4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
19 #include <linux/kvm.h>
21 #include "qemu-common.h"
26 #include "host-utils.h"
30 #ifdef CONFIG_KVM_PARA
31 #include <linux/kvm_para.h>
37 #define DPRINTF(fmt, ...) \
38 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
40 #define DPRINTF(fmt, ...) \
44 #define MSR_KVM_WALL_CLOCK 0x11
45 #define MSR_KVM_SYSTEM_TIME 0x12
47 #ifdef KVM_CAP_EXT_CPUID
49 static struct kvm_cpuid2
*try_get_cpuid(KVMState
*s
, int max
)
51 struct kvm_cpuid2
*cpuid
;
54 size
= sizeof(*cpuid
) + max
* sizeof(*cpuid
->entries
);
55 cpuid
= (struct kvm_cpuid2
*)qemu_mallocz(size
);
57 r
= kvm_ioctl(s
, KVM_GET_SUPPORTED_CPUID
, cpuid
);
58 if (r
== 0 && cpuid
->nent
>= max
) {
66 fprintf(stderr
, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
74 uint32_t kvm_arch_get_supported_cpuid(CPUState
*env
, uint32_t function
,
75 uint32_t index
, int reg
)
77 struct kvm_cpuid2
*cpuid
;
82 if (!kvm_check_extension(env
->kvm_state
, KVM_CAP_EXT_CPUID
)) {
87 while ((cpuid
= try_get_cpuid(env
->kvm_state
, max
)) == NULL
) {
91 for (i
= 0; i
< cpuid
->nent
; ++i
) {
92 if (cpuid
->entries
[i
].function
== function
&&
93 cpuid
->entries
[i
].index
== index
) {
96 ret
= cpuid
->entries
[i
].eax
;
99 ret
= cpuid
->entries
[i
].ebx
;
102 ret
= cpuid
->entries
[i
].ecx
;
105 ret
= cpuid
->entries
[i
].edx
;
108 /* KVM before 2.6.30 misreports the following features */
109 ret
|= CPUID_MTRR
| CPUID_PAT
| CPUID_MCE
| CPUID_MCA
;
112 /* On Intel, kvm returns cpuid according to the Intel spec,
113 * so add missing bits according to the AMD spec:
115 cpuid_1_edx
= kvm_arch_get_supported_cpuid(env
, 1, 0, R_EDX
);
116 ret
|= cpuid_1_edx
& 0x183f7ff;
131 uint32_t kvm_arch_get_supported_cpuid(CPUState
*env
, uint32_t function
,
132 uint32_t index
, int reg
)
139 #ifdef CONFIG_KVM_PARA
140 struct kvm_para_features
{
143 } para_features
[] = {
144 #ifdef KVM_CAP_CLOCKSOURCE
145 { KVM_CAP_CLOCKSOURCE
, KVM_FEATURE_CLOCKSOURCE
},
147 #ifdef KVM_CAP_NOP_IO_DELAY
148 { KVM_CAP_NOP_IO_DELAY
, KVM_FEATURE_NOP_IO_DELAY
},
150 #ifdef KVM_CAP_PV_MMU
151 { KVM_CAP_PV_MMU
, KVM_FEATURE_MMU_OP
},
156 static int get_para_features(CPUState
*env
)
160 for (i
= 0; i
< ARRAY_SIZE(para_features
) - 1; i
++) {
161 if (kvm_check_extension(env
->kvm_state
, para_features
[i
].cap
))
162 features
|= (1 << para_features
[i
].feature
);
169 int kvm_arch_init_vcpu(CPUState
*env
)
172 struct kvm_cpuid2 cpuid
;
173 struct kvm_cpuid_entry2 entries
[100];
174 } __attribute__((packed
)) cpuid_data
;
175 uint32_t limit
, i
, j
, cpuid_i
;
177 struct kvm_cpuid_entry2
*c
;
178 #ifdef KVM_CPUID_SIGNATURE
179 uint32_t signature
[3];
182 env
->mp_state
= KVM_MP_STATE_RUNNABLE
;
184 env
->cpuid_features
&= kvm_arch_get_supported_cpuid(env
, 1, 0, R_EDX
);
186 i
= env
->cpuid_ext_features
& CPUID_EXT_HYPERVISOR
;
187 env
->cpuid_ext_features
&= kvm_arch_get_supported_cpuid(env
, 1, 0, R_ECX
);
188 env
->cpuid_ext_features
|= i
;
190 env
->cpuid_ext2_features
&= kvm_arch_get_supported_cpuid(env
, 0x80000001,
192 env
->cpuid_ext3_features
&= kvm_arch_get_supported_cpuid(env
, 0x80000001,
197 #ifdef CONFIG_KVM_PARA
198 /* Paravirtualization CPUIDs */
199 memcpy(signature
, "KVMKVMKVM\0\0\0", 12);
200 c
= &cpuid_data
.entries
[cpuid_i
++];
201 memset(c
, 0, sizeof(*c
));
202 c
->function
= KVM_CPUID_SIGNATURE
;
204 c
->ebx
= signature
[0];
205 c
->ecx
= signature
[1];
206 c
->edx
= signature
[2];
208 c
= &cpuid_data
.entries
[cpuid_i
++];
209 memset(c
, 0, sizeof(*c
));
210 c
->function
= KVM_CPUID_FEATURES
;
211 c
->eax
= env
->cpuid_kvm_features
& get_para_features(env
