target/arm: Advertise MVE to gdb when present
[qemu.git] / target / arm / gdbstub.c
blob134da0d0ae3f8ee464ef48d0e4738e123060752d
1 /*
2 * ARM gdb server stub
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 * Copyright (c) 2013 SUSE LINUX Products GmbH
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "internals.h"
23 #include "exec/gdbstub.h"
25 typedef struct RegisterSysregXmlParam {
26 CPUState *cs;
27 GString *s;
28 int n;
29 } RegisterSysregXmlParam;
31 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
32 whatever the target description contains. Due to a historical mishap
33 the FPA registers appear in between core integer regs and the CPSR.
34 We hack round this by giving the FPA regs zero size when talking to a
35 newer gdb. */
37 int arm_cpu_gdb_read_register(CPUState *cs, GByteArray *mem_buf, int n)
39 ARMCPU *cpu = ARM_CPU(cs);
40 CPUARMState *env = &cpu->env;
42 if (n < 16) {
43 /* Core integer register. */
44 return gdb_get_reg32(mem_buf, env->regs[n]);
46 if (n < 24) {
47 /* FPA registers. */
48 if (gdb_has_xml) {
49 return 0;
51 return gdb_get_zeroes(mem_buf, 12);
53 switch (n) {
54 case 24:
55 /* FPA status register. */
56 if (gdb_has_xml) {
57 return 0;
59 return gdb_get_reg32(mem_buf, 0);
60 case 25:
61 /* CPSR, or XPSR for M-profile */
62 if (arm_feature(env, ARM_FEATURE_M)) {
63 return gdb_get_reg32(mem_buf, xpsr_read(env));
64 } else {
65 return gdb_get_reg32(mem_buf, cpsr_read(env));
68 /* Unknown register. */
69 return 0;
72 int arm_cpu_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n)
74 ARMCPU *cpu = ARM_CPU(cs);
75 CPUARMState *env = &cpu->env;
76 uint32_t tmp;
78 tmp = ldl_p(mem_buf);
80 /* Mask out low bit of PC to workaround gdb bugs. This will probably
81 cause problems if we ever implement the Jazelle DBX extensions. */
82 if (n == 15) {
83 tmp &= ~1;
86 if (n < 16) {
87 /* Core integer register. */
88 if (n == 13 && arm_feature(env, ARM_FEATURE_M)) {
89 /* M profile SP low bits are always 0 */
90 tmp &= ~3;
92 env->regs[n] = tmp;
93 return 4;
95 if (n < 24) { /* 16-23 */
96 /* FPA registers (ignored). */
97 if (gdb_has_xml) {
98 return 0;
100 return 12;
102 switch (n) {
103 case 24:
104 /* FPA status register (ignored). */
105 if (gdb_has_xml) {
106 return 0;
108 return 4;
109 case 25:
110 /* CPSR, or XPSR for M-profile */
111 if (arm_feature(env, ARM_FEATURE_M)) {
113 * Don't allow writing to XPSR.Exception as it can cause
114 * a transition into or out of handler mode (it's not
115 * writeable via the MSR insn so this is a reasonable
116 * restriction). Other fields are safe to update.
