"
57 #include "multifd.h"
59 /***********************************************************/
60 /* ram save/restore */
62 /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
63 * worked for pages that where filled with the same char. We switched
64 * it to only search for the zero value. And to avoid confusion with
65 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it.
68 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
69 #define RAM_SAVE_FLAG_ZERO 0x02
70 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
71 #define RAM_SAVE_FLAG_PAGE 0x08
72 #define RAM_SAVE_FLAG_EOS 0x10
73 #define RAM_SAVE_FLAG_CONTINUE 0x20
74 #define RAM_SAVE_FLAG_XBZRLE 0x40
75 /* 0x80 is reserved in migration.h start with 0x100 next */
76 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
78 static inline bool is_zero_range(uint8_t *p, uint64_t size)
80 return buffer_is_zero(p, size);
83 XBZRLECacheStats xbzrle_counters;
85 /* struct contains XBZRLE cache and a static page
86 used by the compression */
87 static struct {
88 /* buffer used for XBZRLE encoding */
89 uint8_t *encoded_buf;
90 /* buffer for storing page content */
91 uint8_t *current_buf;
92 /* Cache for XBZRLE, Protected by lock. */
93 PageCache *cache;
94 QemuMutex lock;
95 /* it will store a page full of zeros */
96 uint8_t *zero_target_page;
97 /* buffer used for XBZRLE decoding */
98 uint8_t *decoded_buf;
99 } XBZRLE;
101 static void XBZRLE_cache_lock(void)
103 if (migrate_use_xbzrle())
104 qemu_mutex_lock(&XBZRLE.lock);
107 static void XBZRLE_cache_unlock(void)
109 if (migrate_use_xbzrle())
110 qemu_mutex_unlock(&XBZRLE.lock);
114 * xbzrle_cache_resize: resize the xbzrle cache
116 * This function is called from qmp_migrate_set_cache_size in main
117 * thread, possibly while a migration is in progress. A running
118 * migration may be using the cache and might finish during this call,
119 * hence changes to the cache are protected by XBZRLE.lock().
121 * Returns 0 for success or -1 for error
123 * @new_size: new cache size
124 * @errp: set *errp if the check failed, with reason
126 int xbzrle_cache_resize(int64_t new_size, Error **errp)
128 PageCache *new_cache;
129 int64_t ret = 0;
131 /* Check for truncation */
132 if (new_size != (size_t)new_size) {
133 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
134 "exceeding address space");
135 return -1;
138 if (new_size == migrate_xbzrle_cache_size()) {
139 /* nothing to do */
140 return 0;
143 XBZRLE_cache_lock();
145 if (XBZRLE.cache != NULL) {
146 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
147 if (!new_cache) {
148 ret = -1;
149 goto out;
152 cache_fini(XBZRLE.cache);
153 XBZRLE.cache = new_cache;
155 out:
156 XBZRLE_cache_unlock();
157 return ret;
160 static bool ramblock_is_ignored(RAMBlock *block)
162 return !qemu_ram_is_migratable(block) ||
163 (migrate_ignore_shared() && qemu_ram_is_shared(block));
166 /* Should be holding either ram_list.mutex, or the RCU lock. */
167 #define RAMBLOCK_FOREACH_NOT_IGNORED(block) \
168 INTERNAL_RAMBLOCK_FOREACH(block) \
169 if (ramblock_is_ignored(block)) {} else
171 #define RAMBLOCK_FOREACH_MIGRATABLE(block) \
172 INTERNAL_RAMBLOCK_FOREACH(block) \
173 if (!qemu_ram_is_migratable(block)) {} else
175 #undef RAMBLOCK_FOREACH
177 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
179 RAMBlock *block;
180 int ret = 0;
182 RCU_READ_LOCK_GUARD();
184 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
185 ret = func(block, opaque);
186 if (ret) {
187 break;
190 return ret;
193 static void ramblock_recv_map_init(void)
195 RAMBlock *rb;
197 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
198 assert(!rb->receivedmap);
199 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
203 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
205 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
206 rb->receivedmap);
209 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
211 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
214 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
216 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
219 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
220 size_t nr)
222 bitmap_set_atomic(rb->receivedmap,
223 ramblock_recv_bitmap_offset(host_addr, rb),
224 nr);
227 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL)
230 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
232 * Returns >0 if success with sent bytes, or <0 if error.
234 int64_t ramblock_recv_bitmap_send(QEMUFile *file,
235 const char *block_name)
237 RAMBlock *block = qemu_ram_block_by_name(block_name);
238 unsigned long *le_bitmap, nbits;
239 uint64_t size;
241 if (!block) {
242 error_report("%s: invalid block name: %s", __func__, block_name);
243 return -1;
246 nbits = block->used_length >> TARGET_PAGE_BITS;
249 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
250 * machines we may need 4 more bytes for padding (see below
251 * comment). So extend it a bit before hand.
253 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
256 * Always use little endian when sending the bitmap. This is
257 * required that when source and destination VMs are not using the
258 * same endianess. (Note: big endian won't work.)
260 bitmap_to_le(le_bitmap, block->receivedmap, nbits);
262 /* Size of the bitmap, in bytes */
263 size = DIV_ROUND_UP(nbits, 8);
266 * size is always aligned to 8 bytes for 64bit machines, but it
267 * may not be true for 32bit machines. We need this padding to
268 * make sure the migration can survive even between 32bit and
269 * 64bit machines.
271 size = ROUND_UP(size, 8);
273 qemu_put_be64(file, size);
274 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
276 * Mark as an end, in case the middle part is screwed up due to
277 * some "misterious" reason.
279 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
280 qemu_fflush(file);
282 g_free(le_bitmap);
284 if (qemu_file_get_error(file)) {
285 return qemu_file_get_error(file);
288 return size + sizeof(size);
292 * An outstanding page request, on the source, having been received
293 * and queued
295 struct RAMSrcPageRequest {
296 RAMBlock *rb;
297 hwaddr offset;
298 hwaddr len;
300 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
303 /* State of RAM for migration */
304 struct RAMState {
305 /* QEMUFile used for this migration */
306 QEMUFile *f;
307 /* Last block that we have visited searching for dirty pages */
308 RAMBlock *last_seen_block;
309 /* Last block from where we have sent data */
310 RAMBlock *last_sent_block;
311 /* Last dirty target page we have sent */
312 ram_addr_t last_page;
313 /* last ram version we have seen */
314 uint32_t last_version;
315 /* We are in the first round */
316 bool ram_bulk_stage;
317 /* The free page optimization is enabled */
318 bool fpo_enabled;
319 /* How many times we have dirty too many pages */
320 int dirty_rate_high_cnt;
321 /* these variables are used for bitmap sync */
322 /* last time we did a full bitmap_sync */
323 int64_t time_last_bitmap_sync;
324 /* bytes transferred at start_time */
325 uint64_t bytes_xfer_prev;
326 /* number of dirty pages since start_time */
327 uint64_t num_dirty_pages_period;
328 /* xbzrle misses since the beginning of the period */
329 uint64_t xbzrle_cache_miss_prev;
331 /* compression statistics since the beginning of the period */
332 /* amount of count that no free thread to compress data */
333 uint64_t compress_thread_busy_prev;
334 /* amount bytes after compression */
335 uint64_t compressed_size_prev;
336 /* amount of compressed pages */
337 uint64_t compress_pages_prev;
339 /* total handled target pages at the beginning of period */
340 uint64_t target_page_count_prev;
341 /* total handled target pages since start */
342 uint64_t target_page_count;
343 /* number of dirty bits in the bitmap */
344 uint64_t migration_dirty_pages;
345 /* Protects modification of the bitmap and migration dirty pages */
346 QemuMutex bitmap_mutex;
347 /* The RAMBlock used in the last src_page_requests */
348 RAMBlock *last_req_rb;
349 /* Queue of outstanding page requests from the destination */
350 QemuMutex src_page_req_mutex;
351 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
353 typedef struct RAMState RAMState;
355 static RAMState *ram_state;
357 static NotifierWithReturnList precopy_notifier_list;
359 void precopy_infrastructure_init(void)
361 notifier_with_return_list_init(&precopy_notifier_list);
364 void precopy_add_notifier(NotifierWithReturn *n)
366 notifier_with_return_list_add(&precopy_notifier_list, n);
369 void precopy_remove_notifier(NotifierWithReturn *n)
371 notifier_with_return_remove(n);
374 int precopy_notify(PrecopyNotifyReason reason, Error **errp)
376 PrecopyNotifyData pnd;
377 pnd.reason = reason;
378 pnd.errp = errp;
380 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd);
383 void precopy_enable_free_page_optimization(void)
385 if (!ram_state) {
386 return;
389 ram_state->fpo_enabled = true;
392 uint64_t ram_bytes_remaining(void)
394 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
398 MigrationStats ram_counters;
400 /* used by the search for pages to send */
401 struct PageSearchStatus {
402 /* Current block being searched */
403 RAMBlock *block;
404 /* Current page to search from */
405 unsigned long page;
406 /* Set once we wrap around */
407 bool complete_round;
409 typedef struct PageSearchStatus PageSearchStatus;
411 CompressionStats compression_counters;
413 struct CompressParam {
414 bool done;
415 bool quit;
416 bool zero_page;
417 QEMUFile *file;
418 QemuMutex mutex;
419 QemuCond cond;
420 RAMBlock *block;
421 ram_addr_t offset;
423 /* internally used fields */
424 z_stream stream;
425 uint8_t *originbuf;
427 typedef struct CompressParam CompressParam;
429 struct DecompressParam {
430 bool done;
431 bool quit;
432 QemuMutex mutex;
433 QemuCond cond;
434 void *des;
435 uint8_t *compbuf;
436 int len;
437 z_stream stream;
439 typedef struct DecompressParam DecompressParam;
441 static CompressParam *comp_param;
442 static QemuThread *compress_threads;
443 /* comp_done_cond is used to wake up the migration thread when
444 * one of the compression threads has finished the compression.
445 * comp_done_lock is used to co-work with comp_done_cond.
447 static QemuMutex comp_done_lock;
448 static QemuCond comp_done_cond;
449 /* The empty QEMUFileOps will be used by file in CompressParam */
450 static const QEMUFileOps empty_ops = { };
452 static QEMUFile *decomp_file;
453 static DecompressParam *decomp_param;
454 static QemuThread *decompress_threads;
455 static QemuMutex decomp_done_lock;
456 static QemuCond decomp_done_cond;
458 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
459 ram_addr_t offset, uint8_t *source_buf);
461 static void *do_data_compress(void *opaque)
463 CompressParam *param = opaque;
464 RAMBlock *block;
465 ram_addr_t offset;
466 bool zero_page;
468 qemu_mutex_lock(&param->mutex);
469 while (!param->quit) {
470 if (param->block) {
471 block = param->block;
472 offset = param->offset;
473 param->block = NULL;
474 qemu_mutex_unlock(&param->mutex);
476 zero_page = do_compress_ram_page(param->file, &param->stream,
477 block, offset, param->originbuf);
479 qemu_mutex_lock(&comp_done_lock);
480 param->done = true;
481 param->zero_page = zero_page;
482 qemu_cond_signal(&comp_done_cond);
483 qemu_mutex_unlock(&comp_done_lock);
485 qemu_mutex_lock(&param->mutex);
486 } else {
487 qemu_cond_wait(&param->cond, &param->mutex);
490 qemu_mutex_unlock(&param->mutex);
492 return NULL;
495 static void compress_threads_save_cleanup(void)
497 int i, thread_count;
499 if (!migrate_use_compression() || !comp_param) {
500 return;
503 thread_count = migrate_compress_threads();
504 for (i = 0; i < thread_count; i++) {
506 * we use it as a indicator which shows if the thread is
507 * properly init'd or not
509 if (!comp_param[i].file) {
510 break;
513 qemu_mutex_lock(&comp_param[i].mutex);
514 comp_param[i].quit = true;
515 qemu_cond_signal(&comp_param[i].cond);
516 qemu_mutex_unlock(&comp_param[i].mutex);
518 qemu_thread_join(compress_threads + i);
519 qemu_mutex_destroy(&comp_param[i].mutex);
520 qemu_cond_destroy(&comp_param[i].cond);
521 deflateEnd(&comp_param[i].stream);
522 g_free(comp_param[i].originbuf);
523 qemu_fclose(comp_param[i].file);
524 comp_param[i].file = NULL;
526 qemu_mutex_destroy(&comp_done_lock);
527 qemu_cond_destroy(&comp_done_cond);
528 g_free(compress_threads);
529 g_free(comp_param);
530 compress_threads = NULL;
531 comp_param = NULL;
534 static int compress_threads_save_setup(void)
536 int i, thread_count;
538 if (!migrate_use_compression()) {
539 return 0;
541 thread_count = migrate_compress_threads();
542 compress_threads = g_new0(QemuThread, thread_count);
543 comp_param = g_new0(CompressParam, thread_count);
544 qemu_cond_init(&comp_done_cond);
545 qemu_mutex_init(&comp_done_lock);
546 for (i = 0; i < thread_count; i++) {
547 comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE);
548 if (!comp_param[i].originbuf) {
549 goto exit;
552 if (deflateInit(&comp_param[i].stream,
553 migrate_compress_level()) != Z_OK) {
554 g_free(comp_param[i].originbuf);
555 goto exit;
558 /* comp_param[i].file is just used as a dummy buffer to save data,
559 * set its ops to empty.
