tests/avocado: add RISC-V OpenSBI boot test
[qemu.git] / hw / i386 / intel_iommu.c
blob98a5c304a7d7c31c920af633277c2b7dce4eb5be
1 /*
2 * QEMU emulation of an Intel IOMMU (VT-d)
3 * (DMA Remapping device)
5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qemu/main-loop.h"
25 #include "qapi/error.h"
26 #include "hw/sysbus.h"
27 #include "intel_iommu_internal.h"
28 #include "hw/pci/pci.h"
29 #include "hw/pci/pci_bus.h"
30 #include "hw/qdev-properties.h"
31 #include "hw/i386/pc.h"
32 #include "hw/i386/apic-msidef.h"
33 #include "hw/i386/x86-iommu.h"
34 #include "hw/pci-host/q35.h"
35 #include "sysemu/kvm.h"
36 #include "sysemu/dma.h"
37 #include "sysemu/sysemu.h"
38 #include "hw/i386/apic_internal.h"
39 #include "kvm/kvm_i386.h"
40 #include "migration/vmstate.h"
41 #include "trace.h"
43 /* context entry operations */
44 #define VTD_CE_GET_RID2PASID(ce) \
45 ((ce)->val[1] & VTD_SM_CONTEXT_ENTRY_RID2PASID_MASK)
46 #define VTD_CE_GET_PASID_DIR_TABLE(ce) \
47 ((ce)->val[0] & VTD_PASID_DIR_BASE_ADDR_MASK)
49 /* pe operations */
50 #define VTD_PE_GET_TYPE(pe) ((pe)->val[0] & VTD_SM_PASID_ENTRY_PGTT)
51 #define VTD_PE_GET_LEVEL(pe) (2 + (((pe)->val[0] >> 2) & VTD_SM_PASID_ENTRY_AW))
54 * PCI bus number (or SID) is not reliable since the device is usaully
55 * initalized before guest can configure the PCI bridge
56 * (SECONDARY_BUS_NUMBER).
58 struct vtd_as_key {
59 PCIBus *bus;
60 uint8_t devfn;
61 uint32_t pasid;
64 struct vtd_iotlb_key {
65 uint64_t gfn;
66 uint32_t pasid;
67 uint32_t level;
68 uint16_t sid;
71 static void vtd_address_space_refresh_all(IntelIOMMUState *s);
72 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n);
74 static void vtd_panic_require_caching_mode(void)
76 error_report("We need to set caching-mode=on for intel-iommu to enable "
77 "device assignment with IOMMU protection.");
78 exit(1);
81 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
82 uint64_t wmask, uint64_t w1cmask)
84 stq_le_p(&s->csr[addr], val);
85 stq_le_p(&s->wmask[addr], wmask);
86 stq_le_p(&s->w1cmask[addr], w1cmask);
89 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
91 stq_le_p(&s->womask[addr], mask);
94 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
95 uint32_t wmask, uint32_t w1cmask)
97 stl_le_p(&s->csr[addr], val);
98 stl_le_p(&s->wmask[addr], wmask);
99 stl_le_p(&s->w1cmask[addr], w1cmask);
102 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
104 stl_le_p(&s->womask[addr], mask);
107 /* "External" get/set operations */
108 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
110 uint64_t oldval = ldq_le_p(&s->csr[addr]);
111 uint64_t wmask = ldq_le_p(&s->wmask[addr]);
112 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
113 stq_le_p(&s->csr[addr],
114 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
117 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
119 uint32_t oldval = ldl_le_p(&s->csr[addr]);
120 uint32_t wmask = ldl_le_p(&s->wmask[addr]);
121 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
122 stl_le_p(&s->csr[addr],
123 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
126 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
128 uint64_t val = ldq_le_p(&s->csr[addr]);
129 uint64_t womask = ldq_le_p(&s->womask[addr]);
130 return val & ~womask;
133 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
135 uint32_t val = ldl_le_p(&s->csr[addr]);
136 uint32_t womask = ldl_le_p(&s->womask[addr]);
137 return val & ~womask;
140 /* "Internal" get/set operations */
141 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
143 return ldq_le_p(&s->csr[addr]);
146 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
148 return ldl_le_p(&s->csr[addr]);