118 xpsr_write(env, tmp, ~XPSR_EXCP);
119 } else {
120 cpsr_write(env, tmp, 0xffffffff, CPSRWriteByGDBStub);
122 return 4;
124 /* Unknown register. */
125 return 0;
128 static int vfp_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg)
130 ARMCPU *cpu = env_archcpu(env);
131 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;
133 /* VFP data registers are always little-endian. */
134 if (reg < nregs) {
135 return gdb_get_reg64(buf, *aa32_vfp_dreg(env, reg));
137 if (arm_feature(env, ARM_FEATURE_NEON)) {
138 /* Aliases for Q regs. */
139 nregs += 16;
140 if (reg < nregs) {
141 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
142 return gdb_get_reg128(buf, q[0], q[1]);
145 switch (reg - nregs) {
146 case 0:
147 return gdb_get_reg32(buf, vfp_get_fpscr(env));
149 return 0;
152 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
154 ARMCPU *cpu = env_archcpu(env);
155 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;
157 if (reg < nregs) {
158 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
159 return 8;
161 if (arm_feature(env, ARM_FEATURE_NEON)) {
162 nregs += 16;
163 if (reg < nregs) {
164 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
165 q[0] = ldq_le_p(buf);
166 q[1] = ldq_le_p(buf + 8);
167 return 16;
170 switch (reg - nregs) {
171 case 0:
172 vfp_set_fpscr(env, ldl_p(buf));
173 return 4;
175 return 0;
178 static int vfp_gdb_get_sysreg(CPUARMState *env, GByteArray *buf, int reg)
180 switch (reg) {
181 case 0:
182 return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPSID]);
183 case 1:
184 return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPEXC]);
186 return 0;
189 static int vfp_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
191 switch (reg) {
192 case 0:
193 env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf);
194 return 4;
195 case 1:
196 env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30);
197 return 4;
199 return 0;
202 static int mve_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg)
204 switch (reg) {
205 case 0:
206 return gdb_get_reg32(buf, env->v7m.vpr);
207 default:
208 return 0;
212 static int mve_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
214 switch (reg) {
215 case 0:
216 env->v7m.vpr = ldl_p(buf);
217 return 4;
218 default:
219 return 0;
224 * arm_get/set_gdb_*: get/set a gdb register
225 * @env: the CPU state
226 * @buf: a buffer to copy to/from
227 * @reg: register number (offset from start of group)
229 * We return the number of bytes copied
232 static int arm_gdb_get_sysreg(CPUARMState *env, GByteArray *buf, int reg)
234 ARMCPU *cpu = env_archcpu(env);
235 const ARMCPRegInfo *ri;
236 uint32_t key;
238 key = cpu->dyn_sysreg_xml.data.cpregs.keys[reg];
239 ri = get_arm_cp_reginfo(cpu->cp_regs, key);
240 if (ri) {
241 if (cpreg_field_is_64bit(ri)) {
242 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
243 } else {
244 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
247 return 0;
250 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
252 return 0;
255 static void arm_gen_one_xml_sysreg_tag(GString *s, DynamicGDBXMLInfo *dyn_xml,
256 ARMCPRegInfo *ri, uint32_t ri_key,
257 int bitsize, int regnum)
259 g_string_append_printf(s, "<reg name=\"%s\"", ri->name);
260 g_string_append_printf(s, " bitsize=\"%d\"", bitsize);
261 g_string_append_printf(s, " regnum=\"%d\"", regnum);
262 g_string_append_printf(s, " group=\"cp_regs\"/>");
263 dyn_xml->data.cpregs.keys[dyn_xml->num] = ri_key;