561 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
562 comp_param[i].done = true;
563 comp_param[i].quit = false;
564 qemu_mutex_init(&comp_param[i].mutex);
565 qemu_cond_init(&comp_param[i].cond);
566 qemu_thread_create(compress_threads + i, "compress",
567 do_data_compress, comp_param + i,
568 QEMU_THREAD_JOINABLE);
570 return 0;
572 exit:
573 compress_threads_save_cleanup();
574 return -1;
578 * save_page_header: write page header to wire
580 * If this is the 1st block, it also writes the block identification
582 * Returns the number of bytes written
584 * @f: QEMUFile where to send the data
585 * @block: block that contains the page we want to send
586 * @offset: offset inside the block for the page
587 * in the lower bits, it contains flags
589 static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block,
590 ram_addr_t offset)
592 size_t size, len;
594 if (block == rs->last_sent_block) {
595 offset |= RAM_SAVE_FLAG_CONTINUE;
597 qemu_put_be64(f, offset);
598 size = 8;
600 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
601 len = strlen(block->idstr);
602 qemu_put_byte(f, len);
603 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
604 size += 1 + len;
605 rs->last_sent_block = block;
607 return size;
611 * mig_throttle_guest_down: throotle down the guest
613 * Reduce amount of guest cpu execution to hopefully slow down memory
614 * writes. If guest dirty memory rate is reduced below the rate at
615 * which we can transfer pages to the destination then we should be
616 * able to complete migration. Some workloads dirty memory way too
617 * fast and will not effectively converge, even with auto-converge.
619 static void mig_throttle_guest_down(uint64_t bytes_dirty_period,
620 uint64_t bytes_dirty_threshold)
622 MigrationState *s = migrate_get_current();
623 uint64_t pct_initial = s->parameters.cpu_throttle_initial;
624 uint64_t pct_increment = s->parameters.cpu_throttle_increment;
625 bool pct_tailslow = s->parameters.cpu_throttle_tailslow;
626 int pct_max = s->parameters.max_cpu_throttle;
628 uint64_t throttle_now = cpu_throttle_get_percentage();
629 uint64_t cpu_now, cpu_ideal, throttle_inc;
631 /* We have not started throttling yet. Let's start it. */
632 if (!cpu_throttle_active()) {
633 cpu_throttle_set(pct_initial);
634 } else {
635 /* Throttling already on, just increase the rate */
636 if (!pct_tailslow) {
637 throttle_inc = pct_increment;
638 } else {
639 /* Compute the ideal CPU percentage used by Guest, which may
640 * make the dirty rate match the dirty rate threshold. */
641 cpu_now = 100 - throttle_now;
642 cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 /
643 bytes_dirty_period);
644 throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment);
646 cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max));
651 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
653 * @rs: current RAM state
654 * @current_addr: address for the zero page
656 * Update the xbzrle cache to reflect a page that's been sent as all 0.
657 * The important thing is that a stale (not-yet-0'd) page be replaced
658 * by the new data.
659 * As a bonus, if the page wasn't in the cache it gets added so that
660 * when a small write is made into the 0'd page it gets XBZRLE sent.
662 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
664 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
665 return;
668 /* We don't care if this fails to allocate a new cache page
669 * as long as it updated an old one */
670 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
671 ram_counters.dirty_sync_count);
674 #define ENCODING_FLAG_XBZRLE 0x1
677 * save_xbzrle_page: compress and send current page
679 * Returns: 1 means that we wrote the page
680 * 0 means that page is identical to the one already sent
681 * -1 means that xbzrle would be longer than normal
683 * @rs: current RAM state
684 * @current_data: pointer to the address of the page contents
685 * @current_addr: addr of the page
686 * @block: block that contains the page we want to send
687 * @offset: offset inside the block for the page
688 * @last_stage: if we are at the completion stage
690 static int save_xbzrle_page(RAMState *rs, uint8_t **current_data,
691 ram_addr_t current_addr, RAMBlock *block,
692 ram_addr_t offset, bool last_stage)
694 int encoded_len = 0, bytes_xbzrle;
695 uint8_t *prev_cached_page;
697 if (!cache_is_cached(XBZRLE.cache, current_addr,
698 ram_counters.dirty_sync_count)) {
699 xbzrle_counters.cache_miss++;
700 if (!last_stage) {
701 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
702 ram_counters.dirty_sync_count) == -1) {
703 return -1;
704 } else {
705 /* update *current_data when the page has been
706 inserted into cache */
707 *current_data = get_cached_data(XBZRLE.cache, current_addr);
710 return -1;
713 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
715 /* save current buffer into memory */
716 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
718 /* XBZRLE encoding (if there is no overflow) */
719 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
720 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
721 TARGET_PAGE_SIZE);
724 * Update the cache contents, so that it corresponds to the data
725 * sent, in all cases except where we skip the page.
727 if (!last_stage && encoded_len != 0) {
728 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
730 * In the case where we couldn't compress, ensure that the caller
731 * sends the data from the cache, since the guest might have
732 * changed the RAM since we copied it.
734 *current_data = prev_cached_page;
737 if (encoded_len == 0) {
738 trace_save_xbzrle_page_skipping();
739 return 0;
740 } else if (encoded_len == -1) {
741 trace_save_xbzrle_page_overflow();
742 xbzrle_counters.overflow++;
743 return -1;
746 /* Send XBZRLE based compressed page */
747 bytes_xbzrle = save_page_header(rs, rs->f, block,
748 offset | RAM_SAVE_FLAG_XBZRLE);
749 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE);
750 qemu_put_be16(rs->f, encoded_len);
751 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len);
752 bytes_xbzrle += encoded_len + 1 + 2;
753 xbzrle_counters.pages++;
754 xbzrle_counters.bytes += bytes_xbzrle;
755 ram_counters.transferred += bytes_xbzrle;
757 return 1;
761 * migration_bitmap_find_dirty: find the next dirty page from start
763 * Returns the page offset within memory region of the start of a dirty page
765 * @rs: current RAM state
766 * @rb: RAMBlock where to search for dirty pages
767 * @start: page where we start the search
769 static inline
770 unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
771 unsigned long start)
773 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
774 unsigned long *bitmap = rb->bmap;
775 unsigned long next;
777 if (ramblock_is_ignored(rb)) {
778 return size;
782 * When the free page optimization is enabled, we need to check the bitmap
783 * to send the non-free pages rather than all the pages in the bulk stage.
785 if (!rs->fpo_enabled && rs->ram_bulk_stage && start > 0) {
786 next = start + 1;
787 } else {
788 next = find_next_bit(bitmap, size, start);
791 return next;
794 static inline bool migration_bitmap_clear_dirty(RAMState *rs,
795 RAMBlock *rb,
796 unsigned long page)
798 bool ret;
800 qemu_mutex_lock(&rs->bitmap_mutex);
803 * Clear dirty bitmap if needed. This _must_ be called before we
804 * send any of the page in the chunk because we need to make sure
805 * we can capture further page content changes when we sync dirty
806 * log the next time. So as long as we are going to send any of
807 * the page in the chunk we clear the remote dirty bitmap for all.
808 * Clearing it earlier won't be a problem, but too late will.
810 if (rb->clear_bmap && clear_bmap_test_and_clear(rb, page)) {
811 uint8_t shift = rb->clear_bmap_shift;
812 hwaddr size = 1ULL << (TARGET_PAGE_BITS + shift);
813 hwaddr start = (((ram_addr_t)page) << TARGET_PAGE_BITS) & (-size);
816 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this
817 * can make things easier sometimes since then start address
818 * of the small chunk will always be 64 pages aligned so the
819 * bitmap will always be aligned to unsigned long. We should
820 * even be able to remove this restriction but I'm simply
821 * keeping it.
823 assert(shift >= 6);
824 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page);
825 memory_region_clear_dirty_bitmap(rb->mr, start, size);
828 ret = test_and_clear_bit(page, rb->bmap);
830 if (ret) {
831 rs->migration_dirty_pages--;
833 qemu_mutex_unlock(&rs->bitmap_mutex);
835 return ret;
838 /* Called with RCU critical section */
839 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb)
841 rs->migration_dirty_pages +=
842 cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length,
843 &rs->num_dirty_pages_period);
847 * ram_pagesize_summary: calculate all the pagesizes of a VM
849 * Returns a summary bitmap of the page sizes of all RAMBlocks
851 * For VMs with just normal pages this is equivalent to the host page
852 * size. If it's got some huge pages then it's the OR of all the
853 * different page sizes.
855 uint64_t ram_pagesize_summary(void)
857 RAMBlock *block;
858 uint64_t summary = 0;
860 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
861 summary |= block->page_size;
864 return summary;
867 uint64_t ram_get_total_transferred_pages(void)
869 return ram_counters.normal + ram_counters.duplicate +
870 compression_counters.pages + xbzrle_counters.pages;
873 static void migration_update_rates(RAMState *rs, int64_t end_time)
875 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
876 double compressed_size;
878 /* calculate period counters */
879 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000
880 / (end_time - rs->time_last_bitmap_sync);
882 if (!page_count) {
883 return;
886 if (migrate_use_xbzrle()) {
887 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
888 rs->xbzrle_cache_miss_prev) / page_count;
889 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
892 if (migrate_use_compression()) {
893 compression_counters.busy_rate = (double)(compression_counters.busy -
894 rs->compress_thread_busy_prev) / page_count;
895 rs->compress_thread_busy_prev = compression_counters.busy;
897 compressed_size = compression_counters.compressed_size -
898 rs->compressed_size_prev;
899 if (compressed_size) {
900 double uncompressed_size = (compression_counters.pages -
901 rs->compress_pages_prev) * TARGET_PAGE_SIZE;
903 /* Compression-Ratio = Uncompressed-size / Compressed-size */
904 compression_counters.compression_rate =
905 uncompressed_size / compressed_size;
907 rs->compress_pages_prev = compression_counters.pages;
908 rs->compressed_size_prev = compression_counters.compressed_size;
913 static void migration_trigger_throttle(RAMState *rs)
915 MigrationState *s = migrate_get_current();
916 uint64_t threshold = s->parameters.throttle_trigger_threshold;
918 uint64_t bytes_xfer_period = ram_counters.transferred - rs->bytes_xfer_prev;
919 uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE;
920 uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100;
922 /* During block migration the auto-converge logic incorrectly detects
923 * that ram migration makes no progress. Avoid this by disabling the
924 * throttling logic during the bulk phase of block migration. */
925 if (migrate_auto_converge() && !blk_mig_bulk_active()) {
926 /* The following detection logic can be refined later. For now:
927 Check to see if the ratio between dirtied bytes and the approx.
928 amount of bytes that just got transferred since the last time
929 we were in this routine reaches the threshold. If that happens
930 twice, start or increase throttling. */
932 if ((bytes_dirty_period > bytes_dirty_threshold) &&
933 (++rs->dirty_rate_high_cnt >= 2)) {
934 trace_migration_throttle();
935 rs->dirty_rate_high_cnt = 0;
936 mig_throttle_guest_down(bytes_dirty_period,
937 bytes_dirty_threshold);
942 static void migration_bitmap_sync(RAMState *rs)
944 RAMBlock *block;
945 int64_t end_time;
947 ram_counters.dirty_sync_count++;
949 if (!rs->time_last_bitmap_sync) {
950 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
953 trace_migration_bitmap_sync_start();
954 memory_global_dirty_log_sync();
956 qemu_mutex_lock(&rs->bitmap_mutex);
957 WITH_RCU_READ_LOCK_GUARD() {
958 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
959 ramblock_sync_dirty_bitmap(rs, block);
961 ram_counters.remaining = ram_bytes_remaining();
963 qemu_mutex_unlock(&rs->bitmap_mutex);
965 memory_global_after_dirty_log_sync();
966 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
968 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
970 /* more than 1 second = 1000 millisecons */
971 if (end_time > rs->time_last_bitmap_sync + 1000) {
972 migration_trigger_throttle(rs);
974 migration_update_rates(rs, end_time);
976 rs->target_page_count_prev = rs->target_page_count;
978 /* reset period counters */
979 rs->time_last_bitmap_sync = end_time;
980 rs->num_dirty_pages_period = 0;
981 rs->bytes_xfer_prev = ram_counters.transferred;
983 if (migrate_use_events()) {
984 qapi_event_send_migration_pass(ram_counters.dirty_sync_count);
988 static void migration_bitmap_sync_precopy(RAMState *rs)
990 Error *local_err = NULL;
993 * The current notifier usage is just an optimization to migration, so we
994 * don't stop the normal migration process in the error case.
