pcihp: compose PCNT callchain right before its user _GPE._E01
[qemu.git] / target / arm / sme_helper.c
blob1e67fcac308e796f078d36a03de3afa1a41345be
1 /*
2 * ARM SME Operations
4 * Copyright (c) 2022 Linaro, Ltd.
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "internals.h"
23 #include "tcg/tcg-gvec-desc.h"
24 #include "exec/helper-proto.h"
25 #include "exec/cpu_ldst.h"
26 #include "exec/exec-all.h"
27 #include "qemu/int128.h"
28 #include "fpu/softfloat.h"
29 #include "vec_internal.h"
30 #include "sve_ldst_internal.h"
32 void helper_set_svcr(CPUARMState *env, uint32_t val, uint32_t mask)
34 aarch64_set_svcr(env, val, mask);
37 void helper_sme_zero(CPUARMState *env, uint32_t imm, uint32_t svl)
39 uint32_t i;
42 * Special case clearing the entire ZA space.
43 * This falls into the CONSTRAINED UNPREDICTABLE zeroing of any
44 * parts of the ZA storage outside of SVL.
46 if (imm == 0xff) {
47 memset(env->zarray, 0, sizeof(env->zarray));
48 return;
52 * Recall that ZAnH.D[m] is spread across ZA[n+8*m],
53 * so each row is discontiguous within ZA[].
55 for (i = 0; i < svl; i++) {
56 if (imm & (1 << (i % 8))) {
57 memset(&env->zarray[i], 0, svl);
64 * When considering the ZA storage as an array of elements of
65 * type T, the index within that array of the Nth element of
66 * a vertical slice of a tile can be calculated like this,
67 * regardless of the size of type T. This is because the tiles
68 * are interleaved, so if type T is size N bytes then row 1 of
69 * the tile is N rows away from row 0. The division by N to
70 * convert a byte offset into an array index and the multiplication
71 * by N to convert from vslice-index-within-the-tile to
72 * the index within the ZA storage cancel out.
74 #define tile_vslice_index(i) ((i) * sizeof(ARMVectorReg))
77 * When doing byte arithmetic on the ZA storage, the element
78 * byteoff bytes away in a tile vertical slice is always this
79 * many bytes away in the ZA storage, regardless of the
80 * size of the tile element, assuming that byteoff is a multiple
81 * of the element size. Again this is because of the interleaving
82 * of the tiles. For instance if we have 1 byte per element then
83 * each row of the ZA storage has one byte of the vslice data,
84 * and (counting from 0) byte 8 goes in row 8 of the storage
85 * at offset (8 * row-size-in-bytes).
86 * If we have 8 bytes per element then each row of the ZA storage
87 * has 8 bytes of the data, but there are 8 interleaved tiles and
88 * so byte 8 of the data goes into row 1 of the tile,
89 * which is again row 8 of the storage, so the offset is still
90 * (8 * row-size-in-bytes). Similarly for other element sizes.
92 #define tile_vslice_offset(byteoff) ((byteoff) * sizeof(ARMVectorReg))
96 * Move Zreg vector to ZArray column.
98 #define DO_MOVA_C(NAME, TYPE, H) \
99 void HELPER(NAME)(void *za, void *vn, void *vg, uint32_t desc) \
101 int i, oprsz = simd_oprsz(desc); \
102 for (i = 0; i < oprsz; ) { \
103 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
104 do { \
105 if (pg & 1) { \
106 *(TYPE *)(za + tile_vslice_offset(i)) = *(TYPE *)(vn + H(i)); \
108 i += sizeof(TYPE); \
109 pg >>= sizeof(TYPE); \
110 } while (i & 15); \
114 DO_MOVA_C(sme_mova_cz_b, uint8_t, H1)
115 DO_MOVA_C(sme_mova_cz_h, uint16_t, H1_2)
116 DO_MOVA_C(sme_mova_cz_s, uint32_t, H1_4)
118 void HELPER(sme_mova_cz_d)(void *za, void *vn, void *vg, uint32_t desc)
120 int i, oprsz = simd_oprsz(desc) / 8;
121 uint8_t *pg = vg;
122 uint64_t *n = vn;
123 uint64_t *a = za;
125 for (i = 0; i < oprsz; i++) {
126 if (pg[H1(i)] & 1) {
127 a[tile_vslice_index(i)] = n[i];
132 void HELPER(sme_mova_cz_q)(void *za, void *vn, void *vg, uint32_t desc)
134 int i, oprsz = simd_oprsz(desc) / 16;
135 uint16_t *pg = vg;
136 Int128 *n = vn;
137 Int128 *a = za;
140 * Int128 is used here simply to copy 16 bytes, and to simplify
141 * the address arithmetic.
143 for (i = 0; i < oprsz; i++) {
144 if (pg[H2(i)] & 1) {
145 a[tile_vslice_index(i)] = n[i];
150 #undef DO_MOVA_C
153 * Move ZArray column to Zreg vector.
