pcihp: compose PCNT callchain right before its user _GPE._E01
[qemu.git] / target / arm / kvm.c
blobf022c644d2ffad803dfb0a082e834049725cfae0
1 /*
2 * ARM implementation of KVM hooks
4 * Copyright Christoffer Dall 2009-2010
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
9 */
11 #include "qemu/osdep.h"
12 #include <sys/ioctl.h>
14 #include <linux/kvm.h>
16 #include "qemu/timer.h"
17 #include "qemu/error-report.h"
18 #include "qemu/main-loop.h"
19 #include "qom/object.h"
20 #include "qapi/error.h"
21 #include "sysemu/sysemu.h"
22 #include "sysemu/kvm.h"
23 #include "sysemu/kvm_int.h"
24 #include "kvm_arm.h"
25 #include "cpu.h"
26 #include "trace.h"
27 #include "internals.h"
28 #include "hw/pci/pci.h"
29 #include "exec/memattrs.h"
30 #include "exec/address-spaces.h"
31 #include "hw/boards.h"
32 #include "hw/irq.h"
33 #include "qemu/log.h"
35 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
36 KVM_CAP_LAST_INFO
39 static bool cap_has_mp_state;
40 static bool cap_has_inject_serror_esr;
41 static bool cap_has_inject_ext_dabt;
43 static ARMHostCPUFeatures arm_host_cpu_features;
45 int kvm_arm_vcpu_init(CPUState *cs)
47 ARMCPU *cpu = ARM_CPU(cs);
48 struct kvm_vcpu_init init;
50 init.target = cpu->kvm_target;
51 memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
53 return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
56 int kvm_arm_vcpu_finalize(CPUState *cs, int feature)
58 return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_FINALIZE, &feature);
61 void kvm_arm_init_serror_injection(CPUState *cs)
63 cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state,
64 KVM_CAP_ARM_INJECT_SERROR_ESR);
67 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
68 int *fdarray,
69 struct kvm_vcpu_init *init)
71 int ret = 0, kvmfd = -1, vmfd = -1, cpufd = -1;
72 int max_vm_pa_size;
74 kvmfd = qemu_open_old("/dev/kvm", O_RDWR);
75 if (kvmfd < 0) {
76 goto err;
78 max_vm_pa_size = ioctl(kvmfd, KVM_CHECK_EXTENSION, KVM_CAP_ARM_VM_IPA_SIZE);
79 if (max_vm_pa_size < 0) {
80 max_vm_pa_size = 0;
82 do {
83 vmfd = ioctl(kvmfd, KVM_CREATE_VM, max_vm_pa_size);
84 } while (vmfd == -1 && errno == EINTR);
85 if (vmfd < 0) {
86 goto err;
88 cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
89 if (cpufd < 0) {
90 goto err;
93 if (!init) {
94 /* Caller doesn't want the VCPU to be initialized, so skip it */
95 goto finish;
98 if (init->target == -1) {
99 struct kvm_vcpu_init preferred;
101 ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, &preferred);
102 if (!ret) {
103 init->target = preferred.target;
106 if (ret >= 0) {
107 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
108 if (ret < 0) {
109 goto err;
111 } else if (cpus_to_try) {
112 /* Old kernel which doesn't know about the
113 * PREFERRED_TARGET ioctl: we know it will only support
114 * creating one kind of guest CPU which is its preferred
115 * CPU type.
117 struct kvm_vcpu_init try;
119 while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
120 try.target = *cpus_to_try++;
121 memcpy(try.features, init->features, sizeof(init->features));
122 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, &try);
123 if (ret >= 0) {
124 break;
127 if (ret < 0) {
128 goto err;
130 init->target = try.target;
131 } else {
132 /* Treat a NULL cpus_to_try argument the same as an empty
133 * list, which means we will fail the call since this must
134 * be an old kernel which doesn't support PREFERRED_TARGET.