996 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
997 error_report_err(local_err);
998 local_err = NULL;
1001 migration_bitmap_sync(rs);
1003 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1004 error_report_err(local_err);
1009 * save_zero_page_to_file: send the zero page to the file
1011 * Returns the size of data written to the file, 0 means the page is not
1012 * a zero page
1014 * @rs: current RAM state
1015 * @file: the file where the data is saved
1016 * @block: block that contains the page we want to send
1017 * @offset: offset inside the block for the page
1019 static int save_zero_page_to_file(RAMState *rs, QEMUFile *file,
1020 RAMBlock *block, ram_addr_t offset)
1022 uint8_t *p = block->host + offset;
1023 int len = 0;
1025 if (is_zero_range(p, TARGET_PAGE_SIZE)) {
1026 len += save_page_header(rs, file, block, offset | RAM_SAVE_FLAG_ZERO);
1027 qemu_put_byte(file, 0);
1028 len += 1;
1030 return len;
1034 * save_zero_page: send the zero page to the stream
1036 * Returns the number of pages written.
1038 * @rs: current RAM state
1039 * @block: block that contains the page we want to send
1040 * @offset: offset inside the block for the page
1042 static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
1044 int len = save_zero_page_to_file(rs, rs->f, block, offset);
1046 if (len) {
1047 ram_counters.duplicate++;
1048 ram_counters.transferred += len;
1049 return 1;
1051 return -1;
1054 static void ram_release_pages(const char *rbname, uint64_t offset, int pages)
1056 if (!migrate_release_ram() || !migration_in_postcopy()) {
1057 return;
1060 ram_discard_range(rbname, offset, ((ram_addr_t)pages) << TARGET_PAGE_BITS);
1064 * @pages: the number of pages written by the control path,
1065 * < 0 - error
1066 * > 0 - number of pages written
1068 * Return true if the pages has been saved, otherwise false is returned.
1070 static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1071 int *pages)
1073 uint64_t bytes_xmit = 0;
1074 int ret;
1076 *pages = -1;
1077 ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE,
1078 &bytes_xmit);
1079 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1080 return false;
1083 if (bytes_xmit) {
1084 ram_counters.transferred += bytes_xmit;
1085 *pages = 1;
1088 if (ret == RAM_SAVE_CONTROL_DELAYED) {
1089 return true;
1092 if (bytes_xmit > 0) {
1093 ram_counters.normal++;
1094 } else if (bytes_xmit == 0) {
1095 ram_counters.duplicate++;
1098 return true;
1102 * directly send the page to the stream
1104 * Returns the number of pages written.
1106 * @rs: current RAM state
1107 * @block: block that contains the page we want to send
1108 * @offset: offset inside the block for the page
1109 * @buf: the page to be sent
1110 * @async: send to page asyncly
1112 static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1113 uint8_t *buf, bool async)
1115 ram_counters.transferred += save_page_header(rs, rs->f, block,
1116 offset | RAM_SAVE_FLAG_PAGE);
1117 if (async) {
1118 qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE,
1119 migrate_release_ram() &
1120 migration_in_postcopy());
1121 } else {
1122 qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE);
1124 ram_counters.transferred += TARGET_PAGE_SIZE;
1125 ram_counters.normal++;
1126 return 1;
1130 * ram_save_page: send the given page to the stream
1132 * Returns the number of pages written.
1133 * < 0 - error
1134 * >=0 - Number of pages written - this might legally be 0
1135 * if xbzrle noticed the page was the same.
1137 * @rs: current RAM state
1138 * @block: block that contains the page we want to send
1139 * @offset: offset inside the block for the page
1140 * @last_stage: if we are at the completion stage
1142 static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage)
1144 int pages = -1;
1145 uint8_t *p;
1146 bool send_async = true;
1147 RAMBlock *block = pss->block;
1148 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
1149 ram_addr_t current_addr = block->offset + offset;
1151 p = block->host + offset;
1152 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
1154 XBZRLE_cache_lock();
1155 if (!rs->ram_bulk_stage && !migration_in_postcopy() &&
1156 migrate_use_xbzrle()) {
1157 pages = save_xbzrle_page(rs, &p, current_addr, block,
1158 offset, last_stage);
1159 if (!last_stage) {
1160 /* Can't send this cached data async, since the cache page
1161 * might get updated before it gets to the wire
1163 send_async = false;
1167 /* XBZRLE overflow or normal page */
1168 if (pages == -1) {
1169 pages = save_normal_page(rs, block, offset, p, send_async);
1172 XBZRLE_cache_unlock();
1174 return pages;
1177 static int ram_save_multifd_page(RAMState *rs, RAMBlock *block,
1178 ram_addr_t offset)
1180 if (multifd_queue_page(rs->f, block, offset) < 0) {
1181 return -1;
1183 ram_counters.normal++;
1185 return 1;
1188 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
1189 ram_addr_t offset, uint8_t *source_buf)
1191 RAMState *rs = ram_state;
1192 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK);
1193 bool zero_page = false;
1194 int ret;
1196 if (save_zero_page_to_file(rs, f, block, offset)) {
1197 zero_page = true;
1198 goto exit;
1201 save_page_header(rs, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
1204 * copy it to a internal buffer to avoid it being modified by VM
1205 * so that we can catch up the error during compression and
1206 * decompression
1208 memcpy(source_buf, p, TARGET_PAGE_SIZE);
1209 ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE);
1210 if (ret < 0) {
1211 qemu_file_set_error(migrate_get_current()->to_dst_file, ret);
1212 error_report("compressed data failed!");
1213 return false;
1216 exit:
1217 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1);
1218 return zero_page;
1221 static void
1222 update_compress_thread_counts(const CompressParam *param, int bytes_xmit)
1224 ram_counters.transferred += bytes_xmit;
1226 if (param->zero_page) {
1227 ram_counters.duplicate++;
1228 return;
1231 /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */
1232 compression_counters.compressed_size += bytes_xmit - 8;
1233 compression_counters.pages++;
1236 static bool save_page_use_compression(RAMState *rs);
1238 static void flush_compressed_data(RAMState *rs)
1240 int idx, len, thread_count;
1242 if (!save_page_use_compression(rs)) {
1243 return;
1245 thread_count = migrate_compress_threads();
1247 qemu_mutex_lock(&comp_done_lock);
1248 for (idx = 0; idx < thread_count; idx++) {
1249 while (!comp_param[idx].done) {
1250 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
1253 qemu_mutex_unlock(&comp_done_lock);
1255 for (idx = 0; idx < thread_count; idx++) {
1256 qemu_mutex_lock(&comp_param[idx].mutex);
1257 if (!comp_param[idx].quit) {
1258 len = qemu_put_qemu_file(rs->f, comp_param[idx].file);
1260 * it's safe to fetch zero_page without holding comp_done_lock
1261 * as there is no further request submitted to the thread,
1262 * i.e, the thread should be waiting for a request at this point.
1264 update_compress_thread_counts(&comp_param[idx], len);
1266 qemu_mutex_unlock(&comp_param[idx].mutex);
1270 static inline void set_compress_params(CompressParam *param, RAMBlock *block,
1271 ram_addr_t offset)
1273 param->block = block;
1274 param->offset = offset;
1277 static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block,
1278 ram_addr_t offset)
1280 int idx, thread_count, bytes_xmit = -1, pages = -1;
1281 bool wait = migrate_compress_wait_thread();
1283 thread_count = migrate_compress_threads();
1284 qemu_mutex_lock(&comp_done_lock);
1285 retry:
1286 for (idx = 0; idx < thread_count; idx++) {
1287 if (comp_param[idx].done) {
1288 comp_param[idx].done = false;
1289 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file);
1290 qemu_mutex_lock(&comp_param[idx].mutex);
1291 set_compress_params(&comp_param[idx], block, offset);
1292 qemu_cond_signal(&comp_param[idx].cond);
1293 qemu_mutex_unlock(&comp_param[idx].mutex);
1294 pages = 1;
1295 update_compress_thread_counts(&comp_param[idx], bytes_xmit);
1296 break;
1301 * wait for the free thread if the user specifies 'compress-wait-thread',
1302 * otherwise we will post the page out in the main thread as normal page.
1304 if (pages < 0 && wait) {
1305 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
1306 goto retry;
1308 qemu_mutex_unlock(&comp_done_lock);
1310 return pages;
1314 * find_dirty_block: find the next dirty page and update any state
1315 * associated with the search process.
1317 * Returns true if a page is found
1319 * @rs: current RAM state
1320 * @pss: data about the state of the current dirty page scan
1321 * @again: set to false if the search has scanned the whole of RAM
1323 static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again)
1325 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
1326 if (pss->complete_round && pss->block == rs->last_seen_block &&
1327 pss->page >= rs->last_page) {
1329 * We've been once around the RAM and haven't found anything.
1330 * Give up.
1332 *again = false;
1333 return false;
1335 if ((((ram_addr_t)pss->page) << TARGET_PAGE_BITS)
1336 >= pss->block->used_length) {
1337 /* Didn't find anything in this RAM Block */
1338 pss->page = 0;
1339 pss->block = QLIST_NEXT_RCU(pss->block, next);
1340 if (!pss->block) {
1342 * If memory migration starts over, we will meet a dirtied page
1343 * which may still exists in compression threads's ring, so we
1344 * should flush the compressed data to make sure the new page
1345 * is not overwritten by the old one in the destination.
1347 * Also If xbzrle is on, stop using the data compression at this
1348 * point. In theory, xbzrle can do better than compression.
1350 flush_compressed_data(rs);
1352 /* Hit the end of the list */
1353 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
1354 /* Flag that we've looped */
1355 pss->complete_round = true;
1356 rs->ram_bulk_stage = false;
1358 /* Didn't find anything this time, but try again on the new block */
1359 *again = true;
1360 return false;
1361 } else {
1362 /* Can go around again, but... */
1363 *again = true;
1364 /* We've found something so probably don't need to */
1365 return true;
1370 * unqueue_page: gets a page of the queue
1372 * Helper for 'get_queued_page' - gets a page off the queue
1374 * Returns the block of the page (or NULL if none available)
1376 * @rs: current RAM state
1377 * @offset: used to return the offset within the RAMBlock
1379 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
1381 RAMBlock *block = NULL;
1383 if (QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests)) {
1384 return NULL;
1387 QEMU_LOCK_GUARD(&rs->src_page_req_mutex);
1388 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
1389 struct RAMSrcPageRequest *entry =
1390 QSIMPLEQ_FIRST(&rs->src_page_requests);
1391 block = entry->rb;
1392 *offset = entry->offset;
1394 if (entry->len > TARGET_PAGE_SIZE) {
1395 entry->len -= TARGET_PAGE_SIZE;
1396 entry->offset += TARGET_PAGE_SIZE;
1397 } else {
1398 memory_region_unref(block->mr);
1399 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1400 g_free(entry);
1401 migration_consume_urgent_request();
1405 return block;
1409 * get_queued_page: unqueue a page from the postcopy requests
1411 * Skips pages that are already sent (!dirty)
1413 * Returns true if a queued page is found
1415 * @rs: current RAM state
1416 * @pss: data about the state of the current dirty page scan
1418 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
1420 RAMBlock *block;
1421 ram_addr_t offset;
1422 bool dirty;
1424 do {
1425 block = unqueue_page(rs, &offset);
1427 * We're sending this page, and since it's postcopy nothing else
1428 * will dirty it, and we must make sure it doesn't get sent again
1429 * even if this queue request was received after the background
1430 * search already sent it.
1432 if (block) {
1433 unsigned long page;
1435 page = offset >> TARGET_PAGE_BITS;
1436 dirty = test_bit(page, block->bmap);
1437 if (!dirty) {
1438 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
1439 page);
1440 } else {
1441 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
1445 } while (block && !dirty);
1447 if (block) {
1449 * As soon as we start servicing pages out of order, then we have
1450 * to kill the bulk stage, since the bulk stage assumes
1451 * in (migration_bitmap_find_and_reset_dirty) that every page is
1452 * dirty, that's no longer true.