);
214 cpu_x86_cpuid(env
, 0, 0, &limit
, &unused
, &unused
, &unused
);
216 for (i
= 0; i
<= limit
; i
++) {
217 c
= &cpuid_data
.entries
[cpuid_i
++];
221 /* Keep reading function 2 till all the input is received */
225 c
->flags
= KVM_CPUID_FLAG_STATEFUL_FUNC
|
226 KVM_CPUID_FLAG_STATE_READ_NEXT
;
227 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
228 times
= c
->eax
& 0xff;
230 for (j
= 1; j
< times
; ++j
) {
231 c
= &cpuid_data
.entries
[cpuid_i
++];
233 c
->flags
= KVM_CPUID_FLAG_STATEFUL_FUNC
;
234 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
243 c
->flags
= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
245 cpu_x86_cpuid(env
, i
, j
, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
247 if (i
== 4 && c
->eax
== 0)
249 if (i
== 0xb && !(c
->ecx
& 0xff00))
251 if (i
== 0xd && c
->eax
== 0)
254 c
= &cpuid_data
.entries
[cpuid_i
++];
260 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
264 cpu_x86_cpuid(env
, 0x80000000, 0, &limit
, &unused
, &unused
, &unused
);
266 for (i
= 0x80000000; i
<= limit
; i
++) {
267 c
= &cpuid_data
.entries
[cpuid_i
++];
271 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
274 cpuid_data
.cpuid
.nent
= cpuid_i
;
276 return kvm_vcpu_ioctl(env
, KVM_SET_CPUID2
, &cpuid_data
);
279 void kvm_arch_reset_vcpu(CPUState
*env
)
281 env
->exception_injected
= -1;
282 env
->interrupt_injected
= -1;
283 env
->nmi_injected
= 0;
284 env
->nmi_pending
= 0;
285 if (kvm_irqchip_in_kernel()) {
286 env
->mp_state
= cpu_is_bsp(env
) ? KVM_MP_STATE_RUNNABLE
:
287 KVM_MP_STATE_UNINITIALIZED
;
289 env
->mp_state
= KVM_MP_STATE_RUNNABLE
;
293 static int kvm_has_msr_star(CPUState
*env
)
295 static int has_msr_star
;
299 if (has_msr_star
== 0) {
300 struct kvm_msr_list msr_list
, *kvm_msr_list
;
304 /* Obtain MSR list from KVM. These are the MSRs that we must
307 ret
= kvm_ioctl(env
->kvm_state
, KVM_GET_MSR_INDEX_LIST
, &msr_list
);
308 if (ret
< 0 && ret
!= -E2BIG
) {
311 /* Old kernel modules had a bug and could write beyond the provided
312 memory. Allocate at least a safe amount of 1K. */
313 kvm_msr_list
= qemu_mallocz(MAX(1024, sizeof(msr_list
) +
315 sizeof(msr_list
.indices
[0])));
317 kvm_msr_list
->nmsrs
= msr_list
.nmsrs
;
318 ret
= kvm_ioctl(env
->kvm_state
, KVM_GET_MSR_INDEX_LIST
, kvm_msr_list
);
322 for (i
= 0; i
< kvm_msr_list
->nmsrs
; i
++) {
323 if (kvm_msr_list
->indices
[i
] == MSR_STAR
) {
333 if (has_msr_star
== 1)
338 static int kvm_init_identity_map_page(KVMState
*s
)
340 #ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
342 uint64_t addr
= 0xfffbc000;
344 if (!kvm_check_extension(s
, KVM_CAP_SET_IDENTITY_MAP_ADDR
)) {
348 ret
= kvm_vm_ioctl(s
, KVM_SET_IDENTITY_MAP_ADDR
, &addr
);
350 fprintf(stderr
, "kvm_set_identity_map_addr: %s\n", strerror(ret
));
357 int kvm_arch_init(KVMState
*s
, int smp_cpus
)
361 /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code
362 * directly. In order to use vm86 mode, a TSS is needed. Since this
363 * must be part of guest physical memory, we need to allocate it. Older
364 * versions of KVM just assumed that it would be at the end of physical
365 * memory but that doesn't work with more than 4GB of memory. We simply
366 * refuse to work with those older versions of KVM. */
367 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, KVM_CAP_SET_TSS_ADDR
);
369 fprintf(stderr
, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
373 /* this address is 3 pages before the bios, and the bios should present
374 * as unavaible memory. FIXME, need to ensure the e820 map deals with
378 * Tell fw_cfg to notify the BIOS to reserve the range.