151 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
153 stq_le_p(&s->csr[addr], val);
156 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
157 uint32_t clear, uint32_t mask)
159 uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
160 stl_le_p(&s->csr[addr], new_val);
161 return new_val;
164 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
165 uint64_t clear, uint64_t mask)
167 uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
168 stq_le_p(&s->csr[addr], new_val);
169 return new_val;
172 static inline void vtd_iommu_lock(IntelIOMMUState *s)
174 qemu_mutex_lock(&s->iommu_lock);
177 static inline void vtd_iommu_unlock(IntelIOMMUState *s)
179 qemu_mutex_unlock(&s->iommu_lock);
182 static void vtd_update_scalable_state(IntelIOMMUState *s)
184 uint64_t val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
186 if (s->scalable_mode) {
187 s->root_scalable = val & VTD_RTADDR_SMT;
191 static void vtd_update_iq_dw(IntelIOMMUState *s)
193 uint64_t val = vtd_get_quad_raw(s, DMAR_IQA_REG);
195 if (s->ecap & VTD_ECAP_SMTS &&
196 val & VTD_IQA_DW_MASK) {
197 s->iq_dw = true;
198 } else {
199 s->iq_dw = false;
203 /* Whether the address space needs to notify new mappings */
204 static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as)
206 return as->notifier_flags & IOMMU_NOTIFIER_MAP;
209 /* GHashTable functions */
210 static gboolean vtd_iotlb_equal(gconstpointer v1, gconstpointer v2)
212 const struct vtd_iotlb_key *key1 = v1;
213 const struct vtd_iotlb_key *key2 = v2;
215 return key1->sid == key2->sid &&
216 key1->pasid == key2->pasid &&
217 key1->level == key2->level &&
218 key1->gfn == key2->gfn;
221 static guint vtd_iotlb_hash(gconstpointer v)
223 const struct vtd_iotlb_key *key = v;
225 return key->gfn | ((key->sid) << VTD_IOTLB_SID_SHIFT) |
226 (key->level) << VTD_IOTLB_LVL_SHIFT |
227 (key->pasid) << VTD_IOTLB_PASID_SHIFT;
230 static gboolean vtd_as_equal(gconstpointer v1, gconstpointer v2)
232 const struct vtd_as_key *key1 = v1;
233 const struct vtd_as_key *key2 = v2;
235 return (key1->bus == key2->bus) && (key1->devfn == key2->devfn) &&
236 (key1->pasid == key2->pasid);
240 * Note that we use pointer to PCIBus as the key, so hashing/shifting
241 * based on the pointer value is intended. Note that we deal with
242 * collisions through vtd_as_equal().
244 static guint vtd_as_hash(gconstpointer v)
246 const struct vtd_as_key *key = v;
247 guint value = (guint)(uintptr_t)key->bus;
249 return (guint)(value << 8 | key->devfn);
252 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
253 gpointer user_data)
255 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
256 uint16_t domain_id = *(uint16_t *)user_data;
257 return entry->domain_id == domain_id;
260 /* The shift of an addr for a certain level of paging structure */
261 static inline uint32_t vtd_slpt_level_shift(uint32_t level)
263 assert(level != 0);
264 return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
267 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
269 return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
272 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
273 gpointer user_data)
275 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
276 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
277 uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
278 uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
279 return (entry->domain_id == info->domain_id) &&
280 (((entry->gfn & info->mask) == gfn) ||
281 (entry->gfn == gfn_tlb));
284 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
285 * IntelIOMMUState to 1. Must be called with IOMMU lock held.