1454 rs->ram_bulk_stage = false;
1457 * We want the background search to continue from the queued page
1458 * since the guest is likely to want other pages near to the page
1459 * it just requested.
1461 pss->block = block;
1462 pss->page = offset >> TARGET_PAGE_BITS;
1465 * This unqueued page would break the "one round" check, even is
1466 * really rare.
1468 pss->complete_round = false;
1471 return !!block;
1475 * migration_page_queue_free: drop any remaining pages in the ram
1476 * request queue
1478 * It should be empty at the end anyway, but in error cases there may
1479 * be some left. in case that there is any page left, we drop it.
1482 static void migration_page_queue_free(RAMState *rs)
1484 struct RAMSrcPageRequest *mspr, *next_mspr;
1485 /* This queue generally should be empty - but in the case of a failed
1486 * migration might have some droppings in.
1488 RCU_READ_LOCK_GUARD();
1489 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
1490 memory_region_unref(mspr->rb->mr);
1491 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1492 g_free(mspr);
1497 * ram_save_queue_pages: queue the page for transmission
1499 * A request from postcopy destination for example.
1501 * Returns zero on success or negative on error
1503 * @rbname: Name of the RAMBLock of the request. NULL means the
1504 * same that last one.
1505 * @start: starting address from the start of the RAMBlock
1506 * @len: length (in bytes) to send
1508 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
1510 RAMBlock *ramblock;
1511 RAMState *rs = ram_state;
1513 ram_counters.postcopy_requests++;
1514 RCU_READ_LOCK_GUARD();
1516 if (!rbname) {
1517 /* Reuse last RAMBlock */
1518 ramblock = rs->last_req_rb;
1520 if (!ramblock) {
1522 * Shouldn't happen, we can't reuse the last RAMBlock if
1523 * it's the 1st request.
1525 error_report("ram_save_queue_pages no previous block");
1526 return -1;
1528 } else {
1529 ramblock = qemu_ram_block_by_name(rbname);
1531 if (!ramblock) {
1532 /* We shouldn't be asked for a non-existent RAMBlock */
1533 error_report("ram_save_queue_pages no block '%s'", rbname);
1534 return -1;
1536 rs->last_req_rb = ramblock;
1538 trace_ram_save_queue_pages(ramblock->idstr, start, len);
1539 if (start+len > ramblock->used_length) {
1540 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
1541 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
1542 __func__, start, len, ramblock->used_length);
1543 return -1;
1546 struct RAMSrcPageRequest *new_entry =
1547 g_malloc0(sizeof(struct RAMSrcPageRequest));
1548 new_entry->rb = ramblock;
1549 new_entry->offset = start;
1550 new_entry->len = len;
1552 memory_region_ref(ramblock->mr);
1553 qemu_mutex_lock(&rs->src_page_req_mutex);
1554 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
1555 migration_make_urgent_request();
1556 qemu_mutex_unlock(&rs->src_page_req_mutex);
1558 return 0;
1561 static bool save_page_use_compression(RAMState *rs)
1563 if (!migrate_use_compression()) {
1564 return false;
1568 * If xbzrle is on, stop using the data compression after first
1569 * round of migration even if compression is enabled. In theory,
1570 * xbzrle can do better than compression.
1572 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
1573 return true;
1576 return false;
1580 * try to compress the page before posting it out, return true if the page
1581 * has been properly handled by compression, otherwise needs other
1582 * paths to handle it
1584 static bool save_compress_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
1586 if (!save_page_use_compression(rs)) {
1587 return false;
1591 * When starting the process of a new block, the first page of
1592 * the block should be sent out before other pages in the same
1593 * block, and all the pages in last block should have been sent
1594 * out, keeping this order is important, because the 'cont' flag
1595 * is used to avoid resending the block name.
1597 * We post the fist page as normal page as compression will take
1598 * much CPU resource.
1600 if (block != rs->last_sent_block) {
1601 flush_compressed_data(rs);
1602 return false;
1605 if (compress_page_with_multi_thread(rs, block, offset) > 0) {
1606 return true;
1609 compression_counters.busy++;
1610 return false;
1614 * ram_save_target_page: save one target page
1616 * Returns the number of pages written
1618 * @rs: current RAM state
1619 * @pss: data about the page we want to send
1620 * @last_stage: if we are at the completion stage
1622 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss,
1623 bool last_stage)
1625 RAMBlock *block = pss->block;
1626 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
1627 int res;
1629 if (control_save_page(rs, block, offset, &res)) {
1630 return res;
1633 if (save_compress_page(rs, block, offset)) {
1634 return 1;
1637 res = save_zero_page(rs, block, offset);
1638 if (res > 0) {
1639 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
1640 * page would be stale
1642 if (!save_page_use_compression(rs)) {
1643 XBZRLE_cache_lock();
1644 xbzrle_cache_zero_page(rs, block->offset + offset);
1645 XBZRLE_cache_unlock();
1647 ram_release_pages(block->idstr, offset, res);
1648 return res;
1652 * Do not use multifd for:
1653 * 1. Compression as the first page in the new block should be posted out
1654 * before sending the compressed page
1655 * 2. In postcopy as one whole host page should be placed
1657 if (!save_page_use_compression(rs) && migrate_use_multifd()
1658 && !migration_in_postcopy()) {
1659 return ram_save_multifd_page(rs, block, offset);
1662 return ram_save_page(rs, pss, last_stage);
1666 * ram_save_host_page: save a whole host page
1668 * Starting at *offset send pages up to the end of the current host
1669 * page. It's valid for the initial offset to point into the middle of
1670 * a host page in which case the remainder of the hostpage is sent.
1671 * Only dirty target pages are sent. Note that the host page size may
1672 * be a huge page for this block.
1673 * The saving stops at the boundary of the used_length of the block
1674 * if the RAMBlock isn't a multiple of the host page size.
1676 * Returns the number of pages written or negative on error
1678 * @rs: current RAM state
1679 * @ms: current migration state
1680 * @pss: data about the page we want to send
1681 * @last_stage: if we are at the completion stage
1683 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss,
1684 bool last_stage)
1686 int tmppages, pages = 0;
1687 size_t pagesize_bits =
1688 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
1690 if (ramblock_is_ignored(pss->block)) {
1691 error_report("block %s should not be migrated !", pss->block->idstr);
1692 return 0;
1695 do {
1696 /* Check the pages is dirty and if it is send it */
1697 if (!migration_bitmap_clear_dirty(rs, pss->block, pss->page)) {
1698 pss->page++;
1699 continue;
1702 tmppages = ram_save_target_page(rs, pss, last_stage);
1703 if (tmppages < 0) {
1704 return tmppages;
1707 pages += tmppages;
1708 pss->page++;
1709 /* Allow rate limiting to happen in the middle of huge pages */
1710 migration_rate_limit();
1711 } while ((pss->page & (pagesize_bits - 1)) &&
1712 offset_in_ramblock(pss->block,
1713 ((ram_addr_t)pss->page) << TARGET_PAGE_BITS));
1715 /* The offset we leave with is the last one we looked at */
1716 pss->page--;
1717 return pages;
1721 * ram_find_and_save_block: finds a dirty page and sends it to f
1723 * Called within an RCU critical section.
1725 * Returns the number of pages written where zero means no dirty pages,
1726 * or negative on error
1728 * @rs: current RAM state
1729 * @last_stage: if we are at the completion stage
1731 * On systems where host-page-size > target-page-size it will send all the
1732 * pages in a host page that are dirty.
1735 static int ram_find_and_save_block(RAMState *rs, bool last_stage)
1737 PageSearchStatus pss;
1738 int pages = 0;
1739 bool again, found;
1741 /* No dirty page as there is zero RAM */
1742 if (!ram_bytes_total()) {
1743 return pages;
1746 pss.block = rs->last_seen_block;
1747 pss.page = rs->last_page;
1748 pss.complete_round = false;
1750 if (!pss.block) {
1751 pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
1754 do {
1755 again = true;
1756 found = get_queued_page(rs, &pss);
1758 if (!found) {
1759 /* priority queue empty, so just search for something dirty */
1760 found = find_dirty_block(rs, &pss, &again);
1763 if (found) {
1764 pages = ram_save_host_page(rs, &pss, last_stage);
1766 } while (!pages && again);
1768 rs->last_seen_block = pss.block;
1769 rs->last_page = pss.page;
1771 return pages;
1774 void acct_update_position(QEMUFile *f, size_t size, bool zero)
1776 uint64_t pages = size / TARGET_PAGE_SIZE;
1778 if (zero) {
1779 ram_counters.duplicate += pages;
1780 } else {
1781 ram_counters.normal += pages;
1782 ram_counters.transferred += size;
1783 qemu_update_position(f, size);
1787 static uint64_t ram_bytes_total_common(bool count_ignored)
1789 RAMBlock *block;
1790 uint64_t total = 0;
1792 RCU_READ_LOCK_GUARD();
1794 if (count_ignored) {
1795 RAMBLOCK_FOREACH_MIGRATABLE(block) {
1796 total += block->used_length;
1798 } else {
1799 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1800 total += block->used_length;
1803 return total;
1806 uint64_t ram_bytes_total(void)
1808 return ram_bytes_total_common(false);
1811 static void xbzrle_load_setup(void)
1813 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
1816 static void xbzrle_load_cleanup(void)
1818 g_free(XBZRLE.decoded_buf);
1819 XBZRLE.decoded_buf = NULL;
1822 static void ram_state_cleanup(RAMState **rsp)
1824 if (*rsp) {
1825 migration_page_queue_free(*rsp);
1826 qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
1827 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
1828 g_free(*rsp);
1829 *rsp = NULL;
1833 static void xbzrle_cleanup(void)
1835 XBZRLE_cache_lock();
1836 if (XBZRLE.cache) {
1837 cache_fini(XBZRLE.cache);
1838 g_free(XBZRLE.encoded_buf);
1839 g_free(XBZRLE.current_buf);
1840 g_free(XBZRLE.zero_target_page);
1841 XBZRLE.cache = NULL;
1842 XBZRLE.encoded_buf = NULL;
1843 XBZRLE.current_buf = NULL;
1844 XBZRLE.zero_target_page = NULL;
1846 XBZRLE_cache_unlock();
1849 static void ram_save_cleanup(void *opaque)
1851 RAMState **rsp = opaque;
1852 RAMBlock *block;
1854 /* caller have hold iothread lock or is in a bh, so there is
1855 * no writing race against the migration bitmap
1857 memory_global_dirty_log_stop();
1859 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1860 g_free(block->clear_bmap);
1861 block->clear_bmap = NULL;
1862 g_free(block->bmap);
1863 block->bmap = NULL;
1866 xbzrle_cleanup();
1867 compress_threads_save_cleanup();
1868 ram_state_cleanup(rsp);
1871 static void ram_state_reset(RAMState *rs)
1873 rs->last_seen_block = NULL;
1874 rs->last_sent_block = NULL;
1875 rs->last_page = 0;
1876 rs->last_version = ram_list.version;
1877 rs->ram_bulk_stage = true;
1878 rs->fpo_enabled = false;
1881 #define MAX_WAIT 50 /* ms, half buffered_file limit */
1884 * 'expected' is the value you expect the bitmap mostly to be full
1885 * of; it won't bother printing lines that are all this value.
1886 * If 'todump' is null the migration bitmap is dumped.
1888 void ram_debug_dump_bitmap(unsigned long *todump, bool expected,
1889 unsigned long pages)
1891 int64_t cur;
1892 int64_t linelen = 128;
1893 char linebuf[129];
1895 for (cur = 0; cur < pages; cur += linelen) {
1896 int64_t curb;
1897 bool found = false;
1899 * Last line; catch the case where the line length
1900 * is longer than remaining ram
1902 if (cur + linelen > pages) {
1903 linelen = pages - cur;
1905 for (curb = 0; curb < linelen; curb++) {
1906 bool thisbit = test_bit(cur + curb, todump);
1907 linebuf[curb] = thisbit ? '1' : '.';
1908 found = found || (thisbit != expected);
1910 if (found) {
1911 linebuf[curb] = '\0';
1912 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf);
1917 /* **** functions for postcopy ***** */
1919 void ram_postcopy_migrated_memory_release(MigrationState *ms)
1921 struct RAMBlock *block;
1923 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1924 unsigned long *bitmap = block->bmap;
1925 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
1926 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
1928 while (run_start < range) {
1929 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
1930 ram_discard_range(block->idstr,
1931 ((ram_addr_t)run_start) << TARGET_PAGE_BITS,
1932 ((ram_addr_t)(run_end - run_start))
1933 << TARGET_PAGE_BITS);
1934 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
1940 * postcopy_send_discard_bm_ram: discard a RAMBlock
1942 * Returns zero on success
1944 * Callback from postcopy_each_ram_send_discard for each RAMBlock
1946 * @ms: current migration state
1947 * @block: RAMBlock to discard
1949 static int postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block)
1951 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
1952 unsigned long current;
1953 unsigned long *bitmap = block->bmap;
1955 for (current = 0; current < end; ) {
1956 unsigned long one = find_next_bit(bitmap, end, current);
1957 unsigned long zero, discard_length;
1959 if (one >= end) {
1960 break;
1963 zero = find_next_zero_bit(bitmap, end, one + 1);
1965 if (zero >= end) {
1966 discard_length = end - one;
1967 } else {
1968 discard_length = zero - one;
1970 postcopy_discard_send_range(ms, one, discard_length);
1971 current = one + discard_length;
1974 return 0;
1978 * postcopy_each_ram_send_discard: discard all RAMBlocks
1980 * Returns 0 for success or negative for error
1982 * Utility for the outgoing postcopy code.