380 if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED
) < 0) {
381 perror("e820_add_entry() table is full");
384 ret
= kvm_vm_ioctl(s
, KVM_SET_TSS_ADDR
, 0xfffbd000);
389 return kvm_init_identity_map_page(s
);
392 static void set_v8086_seg(struct kvm_segment
*lhs
, const SegmentCache
*rhs
)
394 lhs
->selector
= rhs
->selector
;
395 lhs
->base
= rhs
->base
;
396 lhs
->limit
= rhs
->limit
;
408 static void set_seg(struct kvm_segment
*lhs
, const SegmentCache
*rhs
)
410 unsigned flags
= rhs
->flags
;
411 lhs
->selector
= rhs
->selector
;
412 lhs
->base
= rhs
->base
;
413 lhs
->limit
= rhs
->limit
;
414 lhs
->type
= (flags
>> DESC_TYPE_SHIFT
) & 15;
415 lhs
->present
= (flags
& DESC_P_MASK
) != 0;
416 lhs
->dpl
= rhs
->selector
& 3;
417 lhs
->db
= (flags
>> DESC_B_SHIFT
) & 1;
418 lhs
->s
= (flags
& DESC_S_MASK
) != 0;
419 lhs
->l
= (flags
>> DESC_L_SHIFT
) & 1;
420 lhs
->g
= (flags
& DESC_G_MASK
) != 0;
421 lhs
->avl
= (flags
& DESC_AVL_MASK
) != 0;
425 static void get_seg(SegmentCache
*lhs
, const struct kvm_segment
*rhs
)
427 lhs
->selector
= rhs
->selector
;
428 lhs
->base
= rhs
->base
;
429 lhs
->limit
= rhs
->limit
;
431 (rhs
->type
<< DESC_TYPE_SHIFT
)
432 | (rhs
->present
* DESC_P_MASK
)
433 | (rhs
->dpl
<< DESC_DPL_SHIFT
)
434 | (rhs
->db
<< DESC_B_SHIFT
)
435 | (rhs
->s
* DESC_S_MASK
)
436 | (rhs
->l
<< DESC_L_SHIFT
)
437 | (rhs
->g
* DESC_G_MASK
)
438 | (rhs
->avl
* DESC_AVL_MASK
);
441 static void kvm_getput_reg(__u64
*kvm_reg
, target_ulong
*qemu_reg
, int set
)
444 *kvm_reg
= *qemu_reg
;
446 *qemu_reg
= *kvm_reg
;
449 static int kvm_getput_regs(CPUState
*env
, int set
)
451 struct kvm_regs regs
;
455 ret
= kvm_vcpu_ioctl(env
, KVM_GET_REGS
, ®s
);
460 kvm_getput_reg(®s
.rax
, &env
->regs
[R_EAX
], set
);
461 kvm_getput_reg(®s
.rbx
, &env
->regs
[R_EBX
], set
);
462 kvm_getput_reg(®s
.rcx
, &env
->regs
[R_ECX
], set
);
463 kvm_getput_reg(®s
.rdx
, &env
->regs
[R_EDX
], set
);
464 kvm_getput_reg(®s
.rsi
, &env
->regs
[R_ESI
], set
);
465 kvm_getput_reg(®s
.rdi
, &env
->regs
[R_EDI
], set
);
466 kvm_getput_reg(®s
.rsp
, &env
->regs
[R_ESP
], set
);
467 kvm_getput_reg(®s
.rbp
, &env
->regs
[R_EBP
], set
);
469 kvm_getput_reg(®s
.r8
, &env
->regs
[8], set
);
470 kvm_getput_reg(®s
.r9
, &env
->regs
[9], set
);
471 kvm_getput_reg(®s
.r10
, &env
->regs
[10], set
);
472 kvm_getput_reg(®s
.r11
, &env
->regs
[11], set
);
473 kvm_getput_reg(®s
.r12
, &env
->regs
[12], set
);
474 kvm_getput_reg(®s
.r13
, &env
->regs
[13], set
);
475 kvm_getput_reg(®s
.r14
, &env
->regs
[14], set
);
476 kvm_getput_reg(®s
.r15
, &env
->regs
[15], set
);
479 kvm_getput_reg(®s
.rflags
, &env
->eflags
, set
);
480 kvm_getput_reg(®s
.rip
, &env
->eip
, set
);
483 ret
= kvm_vcpu_ioctl(env
, KVM_SET_REGS
, ®s
);
488 static int kvm_put_fpu(CPUState
*env
)
493 memset(&fpu
, 0, sizeof fpu
);
494 fpu
.fsw
= env
->fpus
& ~(7 << 11);
495 fpu
.fsw
|= (env
->fpstt
& 7) << 11;
497 for (i
= 0; i
< 8; ++i
)
498 fpu
.ftwx
|= (!env
->fptags
[i
]) << i
;
499 memcpy(fpu
.fpr
, env
->fpregs
, sizeof env
->fpregs
);
500 memcpy(fpu
.xmm
, env
->xmm_regs
, sizeof env
->xmm_regs
);
501 fpu
.mxcsr
= env
->mxcsr
;
503 return kvm_vcpu_ioctl(env
, KVM_SET_FPU
, &fpu
);
507 #define XSAVE_CWD_RIP 2
508 #define XSAVE_CWD_RDP 4
509 #define XSAVE_MXCSR 6
510 #define XSAVE_ST_SPACE 8
511 #define XSAVE_XMM_SPACE 40
512 #define XSAVE_XSTATE_BV 128
513 #define XSAVE_YMMH_SPACE 144
516 static int kvm_put_xsave(CPUState
*env
)
520 struct kvm_xsave
* xsave
;
521 uint16_t cwd
, swd
, twd
, fop
;
523 if (!kvm_has_xsave())
524 return kvm_put_fpu(env
);
526 xsave
= qemu_memalign(4096, sizeof(struct kvm_xsave
));
527 memset(xsave
, 0, sizeof(struct kvm_xsave
));
528 cwd
= swd
= twd
= fop
= 0;
529 swd
= env
->fpus
& ~(7 << 11);
530 swd
|= (env
->fpstt
& 7) << 11;
532 for (i
= 0; i
< 8; ++i
)
533 twd
|= (!env
->fptags
[i
]) << i
;
534 xsave
->region
[0] = (uint32_t)(swd
<< 16) + cwd
;
535 xsave
->region
[1] = (uint32_t)(fop
<< 16) + twd
;
536 memcpy(&xsave
->region
[XSAVE_ST_SPACE
], env
->fpregs
,
538 memcpy(&xsave
->region
[XSAVE_XMM_SPACE