287 static void vtd_reset_context_cache_locked(IntelIOMMUState *s)
289 VTDAddressSpace *vtd_as;
290 GHashTableIter as_it;
292 trace_vtd_context_cache_reset();
294 g_hash_table_iter_init(&as_it, s->vtd_address_spaces);
296 while (g_hash_table_iter_next(&as_it, NULL, (void **)&vtd_as)) {
297 vtd_as->context_cache_entry.context_cache_gen = 0;
299 s->context_cache_gen = 1;
302 /* Must be called with IOMMU lock held. */
303 static void vtd_reset_iotlb_locked(IntelIOMMUState *s)
305 assert(s->iotlb);
306 g_hash_table_remove_all(s->iotlb);
309 static void vtd_reset_iotlb(IntelIOMMUState *s)
311 vtd_iommu_lock(s);
312 vtd_reset_iotlb_locked(s);
313 vtd_iommu_unlock(s);
316 static void vtd_reset_caches(IntelIOMMUState *s)
318 vtd_iommu_lock(s);
319 vtd_reset_iotlb_locked(s);
320 vtd_reset_context_cache_locked(s);
321 vtd_iommu_unlock(s);
324 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
326 return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
329 /* Must be called with IOMMU lock held */
330 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
331 uint32_t pasid, hwaddr addr)
333 struct vtd_iotlb_key key;
334 VTDIOTLBEntry *entry;
335 int level;
337 for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
338 key.gfn = vtd_get_iotlb_gfn(addr, level);
339 key.level = level;
340 key.sid = source_id;
341 key.pasid = pasid;
342 entry = g_hash_table_lookup(s->iotlb, &key);
343 if (entry) {
344 goto out;
348 out:
349 return entry;
352 /* Must be with IOMMU lock held */
353 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
354 uint16_t domain_id, hwaddr addr, uint64_t slpte,
355 uint8_t access_flags, uint32_t level,
356 uint32_t pasid)
358 VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
359 struct vtd_iotlb_key *key = g_malloc(sizeof(*key));
360 uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
362 trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
363 if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
364 trace_vtd_iotlb_reset("iotlb exceeds size limit");
365 vtd_reset_iotlb_locked(s);
368 entry->gfn = gfn;
369 entry->domain_id = domain_id;
370 entry->slpte = slpte;
371 entry->access_flags = access_flags;
372 entry->mask = vtd_slpt_level_page_mask(level);
373 entry->pasid = pasid;
375 key->gfn = gfn;
376 key->sid = source_id;
377 key->level = level;
378 key->pasid = pasid;
380 g_hash_table_replace(s->iotlb, key, entry);
383 /* Given the reg addr of both the message data and address, generate an
384 * interrupt via MSI.
386 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
387 hwaddr mesg_data_reg)
389 MSIMessage msi;
391 assert(mesg_data_reg < DMAR_REG_SIZE);
392 assert(mesg_addr_reg < DMAR_REG_SIZE);
394 msi.address = vtd_get_long_raw(s, mesg_addr_reg);
395 msi.data = vtd_get_long_raw(s, mesg_data_reg);
397 trace_vtd_irq_generate(msi.address, msi.data);
399 apic_get_class(NULL)->send_msi(&msi);
402 /* Generate a fault event to software via MSI if conditions are met.
403 * Notice that the value of FSTS_REG being passed to it should be the one
404 * before any update.
406 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
408 if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
409 pre_fsts & VTD_FSTS_IQE) {
410 error_report_once("There are previous interrupt conditions "
411 "to be serviced by software, fault event "
412 "is not generated");
413 return;
415 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
416 if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
417 error_report_once("Interrupt Mask set, irq is not generated");
418 } else {
419 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
420 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
424 /* Check if the Fault (F) field of the Fault Recording Register referenced by
425 * @index is Set.
427 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
429 /* Each reg is 128-bit */
430 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
431 addr += 8; /* Access the high 64-bit half */
433 assert(index < DMAR_FRCD_REG_NR);
435 return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
438 /* Update the PPF field of Fault Status Register.
439 * Should be called whenever change the F field of any fault recording
440 * registers.