1983 * Calls postcopy_send_discard_bm_ram for each RAMBlock
1984 * passing it bitmap indexes and name.
1985 * (qemu_ram_foreach_block ends up passing unscaled lengths
1986 * which would mean postcopy code would have to deal with target page)
1988 * @ms: current migration state
1990 static int postcopy_each_ram_send_discard(MigrationState *ms)
1992 struct RAMBlock *block;
1993 int ret;
1995 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1996 postcopy_discard_send_init(ms, block->idstr);
1999 * Postcopy sends chunks of bitmap over the wire, but it
2000 * just needs indexes at this point, avoids it having
2001 * target page specific code.
2003 ret = postcopy_send_discard_bm_ram(ms, block);
2004 postcopy_discard_send_finish(ms);
2005 if (ret) {
2006 return ret;
2010 return 0;
2014 * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages
2016 * Helper for postcopy_chunk_hostpages; it's called twice to
2017 * canonicalize the two bitmaps, that are similar, but one is
2018 * inverted.
2020 * Postcopy requires that all target pages in a hostpage are dirty or
2021 * clean, not a mix. This function canonicalizes the bitmaps.
2023 * @ms: current migration state
2024 * @block: block that contains the page we want to canonicalize
2026 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block)
2028 RAMState *rs = ram_state;
2029 unsigned long *bitmap = block->bmap;
2030 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
2031 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2032 unsigned long run_start;
2034 if (block->page_size == TARGET_PAGE_SIZE) {
2035 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2036 return;
2039 /* Find a dirty page */
2040 run_start = find_next_bit(bitmap, pages, 0);
2042 while (run_start < pages) {
2045 * If the start of this run of pages is in the middle of a host
2046 * page, then we need to fixup this host page.
2048 if (QEMU_IS_ALIGNED(run_start, host_ratio)) {
2049 /* Find the end of this run */
2050 run_start = find_next_zero_bit(bitmap, pages, run_start + 1);
2052 * If the end isn't at the start of a host page, then the
2053 * run doesn't finish at the end of a host page
2054 * and we need to discard.
2058 if (!QEMU_IS_ALIGNED(run_start, host_ratio)) {
2059 unsigned long page;
2060 unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start,
2061 host_ratio);
2062 run_start = QEMU_ALIGN_UP(run_start, host_ratio);
2064 /* Clean up the bitmap */
2065 for (page = fixup_start_addr;
2066 page < fixup_start_addr + host_ratio; page++) {
2068 * Remark them as dirty, updating the count for any pages
2069 * that weren't previously dirty.
2071 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
2075 /* Find the next dirty page for the next iteration */
2076 run_start = find_next_bit(bitmap, pages, run_start);
2081 * postcopy_chunk_hostpages: discard any partially sent host page
2083 * Utility for the outgoing postcopy code.
2085 * Discard any partially sent host-page size chunks, mark any partially
2086 * dirty host-page size chunks as all dirty. In this case the host-page
2087 * is the host-page for the particular RAMBlock, i.e. it might be a huge page
2089 * Returns zero on success
2091 * @ms: current migration state
2092 * @block: block we want to work with
2094 static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block)
2096 postcopy_discard_send_init(ms, block->idstr);
2099 * Ensure that all partially dirty host pages are made fully dirty.
2101 postcopy_chunk_hostpages_pass(ms, block);
2103 postcopy_discard_send_finish(ms);
2104 return 0;
2108 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
2110 * Returns zero on success
2112 * Transmit the set of pages to be discarded after precopy to the target
2113 * these are pages that:
2114 * a) Have been previously transmitted but are now dirty again
2115 * b) Pages that have never been transmitted, this ensures that
2116 * any pages on the destination that have been mapped by background
2117 * tasks get discarded (transparent huge pages is the specific concern)
2118 * Hopefully this is pretty sparse
2120 * @ms: current migration state
2122 int ram_postcopy_send_discard_bitmap(MigrationState *ms)
2124 RAMState *rs = ram_state;
2125 RAMBlock *block;
2126 int ret;
2128 RCU_READ_LOCK_GUARD();
2130 /* This should be our last sync, the src is now paused */
2131 migration_bitmap_sync(rs);
2133 /* Easiest way to make sure we don't resume in the middle of a host-page */
2134 rs->last_seen_block = NULL;
2135 rs->last_sent_block = NULL;
2136 rs->last_page = 0;
2138 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2139 /* Deal with TPS != HPS and huge pages */
2140 ret = postcopy_chunk_hostpages(ms, block);
2141 if (ret) {
2142 return ret;
2145 #ifdef DEBUG_POSTCOPY
2146 ram_debug_dump_bitmap(block->bmap, true,
2147 block->used_length >> TARGET_PAGE_BITS);
2148 #endif
2150 trace_ram_postcopy_send_discard_bitmap();
2152 return postcopy_each_ram_send_discard(ms);
2156 * ram_discard_range: discard dirtied pages at the beginning of postcopy
2158 * Returns zero on success
2160 * @rbname: name of the RAMBlock of the request. NULL means the
2161 * same that last one.
2162 * @start: RAMBlock starting page
2163 * @length: RAMBlock size
2165 int ram_discard_range(const char *rbname, uint64_t start, size_t length)
2167 trace_ram_discard_range(rbname, start, length);
2169 RCU_READ_LOCK_GUARD();
2170 RAMBlock *rb = qemu_ram_block_by_name(rbname);
2172 if (!rb) {
2173 error_report("ram_discard_range: Failed to find block '%s'", rbname);
2174 return -1;
2178 * On source VM, we don't need to update the received bitmap since
2179 * we don't even have one.
2181 if (rb->receivedmap) {
2182 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
2183 length >> qemu_target_page_bits());
2186 return ram_block_discard_range(rb, start, length);
2190 * For every allocation, we will try not to crash the VM if the
2191 * allocation failed.
2193 static int xbzrle_init(void)
2195 Error *local_err = NULL;
2197 if (!migrate_use_xbzrle()) {
2198 return 0;
2201 XBZRLE_cache_lock();
2203 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
2204 if (!XBZRLE.zero_target_page) {
2205 error_report("%s: Error allocating zero page", __func__);
2206 goto err_out;
2209 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
2210 TARGET_PAGE_SIZE, &local_err);
2211 if (!XBZRLE.cache) {
2212 error_report_err(local_err);
2213 goto free_zero_page;
2216 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
2217 if (!XBZRLE.encoded_buf) {
2218 error_report("%s: Error allocating encoded_buf", __func__);
2219 goto free_cache;
2222 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
2223 if (!XBZRLE.current_buf) {
2224 error_report("%s: Error allocating current_buf", __func__);
2225 goto free_encoded_buf;
2228 /* We are all good */
2229 XBZRLE_cache_unlock();
2230 return 0;
2232 free_encoded_buf:
2233 g_free(XBZRLE.encoded_buf);
2234 XBZRLE.encoded_buf = NULL;
2235 free_cache:
2236 cache_fini(XBZRLE.cache);
2237 XBZRLE.cache = NULL;
2238 free_zero_page:
2239 g_free(XBZRLE.zero_target_page);
2240 XBZRLE.zero_target_page = NULL;
2241 err_out:
2242 XBZRLE_cache_unlock();
2243 return -ENOMEM;
2246 static int ram_state_init(RAMState **rsp)
2248 *rsp = g_try_new0(RAMState, 1);
2250 if (!*rsp) {
2251 error_report("%s: Init ramstate fail", __func__);
2252 return -1;
2255 qemu_mutex_init(&(*rsp)->bitmap_mutex);
2256 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
2257 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
2260 * Count the total number of pages used by ram blocks not including any
2261 * gaps due to alignment or unplugs.
2262 * This must match with the initial values of dirty bitmap.
2264 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
2265 ram_state_reset(*rsp);
2267 return 0;
2270 static void ram_list_init_bitmaps(void)
2272 MigrationState *ms = migrate_get_current();
2273 RAMBlock *block;
2274 unsigned long pages;
2275 uint8_t shift;
2277 /* Skip setting bitmap if there is no RAM */
2278 if (ram_bytes_total()) {
2279 shift = ms->clear_bitmap_shift;
2280 if (shift > CLEAR_BITMAP_SHIFT_MAX) {
2281 error_report("clear_bitmap_shift (%u) too big, using "
2282 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX);
2283 shift = CLEAR_BITMAP_SHIFT_MAX;
2284 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) {
2285 error_report("clear_bitmap_shift (%u) too small, using "
2286 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN);
2287 shift = CLEAR_BITMAP_SHIFT_MIN;
2290 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2291 pages = block->max_length >> TARGET_PAGE_BITS;
2293 * The initial dirty bitmap for migration must be set with all
2294 * ones to make sure we'll migrate every guest RAM page to
2295 * destination.
2296 * Here we set RAMBlock.bmap all to 1 because when rebegin a
2297 * new migration after a failed migration, ram_list.
2298 * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole
2299 * guest memory.
2301 block->bmap = bitmap_new(pages);
2302 bitmap_set(block->bmap, 0, pages);
2303 block->clear_bmap_shift = shift;
2304 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift));
2309 static void ram_init_bitmaps(RAMState *rs)
2311 /* For memory_global_dirty_log_start below. */
2312 qemu_mutex_lock_iothread();
2313 qemu_mutex_lock_ramlist();
2315 WITH_RCU_READ_LOCK_GUARD() {
2316 ram_list_init_bitmaps();
2317 memory_global_dirty_log_start();
2318 migration_bitmap_sync_precopy(rs);
2320 qemu_mutex_unlock_ramlist();
2321 qemu_mutex_unlock_iothread();
2324 static int ram_init_all(RAMState **rsp)
2326 if (ram_state_init(rsp)) {
2327 return -1;
2330 if (xbzrle_init()) {
2331 ram_state_cleanup(rsp);
2332 return -1;
2335 ram_init_bitmaps(*rsp);
2337 return 0;
2340 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
2342 RAMBlock *block;
2343 uint64_t pages = 0;
2346 * Postcopy is not using xbzrle/compression, so no need for that.
2347 * Also, since source are already halted, we don't need to care
2348 * about dirty page logging as well.
2351 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2352 pages += bitmap_count_one(block->bmap,
2353 block->used_length >> TARGET_PAGE_BITS);
2356 /* This may not be aligned with current bitmaps. Recalculate. */
2357 rs->migration_dirty_pages = pages;
2359 rs->last_seen_block = NULL;
2360 rs->last_sent_block = NULL;
2361 rs->last_page = 0;
2362 rs->last_version = ram_list.version;
2364 * Disable the bulk stage, otherwise we'll resend the whole RAM no
2365 * matter what we have sent.
2367 rs->ram_bulk_stage = false;
2369 /* Update RAMState cache of output QEMUFile */
2370 rs->f = out;
2372 trace_ram_state_resume_prepare(pages);
2376 * This function clears bits of the free pages reported by the caller from the
2377 * migration dirty bitmap. @addr is the host address corresponding to the
2378 * start of the continuous guest free pages, and @len is the total bytes of
2379 * those pages.
2381 void qemu_guest_free_page_hint(void *addr, size_t len)
2383 RAMBlock *block;
2384 ram_addr_t offset;
2385 size_t used_len, start, npages;
2386 MigrationState *s = migrate_get_current();
2388 /* This function is currently expected to be used during live migration */
2389 if (!migration_is_setup_or_active(s->state)) {
2390 return;
2393 for (; len > 0; len -= used_len, addr += used_len) {
2394 block = qemu_ram_block_from_host(addr, false, &offset);
2395 if (unlikely(!block || offset >= block->used_length)) {
2397 * The implementation might not support RAMBlock resize during
2398 * live migration, but it could happen in theory with future
2399 * updates. So we add a check here to capture that case.