155 #define DO_MOVA_Z(NAME, TYPE, H) \
156 void HELPER(NAME)(void *vd, void *za, void *vg, uint32_t desc) \
158 int i, oprsz = simd_oprsz(desc); \
159 for (i = 0; i < oprsz; ) { \
160 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
161 do { \
162 if (pg & 1) { \
163 *(TYPE *)(vd + H(i)) = *(TYPE *)(za + tile_vslice_offset(i)); \
165 i += sizeof(TYPE); \
166 pg >>= sizeof(TYPE); \
167 } while (i & 15); \
171 DO_MOVA_Z(sme_mova_zc_b, uint8_t, H1)
172 DO_MOVA_Z(sme_mova_zc_h, uint16_t, H1_2)
173 DO_MOVA_Z(sme_mova_zc_s, uint32_t, H1_4)
175 void HELPER(sme_mova_zc_d)(void *vd, void *za, void *vg, uint32_t desc)
177 int i, oprsz = simd_oprsz(desc) / 8;
178 uint8_t *pg = vg;
179 uint64_t *d = vd;
180 uint64_t *a = za;
182 for (i = 0; i < oprsz; i++) {
183 if (pg[H1(i)] & 1) {
184 d[i] = a[tile_vslice_index(i)];
189 void HELPER(sme_mova_zc_q)(void *vd, void *za, void *vg, uint32_t desc)
191 int i, oprsz = simd_oprsz(desc) / 16;
192 uint16_t *pg = vg;
193 Int128 *d = vd;
194 Int128 *a = za;
197 * Int128 is used here simply to copy 16 bytes, and to simplify
198 * the address arithmetic.
200 for (i = 0; i < oprsz; i++, za += sizeof(ARMVectorReg)) {
201 if (pg[H2(i)] & 1) {
202 d[i] = a[tile_vslice_index(i)];
207 #undef DO_MOVA_Z
210 * Clear elements in a tile slice comprising len bytes.
213 typedef void ClearFn(void *ptr, size_t off, size_t len);
215 static void clear_horizontal(void *ptr, size_t off, size_t len)
217 memset(ptr + off, 0, len);
220 static void clear_vertical_b(void *vptr, size_t off, size_t len)
222 for (size_t i = 0; i < len; ++i) {
223 *(uint8_t *)(vptr + tile_vslice_offset(i + off)) = 0;
227 static void clear_vertical_h(void *vptr, size_t off, size_t len)
229 for (size_t i = 0; i < len; i += 2) {
230 *(uint16_t *)(vptr + tile_vslice_offset(i + off)) = 0;
234 static void clear_vertical_s(void *vptr, size_t off, size_t len)
236 for (size_t i = 0; i < len; i += 4) {
237 *(uint32_t *)(vptr + tile_vslice_offset(i + off)) = 0;
241 static void clear_vertical_d(void *vptr, size_t off, size_t len)
243 for (size_t i = 0; i < len; i += 8) {
244 *(uint64_t *)(vptr + tile_vslice_offset(i + off)) = 0;
248 static void clear_vertical_q(void *vptr, size_t off, size_t len)
250 for (size_t i = 0; i < len; i += 16) {
251 memset(vptr + tile_vslice_offset(i + off), 0, 16);
256 * Copy elements from an array into a tile slice comprising len bytes.
259 typedef void CopyFn(void *dst, const void *src, size_t len);
261 static void copy_horizontal(void *dst, const void *src, size_t len)
263 memcpy(dst, src, len);
266 static void copy_vertical_b(void *vdst, const void *vsrc, size_t len)
268 const uint8_t *src = vsrc;
269 uint8_t *dst = vdst;
270 size_t i;
272 for (i = 0; i < len; ++i) {
273 dst[tile_vslice_index(i)] = src[i];
277 static void copy_vertical_h(void *vdst, const void *vsrc, size_t len)
279 const uint16_t *src = vsrc;
280 uint16_t *dst = vdst;
281 size_t i;
283 for (i = 0; i < len / 2; ++i) {
284 dst[tile_vslice_index(i)] = src[i];
288 static void copy_vertical_s(void *vdst, const void *vsrc, size_t len)
290 const uint32_t *src = vsrc;
291 uint32_t *dst = vdst;
292 size_t i;
294 for (i = 0; i < len / 4; ++i) {
295 dst[tile_vslice_index(i)] = src[i];
299 static void copy_vertical_d(void *vdst, const void *vsrc, size_t len)
301 const uint64_t *src = vsrc;
302 uint64_t *dst = vdst;
303 size_t i;
305 for (i = 0; i < len / 8; ++i) {
306 dst[tile_vslice_index(i)] = src[i];
310 static void copy_vertical_q(void *vdst, const void *vsrc, size_t len)
312 for (size_t i = 0; i < len; i += 16) {
313 memcpy(vdst + tile_vslice_offset(i), vsrc + i, 16);
318 * Host and TLB primitives for vertical tile slice addressing.
321 #define DO_LD(NAME, TYPE, HOST, TLB) \
322 static inline void sme_##NAME##_v_host(void *za, intptr_t off, void *host) \
324 TYPE val = HOST(host); \
325 *(TYPE *)(za + tile_vslice_offset(off)) = val; \
327 static inline void sme_##NAME##_v_tlb(CPUARMState *env, void *za, \
328 intptr_t off, target_ulong addr, uintptr_t ra) \
330 TYPE val = TLB(env, useronly_clean_ptr(addr), ra); \
331 *(TYPE *)(za + tile_vslice_offset(off)) = val; \
334 #define DO_ST(NAME, TYPE, HOST, TLB) \
335 static inline void sme_##NAME##_v_host(void *za, intptr_t off, void *host) \
337 TYPE val = *(TYPE *)(za + tile_vslice_offset(off)); \
338 HOST(host, val); \
340 static inline void sme_##NAME##_v_tlb(CPUARMState *env, void *za, \
341 intptr_t off, target_ulong addr, uintptr_t ra) \
343 TYPE val = *(TYPE *)(za + tile_vslice_offset(off)); \
344 TLB(env, useronly_clean_ptr(addr), val, ra); \
348 * The ARMVectorReg elements are stored in host-endian 64-bit units.
