pcihp: compose PCNT callchain right before its user _GPE._E01
[qemu.git] / target / arm / helper-a64.c
blob77a8502b6b6a9a23df530fc66e1bf8d0d5cd17d9
1 /*
2 * AArch64 specific helpers
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/units.h"
22 #include "cpu.h"
23 #include "exec/gdbstub.h"
24 #include "exec/helper-proto.h"
25 #include "qemu/host-utils.h"
26 #include "qemu/log.h"
27 #include "qemu/main-loop.h"
28 #include "qemu/bitops.h"
29 #include "internals.h"
30 #include "qemu/crc32c.h"
31 #include "exec/exec-all.h"
32 #include "exec/cpu_ldst.h"
33 #include "qemu/int128.h"
34 #include "qemu/atomic128.h"
35 #include "fpu/softfloat.h"
36 #include <zlib.h> /* For crc32 */
38 /* C2.4.7 Multiply and divide */
39 /* special cases for 0 and LLONG_MIN are mandated by the standard */
40 uint64_t HELPER(udiv64)(uint64_t num, uint64_t den)
42 if (den == 0) {
43 return 0;
45 return num / den;
48 int64_t HELPER(sdiv64)(int64_t num, int64_t den)
50 if (den == 0) {
51 return 0;
53 if (num == LLONG_MIN && den == -1) {
54 return LLONG_MIN;
56 return num / den;
59 uint64_t HELPER(rbit64)(uint64_t x)
61 return revbit64(x);
64 void HELPER(msr_i_spsel)(CPUARMState *env, uint32_t imm)
66 update_spsel(env, imm);
69 static void daif_check(CPUARMState *env, uint32_t op,
70 uint32_t imm, uintptr_t ra)
72 /* DAIF update to PSTATE. This is OK from EL0 only if UMA is set. */
73 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
74 raise_exception_ra(env, EXCP_UDEF,
75 syn_aa64_sysregtrap(0, extract32(op, 0, 3),
76 extract32(op, 3, 3), 4,
77 imm, 0x1f, 0),
78 exception_target_el(env), ra);
82 void HELPER(msr_i_daifset)(CPUARMState *env, uint32_t imm)
84 daif_check(env, 0x1e, imm, GETPC());
85 env->daif |= (imm << 6) & PSTATE_DAIF;
86 arm_rebuild_hflags(env);
89 void HELPER(msr_i_daifclear)(CPUARMState *env, uint32_t imm)
91 daif_check(env, 0x1f, imm, GETPC());
92 env->daif &= ~((imm << 6) & PSTATE_DAIF);
93 arm_rebuild_hflags(env);
96 /* Convert a softfloat float_relation_ (as returned by
97 * the float*_compare functions) to the correct ARM
98 * NZCV flag state.
100 static inline uint32_t float_rel_to_flags(int res)
102 uint64_t flags;
103 switch (res) {
104 case float_relation_equal:
105 flags = PSTATE_Z | PSTATE_C;
106 break;
107 case float_relation_less:
108 flags = PSTATE_N;
109 break;
110 case float_relation_greater:
111 flags = PSTATE_C;
112 break;
113 case float_relation_unordered:
114 default:
115 flags = PSTATE_C | PSTATE_V;
116 break;
118 return flags;
121 uint64_t HELPER(vfp_cmph_a64)(uint32_t x, uint32_t y, void *fp_status)
123 return float_rel_to_flags(float16_compare_quiet(x, y, fp_status));
126 uint64_t HELPER(vfp_cmpeh_a64)(uint32_t x, uint32_t y, void *fp_status)
128 return float_rel_to_flags(float16_compare(x, y, fp_status));
131 uint64_t HELPER(vfp_cmps_a64)(float32 x, float32 y, void *fp_status)
133 return float_rel_to_flags(float32_compare_quiet(x, y, fp_status));
136 uint64_t HELPER(vfp_cmpes_a64)(float32 x, float32 y, void *fp_status)
138 return float_rel_to_flags(float32_compare(x, y, fp_status));
141 uint64_t HELPER(vfp_cmpd_a64)(float64 x, float64 y, void *fp_status)
143 return float_rel_to_flags(float64_compare_quiet(x, y, fp_status));
146 uint64_t HELPER(vfp_cmped_a64)(float64 x, float64 y, void *fp_status)
148 return float_rel_to_flags(float64_compare(x, y, fp_status));
151 float32 HELPER(vfp_mulxs)(float32 a, float32 b, void *fpstp)
153 float_status *fpst = fpstp;
155 a = float32_squash_input_denormal(a, fpst);
156 b = float32_squash_input_denormal(b, fpst);
158 if ((float32_is_zero(a) && float32_is_infinity(b)) ||
159 (float32_is_infinity(a) && float32_is_zero(b))) {
160 /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
161 return make_float32((1U << 30) |
162 ((float32_val(a) ^ float32_val(b)) & (1U << 31)));
164 return float32_mul(a, b, fpst);
167 float64 HELPER(vfp_mulxd)(float64 a, float64 b, void *fpstp)
169 float_status *fpst = fpstp;
171 a = float64_squash_input_denormal(a, fpst);
172 b = float64_squash_input_denormal(b, fpst);
174 if ((float64_is_zero(a) && float64_is_infinity(b)) ||
175 (float64_is_infinity(a) && float64_is_zero(b))) {
176 /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
177 return make_float64((1ULL << 62) |
178 ((float64_val(a) ^ float64_val(b)) & (1ULL << 63)));
180 return float64_mul(a, b, fpst);
183 /* 64bit/double versions of the neon float compare functions */
184 uint64_t HELPER(neon_ceq_f64)(float64 a, float64 b, void *fpstp)
186 float_status *fpst = fpstp;
187 return -float64_eq_quiet(a, b, fpst);
190 uint64_t HELPER(neon_cge_f64)(float64 a, float64 b, void *fpstp)
192 float_status *fpst = fpstp;
193 return -float64_le(b, a, fpst);
196 uint64_t HELPER(neon_cgt_f64)(float64 a, float64 b, void *fpstp)
198 float_status *fpst = fpstp;
199 return -float64_lt(b, a, fpst);
202 /* Reciprocal step and sqrt step. Note that unlike the A32/T32
203 * versions, these do a fully fused multiply-add or
204 * multiply-add-and-halve.