2401 error_report_once("%s unexpected error", __func__);
2402 return;
2405 if (len <= block->used_length - offset) {
2406 used_len = len;
2407 } else {
2408 used_len = block->used_length - offset;
2411 start = offset >> TARGET_PAGE_BITS;
2412 npages = used_len >> TARGET_PAGE_BITS;
2414 qemu_mutex_lock(&ram_state->bitmap_mutex);
2415 ram_state->migration_dirty_pages -=
2416 bitmap_count_one_with_offset(block->bmap, start, npages);
2417 bitmap_clear(block->bmap, start, npages);
2418 qemu_mutex_unlock(&ram_state->bitmap_mutex);
2423 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
2424 * long-running RCU critical section. When rcu-reclaims in the code
2425 * start to become numerous it will be necessary to reduce the
2426 * granularity of these critical sections.
2430 * ram_save_setup: Setup RAM for migration
2432 * Returns zero to indicate success and negative for error
2434 * @f: QEMUFile where to send the data
2435 * @opaque: RAMState pointer
2437 static int ram_save_setup(QEMUFile *f, void *opaque)
2439 RAMState **rsp = opaque;
2440 RAMBlock *block;
2442 if (compress_threads_save_setup()) {
2443 return -1;
2446 /* migration has already setup the bitmap, reuse it. */
2447 if (!migration_in_colo_state()) {
2448 if (ram_init_all(rsp) != 0) {
2449 compress_threads_save_cleanup();
2450 return -1;
2453 (*rsp)->f = f;
2455 WITH_RCU_READ_LOCK_GUARD() {
2456 qemu_put_be64(f, ram_bytes_total_common(true) | RAM_SAVE_FLAG_MEM_SIZE);
2458 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2459 qemu_put_byte(f, strlen(block->idstr));
2460 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
2461 qemu_put_be64(f, block->used_length);
2462 if (migrate_postcopy_ram() && block->page_size !=
2463 qemu_host_page_size) {
2464 qemu_put_be64(f, block->page_size);
2466 if (migrate_ignore_shared()) {
2467 qemu_put_be64(f, block->mr->addr);
2472 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
2473 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
2475 multifd_send_sync_main(f);
2476 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2477 qemu_fflush(f);
2479 return 0;
2483 * ram_save_iterate: iterative stage for migration
2485 * Returns zero to indicate success and negative for error
2487 * @f: QEMUFile where to send the data
2488 * @opaque: RAMState pointer
2490 static int ram_save_iterate(QEMUFile *f, void *opaque)
2492 RAMState **temp = opaque;
2493 RAMState *rs = *temp;
2494 int ret = 0;
2495 int i;
2496 int64_t t0;
2497 int done = 0;
2499 if (blk_mig_bulk_active()) {
2500 /* Avoid transferring ram during bulk phase of block migration as
2501 * the bulk phase will usually take a long time and transferring
2502 * ram updates during that time is pointless. */
2503 goto out;
2506 WITH_RCU_READ_LOCK_GUARD() {
2507 if (ram_list.version != rs->last_version) {
2508 ram_state_reset(rs);
2511 /* Read version before ram_list.blocks */
2512 smp_rmb();
2514 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
2516 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2517 i = 0;
2518 while ((ret = qemu_file_rate_limit(f)) == 0 ||
2519 !QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
2520 int pages;
2522 if (qemu_file_get_error(f)) {
2523 break;
2526 pages = ram_find_and_save_block(rs, false);
2527 /* no more pages to sent */
2528 if (pages == 0) {
2529 done = 1;
2530 break;
2533 if (pages < 0) {
2534 qemu_file_set_error(f, pages);
2535 break;
2538 rs->target_page_count += pages;
2541 * During postcopy, it is necessary to make sure one whole host
2542 * page is sent in one chunk.
2544 if (migrate_postcopy_ram()) {
2545 flush_compressed_data(rs);
2549 * we want to check in the 1st loop, just in case it was the 1st
2550 * time and we had to sync the dirty bitmap.
2551 * qemu_clock_get_ns() is a bit expensive, so we only check each
2552 * some iterations
2554 if ((i & 63) == 0) {
2555 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) /
2556 1000000;
2557 if (t1 > MAX_WAIT) {
2558 trace_ram_save_iterate_big_wait(t1, i);
2559 break;
2562 i++;
2567 * Must occur before EOS (or any QEMUFile operation)
2568 * because of RDMA protocol.
2570 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
2572 out:
2573 if (ret >= 0
2574 && migration_is_setup_or_active(migrate_get_current()->state)) {
2575 multifd_send_sync_main(rs->f);
2576 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2577 qemu_fflush(f);
2578 ram_counters.transferred += 8;
2580 ret = qemu_file_get_error(f);
2582 if (ret < 0) {
2583 return ret;
2586 return done;
2590 * ram_save_complete: function called to send the remaining amount of ram
2592 * Returns zero to indicate success or negative on error
2594 * Called with iothread lock
2596 * @f: QEMUFile where to send the data
2597 * @opaque: RAMState pointer
2599 static int ram_save_complete(QEMUFile *f, void *opaque)
2601 RAMState **temp = opaque;
2602 RAMState *rs = *temp;
2603 int ret = 0;
2605 WITH_RCU_READ_LOCK_GUARD() {
2606 if (!migration_in_postcopy()) {
2607 migration_bitmap_sync_precopy(rs);
2610 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
2612 /* try transferring iterative blocks of memory */
2614 /* flush all remaining blocks regardless of rate limiting */
2615 while (true) {
2616 int pages;
2618 pages = ram_find_and_save_block(rs, !migration_in_colo_state());
2619 /* no more blocks to sent */
2620 if (pages == 0) {
2621 break;
2623 if (pages < 0) {
2624 ret = pages;
2625 break;
2629 flush_compressed_data(rs);
2630 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
2633 if (ret >= 0) {
2634 multifd_send_sync_main(rs->f);
2635 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2636 qemu_fflush(f);
2639 return ret;
2642 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
2643 uint64_t *res_precopy_only,
2644 uint64_t *res_compatible,
2645 uint64_t *res_postcopy_only)
2647 RAMState **temp = opaque;
2648 RAMState *rs = *temp;
2649 uint64_t remaining_size;
2651 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
2653 if (!migration_in_postcopy() &&
2654 remaining_size < max_size) {
2655 qemu_mutex_lock_iothread();
2656 WITH_RCU_READ_LOCK_GUARD() {
2657 migration_bitmap_sync_precopy(rs);
2659 qemu_mutex_unlock_iothread();
2660 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
2663 if (migrate_postcopy_ram()) {
2664 /* We can do postcopy, and all the data is postcopiable */
2665 *res_compatible += remaining_size;
2666 } else {
2667 *res_precopy_only += remaining_size;
2671 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
2673 unsigned int xh_len;
2674 int xh_flags;
2675 uint8_t *loaded_data;
2677 /* extract RLE header */
2678 xh_flags = qemu_get_byte(f);
2679 xh_len = qemu_get_be16(f);
2681 if (xh_flags != ENCODING_FLAG_XBZRLE) {
2682 error_report("Failed to load XBZRLE page - wrong compression!");
2683 return -1;
2686 if (xh_len > TARGET_PAGE_SIZE) {
2687 error_report("Failed to load XBZRLE page - len overflow!");
2688 return -1;
2690 loaded_data = XBZRLE.decoded_buf;
2691 /* load data and decode */
2692 /* it can change loaded_data to point to an internal buffer */
2693 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
2695 /* decode RLE */
2696 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
2697 TARGET_PAGE_SIZE) == -1) {
2698 error_report("Failed to load XBZRLE page - decode error!");
2699 return -1;
2702 return 0;
2706 * ram_block_from_stream: read a RAMBlock id from the migration stream
2708 * Must be called from within a rcu critical section.
2710 * Returns a pointer from within the RCU-protected ram_list.
2712 * @f: QEMUFile where to read the data from
2713 * @flags: Page flags (mostly to see if it's a continuation of previous block)
2715 static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags)
2717 static RAMBlock *block = NULL;
2718 char id[256];
2719 uint8_t len;
2721 if (flags & RAM_SAVE_FLAG_CONTINUE) {
2722 if (!block) {
2723 error_report("Ack, bad migration stream!");
2724 return NULL;
2726 return block;
2729 len = qemu_get_byte(f);
2730 qemu_get_buffer(f, (uint8_t *)id, len);
2731 id[len] = 0;
2733 block = qemu_ram_block_by_name(id);
2734 if (!block) {
2735 error_report("Can't find block %s", id);
2736 return NULL;
2739 if (ramblock_is_ignored(block)) {
2740 error_report("block %s should not be migrated !", id);
2741 return NULL;
2744 return block;
2747 static inline void *host_from_ram_block_offset(RAMBlock *block,
2748 ram_addr_t offset)
2750 if (!offset_in_ramblock(block, offset)) {
2751 return NULL;
2754 return block->host + offset;
2757 static inline void *colo_cache_from_block_offset(RAMBlock *block,
2758 ram_addr_t offset, bool record_bitmap)
2760 if (!offset_in_ramblock(block, offset)) {
2761 return NULL;
2763 if (!block->colo_cache) {
2764 error_report("%s: colo_cache is NULL in block :%s",
2765 __func__, block->idstr);
2766 return NULL;
2770 * During colo checkpoint, we need bitmap of these migrated pages.
2771 * It help us to decide which pages in ram cache should be flushed
2772 * into VM's RAM later.
2774 if (record_bitmap &&
2775 !test_and_set_bit(offset >> TARGET_PAGE_BITS, block->bmap)) {
2776 ram_state->migration_dirty_pages++;
2778 return block->colo_cache + offset;
2782 * ram_handle_compressed: handle the zero page case
2784 * If a page (or a whole RDMA chunk) has been
2785 * determined to be zero, then zap it.