136 goto err;
139 finish:
140 fdarray[0] = kvmfd;
141 fdarray[1] = vmfd;
142 fdarray[2] = cpufd;
144 return true;
146 err:
147 if (cpufd >= 0) {
148 close(cpufd);
150 if (vmfd >= 0) {
151 close(vmfd);
153 if (kvmfd >= 0) {
154 close(kvmfd);
157 return false;
160 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
162 int i;
164 for (i = 2; i >= 0; i--) {
165 close(fdarray[i]);
169 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
171 CPUARMState *env = &cpu->env;
173 if (!arm_host_cpu_features.dtb_compatible) {
174 if (!kvm_enabled() ||
175 !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
176 /* We can't report this error yet, so flag that we need to
177 * in arm_cpu_realizefn().
179 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
180 cpu->host_cpu_probe_failed = true;
181 return;
185 cpu->kvm_target = arm_host_cpu_features.target;
186 cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
187 cpu->isar = arm_host_cpu_features.isar;
188 env->features = arm_host_cpu_features.features;
191 static bool kvm_no_adjvtime_get(Object *obj, Error **errp)
193 return !ARM_CPU(obj)->kvm_adjvtime;
196 static void kvm_no_adjvtime_set(Object *obj, bool value, Error **errp)
198 ARM_CPU(obj)->kvm_adjvtime = !value;
201 static bool kvm_steal_time_get(Object *obj, Error **errp)
203 return ARM_CPU(obj)->kvm_steal_time != ON_OFF_AUTO_OFF;
206 static void kvm_steal_time_set(Object *obj, bool value, Error **errp)
208 ARM_CPU(obj)->kvm_steal_time = value ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
211 /* KVM VCPU properties should be prefixed with "kvm-". */
212 void kvm_arm_add_vcpu_properties(Object *obj)
214 ARMCPU *cpu = ARM_CPU(obj);
215 CPUARMState *env = &cpu->env;
217 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
218 cpu->kvm_adjvtime = true;
219 object_property_add_bool(obj, "kvm-no-adjvtime", kvm_no_adjvtime_get,
220 kvm_no_adjvtime_set);
221 object_property_set_description(obj, "kvm-no-adjvtime",
222 "Set on to disable the adjustment of "
223 "the virtual counter. VM stopped time "
224 "will be counted.");
227 cpu->kvm_steal_time = ON_OFF_AUTO_AUTO;
228 object_property_add_bool(obj, "kvm-steal-time", kvm_steal_time_get,
229 kvm_steal_time_set);
230 object_property_set_description(obj, "kvm-steal-time",
231 "Set off to disable KVM steal time.");
234 bool kvm_arm_pmu_supported(void)
236 return kvm_check_extension(kvm_state, KVM_CAP_ARM_PMU_V3);
239 int kvm_arm_get_max_vm_ipa_size(MachineState *ms, bool *fixed_ipa)
241 KVMState *s = KVM_STATE(ms->accelerator);
242 int ret;
244 ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE);
245 *fixed_ipa = ret <= 0;
247 return ret > 0 ? ret : 40;
250 int kvm_arch_init(MachineState *ms, KVMState *s)
252 int ret = 0;
253 /* For ARM interrupt delivery is always asynchronous,
254 * whether we are using an in-kernel VGIC or not.
256 kvm_async_interrupts_allowed = true;
259 * PSCI wakes up secondary cores, so we always need to
260 * have vCPUs waiting in kernel space
262 kvm_halt_in_kernel_allowed = true;
264 cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
266 if (ms->smp.cpus > 256 &&
267 !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) {
268 error_report("Using more than 256 vcpus requires a host kernel "
269 "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2");
270 ret = -EINVAL;
273 if (kvm_check_extension(s, KVM_CAP_ARM_NISV_TO_USER)) {
274 if (kvm_vm_enable_cap(s, KVM_CAP_ARM_NISV_TO_USER, 0)) {
275 error_report("Failed to enable KVM_CAP_ARM_NISV_TO_USER cap");
276 } else {
277 /* Set status for supporting the external dabt injection */
278 cap_has_inject_ext_dabt = kvm_check_extension(s,
279 KVM_CAP_ARM_INJECT_EXT_DABT);
283 return ret;
286 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
288 return cpu->cpu_index;
291 /* We track all the KVM devices which need their memory addresses
292 * passing to the kernel in a list of these structures.