], env
->xmm_regs
,
539 sizeof env
->xmm_regs
);
540 xsave
->region
[XSAVE_MXCSR
] = env
->mxcsr
;
541 *(uint64_t *)&xsave
->region
[XSAVE_XSTATE_BV
] = env
->xstate_bv
;
542 memcpy(&xsave
->region
[XSAVE_YMMH_SPACE
], env
->ymmh_regs
,
543 sizeof env
->ymmh_regs
);
544 return kvm_vcpu_ioctl(env
, KVM_SET_XSAVE
, xsave
);
546 return kvm_put_fpu(env
);
550 static int kvm_put_xcrs(CPUState
*env
)
553 struct kvm_xcrs xcrs
;
560 xcrs
.xcrs
[0].xcr
= 0;
561 xcrs
.xcrs
[0].value
= env
->xcr0
;
562 return kvm_vcpu_ioctl(env
, KVM_SET_XCRS
, &xcrs
);
568 static int kvm_put_sregs(CPUState
*env
)
570 struct kvm_sregs sregs
;
572 memset(sregs
.interrupt_bitmap
, 0, sizeof(sregs
.interrupt_bitmap
));
573 if (env
->interrupt_injected
>= 0) {
574 sregs
.interrupt_bitmap
[env
->interrupt_injected
/ 64] |=
575 (uint64_t)1 << (env
->interrupt_injected
% 64);
578 if ((env
->eflags
& VM_MASK
)) {
579 set_v8086_seg(&sregs
.cs
, &env
->segs
[R_CS
]);
580 set_v8086_seg(&sregs
.ds
, &env
->segs
[R_DS
]);
581 set_v8086_seg(&sregs
.es
, &env
->segs
[R_ES
]);
582 set_v8086_seg(&sregs
.fs
, &env
->segs
[R_FS
]);
583 set_v8086_seg(&sregs
.gs
, &env
->segs
[R_GS
]);
584 set_v8086_seg(&sregs
.ss
, &env
->segs
[R_SS
]);
586 set_seg(&sregs
.cs
, &env
->segs
[R_CS
]);
587 set_seg(&sregs
.ds
, &env
->segs
[R_DS
]);
588 set_seg(&sregs
.es
, &env
->segs
[R_ES
]);
589 set_seg(&sregs
.fs
, &env
->segs
[R_FS
]);
590 set_seg(&sregs
.gs
, &env
->segs
[R_GS
]);
591 set_seg(&sregs
.ss
, &env
->segs
[R_SS
]);
593 if (env
->cr
[0] & CR0_PE_MASK
) {
594 /* force ss cpl to cs cpl */
595 sregs
.ss
.selector
= (sregs
.ss
.selector
& ~3) |
596 (sregs
.cs
.selector
& 3);
597 sregs
.ss
.dpl
= sregs
.ss
.selector
& 3;
601 set_seg(&sregs
.tr
, &env
->tr
);
602 set_seg(&sregs
.ldt
, &env
->ldt
);
604 sregs
.idt
.limit
= env
->idt
.limit
;
605 sregs
.idt
.base
= env
->idt
.base
;
606 sregs
.gdt
.limit
= env
->gdt
.limit
;
607 sregs
.gdt
.base
= env
->gdt
.base
;
609 sregs
.cr0
= env
->cr
[0];
610 sregs
.cr2
= env
->cr
[2];
611 sregs
.cr3
= env
->cr
[3];
612 sregs
.cr4
= env
->cr
[4];
614 sregs
.cr8
= cpu_get_apic_tpr(env
->apic_state
);
615 sregs
.apic_base
= cpu_get_apic_base(env
->apic_state
);
617 sregs
.efer
= env
->efer
;
619 return kvm_vcpu_ioctl(env
, KVM_SET_SREGS
, &sregs
);
622 static void kvm_msr_entry_set(struct kvm_msr_entry
*entry
,
623 uint32_t index
, uint64_t value
)
625 entry
->index
= index
;
629 static int kvm_put_msrs(CPUState
*env
, int level
)
632 struct kvm_msrs info
;
633 struct kvm_msr_entry entries
[100];
635 struct kvm_msr_entry
*msrs
= msr_data
.entries
;
638 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_SYSENTER_CS
, env
->sysenter_cs
);
639 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_SYSENTER_ESP
, env
->sysenter_esp
);
640 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_SYSENTER_EIP
, env
->sysenter_eip
);
641 if (kvm_has_msr_star(env
))
642 kvm_msr_entry_set(&msrs
[n
++], MSR_STAR
, env
->star
);
644 /* FIXME if lm capable */
645 kvm_msr_entry_set(&msrs
[n
++], MSR_CSTAR
, env
->cstar
);
646 kvm_msr_entry_set(&msrs
[n
++], MSR_KERNELGSBASE
, env
->kernelgsbase
);
647 kvm_msr_entry_set(&msrs
[n
++], MSR_FMASK
, env
->fmask
);
648 kvm_msr_entry_set(&msrs
[n
++], MSR_LSTAR
, env
->lstar
);
650 if (level
== KVM_PUT_FULL_STATE
) {
651 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_TSC
, env
->tsc
);
652 kvm_msr_entry_set(&msrs
[n
++], MSR_KVM_SYSTEM_TIME
,
653 env
->system_time_msr
);
654 kvm_msr_entry_set(&msrs
[n
++], MSR_KVM_WALL_CLOCK
, env
->wall_clock_msr
);
657 msr_data
.info
.nmsrs
= n
;
659 return kvm_vcpu_ioctl(env
, KVM_SET_MSRS
, &msr_data
);
664 static int kvm_get_fpu(CPUState
*env
)
669 ret
= kvm_vcpu_ioctl(env
, KVM_GET_FPU
, &fpu
);
673 env
->fpstt
= (fpu
.fsw
>> 11) & 7;
676 for (i
= 0; i
< 8; ++i
)
677 env
->fptags
[i
] = !((fpu
.ftwx
>> i
) & 1);
678 memcpy(env
->fpregs
, fpu
.fpr
, sizeof env
->fpregs
);
679 memcpy(env
->xmm_regs
, fpu
.xmm
, sizeof env
->xmm_regs
);
680 env
->mxcsr
= fpu
.mxcsr
;
685 static int kvm_get_xsave(CPUState
*env
)