349 * For 128-bit quantities, the sequence defined by the Elem[] pseudocode
350 * corresponds to storing the two 64-bit pieces in little-endian order.
352 #define DO_LDQ(HNAME, VNAME, BE, HOST, TLB) \
353 static inline void HNAME##_host(void *za, intptr_t off, void *host) \
355 uint64_t val0 = HOST(host), val1 = HOST(host + 8); \
356 uint64_t *ptr = za + off; \
357 ptr[0] = BE ? val1 : val0, ptr[1] = BE ? val0 : val1; \
359 static inline void VNAME##_v_host(void *za, intptr_t off, void *host) \
361 HNAME##_host(za, tile_vslice_offset(off), host); \
363 static inline void HNAME##_tlb(CPUARMState *env, void *za, intptr_t off, \
364 target_ulong addr, uintptr_t ra) \
366 uint64_t val0 = TLB(env, useronly_clean_ptr(addr), ra); \
367 uint64_t val1 = TLB(env, useronly_clean_ptr(addr + 8), ra); \
368 uint64_t *ptr = za + off; \
369 ptr[0] = BE ? val1 : val0, ptr[1] = BE ? val0 : val1; \
371 static inline void VNAME##_v_tlb(CPUARMState *env, void *za, intptr_t off, \
372 target_ulong addr, uintptr_t ra) \
374 HNAME##_tlb(env, za, tile_vslice_offset(off), addr, ra); \
377 #define DO_STQ(HNAME, VNAME, BE, HOST, TLB) \
378 static inline void HNAME##_host(void *za, intptr_t off, void *host) \
380 uint64_t *ptr = za + off; \
381 HOST(host, ptr[BE]); \
382 HOST(host + 1, ptr[!BE]); \
384 static inline void VNAME##_v_host(void *za, intptr_t off, void *host) \
386 HNAME##_host(za, tile_vslice_offset(off), host); \
388 static inline void HNAME##_tlb(CPUARMState *env, void *za, intptr_t off, \
389 target_ulong addr, uintptr_t ra) \
391 uint64_t *ptr = za + off; \
392 TLB(env, useronly_clean_ptr(addr), ptr[BE], ra); \
393 TLB(env, useronly_clean_ptr(addr + 8), ptr[!BE], ra); \
395 static inline void VNAME##_v_tlb(CPUARMState *env, void *za, intptr_t off, \
396 target_ulong addr, uintptr_t ra) \
398 HNAME##_tlb(env, za, tile_vslice_offset(off), addr, ra); \
401 DO_LD(ld1b, uint8_t, ldub_p, cpu_ldub_data_ra)
402 DO_LD(ld1h_be, uint16_t, lduw_be_p, cpu_lduw_be_data_ra)
403 DO_LD(ld1h_le, uint16_t, lduw_le_p, cpu_lduw_le_data_ra)
404 DO_LD(ld1s_be, uint32_t, ldl_be_p, cpu_ldl_be_data_ra)
405 DO_LD(ld1s_le, uint32_t, ldl_le_p, cpu_ldl_le_data_ra)
406 DO_LD(ld1d_be, uint64_t, ldq_be_p, cpu_ldq_be_data_ra)
407 DO_LD(ld1d_le, uint64_t, ldq_le_p, cpu_ldq_le_data_ra)
409 DO_LDQ(sve_ld1qq_be, sme_ld1q_be, 1, ldq_be_p, cpu_ldq_be_data_ra)
410 DO_LDQ(sve_ld1qq_le, sme_ld1q_le, 0, ldq_le_p, cpu_ldq_le_data_ra)
412 DO_ST(st1b, uint8_t, stb_p, cpu_stb_data_ra)
413 DO_ST(st1h_be, uint16_t, stw_be_p, cpu_stw_be_data_ra)
414 DO_ST(st1h_le, uint16_t, stw_le_p, cpu_stw_le_data_ra)
415 DO_ST(st1s_be, uint32_t, stl_be_p, cpu_stl_be_data_ra)
416 DO_ST(st1s_le, uint32_t, stl_le_p, cpu_stl_le_data_ra)
417 DO_ST(st1d_be, uint64_t, stq_be_p, cpu_stq_be_data_ra)
418 DO_ST(st1d_le, uint64_t, stq_le_p, cpu_stq_le_data_ra)
420 DO_STQ(sve_st1qq_be, sme_st1q_be, 1, stq_be_p, cpu_stq_be_data_ra)
421 DO_STQ(sve_st1qq_le, sme_st1q_le, 0, stq_le_p, cpu_stq_le_data_ra)
423 #undef DO_LD
424 #undef DO_ST
425 #undef DO_LDQ
426 #undef DO_STQ
429 * Common helper for all contiguous predicated loads.
432 static inline QEMU_ALWAYS_INLINE
433 void sme_ld1(CPUARMState *env, void *za, uint64_t *vg,
434 const target_ulong addr, uint32_t desc, const uintptr_t ra,
435 const int esz, uint32_t mtedesc, bool vertical,
436 sve_ldst1_host_fn *host_fn,
437 sve_ldst1_tlb_fn *tlb_fn,
438 ClearFn *clr_fn,
439 CopyFn *cpy_fn)
441 const intptr_t reg_max = simd_oprsz(desc);
442 const intptr_t esize = 1 << esz;
443 intptr_t reg_off, reg_last;
444 SVEContLdSt info;
445 void *host;
446 int flags;
448 /* Find the active elements. */
449 if (!sve_cont_ldst_elements(&info, addr, vg, reg_max, esz, esize)) {
450 /* The entire predicate was false; no load occurs. */
451 clr_fn(za, 0, reg_max);
452 return;
455 /* Probe the page(s). Exit with exception for any invalid page. */
456 sve_cont_ldst_pages(&info, FAULT_ALL, env, addr, MMU_DATA_LOAD, ra);
458 /* Handle watchpoints for all active elements. */
459 sve_cont_ldst_watchpoints(&info, env, vg, addr, esize, esize,
460 BP_MEM_READ, ra);
463 * Handle mte checks for all active elements.