293 * When board init is complete we run through the list and
294 * tell the kernel the base addresses of the memory regions.
295 * We use a MemoryListener to track mapping and unmapping of
296 * the regions during board creation, so the board models don't
297 * need to do anything special for the KVM case.
299 * Sometimes the address must be OR'ed with some other fields
300 * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
301 * @kda_addr_ormask aims at storing the value of those fields.
303 typedef struct KVMDevice {
304 struct kvm_arm_device_addr kda;
305 struct kvm_device_attr kdattr;
306 uint64_t kda_addr_ormask;
307 MemoryRegion *mr;
308 QSLIST_ENTRY(KVMDevice) entries;
309 int dev_fd;
310 } KVMDevice;
312 static QSLIST_HEAD(, KVMDevice) kvm_devices_head;
314 static void kvm_arm_devlistener_add(MemoryListener *listener,
315 MemoryRegionSection *section)
317 KVMDevice *kd;
319 QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
320 if (section->mr == kd->mr) {
321 kd->kda.addr = section->offset_within_address_space;
326 static void kvm_arm_devlistener_del(MemoryListener *listener,
327 MemoryRegionSection *section)
329 KVMDevice *kd;
331 QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
332 if (section->mr == kd->mr) {
333 kd->kda.addr = -1;
338 static MemoryListener devlistener = {
339 .name = "kvm-arm",
340 .region_add = kvm_arm_devlistener_add,
341 .region_del = kvm_arm_devlistener_del,
344 static void kvm_arm_set_device_addr(KVMDevice *kd)
346 struct kvm_device_attr *attr = &kd->kdattr;
347 int ret;
349 /* If the device control API is available and we have a device fd on the
350 * KVMDevice struct, let's use the newer API
352 if (kd->dev_fd >= 0) {
353 uint64_t addr = kd->kda.addr;
355 addr |= kd->kda_addr_ormask;
356 attr->addr = (uintptr_t)&addr;
357 ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
358 } else {
359 ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
362 if (ret < 0) {
363 fprintf(stderr, "Failed to set device address: %s\n",
364 strerror(-ret));
365 abort();
369 static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
371 KVMDevice *kd, *tkd;
373 QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
374 if (kd->kda.addr != -1) {
375 kvm_arm_set_device_addr(kd);
377 memory_region_unref(kd->mr);
378 QSLIST_REMOVE_HEAD(&kvm_devices_head, entries);
379 g_free(kd);
381 memory_listener_unregister(&devlistener);
384 static Notifier notify = {
385 .notify = kvm_arm_machine_init_done,
388 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
389 uint64_t attr, int dev_fd, uint64_t addr_ormask)
391 KVMDevice *kd;
393 if (!kvm_irqchip_in_kernel()) {
394 return;
397 if (QSLIST_EMPTY(&kvm_devices_head)) {
398 memory_listener_register(&devlistener, &address_space_memory);
399 qemu_add_machine_init_done_notifier(&notify);
401 kd = g_new0(KVMDevice, 1);
402 kd->mr = mr;
403 kd->kda.id = devid;
404 kd->kda.addr = -1;
405 kd->kdattr.flags = 0;
406 kd->kdattr.group = group;
407 kd->kdattr.attr = attr;
408 kd->dev_fd = dev_fd;
409 kd->kda_addr_ormask = addr_ormask;
410 QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
411 memory_region_ref(kd->mr);
414 static int compare_u64(const void *a, const void *b)
416 if (*(uint64_t *)a > *(uint64_t *)b) {
417 return 1;
419 if (*(uint64_t *)a < *(uint64_t *)b) {
420 return -1;
422 return 0;
426 * cpreg_values are sorted in ascending order by KVM register ID
427 * (see kvm_arm_init_cpreg_list). This allows us to cheaply find
428 * the storage for a KVM register by ID with a binary search.