688 struct kvm_xsave
* xsave
;
690 uint16_t cwd
, swd
, twd
, fop
;
692 if (!kvm_has_xsave())
693 return kvm_get_fpu(env
);
695 xsave
= qemu_memalign(4096, sizeof(struct kvm_xsave
));
696 ret
= kvm_vcpu_ioctl(env
, KVM_GET_XSAVE
, xsave
);
700 cwd
= (uint16_t)xsave
->region
[0];
701 swd
= (uint16_t)(xsave
->region
[0] >> 16);
702 twd
= (uint16_t)xsave
->region
[1];
703 fop
= (uint16_t)(xsave
->region
[1] >> 16);
704 env
->fpstt
= (swd
>> 11) & 7;
707 for (i
= 0; i
< 8; ++i
)
708 env
->fptags
[i
] = !((twd
>> i
) & 1);
709 env
->mxcsr
= xsave
->region
[XSAVE_MXCSR
];
710 memcpy(env
->fpregs
, &xsave
->region
[XSAVE_ST_SPACE
],
712 memcpy(env
->xmm_regs
, &xsave
->region
[XSAVE_XMM_SPACE
],
713 sizeof env
->xmm_regs
);
714 env
->xstate_bv
= *(uint64_t *)&xsave
->region
[XSAVE_XSTATE_BV
];
715 memcpy(env
->ymmh_regs
, &xsave
->region
[XSAVE_YMMH_SPACE
],
716 sizeof env
->ymmh_regs
);
719 return kvm_get_fpu(env
);
723 static int kvm_get_xcrs(CPUState
*env
)
727 struct kvm_xcrs xcrs
;
732 ret
= kvm_vcpu_ioctl(env
, KVM_GET_XCRS
, &xcrs
);
736 for (i
= 0; i
< xcrs
.nr_xcrs
; i
++)
737 /* Only support xcr0 now */
738 if (xcrs
.xcrs
[0].xcr
== 0) {
739 env
->xcr0
= xcrs
.xcrs
[0].value
;
748 static int kvm_get_sregs(CPUState
*env
)
750 struct kvm_sregs sregs
;
754 ret
= kvm_vcpu_ioctl(env
, KVM_GET_SREGS
, &sregs
);
758 /* There can only be one pending IRQ set in the bitmap at a time, so try
759 to find it and save its number instead (-1 for none). */
760 env
->interrupt_injected
= -1;
761 for (i
= 0; i
< ARRAY_SIZE(sregs
.interrupt_bitmap
); i
++) {
762 if (sregs
.interrupt_bitmap
[i
]) {
763 bit
= ctz64(sregs
.interrupt_bitmap
[i
]);
764 env
->interrupt_injected
= i
* 64 + bit
;
769 get_seg(&env
->segs
[R_CS
], &sregs
.cs
);
770 get_seg(&env
->segs
[R_DS
], &sregs
.ds
);
771 get_seg(&env
->segs
[R_ES
], &sregs
.es
);
772 get_seg(&env
->segs
[R_FS
], &sregs
.fs
);
773 get_seg(&env
->segs
[R_GS
], &sregs
.gs
);
774 get_seg(&env
->segs
[R_SS
], &sregs
.ss
);
776 get_seg(&env
->tr
, &sregs
.tr
);
777 get_seg(&env
->ldt
, &sregs
.ldt
);
779 env
->idt
.limit
= sregs
.idt
.limit
;
780 env
->idt
.base
= sregs
.idt
.base
;
781 env
->gdt
.limit
= sregs
.gdt
.limit
;
782 env
->gdt
.base
= sregs
.gdt
.base
;
784 env
->cr
[0] = sregs
.cr0
;
785 env
->cr
[2] = sregs
.cr2
;
786 env
->cr
[3] = sregs
.cr3
;
787 env
->cr
[4] = sregs
.cr4
;
789 cpu_set_apic_base(env
->apic_state
, sregs
.apic_base
);
791 env
->efer
= sregs
.efer
;
792 //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
794 #define HFLAG_COPY_MASK ~( \
795 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
796 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
797 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
798 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
802 hflags
= (env
->segs
[R_CS
].flags
>> DESC_DPL_SHIFT
) & HF_CPL_MASK
;
803 hflags
|= (env
->cr
[0] & CR0_PE_MASK
) << (HF_PE_SHIFT
- CR0_PE_SHIFT
);
804 hflags
|= (env
->cr
[0] << (HF_MP_SHIFT
- CR0_MP_SHIFT
)) &
805 (HF_MP_MASK
| HF_EM_MASK
| HF_TS_MASK
);
806 hflags
|= (env
->eflags
& (HF_TF_MASK
| HF_VM_MASK
| HF_IOPL_MASK
));
807 hflags
|= (env
->cr
[4] & CR4_OSFXSR_MASK
) <<
808 (HF_OSFXSR_SHIFT
- CR4_OSFXSR_SHIFT
);
810 if (env
->efer
& MSR_EFER_LMA
) {
811 hflags
|= HF_LMA_MASK
;
814 if ((hflags
& HF_LMA_MASK
) && (env
->segs
[R_CS
].flags
& DESC_L_MASK
)) {
815 hflags
|= HF_CS32_MASK
| HF_SS32_MASK
| HF_CS64_MASK
;
817 hflags
|= (env
->segs
[R_CS
].flags
& DESC_B_MASK
) >>
818 (DESC_B_SHIFT
- HF_CS32_SHIFT
);
819 hflags
|= (env
->segs
[R_SS
].flags
& DESC_B_MASK
) >>
820 (DESC_B_SHIFT
- HF_SS32_SHIFT
);
821 if (!(env
->cr
[0] & CR0_PE_MASK
) ||
822 (env
->eflags
& VM_MASK
) ||
823 !(hflags
& HF_CS32_MASK
)) {
824 hflags
|= HF_ADDSEG_MASK
;
826 hflags
|= ((env
->segs
[R_DS
].base
|
827 env
->segs
[R_ES
].base
|
828 env
->segs
[R_SS
].base
) != 0) <<
832 env
->hflags
= (env
->hflags
& HFLAG_COPY_MASK
) | hflags
;
837 static int kvm_get_msrs(CPUState
*env
)
840 struct kvm_msrs info
;
841 struct kvm_msr_entry entries
[100];
843 struct kvm_msr_entry