464 * Since TBI must be set for MTE, !mtedesc => !mte_active.
466 if (mtedesc) {
467 sve_cont_ldst_mte_check(&info, env, vg, addr, esize, esize,
468 mtedesc, ra);
471 flags = info.page[0].flags | info.page[1].flags;
472 if (unlikely(flags != 0)) {
473 #ifdef CONFIG_USER_ONLY
474 g_assert_not_reached();
475 #else
477 * At least one page includes MMIO.
478 * Any bus operation can fail with cpu_transaction_failed,
479 * which for ARM will raise SyncExternal. Perform the load
480 * into scratch memory to preserve register state until the end.
482 ARMVectorReg scratch = { };
484 reg_off = info.reg_off_first[0];
485 reg_last = info.reg_off_last[1];
486 if (reg_last < 0) {
487 reg_last = info.reg_off_split;
488 if (reg_last < 0) {
489 reg_last = info.reg_off_last[0];
493 do {
494 uint64_t pg = vg[reg_off >> 6];
495 do {
496 if ((pg >> (reg_off & 63)) & 1) {
497 tlb_fn(env, &scratch, reg_off, addr + reg_off, ra);
499 reg_off += esize;
500 } while (reg_off & 63);
501 } while (reg_off <= reg_last);
503 cpy_fn(za, &scratch, reg_max);
504 return;
505 #endif
508 /* The entire operation is in RAM, on valid pages. */
510 reg_off = info.reg_off_first[0];
511 reg_last = info.reg_off_last[0];
512 host = info.page[0].host;
514 if (!vertical) {
515 memset(za, 0, reg_max);
516 } else if (reg_off) {
517 clr_fn(za, 0, reg_off);
520 while (reg_off <= reg_last) {
521 uint64_t pg = vg[reg_off >> 6];
522 do {
523 if ((pg >> (reg_off & 63)) & 1) {
524 host_fn(za, reg_off, host + reg_off);
525 } else if (vertical) {
526 clr_fn(za, reg_off, esize);
528 reg_off += esize;
529 } while (reg_off <= reg_last && (reg_off & 63));
533 * Use the slow path to manage the cross-page misalignment.
534 * But we know this is RAM and cannot trap.
536 reg_off = info.reg_off_split;
537 if (unlikely(reg_off >= 0)) {
538 tlb_fn(env, za, reg_off, addr + reg_off, ra);
541 reg_off = info.reg_off_first[1];
542 if (unlikely(reg_off >= 0)) {
543 reg_last = info.reg_off_last[1];
544 host = info.page[1].host;
546 do {
547 uint64_t pg = vg[reg_off >> 6];
548 do {
549 if ((pg >> (reg_off & 63)) & 1) {
550 host_fn(za, reg_off, host + reg_off);
551 } else if (vertical) {
552 clr_fn(za, reg_off, esize);
554 reg_off += esize;
555 } while (reg_off & 63);
556 } while (reg_off <= reg_last);
560 static inline QEMU_ALWAYS_INLINE
561 void sme_ld1_mte(CPUARMState *env, void *za, uint64_t *vg,
562 target_ulong addr, uint32_t desc, uintptr_t ra,
563 const int esz, bool vertical,
564 sve_ldst1_host_fn *host_fn,
565 sve_ldst1_tlb_fn *tlb_fn,
566 ClearFn *clr_fn,
567 CopyFn *cpy_fn)
569 uint32_t mtedesc = desc >> (SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT);
570 int bit55 = extract64(addr, 55, 1);
572 /* Remove mtedesc from the normal sve descriptor. */
573 desc = extract32(desc, 0, SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT);
575 /* Perform gross MTE suppression early. */
576 if (!tbi_check(desc, bit55) ||
577 tcma_check(desc, bit55, allocation_tag_from_addr(addr))) {
578 mtedesc = 0;
581 sme_ld1(env, za, vg, addr, desc, ra, esz, mtedesc, vertical,
582 host_fn, tlb_fn, clr_fn, cpy_fn);
585 #define DO_LD(L, END, ESZ) \
586 void HELPER(sme_ld1##L##END##_h)(CPUARMState *env, void *za, void *vg, \
587 target_ulong addr, uint32_t desc) \
589 sme_ld1(env, za, vg, addr, desc, GETPC(), ESZ, 0, false, \
590 sve_ld1##L##L##END##_host, sve_ld1##L##L##END##_tlb, \
591 clear_horizontal, copy_horizontal); \
593 void HELPER(sme_ld1##L##END##_v)(CPUARMState *env, void *za, void *vg, \
594 target_ulong addr, uint32_t desc) \
596 sme_ld1(env, za, vg, addr, desc, GETPC(), ESZ, 0, true, \
597 sme_ld1##L##END##_v_host, sme_ld1##L##END##_v_tlb, \
598 clear_vertical_##L, copy_vertical_##L); \
600 void HELPER(sme_ld1##L##END##_h_mte)(CPUARMState *env, void *za, void *vg, \
601 target_ulong addr, uint32_t desc) \
603 sme_ld1_mte(env, za, vg, addr, desc, GETPC(), ESZ, false, \
604 sve_ld1##L##L##END##_host, sve_ld1##L##L##END##_tlb, \
605 clear_horizontal, copy_horizontal); \
607 void HELPER(sme_ld1##L##END##_v_mte)(CPUARMState *env, void *za, void *vg, \
608 target_ulong addr, uint32_t desc) \
610 sme_ld1_mte(env, za, vg, addr, desc, GETPC(), ESZ, true, \
611 sme_ld1##L##END##_v_host, sme_ld1##L##END##_v_tlb, \
612 clear_vertical_##L, copy_vertical_##L); \
615 DO_LD(b, , MO_8)
616 DO_LD(h, _be, MO_16)
617 DO_LD(h, _le, MO_16)
618 DO_LD(s, _be, MO_32)
619 DO_LD(s, _le, MO_32)
620 DO_LD(d, _be, MO_64)
621 DO_LD(d, _le, MO_64)
622 DO_LD(q, _be, MO_128)
623 DO_LD(q, _le, MO_128)
625 #undef DO_LD
628 * Common helper for all contiguous predicated stores.