207 uint32_t HELPER(recpsf_f16)(uint32_t a, uint32_t b, void *fpstp)
209 float_status *fpst = fpstp;
211 a = float16_squash_input_denormal(a, fpst);
212 b = float16_squash_input_denormal(b, fpst);
214 a = float16_chs(a);
215 if ((float16_is_infinity(a) && float16_is_zero(b)) ||
216 (float16_is_infinity(b) && float16_is_zero(a))) {
217 return float16_two;
219 return float16_muladd(a, b, float16_two, 0, fpst);
222 float32 HELPER(recpsf_f32)(float32 a, float32 b, void *fpstp)
224 float_status *fpst = fpstp;
226 a = float32_squash_input_denormal(a, fpst);
227 b = float32_squash_input_denormal(b, fpst);
229 a = float32_chs(a);
230 if ((float32_is_infinity(a) && float32_is_zero(b)) ||
231 (float32_is_infinity(b) && float32_is_zero(a))) {
232 return float32_two;
234 return float32_muladd(a, b, float32_two, 0, fpst);
237 float64 HELPER(recpsf_f64)(float64 a, float64 b, void *fpstp)
239 float_status *fpst = fpstp;
241 a = float64_squash_input_denormal(a, fpst);
242 b = float64_squash_input_denormal(b, fpst);
244 a = float64_chs(a);
245 if ((float64_is_infinity(a) && float64_is_zero(b)) ||
246 (float64_is_infinity(b) && float64_is_zero(a))) {
247 return float64_two;
249 return float64_muladd(a, b, float64_two, 0, fpst);
252 uint32_t HELPER(rsqrtsf_f16)(uint32_t a, uint32_t b, void *fpstp)
254 float_status *fpst = fpstp;
256 a = float16_squash_input_denormal(a, fpst);
257 b = float16_squash_input_denormal(b, fpst);
259 a = float16_chs(a);
260 if ((float16_is_infinity(a) && float16_is_zero(b)) ||
261 (float16_is_infinity(b) && float16_is_zero(a))) {
262 return float16_one_point_five;
264 return float16_muladd(a, b, float16_three, float_muladd_halve_result, fpst);
267 float32 HELPER(rsqrtsf_f32)(float32 a, float32 b, void *fpstp)
269 float_status *fpst = fpstp;
271 a = float32_squash_input_denormal(a, fpst);
272 b = float32_squash_input_denormal(b, fpst);
274 a = float32_chs(a);
275 if ((float32_is_infinity(a) && float32_is_zero(b)) ||
276 (float32_is_infinity(b) && float32_is_zero(a))) {
277 return float32_one_point_five;
279 return float32_muladd(a, b, float32_three, float_muladd_halve_result, fpst);
282 float64 HELPER(rsqrtsf_f64)(float64 a, float64 b, void *fpstp)
284 float_status *fpst = fpstp;
286 a = float64_squash_input_denormal(a, fpst);
287 b = float64_squash_input_denormal(b, fpst);
289 a = float64_chs(a);
290 if ((float64_is_infinity(a) && float64_is_zero(b)) ||
291 (float64_is_infinity(b) && float64_is_zero(a))) {
292 return float64_one_point_five;
294 return float64_muladd(a, b, float64_three, float_muladd_halve_result, fpst);
297 /* Pairwise long add: add pairs of adjacent elements into
298 * double-width elements in the result (eg _s8 is an 8x8->16 op)
300 uint64_t HELPER(neon_addlp_s8)(uint64_t a)
302 uint64_t nsignmask = 0x0080008000800080ULL;
303 uint64_t wsignmask = 0x8000800080008000ULL;
304 uint64_t elementmask = 0x00ff00ff00ff00ffULL;
305 uint64_t tmp1, tmp2;
306 uint64_t res, signres;
308 /* Extract odd elements, sign extend each to a 16 bit field */
309 tmp1 = a & elementmask;
310 tmp1 ^= nsignmask;
311 tmp1 |= wsignmask;
312 tmp1 = (tmp1 - nsignmask) ^ wsignmask;
313 /* Ditto for the even elements */
314 tmp2 = (a >> 8) & elementmask;
315 tmp2 ^= nsignmask;
316 tmp2 |= wsignmask;
317 tmp2 = (tmp2 - nsignmask) ^ wsignmask;
319 /* calculate the result by summing bits 0..14, 16..22, etc,
320 * and then adjusting the sign bits 15, 23, etc manually.