2787 * @host: host address for the zero page
2788 * @ch: what the page is filled from. We only support zero
2789 * @size: size of the zero page
2791 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
2793 if (ch != 0 || !is_zero_range(host, size)) {
2794 memset(host, ch, size);
2798 /* return the size after decompression, or negative value on error */
2799 static int
2800 qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len,
2801 const uint8_t *source, size_t source_len)
2803 int err;
2805 err = inflateReset(stream);
2806 if (err != Z_OK) {
2807 return -1;
2810 stream->avail_in = source_len;
2811 stream->next_in = (uint8_t *)source;
2812 stream->avail_out = dest_len;
2813 stream->next_out = dest;
2815 err = inflate(stream, Z_NO_FLUSH);
2816 if (err != Z_STREAM_END) {
2817 return -1;
2820 return stream->total_out;
2823 static void *do_data_decompress(void *opaque)
2825 DecompressParam *param = opaque;
2826 unsigned long pagesize;
2827 uint8_t *des;
2828 int len, ret;
2830 qemu_mutex_lock(&param->mutex);
2831 while (!param->quit) {
2832 if (param->des) {
2833 des = param->des;
2834 len = param->len;
2835 param->des = 0;
2836 qemu_mutex_unlock(&param->mutex);
2838 pagesize = TARGET_PAGE_SIZE;
2840 ret = qemu_uncompress_data(&param->stream, des, pagesize,
2841 param->compbuf, len);
2842 if (ret < 0 && migrate_get_current()->decompress_error_check) {
2843 error_report("decompress data failed");
2844 qemu_file_set_error(decomp_file, ret);
2847 qemu_mutex_lock(&decomp_done_lock);
2848 param->done = true;
2849 qemu_cond_signal(&decomp_done_cond);
2850 qemu_mutex_unlock(&decomp_done_lock);
2852 qemu_mutex_lock(&param->mutex);
2853 } else {
2854 qemu_cond_wait(&param->cond, &param->mutex);
2857 qemu_mutex_unlock(&param->mutex);
2859 return NULL;
2862 static int wait_for_decompress_done(void)
2864 int idx, thread_count;
2866 if (!migrate_use_compression()) {
2867 return 0;
2870 thread_count = migrate_decompress_threads();
2871 qemu_mutex_lock(&decomp_done_lock);
2872 for (idx = 0; idx < thread_count; idx++) {
2873 while (!decomp_param[idx].done) {
2874 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
2877 qemu_mutex_unlock(&decomp_done_lock);
2878 return qemu_file_get_error(decomp_file);
2881 static void compress_threads_load_cleanup(void)
2883 int i, thread_count;
2885 if (!migrate_use_compression()) {
2886 return;
2888 thread_count = migrate_decompress_threads();
2889 for (i = 0; i < thread_count; i++) {
2891 * we use it as a indicator which shows if the thread is
2892 * properly init'd or not
2894 if (!decomp_param[i].compbuf) {
2895 break;
2898 qemu_mutex_lock(&decomp_param[i].mutex);
2899 decomp_param[i].quit = true;
2900 qemu_cond_signal(&decomp_param[i].cond);
2901 qemu_mutex_unlock(&decomp_param[i].mutex);
2903 for (i = 0; i < thread_count; i++) {
2904 if (!decomp_param[i].compbuf) {
2905 break;
2908 qemu_thread_join(decompress_threads + i);
2909 qemu_mutex_destroy(&decomp_param[i].mutex);
2910 qemu_cond_destroy(&decomp_param[i].cond);
2911 inflateEnd(&decomp_param[i].stream);
2912 g_free(decomp_param[i].compbuf);
2913 decomp_param[i].compbuf = NULL;
2915 g_free(decompress_threads);
2916 g_free(decomp_param);
2917 decompress_threads = NULL;
2918 decomp_param = NULL;
2919 decomp_file = NULL;
2922 static int compress_threads_load_setup(QEMUFile *f)
2924 int i, thread_count;
2926 if (!migrate_use_compression()) {
2927 return 0;
2930 thread_count = migrate_decompress_threads();
2931 decompress_threads = g_new0(QemuThread, thread_count);
2932 decomp_param = g_new0(DecompressParam, thread_count);
2933 qemu_mutex_init(&decomp_done_lock);
2934 qemu_cond_init(&decomp_done_cond);
2935 decomp_file = f;
2936 for (i = 0; i < thread_count; i++) {
2937 if (inflateInit(&decomp_param[i].stream) != Z_OK) {
2938 goto exit;
2941 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
2942 qemu_mutex_init(&decomp_param[i].mutex);
2943 qemu_cond_init(&decomp_param[i].cond);
2944 decomp_param[i].done = true;
2945 decomp_param[i].quit = false;
2946 qemu_thread_create(decompress_threads + i, "decompress",
2947 do_data_decompress, decomp_param + i,
2948 QEMU_THREAD_JOINABLE);
2950 return 0;
2951 exit:
2952 compress_threads_load_cleanup();
2953 return -1;
2956 static void decompress_data_with_multi_threads(QEMUFile *f,
2957 void *host, int len)
2959 int idx, thread_count;
2961 thread_count = migrate_decompress_threads();
2962 qemu_mutex_lock(&decomp_done_lock);
2963 while (true) {
2964 for (idx = 0; idx < thread_count; idx++) {
2965 if (decomp_param[idx].done) {
2966 decomp_param[idx].done = false;
2967 qemu_mutex_lock(&decomp_param[idx].mutex);
2968 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
2969 decomp_param[idx].des = host;
2970 decomp_param[idx].len = len;
2971 qemu_cond_signal(&decomp_param[idx].cond);
2972 qemu_mutex_unlock(&decomp_param[idx].mutex);
2973 break;
2976 if (idx < thread_count) {
2977 break;
2978 } else {
2979 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
2982 qemu_mutex_unlock(&decomp_done_lock);
2986 * colo cache: this is for secondary VM, we cache the whole
2987 * memory of the secondary VM, it is need to hold the global lock
2988 * to call this helper.
2990 int colo_init_ram_cache(void)
2992 RAMBlock *block;
2994 WITH_RCU_READ_LOCK_GUARD() {
2995 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2996 block->colo_cache = qemu_anon_ram_alloc(block->used_length,
2997 NULL,
2998 false);
2999 if (!block->colo_cache) {
3000 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3001 "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3002 block->used_length);
3003 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3004 if (block->colo_cache) {
3005 qemu_anon_ram_free(block->colo_cache, block->used_length);
3006 block->colo_cache = NULL;
3009 return -errno;
3015 * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3016 * with to decide which page in cache should be flushed into SVM's RAM. Here
3017 * we use the same name 'ram_bitmap' as for migration.
3019 if (ram_bytes_total()) {
3020 RAMBlock *block;
3022 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3023 unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
3024 block->bmap = bitmap_new(pages);
3028 ram_state_init(&ram_state);
3029 return 0;
3032 /* TODO: duplicated with ram_init_bitmaps */
3033 void colo_incoming_start_dirty_log(void)
3035 RAMBlock *block = NULL;
3036 /* For memory_global_dirty_log_start below. */
3037 qemu_mutex_lock_iothread();
3038 qemu_mutex_lock_ramlist();
3040 memory_global_dirty_log_sync();
3041 WITH_RCU_READ_LOCK_GUARD() {
3042 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3043 ramblock_sync_dirty_bitmap(ram_state, block);
3044 /* Discard this dirty bitmap record */
3045 bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS);
3047 memory_global_dirty_log_start();
3049 ram_state->migration_dirty_pages = 0;
3050 qemu_mutex_unlock_ramlist();
3051 qemu_mutex_unlock_iothread();
3054 /* It is need to hold the global lock to call this helper */
3055 void colo_release_ram_cache(void)
3057 RAMBlock *block;
3059 memory_global_dirty_log_stop();
3060 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3061 g_free(block->bmap);
3062 block->bmap = NULL;
3065 WITH_RCU_READ_LOCK_GUARD() {
3066 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3067 if (block->colo_cache) {
3068 qemu_anon_ram_free(block->colo_cache, block->used_length);
3069 block->colo_cache = NULL;
3073 ram_state_cleanup(&ram_state);
3077 * ram_load_setup: Setup RAM for migration incoming side
3079 * Returns zero to indicate success and negative for error
3081 * @f: QEMUFile where to receive the data
3082 * @opaque: RAMState pointer
3084 static int ram_load_setup(QEMUFile *f, void *opaque)
3086 if (compress_threads_load_setup(f)) {
3087 return -1;
3090 xbzrle_load_setup();
3091 ramblock_recv_map_init();
3093 return 0;
3096 static int ram_load_cleanup(void *opaque)
3098 RAMBlock *rb;
3100 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3101 qemu_ram_block_writeback(rb);
3104 xbzrle_load_cleanup();
3105 compress_threads_load_cleanup();
3107 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3108 g_free(rb->receivedmap);
3109 rb->receivedmap = NULL;
3112 return 0;
3116 * ram_postcopy_incoming_init: allocate postcopy data structures
3118 * Returns 0 for success and negative if there was one error
3120 * @mis: current migration incoming state
3122 * Allocate data structures etc needed by incoming migration with
3123 * postcopy-ram. postcopy-ram's similarly names
3124 * postcopy_ram_incoming_init does the work.
3126 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
3128 return postcopy_ram_incoming_init(mis);
3132 * ram_load_postcopy: load a page in postcopy case
3134 * Returns 0 for success or -errno in case of error
3136 * Called in postcopy mode by ram_load().
3137 * rcu_read_lock is taken prior to this being called.
3139 * @f: QEMUFile where to send the data
3141 static int ram_load_postcopy(QEMUFile *f)
3143 int flags = 0, ret = 0;
3144 bool place_needed = false;
3145 bool matches_target_page_size = false;
3146 MigrationIncomingState *mis = migration_incoming_get_current();
3147 /* Temporary page that is later 'placed' */
3148 void *postcopy_host_page = mis->postcopy_tmp_page;
3149 void *this_host = NULL;
3150 bool all_zero = true;
3151 int target_pages = 0;
3153 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3154 ram_addr_t addr;
3155 void *host = NULL;
3156 void *page_buffer = NULL;
3157 void *place_source = NULL;
3158 RAMBlock *block = NULL;
3159 uint8_t ch;
3160 int len;
3162 addr = qemu_get_be64(f);
3165 * If qemu file error, we should stop here, and then "addr"
3166 * may be invalid
3168 ret = qemu_file_get_error(f);
3169 if (ret) {
3170 break;
3173 flags = addr & ~TARGET_PAGE_MASK;
3174 addr &= TARGET_PAGE_MASK;
3176 trace_ram_load_postcopy_loop((uint64_t)addr, flags);
3177 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
3178 RAM_SAVE_FLAG_COMPRESS_PAGE)) {
3179 block = ram_block_from_stream(f, flags);
3181 host = host_from_ram_block_offset(block, addr);
3182 if (!host) {
3183 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3184 ret = -EINVAL;
3185 break;
3187 target_pages++;
3188 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
3190 * Postcopy requires that we place whole host pages atomically;
3191 * these may be huge pages for RAMBlocks that are backed by
3192 * hugetlbfs.
3193 * To make it atomic, the data is read into a temporary page
3194 * that's moved into place later.
3195 * The migration protocol uses, possibly smaller, target-pages
3196 * however the source ensures it always sends all the components
3197 * of a host page in one chunk.
3199 page_buffer = postcopy_host_page +
3200 ((uintptr_t)host & (block->page_size - 1));
3201 if (target_pages == 1) {
3202 this_host = (void *)QEMU_ALIGN_DOWN((uintptr_t)host,
3203 block->page_size);
3204 } else {
3205 /* not the 1st TP within the HP */
3206 if (QEMU_ALIGN_DOWN((uintptr_t)host, block->page_size) !=
3207 (uintptr_t)this_host) {
3208 error_report("Non-same host page %p/%p",
3209 host, this_host);
3210 ret = -EINVAL;
3211 break;
3216 * If it's the last part of a host page then we place the host
3217 * page
3219 if (target_pages == (block->page_size / TARGET_PAGE_SIZE)) {
3220 place_needed = true;
3222 place_source = postcopy_host_page;
3225 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
3226 case RAM_SAVE_FLAG_ZERO:
3227 ch = qemu_get_byte(f);
3229 * Can skip to set page_buffer when
3230 * this is a zero page and (block->page_size == TARGET_PAGE_SIZE).
3232 if (ch || !matches_target_page_size) {
3233 memset(page_buffer, ch, TARGET_PAGE_SIZE);
3235 if (ch) {
3236 all_zero = false;
3238 break;
3240 case RAM_SAVE_FLAG_PAGE:
3241 all_zero = false;
3242 if (!matches_target_page_size) {
3243 /* For huge pages, we always use temporary buffer */
3244 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
3245 } else {
3247 * For small pages that matches target page size, we
3248 * avoid the qemu_file copy. Instead we directly use
3249 * the buffer of QEMUFile to place the page. Note: we
3250 * cannot do any QEMUFile operation before using that
3251 * buffer to make sure the buffer is valid when
3252 * placing the page.
3254 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
3255 TARGET_PAGE_SIZE);
3257 break;
3258 case RAM_SAVE_FLAG_COMPRESS_PAGE:
3259 all_zero = false;
3260 len = qemu_get_be32(f);
3261 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
3262 error_report("Invalid compressed data length: %d", len);
3263 ret = -EINVAL;
3264 break;
3266 decompress_data_with_multi_threads(f, page_buffer, len);
3267 break;
3269 case RAM_SAVE_FLAG_EOS:
3270 /* normal exit */
3271 multifd_recv_sync_main();
3272 break;
3273 default:
3274 error_report("Unknown combination of migration flags: %#x"
3275 " (postcopy mode)", flags);
3276 ret = -EINVAL;
3277 break;
3280 /* Got the whole host page, wait for decompress before placing. */
3281 if (place_needed) {
3282 ret |= wait_for_decompress_done();
3285 /* Detect for any possible file errors */
3286 if (!ret && qemu_file_get_error(f)) {
3287 ret = qemu_file_get_error(f);
3290 if (!ret && place_needed) {
3291 /* This gets called at the last target page in the host page */
3292 void *place_dest = (void *)QEMU_ALIGN_DOWN((uintptr_t)host,
3293 block->page_size);
3295 if (all_zero) {
3296 ret = postcopy_place_page_zero(mis, place_dest,
3297 block);
3298 } else {
3299 ret = postcopy_place_page(mis, place_dest,
3300 place_source, block);
3302 place_needed = false;
3303 target_pages = 0;
3304 /* Assume we have a zero page until we detect something different */
3305 all_zero = true;
3309 return ret;
3312 static bool postcopy_is_advised(void)
3314 PostcopyState ps = postcopy_state_get();
3315 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END;
3318 static bool postcopy_is_running(void)
3320 PostcopyState ps = postcopy_state_get();
3321 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
3325 * Flush content of RAM cache into SVM's memory.
3326 * Only flush the pages that be dirtied by PVM or SVM or both.