*msrs
= msr_data
.entries
;
847 msrs
[n
++].index
= MSR_IA32_SYSENTER_CS
;
848 msrs
[n
++].index
= MSR_IA32_SYSENTER_ESP
;
849 msrs
[n
++].index
= MSR_IA32_SYSENTER_EIP
;
850 if (kvm_has_msr_star(env
))
851 msrs
[n
++].index
= MSR_STAR
;
852 msrs
[n
++].index
= MSR_IA32_TSC
;
854 /* FIXME lm_capable_kernel */
855 msrs
[n
++].index
= MSR_CSTAR
;
856 msrs
[n
++].index
= MSR_KERNELGSBASE
;
857 msrs
[n
++].index
= MSR_FMASK
;
858 msrs
[n
++].index
= MSR_LSTAR
;
860 msrs
[n
++].index
= MSR_KVM_SYSTEM_TIME
;
861 msrs
[n
++].index
= MSR_KVM_WALL_CLOCK
;
863 msr_data
.info
.nmsrs
= n
;
864 ret
= kvm_vcpu_ioctl(env
, KVM_GET_MSRS
, &msr_data
);
868 for (i
= 0; i
< ret
; i
++) {
869 switch (msrs
[i
].index
) {
870 case MSR_IA32_SYSENTER_CS
:
871 env
->sysenter_cs
= msrs
[i
].data
;
873 case MSR_IA32_SYSENTER_ESP
:
874 env
->sysenter_esp
= msrs
[i
].data
;
876 case MSR_IA32_SYSENTER_EIP
:
877 env
->sysenter_eip
= msrs
[i
].data
;
880 env
->star
= msrs
[i
].data
;
884 env
->cstar
= msrs
[i
].data
;
886 case MSR_KERNELGSBASE
:
887 env
->kernelgsbase
= msrs
[i
].data
;
890 env
->fmask
= msrs
[i
].data
;
893 env
->lstar
= msrs
[i
].data
;
897 env
->tsc
= msrs
[i
].data
;
899 case MSR_KVM_SYSTEM_TIME
:
900 env
->system_time_msr
= msrs
[i
].data
;
902 case MSR_KVM_WALL_CLOCK
:
903 env
->wall_clock_msr
= msrs
[i
].data
;
911 static int kvm_put_mp_state(CPUState
*env
)
913 struct kvm_mp_state mp_state
= { .mp_state
= env
->mp_state
};
915 return kvm_vcpu_ioctl(env
, KVM_SET_MP_STATE
, &mp_state
);
918 static int kvm_get_mp_state(CPUState
*env
)
920 struct kvm_mp_state mp_state
;
923 ret
= kvm_vcpu_ioctl(env
, KVM_GET_MP_STATE
, &mp_state
);
927 env
->mp_state
= mp_state
.mp_state
;
931 static int kvm_put_vcpu_events(CPUState
*env
, int level
)
933 #ifdef KVM_CAP_VCPU_EVENTS
934 struct kvm_vcpu_events events
;
936 if (!kvm_has_vcpu_events()) {
940 events
.exception
.injected
= (env
->exception_injected
>= 0);
941 events
.exception
.nr
= env
->exception_injected
;
942 events
.exception
.has_error_code
= env
->has_error_code
;
943 events
.exception
.error_code
= env
->error_code
;
945 events
.interrupt
.injected
= (env
->interrupt_injected
>= 0);
946 events
.interrupt
.nr
= env
->interrupt_injected
;
947 events
.interrupt
.soft
= env
->soft_interrupt
;
949 events
.nmi
.injected
= env
->nmi_injected
;
950 events
.nmi
.pending
= env
->nmi_pending
;
951 events
.nmi
.masked
= !!(env
->hflags2
& HF2_NMI_MASK
);
953 events
.sipi_vector
= env
->sipi_vector
;
956 if (level
>= KVM_PUT_RESET_STATE
) {
958 KVM_VCPUEVENT_VALID_NMI_PENDING
| KVM_VCPUEVENT_VALID_SIPI_VECTOR
;
961 return kvm_vcpu_ioctl(env
, KVM_SET_VCPU_EVENTS
, &events
);
967 static int kvm_get_vcpu_events(CPUState
*env
)
969 #ifdef KVM_CAP_VCPU_EVENTS
970 struct kvm_vcpu_events events
;
973 if (!kvm_has_vcpu_events()) {
977 ret
= kvm_vcpu_ioctl(env
, KVM_GET_VCPU_EVENTS
, &events
);
981 env
->exception_injected
=
982 events
.exception
.injected
? events
.exception
.nr
: -1;
983 env
->has_error_code
= events
.exception
.has_error_code
;
984 env
->error_code
= events
.exception
.error_code
;
986 env
->interrupt_injected
=
987 events
.interrupt
.injected
? events
.interrupt
.nr
: -1;
988 env
->soft_interrupt
= events
.interrupt
.soft
;
990 env
->nmi_injected
= events
.nmi
.injected
;
991 env
->nmi_pending
= events
.nmi
.pending
;
992 if (events
.nmi
.masked
) {
993 env
->hflags2
|= HF2_NMI_MASK
;
995 env
->hflags2
&= ~HF2_NMI_MASK
;
998 env
->sipi_vector
= events
.sipi_vector
;
1004 static int kvm_guest_debug_workarounds(CPUState
*env
)
1007 #ifdef KVM_CAP_SET_GUEST_DEBUG
1008 unsigned long reinject_trap
= 0;
1010 if (!kvm_has_vcpu_events()) {
1011 if (env
->exception_injected
== 1) {
1012 reinject_trap
= KVM_GUESTDBG_INJECT_DB
;
1013 } else if (env
->exception_injected
== 3) {
1014 reinject_trap
= KVM_GUESTDBG_INJECT_BP
;
1016 env
->exception_injected
= -1;
1020 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1021 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1022 * by updating the debug state once again if single-stepping is on.