631 static inline QEMU_ALWAYS_INLINE
632 void sme_st1(CPUARMState *env, void *za, uint64_t *vg,
633 const target_ulong addr, uint32_t desc, const uintptr_t ra,
634 const int esz, uint32_t mtedesc, bool vertical,
635 sve_ldst1_host_fn *host_fn,
636 sve_ldst1_tlb_fn *tlb_fn)
638 const intptr_t reg_max = simd_oprsz(desc);
639 const intptr_t esize = 1 << esz;
640 intptr_t reg_off, reg_last;
641 SVEContLdSt info;
642 void *host;
643 int flags;
645 /* Find the active elements. */
646 if (!sve_cont_ldst_elements(&info, addr, vg, reg_max, esz, esize)) {
647 /* The entire predicate was false; no store occurs. */
648 return;
651 /* Probe the page(s). Exit with exception for any invalid page. */
652 sve_cont_ldst_pages(&info, FAULT_ALL, env, addr, MMU_DATA_STORE, ra);
654 /* Handle watchpoints for all active elements. */
655 sve_cont_ldst_watchpoints(&info, env, vg, addr, esize, esize,
656 BP_MEM_WRITE, ra);
659 * Handle mte checks for all active elements.
660 * Since TBI must be set for MTE, !mtedesc => !mte_active.
662 if (mtedesc) {
663 sve_cont_ldst_mte_check(&info, env, vg, addr, esize, esize,
664 mtedesc, ra);
667 flags = info.page[0].flags | info.page[1].flags;
668 if (unlikely(flags != 0)) {
669 #ifdef CONFIG_USER_ONLY
670 g_assert_not_reached();
671 #else
673 * At least one page includes MMIO.
674 * Any bus operation can fail with cpu_transaction_failed,
675 * which for ARM will raise SyncExternal. We cannot avoid
676 * this fault and will leave with the store incomplete.
678 reg_off = info.reg_off_first[0];
679 reg_last = info.reg_off_last[1];
680 if (reg_last < 0) {
681 reg_last = info.reg_off_split;
682 if (reg_last < 0) {
683 reg_last = info.reg_off_last[0];
687 do {
688 uint64_t pg = vg[reg_off >> 6];
689 do {
690 if ((pg >> (reg_off & 63)) & 1) {
691 tlb_fn(env, za, reg_off, addr + reg_off, ra);
693 reg_off += esize;
694 } while (reg_off & 63);
695 } while (reg_off <= reg_last);
696 return;
697 #endif
700 reg_off = info.reg_off_first[0];
701 reg_last = info.reg_off_last[0];
702 host = info.page[0].host;
704 while (reg_off <= reg_last) {
705 uint64_t pg = vg[reg_off >> 6];
706 do {
707 if ((pg >> (reg_off & 63)) & 1) {
708 host_fn(za, reg_off, host + reg_off);
710 reg_off += 1 << esz;
711 } while (reg_off <= reg_last && (reg_off & 63));
715 * Use the slow path to manage the cross-page misalignment.
716 * But we know this is RAM and cannot trap.