3328 static void colo_flush_ram_cache(void)
3330 RAMBlock *block = NULL;
3331 void *dst_host;
3332 void *src_host;
3333 unsigned long offset = 0;
3335 memory_global_dirty_log_sync();
3336 WITH_RCU_READ_LOCK_GUARD() {
3337 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3338 ramblock_sync_dirty_bitmap(ram_state, block);
3342 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
3343 WITH_RCU_READ_LOCK_GUARD() {
3344 block = QLIST_FIRST_RCU(&ram_list.blocks);
3346 while (block) {
3347 offset = migration_bitmap_find_dirty(ram_state, block, offset);
3349 if (((ram_addr_t)offset) << TARGET_PAGE_BITS
3350 >= block->used_length) {
3351 offset = 0;
3352 block = QLIST_NEXT_RCU(block, next);
3353 } else {
3354 migration_bitmap_clear_dirty(ram_state, block, offset);
3355 dst_host = block->host
3356 + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
3357 src_host = block->colo_cache
3358 + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
3359 memcpy(dst_host, src_host, TARGET_PAGE_SIZE);
3363 trace_colo_flush_ram_cache_end();
3367 * ram_load_precopy: load pages in precopy case
3369 * Returns 0 for success or -errno in case of error
3371 * Called in precopy mode by ram_load().
3372 * rcu_read_lock is taken prior to this being called.
3374 * @f: QEMUFile where to send the data
3376 static int ram_load_precopy(QEMUFile *f)
3378 int flags = 0, ret = 0, invalid_flags = 0, len = 0, i = 0;
3379 /* ADVISE is earlier, it shows the source has the postcopy capability on */
3380 bool postcopy_advised = postcopy_is_advised();
3381 if (!migrate_use_compression()) {
3382 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
3385 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3386 ram_addr_t addr, total_ram_bytes;
3387 void *host = NULL, *host_bak = NULL;
3388 uint8_t ch;
3391 * Yield periodically to let main loop run, but an iteration of
3392 * the main loop is expensive, so do it each some iterations
3394 if ((i & 32767) == 0 && qemu_in_coroutine()) {
3395 aio_co_schedule(qemu_get_current_aio_context(),
3396 qemu_coroutine_self());
3397 qemu_coroutine_yield();
3399 i++;
3401 addr = qemu_get_be64(f);
3402 flags = addr & ~TARGET_PAGE_MASK;
3403 addr &= TARGET_PAGE_MASK;
3405 if (flags & invalid_flags) {
3406 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
3407 error_report("Received an unexpected compressed page");
3410 ret = -EINVAL;
3411 break;
3414 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
3415 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
3416 RAMBlock *block = ram_block_from_stream(f, flags);
3418 host = host_from_ram_block_offset(block, addr);
3420 * After going into COLO stage, we should not load the page
3421 * into SVM's memory directly, we put them into colo_cache firstly.
3422 * NOTE: We need to keep a copy of SVM's ram in colo_cache.
3423 * Previously, we copied all these memory in preparing stage of COLO
3424 * while we need to stop VM, which is a time-consuming process.
3425 * Here we optimize it by a trick, back-up every page while in
3426 * migration process while COLO is enabled, though it affects the
3427 * speed of the migration, but it obviously reduce the downtime of
3428 * back-up all SVM'S memory in COLO preparing stage.
3430 if (migration_incoming_colo_enabled()) {
3431 if (migration_incoming_in_colo_state()) {
3432 /* In COLO stage, put all pages into cache temporarily */
3433 host = colo_cache_from_block_offset(block, addr, true);
3434 } else {
3436 * In migration stage but before COLO stage,
3437 * Put all pages into both cache and SVM's memory.
3439 host_bak = colo_cache_from_block_offset(block, addr, false);
3442 if (!host) {
3443 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3444 ret = -EINVAL;
3445 break;
3447 if (!migration_incoming_in_colo_state()) {
3448 ramblock_recv_bitmap_set(block, host);
3451 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
3454 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
3455 case RAM_SAVE_FLAG_MEM_SIZE:
3456 /* Synchronize RAM block list */
3457 total_ram_bytes = addr;
3458 while (!ret && total_ram_bytes) {
3459 RAMBlock *block;
3460 char id[256];
3461 ram_addr_t length;
3463 len = qemu_get_byte(f);
3464 qemu_get_buffer(f, (uint8_t *)id, len);
3465 id[len] = 0;
3466 length = qemu_get_be64(f);
3468 block = qemu_ram_block_by_name(id);
3469 if (block && !qemu_ram_is_migratable(block)) {
3470 error_report("block %s should not be migrated !", id);
3471 ret = -EINVAL;
3472 } else if (block) {
3473 if (length != block->used_length) {
3474 Error *local_err = NULL;
3476 ret = qemu_ram_resize(block, length,
3477 &local_err);
3478 if (local_err) {
3479 error_report_err(local_err);
3482 /* For postcopy we need to check hugepage sizes match */
3483 if (postcopy_advised &&
3484 block->page_size != qemu_host_page_size) {
3485 uint64_t remote_page_size = qemu_get_be64(f);
3486 if (remote_page_size != block->page_size) {
3487 error_report("Mismatched RAM page size %s "
3488 "(local) %zd != %" PRId64,
3489 id, block->page_size,
3490 remote_page_size);
3491 ret = -EINVAL;
3494 if (migrate_ignore_shared()) {
3495 hwaddr addr = qemu_get_be64(f);
3496 if (ramblock_is_ignored(block) &&
3497 block->mr->addr != addr) {
3498 error_report("Mismatched GPAs for block %s "
3499 "%" PRId64 "!= %" PRId64,
3500 id, (uint64_t)addr,
3501 (uint64_t)block->mr->addr);
3502 ret = -EINVAL;
3505 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
3506 block->idstr);
3507 } else {
3508 error_report("Unknown ramblock \"%s\", cannot "
3509 "accept migration", id);
3510 ret = -EINVAL;
3513 total_ram_bytes -= length;
3515 break;
3517 case RAM_SAVE_FLAG_ZERO:
3518 ch = qemu_get_byte(f);
3519 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
3520 break;
3522 case RAM_SAVE_FLAG_PAGE:
3523 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
3524 break;
3526 case RAM_SAVE_FLAG_COMPRESS_PAGE:
3527 len = qemu_get_be32(f);
3528 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
3529 error_report("Invalid compressed data length: %d", len);
3530 ret = -EINVAL;
3531 break;
3533 decompress_data_with_multi_threads(f, host, len);
3534 break;
3536 case RAM_SAVE_FLAG_XBZRLE:
3537 if (load_xbzrle(f, addr, host) < 0) {
3538 error_report("Failed to decompress XBZRLE page at "
3539 RAM_ADDR_FMT, addr);
3540 ret = -EINVAL;
3541 break;
3543 break;
3544 case RAM_SAVE_FLAG_EOS:
3545 /* normal exit */
3546 multifd_recv_sync_main();
3547 break;
3548 default:
3549 if (flags & RAM_SAVE_FLAG_HOOK) {
3550 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
3551 } else {
3552 error_report("Unknown combination of migration flags: %#x",
3553 flags);
3554 ret = -EINVAL;
3557 if (!ret) {
3558 ret = qemu_file_get_error(f);
3560 if (!ret && host_bak) {
3561 memcpy(host_bak, host, TARGET_PAGE_SIZE);
3565 ret |= wait_for_decompress_done();
3566 return ret;
3569 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3571 int ret = 0;
3572 static uint64_t seq_iter;
3574 * If system is running in postcopy mode, page inserts to host memory must
3575 * be atomic
3577 bool postcopy_running = postcopy_is_running();
3579 seq_iter++;
3581 if (version_id != 4) {
3582 return -EINVAL;
3586 * This RCU critical section can be very long running.
3587 * When RCU reclaims in the code start to become numerous,
3588 * it will be necessary to reduce the granularity of this
3589 * critical section.
3591 WITH_RCU_READ_LOCK_GUARD() {
3592 if (postcopy_running) {
3593 ret = ram_load_postcopy(f);
3594 } else {
3595 ret = ram_load_precopy(f);
3598 trace_ram_load_complete(ret, seq_iter);
3600 if (!ret && migration_incoming_in_colo_state()) {
3601 colo_flush_ram_cache();
3603 return ret;
3606 static bool ram_has_postcopy(void *opaque)
3608 RAMBlock *rb;
3609 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3610 if (ramblock_is_pmem(rb)) {
3611 info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
3612 "is not supported now!", rb->idstr, rb->host);
3613 return false;
3617 return migrate_postcopy_ram();
3620 /* Sync all the dirty bitmap with destination VM. */
3621 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
3623 RAMBlock *block;
3624 QEMUFile *file = s->to_dst_file;
3625 int ramblock_count = 0;
3627 trace_ram_dirty_bitmap_sync_start();
3629 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3630 qemu_savevm_send_recv_bitmap(file, block->idstr);
3631 trace_ram_dirty_bitmap_request(block->idstr);
3632 ramblock_count++;
3635 trace_ram_dirty_bitmap_sync_wait();
3637 /* Wait until all the ramblocks' dirty bitmap synced */
3638 while (ramblock_count--) {
3639 qemu_sem_wait(&s->rp_state.rp_sem);
3642 trace_ram_dirty_bitmap_sync_complete();
3644 return 0;
3647 static void ram_dirty_bitmap_reload_notify(MigrationState *s)
3649 qemu_sem_post(&s->rp_state.rp_sem);
3653 * Read the received bitmap, revert it as the initial dirty bitmap.
3654 * This is only used when the postcopy migration is paused but wants
3655 * to resume from a middle point.
3657 int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block)
3659 int ret = -EINVAL;
3660 QEMUFile *file = s->rp_state.from_dst_file;
3661 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS;
3662 uint64_t local_size = DIV_ROUND_UP(nbits, 8);
3663 uint64_t size, end_mark;
3665 trace_ram_dirty_bitmap_reload_begin(block->idstr);
3667 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
3668 error_report("%s: incorrect state %s", __func__,
3669 MigrationStatus_str(s->state));
3670 return -EINVAL;
3674 * Note: see comments in ramblock_recv_bitmap_send() on why we
3675 * need the endianess convertion, and the paddings.
3677 local_size = ROUND_UP(local_size, 8);
3679 /* Add paddings */
3680 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
3682 size = qemu_get_be64(file);
3684 /* The size of the bitmap should match with our ramblock */
3685 if (size != local_size) {
3686 error_report("%s: ramblock '%s' bitmap size mismatch "
3687 "(0x%"PRIx64" != 0x%"PRIx64")", __func__,
3688 block->idstr, size, local_size);
3689 ret = -EINVAL;
3690 goto out;
3693 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
3694 end_mark = qemu_get_be64(file);
3696 ret = qemu_file_get_error(file);
3697 if (ret || size != local_size) {
3698 error_report("%s: read bitmap failed for ramblock '%s': %d"
3699 " (size 0x%"PRIx64", got: 0x%"PRIx64")",
3700 __func__, block->idstr, ret, local_size, size);
3701 ret = -EIO;
3702 goto out;
3705 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
3706 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIu64,
3707 __func__, block->idstr, end_mark);
3708 ret = -EINVAL;
3709 goto out;
3713 * Endianess convertion. We are during postcopy (though paused).
3714 * The dirty bitmap won't change. We can directly modify it.
3716 bitmap_from_le(block->bmap, le_bitmap, nbits);
3719 * What we received is "received bitmap". Revert it as the initial
3720 * dirty bitmap for this ramblock.
3722 bitmap_complement(block->bmap, block->bmap, nbits);
3724 trace_ram_dirty_bitmap_reload_complete(block->idstr);
3727 * We succeeded to sync bitmap for current ramblock. If this is
3728 * the last one to sync, we need to notify the main send thread.
3730 ram_dirty_bitmap_reload_notify(s);
3732 ret = 0;
3733 out:
3734 g_free(le_bitmap);
3735 return ret;
3738 static int ram_resume_prepare(MigrationState *s, void *opaque)
3740 RAMState *rs = *(RAMState **)opaque;
3741 int ret;
3743 ret = ram_dirty_bitmap_sync_all(s, rs);
3744 if (ret) {
3745 return ret;
3748 ram_state_resume_prepare(rs, s->to_dst_file);
3750 return 0;
3753 static SaveVMHandlers savevm_ram_handlers = {
3754 .save_setup = ram_save_setup,
3755 .save_live_iterate = ram_save_iterate,
3756 .save_live_complete_postcopy = ram_save_complete,
3757 .save_live_complete_precopy = ram_save_complete,
3758 .has_postcopy = ram_has_postcopy,
3759 .save_live_pending = ram_save_pending,
3760 .load_state = ram_load,
3761 .save_cleanup = ram_save_cleanup,
3762 .load_setup = ram_load_setup,
3763 .load_cleanup = ram_load_cleanup,
3764 .resume_prepare = ram_resume_prepare,
3767 void ram_mig_init(void)
3769 qemu_mutex_init(&XBZRLE.lock);
3770 register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state);