1023 * Another reason to call kvm_update_guest_debug here is a pending debug
1024 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1025 * reinject them via SET_GUEST_DEBUG.
1027 if (reinject_trap
||
1028 (!kvm_has_robust_singlestep() && env
->singlestep_enabled
)) {
1029 ret
= kvm_update_guest_debug(env
, reinject_trap
);
1031 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1035 static int kvm_put_debugregs(CPUState
*env
)
1037 #ifdef KVM_CAP_DEBUGREGS
1038 struct kvm_debugregs dbgregs
;
1041 if (!kvm_has_debugregs()) {
1045 for (i
= 0; i
< 4; i
++) {
1046 dbgregs
.db
[i
] = env
->dr
[i
];
1048 dbgregs
.dr6
= env
->dr
[6];
1049 dbgregs
.dr7
= env
->dr
[7];
1052 return kvm_vcpu_ioctl(env
, KVM_SET_DEBUGREGS
, &dbgregs
);
1058 static int kvm_get_debugregs(CPUState
*env
)
1060 #ifdef KVM_CAP_DEBUGREGS
1061 struct kvm_debugregs dbgregs
;
1064 if (!kvm_has_debugregs()) {
1068 ret
= kvm_vcpu_ioctl(env
, KVM_GET_DEBUGREGS
, &dbgregs
);
1072 for (i
= 0; i
< 4; i
++) {
1073 env
->dr
[i
] = dbgregs
.db
[i
];
1075 env
->dr
[4] = env
->dr
[6] = dbgregs
.dr6
;
1076 env
->dr
[5] = env
->dr
[7] = dbgregs
.dr7
;
1082 int kvm_arch_put_registers(CPUState
*env
, int level
)
1086 assert(cpu_is_stopped(env
) || qemu_cpu_self(env
));
1088 ret
= kvm_getput_regs(env
, 1);
1092 ret
= kvm_put_xsave(env
);
1096 ret
= kvm_put_xcrs(env
);
1100 ret
= kvm_put_sregs(env
);
1104 ret
= kvm_put_msrs(env
, level
);
1108 if (level
>= KVM_PUT_RESET_STATE
) {
1109 ret
= kvm_put_mp_state(env
);
1114 ret
= kvm_put_vcpu_events(env
, level
);
1119 ret
= kvm_guest_debug_workarounds(env
);
1123 ret
= kvm_put_debugregs(env
);
1130 int kvm_arch_get_registers(CPUState
*env
)
1134 assert(cpu_is_stopped(env
) || qemu_cpu_self(env
));
1136 ret
= kvm_getput_regs(env
, 0);
1140 ret
= kvm_get_xsave(env
);
1144 ret
= kvm_get_xcrs(env
);
1148 ret
= kvm_get_sregs(env
);
1152 ret
= kvm_get_msrs(env
);
1156 ret
= kvm_get_mp_state(env
);
1160 ret
= kvm_get_vcpu_events(env
);
1164 ret
= kvm_get_debugregs(env
);
1171 int kvm_arch_pre_run(CPUState
*env
, struct kvm_run
*run
)
1173 /* Try to inject an interrupt if the guest can accept it */
1174 if (run
->ready_for_interrupt_injection
&&
1175 (env
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
1176 (env
->eflags
& IF_MASK
)) {
1179 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
1180 irq
= cpu_get_pic_interrupt(env
);
1182 struct kvm_interrupt intr
;
1185 DPRINTF("injected interrupt %d\n", irq
);
1186 kvm_vcpu_ioctl(env
, KVM_INTERRUPT
, &intr
);
1190 /* If we have an interrupt but the guest is not ready to receive an
1191 * interrupt, request an interrupt window exit. This will
1192 * cause a return to userspace as soon as the guest is ready to
1193 * receive interrupts. */
1194 if ((env
->interrupt_request
& CPU_INTERRUPT_HARD
))
1195 run
->request_interrupt_window
= 1;
1197 run
->request_interrupt_window
= 0;
1199 DPRINTF("setting tpr\n");
1200 run
->cr8
= cpu_get_apic_tpr(env
->apic_state
);
1205 int kvm_arch_post_run(CPUState
*env
, struct kvm_run
*run
)
1208 env
->eflags
|= IF_MASK
;
1210 env
->eflags
&= ~IF_MASK
;
1212 cpu_set_apic_tpr(env
->apic_state
, run
->cr8
);
1213 cpu_set_apic_base(env
->apic_state
, run
->apic_base
);
1218 int kvm_arch_process_irqchip_events(CPUState
*env
)
1220 if (env
->interrupt_request
& CPU_INTERRUPT_INIT
) {
1221 kvm_cpu_synchronize_state(env
);
1223 env
->exception_index
= EXCP_HALTED
;
1226 if (env
->interrupt_request
& CPU_INTERRUPT_SIPI
) {
1227 kvm_cpu_synchronize_state(env
);
1234 static int kvm_handle_halt(CPUState
*env
)
1236 if (!((env
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
1237 (env
->eflags
& IF_MASK
)) &&
1238 !(env
->interrupt_request
& CPU_INTERRUPT_NMI
)) {
1240 env
->exception_index
= EXCP_HLT
;
1247 int kvm_arch_handle_exit(CPUState
*env