321 * This ensures the addition can't overflow the 16 bit field.
323 signres = (tmp1 ^ tmp2) & wsignmask;
324 res = (tmp1 & ~wsignmask) + (tmp2 & ~wsignmask);
325 res ^= signres;
327 return res;
330 uint64_t HELPER(neon_addlp_u8)(uint64_t a)
332 uint64_t tmp;
334 tmp = a & 0x00ff00ff00ff00ffULL;
335 tmp += (a >> 8) & 0x00ff00ff00ff00ffULL;
336 return tmp;
339 uint64_t HELPER(neon_addlp_s16)(uint64_t a)
341 int32_t reslo, reshi;
343 reslo = (int32_t)(int16_t)a + (int32_t)(int16_t)(a >> 16);
344 reshi = (int32_t)(int16_t)(a >> 32) + (int32_t)(int16_t)(a >> 48);
346 return (uint32_t)reslo | (((uint64_t)reshi) << 32);
349 uint64_t HELPER(neon_addlp_u16)(uint64_t a)
351 uint64_t tmp;
353 tmp = a & 0x0000ffff0000ffffULL;
354 tmp += (a >> 16) & 0x0000ffff0000ffffULL;
355 return tmp;
358 /* Floating-point reciprocal exponent - see FPRecpX in ARM ARM */
359 uint32_t HELPER(frecpx_f16)(uint32_t a, void *fpstp)
361 float_status *fpst = fpstp;
362 uint16_t val16, sbit;
363 int16_t exp;
365 if (float16_is_any_nan(a)) {
366 float16 nan = a;
367 if (float16_is_signaling_nan(a, fpst)) {
368 float_raise(float_flag_invalid, fpst);
369 if (!fpst->default_nan_mode) {
370 nan = float16_silence_nan(a, fpst);
373 if (fpst->default_nan_mode) {
374 nan = float16_default_nan(fpst);
376 return nan;
379 a = float16_squash_input_denormal(a, fpst);
381 val16 = float16_val(a);
382 sbit = 0x8000 & val16;
383 exp = extract32(val16, 10, 5);
385 if (exp == 0) {
386 return make_float16(deposit32(sbit, 10, 5, 0x1e));
387 } else {
388 return make_float16(deposit32(sbit, 10, 5, ~exp));
392 float32 HELPER(frecpx_f32)(float32 a, void *fpstp)
394 float_status *fpst = fpstp;
395 uint32_t val32, sbit;
396 int32_t exp;
398 if (float32_is_any_nan(a)) {
399 float32 nan = a;
400 if (float32_is_signaling_nan(a, fpst)) {
401 float_raise(float_flag_invalid, fpst);
402 if (!fpst->default_nan_mode) {
403 nan = float32_silence_nan(a, fpst);
406 if (fpst->default_nan_mode) {
407 nan = float32_default_nan(fpst);
409 return nan;
412 a = float32_squash_input_denormal(a, fpst);
414 val32 = float32_val(a);
415 sbit = 0x80000000ULL & val32;
416 exp = extract32(val32, 23, 8);
418 if (exp == 0) {
419 return make_float32(sbit | (0xfe << 23));
420 } else {
421 return make_float32(sbit | (~exp & 0xff) << 23);
425 float64 HELPER(frecpx_f64)(float64 a, void *fpstp)
427 float_status *fpst = fpstp;
428 uint64_t val64, sbit;
429 int64_t exp;
431 if (float64_is_any_nan(a)) {
432 float64 nan = a;
433 if (float64_is_signaling_nan(a, fpst)) {
434 float_raise(float_flag_invalid, fpst);
435 if (!fpst->default_nan_mode) {
436 nan = float64_silence_nan(a, fpst);
439 if (fpst->default_nan_mode) {
440 nan = float64_default_nan(fpst);
442 return nan;
445 a = float64_squash_input_denormal(a, fpst);
447 val64 = float64_val(a);
448 sbit = 0x8000000000000000ULL & val64;
449 exp = extract64(float64_val(a), 52, 11);
451 if (exp == 0) {
452 return make_float64(sbit | (0x7feULL << 52));
453 } else {
454 return make_float64(sbit | (~exp & 0x7ffULL) << 52);
458 float32 HELPER(fcvtx_f64_to_f32)(float64 a, CPUARMState *env)
460 /* Von Neumann rounding is implemented by using round-to-zero
461 * and then setting the LSB of the result if Inexact was raised.