430 static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx)
432 uint64_t *res;
434 res = bsearch(&regidx, cpu->cpreg_indexes, cpu->cpreg_array_len,
435 sizeof(uint64_t), compare_u64);
436 assert(res);
438 return &cpu->cpreg_values[res - cpu->cpreg_indexes];
441 /* Initialize the ARMCPU cpreg list according to the kernel's
442 * definition of what CPU registers it knows about (and throw away
443 * the previous TCG-created cpreg list).
445 int kvm_arm_init_cpreg_list(ARMCPU *cpu)
447 struct kvm_reg_list rl;
448 struct kvm_reg_list *rlp;
449 int i, ret, arraylen;
450 CPUState *cs = CPU(cpu);
452 rl.n = 0;
453 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
454 if (ret != -E2BIG) {
455 return ret;
457 rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
458 rlp->n = rl.n;
459 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
460 if (ret) {
461 goto out;
463 /* Sort the list we get back from the kernel, since cpreg_tuples
464 * must be in strictly ascending order.
466 qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
468 for (i = 0, arraylen = 0; i < rlp->n; i++) {
469 if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
470 continue;
472 switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
473 case KVM_REG_SIZE_U32:
474 case KVM_REG_SIZE_U64:
475 break;
476 default:
477 fprintf(stderr, "Can't handle size of register in kernel list\n");
478 ret = -EINVAL;
479 goto out;
482 arraylen++;
485 cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
486 cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
487 cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
488 arraylen);
489 cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
490 arraylen);
491 cpu->cpreg_array_len = arraylen;
492 cpu->cpreg_vmstate_array_len = arraylen;
494 for (i = 0, arraylen = 0; i < rlp->n; i++) {
495 uint64_t regidx = rlp->reg[i];
496 if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
497 continue;
499 cpu->cpreg_indexes[arraylen] = regidx;
500 arraylen++;
502 assert(cpu->cpreg_array_len == arraylen);
504 if (!write_kvmstate_to_list(cpu)) {
505 /* Shouldn't happen unless kernel is inconsistent about
506 * what registers exist.
508 fprintf(stderr, "Initial read of kernel register state failed\n");
509 ret = -EINVAL;
510 goto out;
513 out:
514 g_free(rlp);
515 return ret;
518 bool write_kvmstate_to_list(ARMCPU *cpu)
520 CPUState *cs = CPU(cpu);
521 int i;
522 bool ok = true;
524 for (i = 0; i < cpu->cpreg_array_len; i++) {
525 struct kvm_one_reg r;
526 uint64_t regidx = cpu->cpreg_indexes[i];
527 uint32_t v32;
528 int ret;
530 r.id = regidx;
532 switch (regidx & KVM_REG_SIZE_MASK) {
533 case KVM_REG_SIZE_U32:
534 r.addr = (uintptr_t)&v32;
535 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
536 if (!ret) {
537 cpu->cpreg_values[i] = v32;
539 break;
540 case KVM_REG_SIZE_U64:
541 r.addr = (uintptr_t)(cpu->cpreg_values + i);
542 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
543 break;
544 default:
545 g_assert_not_reached();
547 if (ret) {
548 ok = false;
551 return ok;
554 bool write_list_to_kvmstate(ARMCPU *cpu, int level)
556 CPUState *cs = CPU(cpu);
557 int i;
558 bool ok = true;
560 for (i = 0; i < cpu->cpreg_array_len; i++) {
561 struct kvm_one_reg r;
562 uint64_t regidx = cpu->cpreg_indexes[i];
563 uint32_t v32;
564 int ret;
566 if (kvm_arm_cpreg_level(regidx) > level) {
567 continue;
570 r.id = regidx;
571 switch (regidx & KVM_REG_SIZE_MASK) {
572 case KVM_REG_SIZE_U32:
573 v32 = cpu->cpreg_values[i];
574 r.addr = (uintptr_t)&v32;
575 break;
576 case KVM_REG_SIZE_U64:
577 r.addr = (uintptr_t)(cpu->cpreg_values + i);
578 break;
579 default:
580 g_assert_not_reached();
582 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
583 if (ret) {
584 /* We might fail for "unknown register" and also for
585 * "you tried to set a register which is constant with
586 * a different value from what it actually contains".