, struct kvm_run
*run
)
1251 switch (run
->exit_reason
) {
1253 DPRINTF("handle_hlt\n");
1254 ret
= kvm_handle_halt(env
);
1261 #ifdef KVM_CAP_SET_GUEST_DEBUG
1262 int kvm_arch_insert_sw_breakpoint(CPUState
*env
, struct kvm_sw_breakpoint
*bp
)
1264 static const uint8_t int3
= 0xcc;
1266 if (cpu_memory_rw_debug(env
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 1, 0) ||
1267 cpu_memory_rw_debug(env
, bp
->pc
, (uint8_t *)&int3
, 1, 1))
1272 int kvm_arch_remove_sw_breakpoint(CPUState
*env
, struct kvm_sw_breakpoint
*bp
)
1276 if (cpu_memory_rw_debug(env
, bp
->pc
, &int3
, 1, 0) || int3
!= 0xcc ||
1277 cpu_memory_rw_debug(env
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 1, 1))
1288 static int nb_hw_breakpoint
;
1290 static int find_hw_breakpoint(target_ulong addr
, int len
, int type
)
1294 for (n
= 0; n
< nb_hw_breakpoint
; n
++)
1295 if (hw_breakpoint
[n
].addr
== addr
&& hw_breakpoint
[n
].type
== type
&&
1296 (hw_breakpoint
[n
].len
== len
|| len
== -1))
1301 int kvm_arch_insert_hw_breakpoint(target_ulong addr
,
1302 target_ulong len
, int type
)
1305 case GDB_BREAKPOINT_HW
:
1308 case GDB_WATCHPOINT_WRITE
:
1309 case GDB_WATCHPOINT_ACCESS
:
1316 if (addr
& (len
- 1))
1327 if (nb_hw_breakpoint
== 4)
1330 if (find_hw_breakpoint(addr
, len
, type
) >= 0)
1333 hw_breakpoint
[nb_hw_breakpoint
].addr
= addr
;
1334 hw_breakpoint
[nb_hw_breakpoint
].len
= len
;
1335 hw_breakpoint
[nb_hw_breakpoint
].type
= type
;
1341 int kvm_arch_remove_hw_breakpoint(target_ulong addr
,
1342 target_ulong len
, int type
)
1346 n
= find_hw_breakpoint(addr
, (type
== GDB_BREAKPOINT_HW
) ? 1 : len
, type
);
1351 hw_breakpoint
[n
] = hw_breakpoint
[nb_hw_breakpoint
];
1356 void kvm_arch_remove_all_hw_breakpoints(void)
1358 nb_hw_breakpoint
= 0;
1361 static CPUWatchpoint hw_watchpoint
;
1363 int kvm_arch_debug(struct kvm_debug_exit_arch
*arch_info
)
1368 if (arch_info
->exception
== 1) {
1369 if (arch_info
->dr6
& (1 << 14)) {
1370 if (cpu_single_env
->singlestep_enabled
)
1373 for (n
= 0; n
< 4; n
++)
1374 if (arch_info
->dr6
& (1 << n
))
1375 switch ((arch_info
->dr7
>> (16 + n
*4)) & 0x3) {
1381 cpu_single_env
->watchpoint_hit
= &hw_watchpoint
;
1382 hw_watchpoint
.vaddr
= hw_breakpoint
[n
].addr
;
1383 hw_watchpoint
.flags
= BP_MEM_WRITE
;
1387 cpu_single_env
->watchpoint_hit
= &hw_watchpoint
;
1388 hw_watchpoint
.vaddr
= hw_breakpoint
[n
].addr
;
1389 hw_watchpoint
.flags
= BP_MEM_ACCESS
;
1393 } else if (kvm_find_sw_breakpoint(cpu_single_env
, arch_info
->pc
))
1397 cpu_synchronize_state(cpu_single_env
);
1398 assert(cpu_single_env
->exception_injected
== -1);
1400 cpu_single_env
->exception_injected
= arch_info
->exception
;
1401 cpu_single_env
->has_error_code
= 0;
1407 void kvm_arch_update_guest_debug(CPUState
*env
, struct kvm_guest_debug
*dbg
)
1409 const uint8_t type_code
[] = {
1410 [GDB_BREAKPOINT_HW
] = 0x0,
1411 [GDB_WATCHPOINT_WRITE
] = 0x1,
1412 [GDB_WATCHPOINT_ACCESS
] = 0x3
1414 const uint8_t len_code
[] = {
1415 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1419 if (kvm_sw_breakpoints_active(env
))
1420 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
;
1422 if (nb_hw_breakpoint
> 0) {
1423 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
;
1424 dbg
->arch
.debugreg
[7] = 0x0600;
1425 for (n
= 0; n
< nb_hw_breakpoint
; n
++) {
1426 dbg
->arch
.debugreg
[n
] = hw_breakpoint
[n
].addr
;
1427 dbg
->arch
.debugreg
[7] |= (2 << (n
* 2)) |
1428 (type_code
[hw_breakpoint
[n
].type
] << (16 + n
*4)) |
1429 (len_code
[hw_breakpoint
[n
].len
] << (18 + n
*4));
1432 /* Legal xcr0 for loading */
1435 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1437 bool kvm_arch_stop_on_emulation_error(CPUState
*env
)
1439 return !(env
->cr
[0] & CR0_PE_MASK
) ||
1440 ((env
->segs
[R_CS
].selector
& 3) != 3);