463 float32 r;
464 float_status *fpst = &env->vfp.fp_status;
465 float_status tstat = *fpst;
466 int exflags;
468 set_float_rounding_mode(float_round_to_zero, &tstat);
469 set_float_exception_flags(0, &tstat);
470 r = float64_to_float32(a, &tstat);
471 exflags = get_float_exception_flags(&tstat);
472 if (exflags & float_flag_inexact) {
473 r = make_float32(float32_val(r) | 1);
475 exflags |= get_float_exception_flags(fpst);
476 set_float_exception_flags(exflags, fpst);
477 return r;
480 /* 64-bit versions of the CRC helpers. Note that although the operation
481 * (and the prototypes of crc32c() and crc32() mean that only the bottom
482 * 32 bits of the accumulator and result are used, we pass and return
483 * uint64_t for convenience of the generated code. Unlike the 32-bit
484 * instruction set versions, val may genuinely have 64 bits of data in it.
485 * The upper bytes of val (above the number specified by 'bytes') must have
486 * been zeroed out by the caller.
488 uint64_t HELPER(crc32_64)(uint64_t acc, uint64_t val, uint32_t bytes)
490 uint8_t buf[8];
492 stq_le_p(buf, val);
494 /* zlib crc32 converts the accumulator and output to one's complement. */
495 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
498 uint64_t HELPER(crc32c_64)(uint64_t acc, uint64_t val, uint32_t bytes)
500 uint8_t buf[8];
502 stq_le_p(buf, val);
504 /* Linux crc32c converts the output to one's complement. */
505 return crc32c(acc, buf, bytes) ^ 0xffffffff;
508 uint64_t HELPER(paired_cmpxchg64_le)(CPUARMState *env, uint64_t addr,
509 uint64_t new_lo, uint64_t new_hi)
511 Int128 cmpv = int128_make128(env->exclusive_val, env->exclusive_high);
512 Int128 newv = int128_make128(new_lo, new_hi);
513 Int128 oldv;
514 uintptr_t ra = GETPC();
515 uint64_t o0, o1;
516 bool success;
517 int mem_idx = cpu_mmu_index(env, false);
518 MemOpIdx oi0 = make_memop_idx(MO_LEUQ | MO_ALIGN_16, mem_idx);
519 MemOpIdx oi1 = make_memop_idx(MO_LEUQ, mem_idx);
521 o0 = cpu_ldq_le_mmu(env, addr + 0, oi0, ra);
522 o1 = cpu_ldq_le_mmu(env, addr + 8, oi1, ra);
523 oldv = int128_make128(o0, o1);
525 success = int128_eq(oldv, cmpv);
526 if (success) {
527 cpu_stq_le_mmu(env, addr + 0, int128_getlo(newv), oi1, ra);
528 cpu_stq_le_mmu(env, addr + 8, int128_gethi(newv), oi1, ra);
531 return !success;
534 uint64_t HELPER(paired_cmpxchg64_le_parallel)(CPUARMState *env, uint64_t addr,
535 uint64_t new_lo, uint64_t new_hi)
537 Int128 oldv, cmpv, newv;
538 uintptr_t ra = GETPC();
539 bool success;
540 int mem_idx;
541 MemOpIdx oi;
543 assert(HAVE_CMPXCHG128);
545 mem_idx = cpu_mmu_index(env, false);
546 oi = make_memop_idx(MO_LE | MO_128 | MO_ALIGN, mem_idx);
548 cmpv = int128_make128(env->exclusive_val, env->exclusive_high);
549 newv = int128_make128(new_lo, new_hi);
550 oldv = cpu_atomic_cmpxchgo_le_mmu(env, addr, cmpv, newv, oi, ra);
552 success = int128_eq(oldv, cmpv);
553 return !success;
556 uint64_t HELPER(paired_cmpxchg64_be)(CPUARMState *env, uint64_t addr,
557 uint64_t new_lo, uint64_t new_hi)
560 * High and low need to be switched here because this is not actually a
561 * 128bit store but two doublewords stored consecutively
563 Int128 cmpv = int128_make128(env->exclusive_high, env->exclusive_val);
564 Int128 newv = int128_make128(new_hi, new_lo);
565 Int128 oldv;
566 uintptr_t ra = GETPC();
567 uint64_t o0, o1;
568 bool success;
569 int mem_idx = cpu_mmu_index(env, false);
570 MemOpIdx oi0 = make_memop_idx(MO_BEUQ | MO_ALIGN_16, mem_idx);
571 MemOpIdx oi1 = make_memop_idx(MO_BEUQ, mem_idx);
573 o1 = cpu_ldq_be_mmu(env, addr + 0, oi0, ra);