588 ok = false;
591 return ok;
594 void kvm_arm_cpu_pre_save(ARMCPU *cpu)
596 /* KVM virtual time adjustment */
597 if (cpu->kvm_vtime_dirty) {
598 *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT) = cpu->kvm_vtime;
602 void kvm_arm_cpu_post_load(ARMCPU *cpu)
604 /* KVM virtual time adjustment */
605 if (cpu->kvm_adjvtime) {
606 cpu->kvm_vtime = *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT);
607 cpu->kvm_vtime_dirty = true;
611 void kvm_arm_reset_vcpu(ARMCPU *cpu)
613 int ret;
615 /* Re-init VCPU so that all registers are set to
616 * their respective reset values.
618 ret = kvm_arm_vcpu_init(CPU(cpu));
619 if (ret < 0) {
620 fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
621 abort();
623 if (!write_kvmstate_to_list(cpu)) {
624 fprintf(stderr, "write_kvmstate_to_list failed\n");
625 abort();
628 * Sync the reset values also into the CPUState. This is necessary
629 * because the next thing we do will be a kvm_arch_put_registers()
630 * which will update the list values from the CPUState before copying
631 * the list values back to KVM. It's OK to ignore failure returns here
632 * for the same reason we do so in kvm_arch_get_registers().
634 write_list_to_cpustate(cpu);
638 * Update KVM's MP_STATE based on what QEMU thinks it is
640 int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
642 if (cap_has_mp_state) {
643 struct kvm_mp_state mp_state = {
644 .mp_state = (cpu->power_state == PSCI_OFF) ?
645 KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
647 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
648 if (ret) {
649 fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n",
650 __func__, ret, strerror(-ret));
651 return -1;
655 return 0;
659 * Sync the KVM MP_STATE into QEMU
661 int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
663 if (cap_has_mp_state) {
664 struct kvm_mp_state mp_state;
665 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
666 if (ret) {
667 fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n",
668 __func__, ret, strerror(-ret));
669 abort();
671 cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
672 PSCI_OFF : PSCI_ON;
675 return 0;
678 void kvm_arm_get_virtual_time(CPUState *cs)
680 ARMCPU *cpu = ARM_CPU(cs);
681 struct kvm_one_reg reg = {
682 .id = KVM_REG_ARM_TIMER_CNT,
683 .addr = (uintptr_t)&cpu->kvm_vtime,
685 int ret;
687 if (cpu->kvm_vtime_dirty) {
688 return;
691 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
692 if (ret) {
693 error_report("Failed to get KVM_REG_ARM_TIMER_CNT");
694 abort();
697 cpu->kvm_vtime_dirty = true;
700 void kvm_arm_put_virtual_time(CPUState *cs)
702 ARMCPU *cpu = ARM_CPU(cs);
703 struct kvm_one_reg reg = {
704 .id = KVM_REG_ARM_TIMER_CNT,
705 .addr = (uintptr_t)&cpu->kvm_vtime,
707 int ret;
709 if (!cpu->kvm_vtime_dirty) {
710 return;
713 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
714 if (ret) {
715 error_report("Failed to set KVM_REG_ARM_TIMER_CNT");
716 abort();
719 cpu->kvm_vtime_dirty = false;
722 int kvm_put_vcpu_events(ARMCPU *cpu)
724 CPUARMState *env = &cpu->env;
725 struct kvm_vcpu_events events;
726 int ret;
728 if (!kvm_has_vcpu_events()) {
729 return 0;
732 memset(&events, 0, sizeof(events));
733 events.exception.serror_pending = env->serror.pending;
735 /* Inject SError to guest with specified syndrome if host kernel
736 * supports it, otherwise inject SError without syndrome.