264 dyn_xml->num++;
267 static void arm_register_sysreg_for_xml(gpointer key, gpointer value,
268 gpointer p)
270 uint32_t ri_key = *(uint32_t *)key;
271 ARMCPRegInfo *ri = value;
272 RegisterSysregXmlParam *param = (RegisterSysregXmlParam *)p;
273 GString *s = param->s;
274 ARMCPU *cpu = ARM_CPU(param->cs);
275 CPUARMState *env = &cpu->env;
276 DynamicGDBXMLInfo *dyn_xml = &cpu->dyn_sysreg_xml;
278 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_NO_GDB))) {
279 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
280 if (ri->state == ARM_CP_STATE_AA64) {
281 arm_gen_one_xml_sysreg_tag(s , dyn_xml, ri, ri_key, 64,
282 param->n++);
284 } else {
285 if (ri->state == ARM_CP_STATE_AA32) {
286 if (!arm_feature(env, ARM_FEATURE_EL3) &&
287 (ri->secure & ARM_CP_SECSTATE_S)) {
288 return;
290 if (ri->type & ARM_CP_64BIT) {
291 arm_gen_one_xml_sysreg_tag(s , dyn_xml, ri, ri_key, 64,
292 param->n++);
293 } else {
294 arm_gen_one_xml_sysreg_tag(s , dyn_xml, ri, ri_key, 32,
295 param->n++);
302 int arm_gen_dynamic_sysreg_xml(CPUState *cs, int base_reg)
304 ARMCPU *cpu = ARM_CPU(cs);
305 GString *s = g_string_new(NULL);
306 RegisterSysregXmlParam param = {cs, s, base_reg};
308 cpu->dyn_sysreg_xml.num = 0;
309 cpu->dyn_sysreg_xml.data.cpregs.keys = g_new(uint32_t, g_hash_table_size(cpu->cp_regs));
310 g_string_printf(s, "<?xml version=\"1.0\"?>");
311 g_string_append_printf(s, "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">");
312 g_string_append_printf(s, "<feature name=\"org.qemu.gdb.arm.sys.regs\">");
313 g_hash_table_foreach(cpu->cp_regs, arm_register_sysreg_for_xml, &param);
314 g_string_append_printf(s, "</feature>");
315 cpu->dyn_sysreg_xml.desc = g_string_free(s, false);
316 return cpu->dyn_sysreg_xml.num;
319 struct TypeSize {
320 const char *gdb_type;
321 int size;
322 const char sz, suffix;
325 static const struct TypeSize vec_lanes[] = {
326 /* quads */
327 { "uint128", 128, 'q', 'u' },
328 { "int128", 128, 'q', 's' },
329 /* 64 bit */
330 { "ieee_double", 64, 'd', 'f' },
331 { "uint64", 64, 'd', 'u' },
332 { "int64", 64, 'd', 's' },
333 /* 32 bit */
334 { "ieee_single", 32, 's', 'f' },
335 { "uint32", 32, 's', 'u' },
336 { "int32", 32, 's', 's' },
337 /* 16 bit */
338 { "ieee_half", 16, 'h', 'f' },
339 { "uint16", 16, 'h', 'u' },
340 { "int16", 16, 'h', 's' },
341 /* bytes */
342 { "uint8", 8, 'b', 'u' },
343 { "int8", 8, 'b', 's' },
347 int arm_gen_dynamic_svereg_xml(CPUState *cs, int base_reg)
349 ARMCPU *cpu = ARM_CPU(cs);
350 GString *s = g_string_new(NULL);
351 DynamicGDBXMLInfo *info = &cpu->dyn_svereg_xml;
352 g_autoptr(GString) ts = g_string_new("");
353 int i, j, bits, reg_width = (cpu->sve_max_vq * 128);
354 info->num = 0;
355 g_string_printf(s, "<?xml version=\"1.0\"?>");
356 g_string_append_printf(s, "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">");
357 g_string_append_printf(s, "<feature name=\"org.gnu.gdb.aarch64.sve\">");
359 /* First define types and totals in a whole VL */
360 for (i = 0; i < ARRAY_SIZE(vec_lanes); i++) {
361 int count = reg_width / vec_lanes[i].size;
362 g_string_printf(ts, "svev%c%c", vec_lanes[i].sz, vec_lanes[i].suffix);
363 g_string_append_printf(s,
364 "<vector id=\"%s\" type=\"%s\" count=\"%d\"/>",
365 ts->str, vec_lanes[i].gdb_type, count);
368 * Now define a union for each size group containing unsigned and
369 * signed and potentially float versions of each size from 128 to
370 * 8 bits.