442 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
444 uint32_t i;
445 uint32_t ppf_mask = 0;
447 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
448 if (vtd_is_frcd_set(s, i)) {
449 ppf_mask = VTD_FSTS_PPF;
450 break;
453 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
454 trace_vtd_fsts_ppf(!!ppf_mask);
457 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
459 /* Each reg is 128-bit */
460 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
461 addr += 8; /* Access the high 64-bit half */
463 assert(index < DMAR_FRCD_REG_NR);
465 vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
466 vtd_update_fsts_ppf(s);
469 /* Must not update F field now, should be done later */
470 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
471 uint16_t source_id, hwaddr addr,
472 VTDFaultReason fault, bool is_write,
473 bool is_pasid, uint32_t pasid)
475 uint64_t hi = 0, lo;
476 hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
478 assert(index < DMAR_FRCD_REG_NR);
480 lo = VTD_FRCD_FI(addr);
481 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault) |
482 VTD_FRCD_PV(pasid) | VTD_FRCD_PP(is_pasid);
483 if (!is_write) {
484 hi |= VTD_FRCD_T;
486 vtd_set_quad_raw(s, frcd_reg_addr, lo);
487 vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
489 trace_vtd_frr_new(index, hi, lo);
492 /* Try to collapse multiple pending faults from the same requester */
493 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
495 uint32_t i;
496 uint64_t frcd_reg;
497 hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
499 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
500 frcd_reg = vtd_get_quad_raw(s, addr);
501 if ((frcd_reg & VTD_FRCD_F) &&
502 ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
503 return true;
505 addr += 16; /* 128-bit for each */
507 return false;
510 /* Log and report an DMAR (address translation) fault to software */
511 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
512 hwaddr addr, VTDFaultReason fault,
513 bool is_write, bool is_pasid,
514 uint32_t pasid)
516 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
518 assert(fault < VTD_FR_MAX);
520 trace_vtd_dmar_fault(source_id, fault, addr, is_write);
522 if (fsts_reg & VTD_FSTS_PFO) {
523 error_report_once("New fault is not recorded due to "
524 "Primary Fault Overflow");
525 return;
528 if (vtd_try_collapse_fault(s, source_id)) {
529 error_report_once("New fault is not recorded due to "
530 "compression of faults");
531 return;
534 if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
535 error_report_once("Next Fault Recording Reg is used, "
536 "new fault is not recorded, set PFO field");
537 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
538 return;
541 vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault,
542 is_write, is_pasid, pasid);
544 if (fsts_reg & VTD_FSTS_PPF) {
545 error_report_once("There are pending faults already, "
546 "fault event is not generated");
547 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
548 s->next_frcd_reg++;
549 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
550 s->next_frcd_reg = 0;
552 } else {
553 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
554 VTD_FSTS_FRI(s->next_frcd_reg));
555 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
556 s->next_frcd_reg++;
557 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
558 s->next_frcd_reg = 0;
560 /* This case actually cause the PPF to be Set.
561 * So generate fault event (interrupt).
563 vtd_generate_fault_event(s, fsts_reg);
567 /* Handle Invalidation Queue Errors of queued invalidation interface error
568 * conditions.
570 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
572 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
574 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
575 vtd_generate_fault_event(s, fsts_reg);
578 /* Set the IWC field and try to generate an invalidation completion interrupt */
579 static void vtd_generate_completion_event(IntelIOMMUState *s)
581 if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
582 trace_vtd_inv_desc_wait_irq("One pending, skip current");
583 return;
585 vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
586 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
587 if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
588 trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
589 "new event not generated");
590 return;
591 } else {
592 /* Generate the interrupt event */
593 trace_vtd_inv_desc_wait_irq("Generating complete event");
594 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
595 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