574 o0 = cpu_ldq_be_mmu(env, addr + 8, oi1, ra);
575 oldv = int128_make128(o0, o1);
577 success = int128_eq(oldv, cmpv);
578 if (success) {
579 cpu_stq_be_mmu(env, addr + 0, int128_gethi(newv), oi1, ra);
580 cpu_stq_be_mmu(env, addr + 8, int128_getlo(newv), oi1, ra);
583 return !success;
586 uint64_t HELPER(paired_cmpxchg64_be_parallel)(CPUARMState *env, uint64_t addr,
587 uint64_t new_lo, uint64_t new_hi)
589 Int128 oldv, cmpv, newv;
590 uintptr_t ra = GETPC();
591 bool success;
592 int mem_idx;
593 MemOpIdx oi;
595 assert(HAVE_CMPXCHG128);
597 mem_idx = cpu_mmu_index(env, false);
598 oi = make_memop_idx(MO_BE | MO_128 | MO_ALIGN, mem_idx);
601 * High and low need to be switched here because this is not actually a
602 * 128bit store but two doublewords stored consecutively
604 cmpv = int128_make128(env->exclusive_high, env->exclusive_val);
605 newv = int128_make128(new_hi, new_lo);
606 oldv = cpu_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv, oi, ra);
608 success = int128_eq(oldv, cmpv);
609 return !success;
612 /* Writes back the old data into Rs. */
613 void HELPER(casp_le_parallel)(CPUARMState *env, uint32_t rs, uint64_t addr,
614 uint64_t new_lo, uint64_t new_hi)
616 Int128 oldv, cmpv, newv;
617 uintptr_t ra = GETPC();
618 int mem_idx;
619 MemOpIdx oi;
621 assert(HAVE_CMPXCHG128);
623 mem_idx = cpu_mmu_index(env, false);
624 oi = make_memop_idx(MO_LE | MO_128 | MO_ALIGN, mem_idx);
626 cmpv = int128_make128(env->xregs[rs], env->xregs[rs + 1]);
627 newv = int128_make128(new_lo, new_hi);
628 oldv = cpu_atomic_cmpxchgo_le_mmu(env, addr, cmpv, newv, oi, ra);
630 env->xregs[rs] = int128_getlo(oldv);
631 env->xregs[rs + 1] = int128_gethi(oldv);
634 void HELPER(casp_be_parallel)(CPUARMState *env, uint32_t rs, uint64_t addr,
635 uint64_t new_hi, uint64_t new_lo)
637 Int128 oldv, cmpv, newv;
638 uintptr_t ra = GETPC();
639 int mem_idx;
640 MemOpIdx oi;
642 assert(HAVE_CMPXCHG128);
644 mem_idx = cpu_mmu_index(env, false);
645 oi = make_memop_idx(MO_LE | MO_128 | MO_ALIGN, mem_idx);
647 cmpv = int128_make128(env->xregs[rs + 1], env->xregs[rs]);
648 newv = int128_make128(new_lo, new_hi);
649 oldv = cpu_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv, oi, ra);
651 env->xregs[rs + 1] = int128_getlo(oldv);
652 env->xregs[rs] = int128_gethi(oldv);
656 * AdvSIMD half-precision
659 #define ADVSIMD_HELPER(name, suffix) HELPER(glue(glue(advsimd_, name), suffix))
661 #define ADVSIMD_HALFOP(name) \
662 uint32_t ADVSIMD_HELPER(name, h)(uint32_t a, uint32_t b, void *fpstp) \
664 float_status *fpst = fpstp; \
665 return float16_ ## name(a, b, fpst); \
668 ADVSIMD_HALFOP(add)
669 ADVSIMD_HALFOP(sub)
670 ADVSIMD_HALFOP(mul)
671 ADVSIMD_HALFOP(div)
672 ADVSIMD_HALFOP(min)
673 ADVSIMD_HALFOP(max)
674 ADVSIMD_HALFOP(minnum)
675 ADVSIMD_HALFOP(maxnum)
677 #define ADVSIMD_TWOHALFOP(name) \
678 uint32_t ADVSIMD_HELPER(name, 2h)(uint32_t two_a, uint32_t two_b, void *fpstp) \
680 float16 a1, a2, b1, b2; \
681 uint32_t r1, r2; \
682 float_status *fpst = fpstp; \
683 a1 = extract32(two_a, 0, 16); \
684 a2 = extract32(two_a, 16, 16); \
685 b1 = extract32(two_b, 0, 16); \
686 b2 = extract32(two_b, 16, 16); \
687 r1 = float16_ ## name(a1, b1, fpst); \
688 r2 = float16_ ## name(a2, b2, fpst); \
689 return deposit32(r1, 16, 16, r2); \
692 ADVSIMD_TWOHALFOP(add)
693 ADVSIMD_TWOHALFOP(sub)
694 ADVSIMD_TWOHALFOP(mul)
695 ADVSIMD_TWOHALFOP(div)
696 ADVSIMD_TWOHALFOP(min)
697 ADVSIMD_TWOHALFOP(max)
698 ADVSIMD_TWOHALFOP(minnum)
699 ADVSIMD_TWOHALFOP(maxnum)
701 /* Data processing - scalar floating-point and advanced SIMD */
702 static float16 float16_mulx(float16 a, float16 b, void *fpstp)