372 for (bits = 128, i = 0; bits >= 8; bits /= 2, i++) {
373 const char suf[] = { 'q', 'd', 's', 'h', 'b' };
374 g_string_append_printf(s, "<union id=\"svevn%c\">", suf[i]);
375 for (j = 0; j < ARRAY_SIZE(vec_lanes); j++) {
376 if (vec_lanes[j].size == bits) {
377 g_string_append_printf(s, "<field name=\"%c\" type=\"svev%c%c\"/>",
378 vec_lanes[j].suffix,
379 vec_lanes[j].sz, vec_lanes[j].suffix);
382 g_string_append(s, "</union>");
384 /* And now the final union of unions */
385 g_string_append(s, "<union id=\"svev\">");
386 for (bits = 128, i = 0; bits >= 8; bits /= 2, i++) {
387 const char suf[] = { 'q', 'd', 's', 'h', 'b' };
388 g_string_append_printf(s, "<field name=\"%c\" type=\"svevn%c\"/>",
389 suf[i], suf[i]);
391 g_string_append(s, "</union>");
393 /* Finally the sve prefix type */
394 g_string_append_printf(s,
395 "<vector id=\"svep\" type=\"uint8\" count=\"%d\"/>",
396 reg_width / 8);
398 /* Then define each register in parts for each vq */
399 for (i = 0; i < 32; i++) {
400 g_string_append_printf(s,
401 "<reg name=\"z%d\" bitsize=\"%d\""
402 " regnum=\"%d\" type=\"svev\"/>",
403 i, reg_width, base_reg++);
404 info->num++;
406 /* fpscr & status registers */
407 g_string_append_printf(s, "<reg name=\"fpsr\" bitsize=\"32\""
408 " regnum=\"%d\" group=\"float\""
409 " type=\"int\"/>", base_reg++);
410 g_string_append_printf(s, "<reg name=\"fpcr\" bitsize=\"32\""
411 " regnum=\"%d\" group=\"float\""
412 " type=\"int\"/>", base_reg++);
413 info->num += 2;
415 for (i = 0; i < 16; i++) {
416 g_string_append_printf(s,
417 "<reg name=\"p%d\" bitsize=\"%d\""
418 " regnum=\"%d\" type=\"svep\"/>",
419 i, cpu->sve_max_vq * 16, base_reg++);
420 info->num++;
422 g_string_append_printf(s,
423 "<reg name=\"ffr\" bitsize=\"%d\""
424 " regnum=\"%d\" group=\"vector\""
425 " type=\"svep\"/>",
426 cpu->sve_max_vq * 16, base_reg++);
427 g_string_append_printf(s,
428 "<reg name=\"vg\" bitsize=\"64\""
429 " regnum=\"%d\" type=\"int\"/>",
430 base_reg++);
431 info->num += 2;
432 g_string_append_printf(s, "</feature>");
433 cpu->dyn_svereg_xml.desc = g_string_free(s, false);
435 return cpu->dyn_svereg_xml.num;
439 const char *arm_gdb_get_dynamic_xml(CPUState *cs, const char *xmlname)
441 ARMCPU *cpu = ARM_CPU(cs);
443 if (strcmp(xmlname, "system-registers.xml") == 0) {
444 return cpu->dyn_sysreg_xml.desc;
445 } else if (strcmp(xmlname, "sve-registers.xml") == 0) {
446 return cpu->dyn_svereg_xml.desc;
448 return NULL;
451 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
453 CPUState *cs = CPU(cpu);
454 CPUARMState *env = &cpu->env;
456 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
458 * The lower part of each SVE register aliases to the FPU
459 * registers so we don't need to include both.
461 #ifdef TARGET_AARCH64
462 if (isar_feature_aa64_sve(&cpu->isar)) {
463 gdb_register_coprocessor(cs, arm_gdb_get_svereg, arm_gdb_set_svereg,
464 arm_gen_dynamic_svereg_xml(cs, cs->gdb_num_regs),
465 "sve-registers.xml", 0);
466 } else {
467 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
468 aarch64_fpu_gdb_set_reg,
469 34, "aarch64-fpu.xml", 0);
471 #endif
472 } else {
473 if (arm_feature(env, ARM_FEATURE_NEON)) {
474 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
475 49, "arm-neon.xml", 0);
476 } else if (cpu_isar_feature(aa32_simd_r32, cpu)) {
477 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
478 33, "arm-vfp3.xml", 0);
479 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
480 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
481 17, "arm-vfp.xml", 0);
483 if (!arm_feature(env, ARM_FEATURE_M)) {
485 * A and R profile have FP sysregs FPEXC and FPSID that we
486 * expose to gdb.
488 gdb_register_coprocessor(cs, vfp_gdb_get_sysreg, vfp_gdb_set_sysreg,
489 2, "arm-vfp-sysregs.xml", 0);
492 if (cpu_isar_feature(aa32_mve, cpu)) {
493 gdb_register_coprocessor(cs, mve_gdb_get_reg, mve_gdb_set_reg,
494 1, "arm-m-profile-mve.xml", 0);
496 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
497 arm_gen_dynamic_sysreg_xml(cs, cs->gdb_num_regs),
498 "system-registers.xml", 0);