718 reg_off = info.reg_off_split;
719 if (unlikely(reg_off >= 0)) {
720 tlb_fn(env, za, reg_off, addr + reg_off, ra);
723 reg_off = info.reg_off_first[1];
724 if (unlikely(reg_off >= 0)) {
725 reg_last = info.reg_off_last[1];
726 host = info.page[1].host;
728 do {
729 uint64_t pg = vg[reg_off >> 6];
730 do {
731 if ((pg >> (reg_off & 63)) & 1) {
732 host_fn(za, reg_off, host + reg_off);
734 reg_off += 1 << esz;
735 } while (reg_off & 63);
736 } while (reg_off <= reg_last);
740 static inline QEMU_ALWAYS_INLINE
741 void sme_st1_mte(CPUARMState *env, void *za, uint64_t *vg, target_ulong addr,
742 uint32_t desc, uintptr_t ra, int esz, bool vertical,
743 sve_ldst1_host_fn *host_fn,
744 sve_ldst1_tlb_fn *tlb_fn)
746 uint32_t mtedesc = desc >> (SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT);
747 int bit55 = extract64(addr, 55, 1);
749 /* Remove mtedesc from the normal sve descriptor. */
750 desc = extract32(desc, 0, SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT);
752 /* Perform gross MTE suppression early. */
753 if (!tbi_check(desc, bit55) ||
754 tcma_check(desc, bit55, allocation_tag_from_addr(addr))) {
755 mtedesc = 0;
758 sme_st1(env, za, vg, addr, desc, ra, esz, mtedesc,
759 vertical, host_fn, tlb_fn);
762 #define DO_ST(L, END, ESZ) \
763 void HELPER(sme_st1##L##END##_h)(CPUARMState *env, void *za, void *vg, \
764 target_ulong addr, uint32_t desc) \
766 sme_st1(env, za, vg, addr, desc, GETPC(), ESZ, 0, false, \
767 sve_st1##L##L##END##_host, sve_st1##L##L##END##_tlb); \
769 void HELPER(sme_st1##L##END##_v)(CPUARMState *env, void *za, void *vg, \
770 target_ulong addr, uint32_t desc) \
772 sme_st1(env, za, vg, addr, desc, GETPC(), ESZ, 0, true, \
773 sme_st1##L##END##_v_host, sme_st1##L##END##_v_tlb); \
775 void HELPER(sme_st1##L##END##_h_mte)(CPUARMState *env, void *za, void *vg, \
776 target_ulong addr, uint32_t desc) \
778 sme_st1_mte(env, za, vg, addr, desc, GETPC(), ESZ, false, \
779 sve_st1##L##L##END##_host, sve_st1##L##L##END##_tlb); \
781 void HELPER(sme_st1##L##END##_v_mte)(CPUARMState *env, void *za, void *vg, \
782 target_ulong addr, uint32_t desc) \
784 sme_st1_mte(env, za, vg, addr, desc, GETPC(), ESZ, true, \
785 sme_st1##L##END##_v_host, sme_st1##L##END##_v_tlb); \
788 DO_ST(b, , MO_8)
789 DO_ST(h, _be, MO_16)
790 DO_ST(h, _le, MO_16)
791 DO_ST(s, _be, MO_32)
792 DO_ST(s, _le, MO_32)
793 DO_ST(d, _be, MO_64)
794 DO_ST(d, _le, MO_64)
795 DO_ST(q, _be, MO_128)
796 DO_ST(q, _le, MO_128)
798 #undef DO_ST
800 void HELPER(sme_addha_s)(void *vzda, void *vzn, void *vpn,
801 void *vpm, uint32_t desc)
803 intptr_t row, col, oprsz = simd_oprsz(desc) / 4;
804 uint64_t *pn = vpn, *pm = vpm;
805 uint32_t *zda = vzda, *zn = vzn;
807 for (row = 0; row < oprsz; ) {
808 uint64_t pa = pn[row >> 4];
809 do {
810 if (pa & 1) {
811 for (col = 0; col < oprsz; ) {
812 uint64_t pb = pm[col >> 4];
813 do {
814 if (pb & 1) {
815 zda[tile_vslice_index(row) + H4(col)] += zn[H4(col)];
817 pb >>= 4;
818 } while (++col & 15);
821 pa >>= 4;
822 } while (++row & 15);
826 void HELPER(sme_addha_d)(void *vzda, void *vzn, void *vpn,
827 void *vpm, uint32_t desc)
829 intptr_t row, col, oprsz = simd_oprsz(desc) / 8;
830 uint8_t *pn = vpn, *pm = vpm;
831 uint64_t *zda = vzda, *zn = vzn;
833 for (row = 0; row < oprsz; ++row) {
834 if (pn[H1(row)] & 1) {
835 for (col = 0; col < oprsz; ++col) {
836 if (pm[H1(col)] & 1) {
837 zda[tile_vslice_index(row) + col] += zn[col];
844 void HELPER(sme_addva_s)(void *vzda, void *vzn, void *vpn,
845 void *vpm, uint32_t desc)
847 intptr_t row, col, oprsz = simd_oprsz(desc) / 4;
848 uint64_t *pn = vpn, *pm = vpm;
849 uint32_t *zda = vzda, *zn = vzn;
851 for (row = 0; row < oprsz; ) {
852 uint64_t pa = pn[row >> 4];
853 do {
854 if (pa & 1) {
855 uint32_t zn_row = zn[H4(row)];
856 for (col = 0; col < oprsz; ) {
857 uint64_t pb = pm[col >> 4];
858 do {
859 if (pb & 1) {
860 zda[tile_vslice_index(row) + H4(col)] += zn_row;
862 pb >>= 4;
863 } while (++col & 15);
866 pa >>= 4;
867 } while (++row & 15);
871 void HELPER(sme_addva_d)(void *vzda, void *vzn, void *vpn,
872 void *vpm, uint32_t desc)
874 intptr_t row, col, oprsz = simd_oprsz(desc) / 8;
875 uint8_t *pn = vpn, *pm = vpm;
876 uint64_t *zda = vzda, *zn = vzn;
878 for (row = 0; row < oprsz; ++row) {
879 if (pn[H1(row)] & 1) {
880 uint64_t zn_row = zn[row];
881 for (col = 0; col < oprsz; ++col) {
882 if (pm[H1(col)] & 1) {
883 zda[tile_vslice_index(row) + col] += zn_row;
890 void HELPER(sme_fmopa_s)(void *vza, void *vzn, void *vzm, void *vpn,
891 void *vpm, void *vst, uint32_t desc)
893 intptr_t row, col, oprsz = simd_maxsz(desc);
894 uint32_t neg = simd_data(desc) << 31;
895 uint16_t *pn = vpn, *pm = vpm;
896 float_status fpst;
899 * Make a copy of float_status because this operation does not
900 * update the cumulative fp exception status. It also produces
901 * default nans.