704 float_status *fpst = fpstp;
706 a = float16_squash_input_denormal(a, fpst);
707 b = float16_squash_input_denormal(b, fpst);
709 if ((float16_is_zero(a) && float16_is_infinity(b)) ||
710 (float16_is_infinity(a) && float16_is_zero(b))) {
711 /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
712 return make_float16((1U << 14) |
713 ((float16_val(a) ^ float16_val(b)) & (1U << 15)));
715 return float16_mul(a, b, fpst);
718 ADVSIMD_HALFOP(mulx)
719 ADVSIMD_TWOHALFOP(mulx)
721 /* fused multiply-accumulate */
722 uint32_t HELPER(advsimd_muladdh)(uint32_t a, uint32_t b, uint32_t c,
723 void *fpstp)
725 float_status *fpst = fpstp;
726 return float16_muladd(a, b, c, 0, fpst);
729 uint32_t HELPER(advsimd_muladd2h)(uint32_t two_a, uint32_t two_b,
730 uint32_t two_c, void *fpstp)
732 float_status *fpst = fpstp;
733 float16 a1, a2, b1, b2, c1, c2;
734 uint32_t r1, r2;
735 a1 = extract32(two_a, 0, 16);
736 a2 = extract32(two_a, 16, 16);
737 b1 = extract32(two_b, 0, 16);
738 b2 = extract32(two_b, 16, 16);
739 c1 = extract32(two_c, 0, 16);
740 c2 = extract32(two_c, 16, 16);
741 r1 = float16_muladd(a1, b1, c1, 0, fpst);
742 r2 = float16_muladd(a2, b2, c2, 0, fpst);
743 return deposit32(r1, 16, 16, r2);
747 * Floating point comparisons produce an integer result. Softfloat
748 * routines return float_relation types which we convert to the 0/-1
749 * Neon requires.
752 #define ADVSIMD_CMPRES(test) (test) ? 0xffff : 0
754 uint32_t HELPER(advsimd_ceq_f16)(uint32_t a, uint32_t b, void *fpstp)
756 float_status *fpst = fpstp;
757 int compare = float16_compare_quiet(a, b, fpst);
758 return ADVSIMD_CMPRES(compare == float_relation_equal);
761 uint32_t HELPER(advsimd_cge_f16)(uint32_t a, uint32_t b, void *fpstp)
763 float_status *fpst = fpstp;
764 int compare = float16_compare(a, b, fpst);
765 return ADVSIMD_CMPRES(compare == float_relation_greater ||
766 compare == float_relation_equal);
769 uint32_t HELPER(advsimd_cgt_f16)(uint32_t a, uint32_t b, void *fpstp)
771 float_status *fpst = fpstp;
772 int compare = float16_compare(a, b, fpst);
773 return ADVSIMD_CMPRES(compare == float_relation_greater);
776 uint32_t HELPER(advsimd_acge_f16)(uint32_t a, uint32_t b, void *fpstp)
778 float_status *fpst = fpstp;
779 float16 f0 = float16_abs(a);
780 float16 f1 = float16_abs(b);
781 int compare = float16_compare(f0, f1, fpst);
782 return ADVSIMD_CMPRES(compare == float_relation_greater ||
783 compare == float_relation_equal);
786 uint32_t HELPER(advsimd_acgt_f16)(uint32_t a, uint32_t b, void *fpstp)
788 float_status *fpst = fpstp;
789 float16 f0 = float16_abs(a);
790 float16 f1 = float16_abs(b);
791 int compare = float16_compare(f0, f1, fpst);
792 return ADVSIMD_CMPRES(compare == float_relation_greater);
795 /* round to integral */
796 uint32_t HELPER(advsimd_rinth_exact)(uint32_t x, void *fp_status)
798 return float16_round_to_int(x, fp_status);
801 uint32_t HELPER(advsimd_rinth)(uint32_t x, void *fp_status)
803 int old_flags = get_float_exception_flags(fp_status), new_flags;
804 float16 ret;
806 ret = float16_round_to_int(x, fp_status);
808 /* Suppress any inexact exceptions the conversion produced */
809 if (!(old_flags & float_flag_inexact)) {
810 new_flags = get_float_exception_flags(fp_status);
811 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
814 return ret;
818 * Half-precision floating point conversion functions
820 * There are a multitude of conversion functions with various
821 * different rounding modes. This is dealt with by the calling code
822 * setting the mode appropriately before calling the helper.