738 if (cap_has_inject_serror_esr) {
739 events.exception.serror_has_esr = env->serror.has_esr;
740 events.exception.serror_esr = env->serror.esr;
743 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
744 if (ret) {
745 error_report("failed to put vcpu events");
748 return ret;
751 int kvm_get_vcpu_events(ARMCPU *cpu)
753 CPUARMState *env = &cpu->env;
754 struct kvm_vcpu_events events;
755 int ret;
757 if (!kvm_has_vcpu_events()) {
758 return 0;
761 memset(&events, 0, sizeof(events));
762 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
763 if (ret) {
764 error_report("failed to get vcpu events");
765 return ret;
768 env->serror.pending = events.exception.serror_pending;
769 env->serror.has_esr = events.exception.serror_has_esr;
770 env->serror.esr = events.exception.serror_esr;
772 return 0;
775 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
777 ARMCPU *cpu = ARM_CPU(cs);
778 CPUARMState *env = &cpu->env;
780 if (unlikely(env->ext_dabt_raised)) {
782 * Verifying that the ext DABT has been properly injected,
783 * otherwise risking indefinitely re-running the faulting instruction
784 * Covering a very narrow case for kernels 5.5..5.5.4
785 * when injected abort was misconfigured to be
786 * an IMPLEMENTATION DEFINED exception (for 32-bit EL1)
788 if (!arm_feature(env, ARM_FEATURE_AARCH64) &&
789 unlikely(!kvm_arm_verify_ext_dabt_pending(cs))) {
791 error_report("Data abort exception with no valid ISS generated by "
792 "guest memory access. KVM unable to emulate faulting "
793 "instruction. Failed to inject an external data abort "
794 "into the guest.");
795 abort();
797 /* Clear the status */
798 env->ext_dabt_raised = 0;
802 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
804 ARMCPU *cpu;
805 uint32_t switched_level;
807 if (kvm_irqchip_in_kernel()) {
809 * We only need to sync timer states with user-space interrupt
810 * controllers, so return early and save cycles if we don't.
812 return MEMTXATTRS_UNSPECIFIED;
815 cpu = ARM_CPU(cs);
817 /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
818 if (run->s.regs.device_irq_level != cpu->device_irq_level) {
819 switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
821 qemu_mutex_lock_iothread();
823 if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
824 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
825 !!(run->s.regs.device_irq_level &
826 KVM_ARM_DEV_EL1_VTIMER));
827 switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
830 if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
831 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
832 !!(run->s.regs.device_irq_level &
833 KVM_ARM_DEV_EL1_PTIMER));
834 switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
837 if (switched_level & KVM_ARM_DEV_PMU) {
838 qemu_set_irq(cpu->pmu_interrupt,
839 !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
840 switched_level &= ~KVM_ARM_DEV_PMU;
843 if (switched_level) {
844 qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
845 __func__, switched_level);
848 /* We also mark unknown levels as processed to not waste cycles */
849 cpu->device_irq_level = run->s.regs.device_irq_level;
850 qemu_mutex_unlock_iothread();
853 return MEMTXATTRS_UNSPECIFIED;
856 void kvm_arm_vm_state_change(void *opaque, bool running, RunState state)
858 CPUState *cs = opaque;
859 ARMCPU *cpu = ARM_CPU(cs);
861 if (running) {
862 if (cpu->kvm_adjvtime) {
863 kvm_arm_put_virtual_time(cs);
865 } else {
866 if (cpu->kvm_adjvtime) {
867 kvm_arm_get_virtual_time(cs);
873 * kvm_arm_handle_dabt_nisv:
874 * @cs: CPUState
875 * @esr_iss: ISS encoding (limited) for the exception from Data Abort
876 * ISV bit set to '0b0' -> no valid instruction syndrome
877 * @fault_ipa: faulting address for the synchronous data abort
879 * Returns: 0 if the exception has been handled, < 0 otherwise
881 static int kvm_arm_handle_dabt_nisv(CPUState *cs, uint64_t esr_iss,
882 uint64_t fault_ipa)
884 ARMCPU *cpu = ARM_CPU(cs);
885 CPUARMState *env = &cpu->env;
887 * Request KVM to inject the external data abort into the guest
889 if (cap_has_inject_ext_dabt) {
890 struct kvm_vcpu_events events = { };
892 * The external data abort event will be handled immediately by KVM
893 * using the address fault that triggered the exit on given VCPU.
894 * Requesting injection of the external data abort does not rely
895 * on any other VCPU state. Therefore, in this particular case, the VCPU
896 * synchronization can be exceptionally skipped.