903 fpst = *(float_status *)vst;
904 set_default_nan_mode(true, &fpst);
906 for (row = 0; row < oprsz; ) {
907 uint16_t pa = pn[H2(row >> 4)];
908 do {
909 if (pa & 1) {
910 void *vza_row = vza + tile_vslice_offset(row);
911 uint32_t n = *(uint32_t *)(vzn + H1_4(row)) ^ neg;
913 for (col = 0; col < oprsz; ) {
914 uint16_t pb = pm[H2(col >> 4)];
915 do {
916 if (pb & 1) {
917 uint32_t *a = vza_row + H1_4(col);
918 uint32_t *m = vzm + H1_4(col);
919 *a = float32_muladd(n, *m, *a, 0, vst);
921 col += 4;
922 pb >>= 4;
923 } while (col & 15);
926 row += 4;
927 pa >>= 4;
928 } while (row & 15);
932 void HELPER(sme_fmopa_d)(void *vza, void *vzn, void *vzm, void *vpn,
933 void *vpm, void *vst, uint32_t desc)
935 intptr_t row, col, oprsz = simd_oprsz(desc) / 8;
936 uint64_t neg = (uint64_t)simd_data(desc) << 63;
937 uint64_t *za = vza, *zn = vzn, *zm = vzm;
938 uint8_t *pn = vpn, *pm = vpm;
939 float_status fpst = *(float_status *)vst;
941 set_default_nan_mode(true, &fpst);
943 for (row = 0; row < oprsz; ++row) {
944 if (pn[H1(row)] & 1) {
945 uint64_t *za_row = &za[tile_vslice_index(row)];
946 uint64_t n = zn[row] ^ neg;
948 for (col = 0; col < oprsz; ++col) {
949 if (pm[H1(col)] & 1) {
950 uint64_t *a = &za_row[col];
951 *a = float64_muladd(n, zm[col], *a, 0, &fpst);
959 * Alter PAIR as needed for controlling predicates being false,
960 * and for NEG on an enabled row element.
962 static inline uint32_t f16mop_adj_pair(uint32_t pair, uint32_t pg, uint32_t neg)
965 * The pseudocode uses a conditional negate after the conditional zero.
966 * It is simpler here to unconditionally negate before conditional zero.
968 pair ^= neg;
969 if (!(pg & 1)) {
970 pair &= 0xffff0000u;
972 if (!(pg & 4)) {
973 pair &= 0x0000ffffu;
975 return pair;
978 static float32 f16_dotadd(float32 sum, uint32_t e1, uint32_t e2,
979 float_status *s_std, float_status *s_odd)
981 float64 e1r = float16_to_float64(e1 & 0xffff, true, s_std);
982 float64 e1c = float16_to_float64(e1 >> 16, true, s_std);
983 float64 e2r = float16_to_float64(e2 & 0xffff, true, s_std);
984 float64 e2c = float16_to_float64(e2 >> 16, true, s_std);
985 float64 t64;
986 float32 t32;
989 * The ARM pseudocode function FPDot performs both multiplies
990 * and the add with a single rounding operation. Emulate this
991 * by performing the first multiply in round-to-odd, then doing
992 * the second multiply as fused multiply-add, and rounding to
993 * float32 all in one step.
995 t64 = float64_mul(e1r, e2r, s_odd);
996 t64 = float64r32_muladd(e1c, e2c, t64, 0, s_std);
998 /* This conversion is exact, because we've already rounded. */
999 t32 = float64_to_float32(t64, s_std);
1001 /* The final accumulation step is not fused. */
1002 return float32_add(sum, t32, s_std);
1005 void HELPER(sme_fmopa_h)(void *vza, void *vzn, void *vzm, void *vpn,
1006 void *vpm, void *vst, uint32_t desc)
1008 intptr_t row, col, oprsz = simd_maxsz(desc);
1009 uint32_t neg = simd_data(desc) * 0x80008000u;
1010 uint16_t *pn = vpn, *pm = vpm;
1011 float_status fpst_odd, fpst_std;
1014 * Make a copy of float_status because this operation does not
1015 * update the cumulative fp exception status. It also produces
1016 * default nans. Make a second copy with round-to-odd -- see above.