825 uint32_t HELPER(advsimd_f16tosinth)(uint32_t a, void *fpstp)
827 float_status *fpst = fpstp;
829 /* Invalid if we are passed a NaN */
830 if (float16_is_any_nan(a)) {
831 float_raise(float_flag_invalid, fpst);
832 return 0;
834 return float16_to_int16(a, fpst);
837 uint32_t HELPER(advsimd_f16touinth)(uint32_t a, void *fpstp)
839 float_status *fpst = fpstp;
841 /* Invalid if we are passed a NaN */
842 if (float16_is_any_nan(a)) {
843 float_raise(float_flag_invalid, fpst);
844 return 0;
846 return float16_to_uint16(a, fpst);
849 static int el_from_spsr(uint32_t spsr)
851 /* Return the exception level that this SPSR is requesting a return to,
852 * or -1 if it is invalid (an illegal return)
854 if (spsr & PSTATE_nRW) {
855 switch (spsr & CPSR_M) {
856 case ARM_CPU_MODE_USR:
857 return 0;
858 case ARM_CPU_MODE_HYP:
859 return 2;
860 case ARM_CPU_MODE_FIQ:
861 case ARM_CPU_MODE_IRQ:
862 case ARM_CPU_MODE_SVC:
863 case ARM_CPU_MODE_ABT:
864 case ARM_CPU_MODE_UND:
865 case ARM_CPU_MODE_SYS:
866 return 1;
867 case ARM_CPU_MODE_MON:
868 /* Returning to Mon from AArch64 is never possible,
869 * so this is an illegal return.
871 default:
872 return -1;
874 } else {
875 if (extract32(spsr, 1, 1)) {
876 /* Return with reserved M[1] bit set */
877 return -1;
879 if (extract32(spsr, 0, 4) == 1) {
880 /* return to EL0 with M[0] bit set */
881 return -1;
883 return extract32(spsr, 2, 2);
887 static void cpsr_write_from_spsr_elx(CPUARMState *env,
888 uint32_t val)
890 uint32_t mask;
892 /* Save SPSR_ELx.SS into PSTATE. */
893 env->pstate = (env->pstate & ~PSTATE_SS) | (val & PSTATE_SS);
894 val &= ~PSTATE_SS;
896 /* Move DIT to the correct location for CPSR */
897 if (val & PSTATE_DIT) {
898 val &= ~PSTATE_DIT;
899 val |= CPSR_DIT;
902 mask = aarch32_cpsr_valid_mask(env->features, \
903 &env_archcpu(env)->isar);
904 cpsr_write(env, val, mask, CPSRWriteRaw);
907 void HELPER(exception_return)(CPUARMState *env, uint64_t new_pc)
909 int cur_el = arm_current_el(env);
910 unsigned int spsr_idx = aarch64_banked_spsr_index(cur_el);
911 uint32_t spsr = env->banked_spsr[spsr_idx];
912 int new_el;
913 bool return_to_aa64 = (spsr & PSTATE_nRW) == 0;
915 aarch64_save_sp(env, cur_el);
917 arm_clear_exclusive(env);
919 /* We must squash the PSTATE.SS bit to zero unless both of the
920 * following hold:
921 * 1. debug exceptions are currently disabled
922 * 2. singlestep will be active in the EL we return to
923 * We check 1 here and 2 after we've done the pstate/cpsr write() to
924 * transition to the EL we're going to.
926 if (arm_generate_debug_exceptions(env)) {
927 spsr &= ~PSTATE_SS;
930 new_el = el_from_spsr(spsr);
931 if (new_el == -1) {
932 goto illegal_return;
934 if (new_el > cur_el || (new_el == 2 && !arm_is_el2_enabled(env))) {
935 /* Disallow return to an EL which is unimplemented or higher
936 * than the current one.
938 goto illegal_return;
941 if (new_el != 0 && arm_el_is_aa64(env, new_el) != return_to_aa64) {
942 /* Return to an EL which is configured for a different register width */
943 goto illegal_return;
946 if (new_el == 1 && (arm_hcr_el2_eff(env) & HCR_TGE)) {
947 goto illegal_return;
950 qemu_mutex_lock_iothread();
951 arm_call_pre_el_change_hook(env_archcpu(env));
952 qemu_mutex_unlock_iothread();
954 if (!return_to_aa64) {
955 env->aarch64 = false;
956 /* We do a raw CPSR write because aarch64_sync_64_to_32()
957 * will sort the register banks out for us, and we've already
958 * caught all the bad-mode cases in el_from_spsr().