898 events.exception.ext_dabt_pending = 1;
899 /* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */
900 if (!kvm_vcpu_ioctl(cs, KVM_SET_VCPU_EVENTS, &events)) {
901 env->ext_dabt_raised = 1;
902 return 0;
904 } else {
905 error_report("Data abort exception triggered by guest memory access "
906 "at physical address: 0x" TARGET_FMT_lx,
907 (target_ulong)fault_ipa);
908 error_printf("KVM unable to emulate faulting instruction.\n");
910 return -1;
913 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
915 int ret = 0;
917 switch (run->exit_reason) {
918 case KVM_EXIT_DEBUG:
919 if (kvm_arm_handle_debug(cs, &run->debug.arch)) {
920 ret = EXCP_DEBUG;
921 } /* otherwise return to guest */
922 break;
923 case KVM_EXIT_ARM_NISV:
924 /* External DABT with no valid iss to decode */
925 ret = kvm_arm_handle_dabt_nisv(cs, run->arm_nisv.esr_iss,
926 run->arm_nisv.fault_ipa);
927 break;
928 default:
929 qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
930 __func__, run->exit_reason);
931 break;
933 return ret;
936 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
938 return true;
941 int kvm_arch_process_async_events(CPUState *cs)
943 return 0;
946 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
948 if (kvm_sw_breakpoints_active(cs)) {
949 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
951 if (kvm_arm_hw_debug_active(cs)) {
952 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
953 kvm_arm_copy_hw_debug_data(&dbg->arch);
957 void kvm_arch_init_irq_routing(KVMState *s)
961 int kvm_arch_irqchip_create(KVMState *s)
963 if (kvm_kernel_irqchip_split()) {
964 error_report("-machine kernel_irqchip=split is not supported on ARM.");
965 exit(1);
968 /* If we can create the VGIC using the newer device control API, we
969 * let the device do this when it initializes itself, otherwise we
970 * fall back to the old API */
971 return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
974 int kvm_arm_vgic_probe(void)
976 int val = 0;
978 if (kvm_create_device(kvm_state,
979 KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
980 val |= KVM_ARM_VGIC_V3;
982 if (kvm_create_device(kvm_state,
983 KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
984 val |= KVM_ARM_VGIC_V2;
986 return val;
989 int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level)
991 int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq;
992 int cpu_idx1 = cpu % 256;
993 int cpu_idx2 = cpu / 256;
995 kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) |
996 (cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT);
998 return kvm_set_irq(kvm_state, kvm_irq, !!level);
1001 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
1002 uint64_t address, uint32_t data, PCIDevice *dev)
1004 AddressSpace *as = pci_device_iommu_address_space(dev);
1005 hwaddr xlat, len, doorbell_gpa;
1006 MemoryRegionSection mrs;
1007 MemoryRegion *mr;
1009 if (as == &address_space_memory) {
1010 return 0;
1013 /* MSI doorbell address is translated by an IOMMU */
1015 RCU_READ_LOCK_GUARD();
1017 mr = address_space_translate(as, address, &xlat, &len, true,
1018 MEMTXATTRS_UNSPECIFIED);
1020 if (!mr) {
1021 return 1;
1024 mrs = memory_region_find(mr, xlat, 1);
1026 if (!mrs.mr) {
1027 return 1;
1030 doorbell_gpa = mrs.offset_within_address_space;
1031 memory_region_unref(mrs.mr);
1033 route->u.msi.address_lo = doorbell_gpa;
1034 route->u.msi.address_hi = doorbell_gpa >> 32;
1036 trace_kvm_arm_fixup_msi_route(address, doorbell_gpa);
1038 return 0;
1041 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
1042 int vector, PCIDevice *dev)
1044 return 0;
1047 int kvm_arch_release_virq_post(int virq)
1049 return 0;
1052 int kvm_arch_msi_data_to_gsi(uint32_t data)
1054 return (data - 32) & 0xffff;
1057 bool kvm_arch_cpu_check_are_resettable(void)
1059 return true;
1062 void kvm_arch_accel_class_init(ObjectClass *oc)