1018 fpst_std = *(float_status *)vst;
1019 set_default_nan_mode(true, &fpst_std);
1020 fpst_odd = fpst_std;
1021 set_float_rounding_mode(float_round_to_odd, &fpst_odd);
1023 for (row = 0; row < oprsz; ) {
1024 uint16_t prow = pn[H2(row >> 4)];
1025 do {
1026 void *vza_row = vza + tile_vslice_offset(row);
1027 uint32_t n = *(uint32_t *)(vzn + H1_4(row));
1029 n = f16mop_adj_pair(n, prow, neg);
1031 for (col = 0; col < oprsz; ) {
1032 uint16_t pcol = pm[H2(col >> 4)];
1033 do {
1034 if (prow & pcol & 0b0101) {
1035 uint32_t *a = vza_row + H1_4(col);
1036 uint32_t m = *(uint32_t *)(vzm + H1_4(col));
1038 m = f16mop_adj_pair(m, pcol, 0);
1039 *a = f16_dotadd(*a, n, m, &fpst_std, &fpst_odd);
1041 col += 4;
1042 pcol >>= 4;
1044 } while (col & 15);
1046 row += 4;
1047 prow >>= 4;
1048 } while (row & 15);
1052 void HELPER(sme_bfmopa)(void *vza, void *vzn, void *vzm, void *vpn,
1053 void *vpm, uint32_t desc)
1055 intptr_t row, col, oprsz = simd_maxsz(desc);
1056 uint32_t neg = simd_data(desc) * 0x80008000u;
1057 uint16_t *pn = vpn, *pm = vpm;
1059 for (row = 0; row < oprsz; ) {
1060 uint16_t prow = pn[H2(row >> 4)];
1061 do {
1062 void *vza_row = vza + tile_vslice_offset(row);
1063 uint32_t n = *(uint32_t *)(vzn + H1_4(row));
1065 n = f16mop_adj_pair(n, prow, neg);
1067 for (col = 0; col < oprsz; ) {
1068 uint16_t pcol = pm[H2(col >> 4)];
1069 do {
1070 if (prow & pcol & 0b0101) {
1071 uint32_t *a = vza_row + H1_4(col);
1072 uint32_t m = *(uint32_t *)(vzm + H1_4(col));
1074 m = f16mop_adj_pair(m, pcol, 0);
1075 *a = bfdotadd(*a, n, m);
1077 col += 4;
1078 pcol >>= 4;
1080 } while (col & 15);
1082 row += 4;
1083 prow >>= 4;
1084 } while (row & 15);
1088 typedef uint64_t IMOPFn(uint64_t, uint64_t, uint64_t, uint8_t, bool);
1090 static inline void do_imopa(uint64_t *za, uint64_t *zn, uint64_t *zm,
1091 uint8_t *pn, uint8_t *pm,
1092 uint32_t desc, IMOPFn *fn)
1094 intptr_t row, col, oprsz = simd_oprsz(desc) / 8;
1095 bool neg = simd_data(desc);
1097 for (row = 0; row < oprsz; ++row) {
1098 uint8_t pa = pn[H1(row)];
1099 uint64_t *za_row = &za[tile_vslice_index(row)];
1100 uint64_t n = zn[row];
1102 for (col = 0; col < oprsz; ++col) {
1103 uint8_t pb = pm[H1(col)];
1104 uint64_t *a = &za_row[col];
1106 *a = fn(n, zm[col], *a, pa & pb, neg);
1111 #define DEF_IMOP_32(NAME, NTYPE, MTYPE) \
1112 static uint64_t NAME(uint64_t n, uint64_t m, uint64_t a, uint8_t p, bool neg) \
1114 uint32_t sum0 = 0, sum1 = 0; \
1115 /* Apply P to N as a mask, making the inactive elements 0. */ \
1116 n &= expand_pred_b(p); \
1117 sum0 += (NTYPE)(n >> 0) * (MTYPE)(m >> 0); \
1118 sum0 += (NTYPE)(n >> 8) * (MTYPE)(m >> 8); \
1119 sum0 += (NTYPE)(n >> 16) * (MTYPE)(m >> 16); \
1120 sum0 += (NTYPE)(n >> 24) * (MTYPE)(m >> 24); \
1121 sum1 += (NTYPE)(n >> 32) * (MTYPE)(m >> 32); \
1122 sum1 += (NTYPE)(n >> 40) * (MTYPE)(m >> 40); \
1123 sum1 += (NTYPE)(n >> 48) * (MTYPE)(m >> 48); \
1124 sum1 += (NTYPE)(n >> 56) * (MTYPE)(m >> 56); \
1125 if (neg) { \
1126 sum0 = (uint32_t)a - sum0, sum1 = (uint32_t)(a >> 32) - sum1; \
1127 } else { \
1128 sum0 = (uint32_t)a + sum0, sum1 = (uint32_t)(a >> 32) + sum1; \
1130 return ((uint64_t)sum1 << 32) | sum0; \
1133 #define DEF_IMOP_64(NAME, NTYPE, MTYPE) \
1134 static uint64_t NAME(uint64_t n, uint64_t m, uint64_t a, uint8_t p, bool neg) \
1136 uint64_t sum = 0; \
1137 /* Apply P to N as a mask, making the inactive elements 0. */ \
1138 n &= expand_pred_h(p); \
1139 sum += (NTYPE)(n >> 0) * (MTYPE)(m >> 0); \
1140 sum += (NTYPE)(n >> 16) * (MTYPE)(m >> 16); \
1141 sum += (NTYPE)(n >> 32) * (MTYPE)(m >> 32); \
1142 sum += (NTYPE)(n >> 48) * (MTYPE)(m >> 48); \
1143 return neg ? a - sum : a + sum; \
1146 DEF_IMOP_32(smopa_s, int8_t, int8_t)
1147 DEF_IMOP_32(umopa_s, uint8_t, uint8_t)
1148 DEF_IMOP_32(sumopa_s, int8_t, uint8_t)
1149 DEF_IMOP_32(usmopa_s, uint8_t, int8_t)
1151 DEF_IMOP_64(smopa_d, int16_t, int16_t)
1152 DEF_IMOP_64(umopa_d, uint16_t, uint16_t)
1153 DEF_IMOP_64(sumopa_d, int16_t, uint16_t)
1154 DEF_IMOP_64(usmopa_d, uint16_t, int16_t)
1156 #define DEF_IMOPH(NAME) \
1157 void HELPER(sme_##NAME)(void *vza, void *vzn, void *vzm, void *vpn, \
1158 void *vpm, uint32_t desc) \
1159 { do_imopa(vza, vzn, vzm, vpn, vpm, desc, NAME); }
1161 DEF_IMOPH(smopa_s)
1162 DEF_IMOPH(umopa_s)
1163 DEF_IMOPH(sumopa_s)
1164 DEF_IMOPH(usmopa_s)
1165 DEF_IMOPH(smopa_d)
1166 DEF_IMOPH(umopa_d)
1167 DEF_IMOPH(sumopa_d)
1168 DEF_IMOPH(usmopa_d)