960 cpsr_write_from_spsr_elx(env, spsr);
961 if (!arm_singlestep_active(env)) {
962 env->pstate &= ~PSTATE_SS;
964 aarch64_sync_64_to_32(env);
966 if (spsr & CPSR_T) {
967 env->regs[15] = new_pc & ~0x1;
968 } else {
969 env->regs[15] = new_pc & ~0x3;
971 helper_rebuild_hflags_a32(env, new_el);
972 qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to "
973 "AArch32 EL%d PC 0x%" PRIx32 "\n",
974 cur_el, new_el, env->regs[15]);
975 } else {
976 int tbii;
978 env->aarch64 = true;
979 spsr &= aarch64_pstate_valid_mask(&env_archcpu(env)->isar);
980 pstate_write(env, spsr);
981 if (!arm_singlestep_active(env)) {
982 env->pstate &= ~PSTATE_SS;
984 aarch64_restore_sp(env, new_el);
985 helper_rebuild_hflags_a64(env, new_el);
988 * Apply TBI to the exception return address. We had to delay this
989 * until after we selected the new EL, so that we could select the
990 * correct TBI+TBID bits. This is made easier by waiting until after
991 * the hflags rebuild, since we can pull the composite TBII field
992 * from there.
994 tbii = EX_TBFLAG_A64(env->hflags, TBII);
995 if ((tbii >> extract64(new_pc, 55, 1)) & 1) {
996 /* TBI is enabled. */
997 int core_mmu_idx = cpu_mmu_index(env, false);
998 if (regime_has_2_ranges(core_to_aa64_mmu_idx(core_mmu_idx))) {
999 new_pc = sextract64(new_pc, 0, 56);
1000 } else {
1001 new_pc = extract64(new_pc, 0, 56);
1004 env->pc = new_pc;
1006 qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to "
1007 "AArch64 EL%d PC 0x%" PRIx64 "\n",
1008 cur_el, new_el, env->pc);
1012 * Note that cur_el can never be 0. If new_el is 0, then
1013 * el0_a64 is return_to_aa64, else el0_a64 is ignored.
1015 aarch64_sve_change_el(env, cur_el, new_el, return_to_aa64);
1017 qemu_mutex_lock_iothread();
1018 arm_call_el_change_hook(env_archcpu(env));
1019 qemu_mutex_unlock_iothread();
1021 return;
1023 illegal_return:
1024 /* Illegal return events of various kinds have architecturally
1025 * mandated behaviour:
1026 * restore NZCV and DAIF from SPSR_ELx
1027 * set PSTATE.IL
1028 * restore PC from ELR_ELx
1029 * no change to exception level, execution state or stack pointer
1031 env->pstate |= PSTATE_IL;
1032 env->pc = new_pc;
1033 spsr &= PSTATE_NZCV | PSTATE_DAIF;
1034 spsr |= pstate_read(env) & ~(PSTATE_NZCV | PSTATE_DAIF);
1035 pstate_write(env, spsr);
1036 if (!arm_singlestep_active(env)) {
1037 env->pstate &= ~PSTATE_SS;
1039 helper_rebuild_hflags_a64(env, cur_el);
1040 qemu_log_mask(LOG_GUEST_ERROR, "Illegal exception return at EL%d: "
1041 "resuming execution at 0x%" PRIx64 "\n", cur_el, env->pc);
1045 * Square Root and Reciprocal square root
1048 uint32_t HELPER(sqrt_f16)(uint32_t a, void *fpstp)
1050 float_status *s = fpstp;
1052 return float16_sqrt(a, s);
1055 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
1058 * Implement DC ZVA, which zeroes a fixed-length block of memory.
1059 * Note that we do not implement the (architecturally mandated)
1060 * alignment fault for attempts to use this on Device memory
1061 * (which matches the usual QEMU behaviour of not implementing either
1062 * alignment faults or any memory attribute handling).
1064 int blocklen = 4 << env_archcpu(env)->dcz_blocksize;
1065 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
1066 int mmu_idx = cpu_mmu_index(env, false);
1067 void *mem;
1070 * Trapless lookup. In addition to actual invalid page, may
1071 * return NULL for I/O, watchpoints, clean pages, etc.
1073 mem = tlb_vaddr_to_host(env, vaddr, MMU_DATA_STORE, mmu_idx);
1075 #ifndef CONFIG_USER_ONLY
1076 if (unlikely(!mem)) {
1077 uintptr_t ra = GETPC();
1080 * Trap if accessing an invalid page. DC_ZVA requires that we supply
1081 * the original pointer for an invalid page. But watchpoints require
1082 * that we probe the actual space. So do both.
1084 (void) probe_write(env, vaddr_in, 1, mmu_idx, ra);
1085 mem = probe_write(env, vaddr, blocklen, mmu_idx, ra);
1087 if (unlikely(!mem)) {
1089 * The only remaining reason for mem == NULL is I/O.
1090 * Just do a series of byte writes as the architecture demands.
1092 for (int i = 0; i < blocklen; i++) {
1093 cpu_stb_mmuidx_ra(env, vaddr + i, 0, mmu_idx, ra);
1095 return;
1098 #endif
1100 memset(mem, 0, blocklen);