599 static inline bool vtd_root_entry_present(IntelIOMMUState *s,
600 VTDRootEntry *re,
601 uint8_t devfn)
603 if (s->root_scalable && devfn > UINT8_MAX / 2) {
604 return re->hi & VTD_ROOT_ENTRY_P;
607 return re->lo & VTD_ROOT_ENTRY_P;
610 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
611 VTDRootEntry *re)
613 dma_addr_t addr;
615 addr = s->root + index * sizeof(*re);
616 if (dma_memory_read(&address_space_memory, addr,
617 re, sizeof(*re), MEMTXATTRS_UNSPECIFIED)) {
618 re->lo = 0;
619 return -VTD_FR_ROOT_TABLE_INV;
621 re->lo = le64_to_cpu(re->lo);
622 re->hi = le64_to_cpu(re->hi);
623 return 0;
626 static inline bool vtd_ce_present(VTDContextEntry *context)
628 return context->lo & VTD_CONTEXT_ENTRY_P;
631 static int vtd_get_context_entry_from_root(IntelIOMMUState *s,
632 VTDRootEntry *re,
633 uint8_t index,
634 VTDContextEntry *ce)
636 dma_addr_t addr, ce_size;
638 /* we have checked that root entry is present */
639 ce_size = s->root_scalable ? VTD_CTX_ENTRY_SCALABLE_SIZE :
640 VTD_CTX_ENTRY_LEGACY_SIZE;
642 if (s->root_scalable && index > UINT8_MAX / 2) {
643 index = index & (~VTD_DEVFN_CHECK_MASK);
644 addr = re->hi & VTD_ROOT_ENTRY_CTP;
645 } else {
646 addr = re->lo & VTD_ROOT_ENTRY_CTP;
649 addr = addr + index * ce_size;
650 if (dma_memory_read(&address_space_memory, addr,
651 ce, ce_size, MEMTXATTRS_UNSPECIFIED)) {
652 return -VTD_FR_CONTEXT_TABLE_INV;
655 ce->lo = le64_to_cpu(ce->lo);
656 ce->hi = le64_to_cpu(ce->hi);
657 if (ce_size == VTD_CTX_ENTRY_SCALABLE_SIZE) {
658 ce->val[2] = le64_to_cpu(ce->val[2]);
659 ce->val[3] = le64_to_cpu(ce->val[3]);
661 return 0;
664 static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
666 return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
669 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw)
671 return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw);
674 /* Whether the pte indicates the address of the page frame */
675 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
677 return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
680 /* Get the content of a spte located in @base_addr[@index] */
681 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
683 uint64_t slpte;
685 assert(index < VTD_SL_PT_ENTRY_NR);
687 if (dma_memory_read(&address_space_memory,
688 base_addr + index * sizeof(slpte),
689 &slpte, sizeof(slpte), MEMTXATTRS_UNSPECIFIED)) {
690 slpte = (uint64_t)-1;
691 return slpte;
693 slpte = le64_to_cpu(slpte);
694 return slpte;
697 /* Given an iova and the level of paging structure, return the offset
698 * of current level.
700 static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
702 return (iova >> vtd_slpt_level_shift(level)) &
703 ((1ULL << VTD_SL_LEVEL_BITS) - 1);
706 /* Check Capability Register to see if the @level of page-table is supported */
707 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
709 return VTD_CAP_SAGAW_MASK & s->cap &
710 (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
713 /* Return true if check passed, otherwise false */
714 static inline bool vtd_pe_type_check(X86IOMMUState *x86_iommu,
715 VTDPASIDEntry *pe)
717 switch (VTD_PE_GET_TYPE(pe)) {
718 case VTD_SM_PASID_ENTRY_FLT:
719 case VTD_SM_PASID_ENTRY_SLT:
720 case VTD_SM_PASID_ENTRY_NESTED:
721 break;
722 case VTD_SM_PASID_ENTRY_PT:
723 if (!x86_iommu->pt_supported) {
724 return false;
726 break;
727 default:
728 /* Unknown type */
729 return false;
731 return true;
734 static inline bool vtd_pdire_present(VTDPASIDDirEntry *pdire)
736 return pdire->val & 1;
740 * Caller of this function should check present bit if wants
741 * to use pdir entry for further usage except for fpd bit check.
743 static int vtd_get_pdire_from_pdir_table(dma_addr_t pasid_dir_base,
744 uint32_t pasid,
745 VTDPASIDDirEntry *pdire)
747 uint32_t index;
748 dma_addr_t addr, entry_size;
750 index = VTD_PASID_DIR_INDEX(pasid);
751 entry_size = VTD_PASID_DIR_ENTRY_SIZE;
752 addr = pasid_dir_base + index * entry_size;
753 if (dma_memory_read(&address_space_memory, addr,
754 pdire, entry_size, MEMTXATTRS_UNSPECIFIED)) {
755 return -VTD_FR_PASID_TABLE_INV;
758 return 0;
761 static inline bool vtd_pe_present(VTDPASIDEntry *pe)
763 return pe->val[0] & VTD_PASID_ENTRY_P;
766 static int vtd_get_pe_in_pasid_leaf_table(IntelIOMMUState *s,
767 uint32_t pasid,
768 dma_addr_t addr,
769 VTDPASIDEntry *pe)
771 uint32_t index;
772 dma_addr_t entry_size;
773 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
775 index = VTD_PASID_TABLE_INDEX(pasid);
776 entry_size = VTD_PASID_ENTRY_SIZE;
777 addr = addr + index * entry_size;
778 if (dma_memory_read(&address_space_memory, addr,
779 pe, entry_size, MEMTXATTRS_UNSPECIFIED)) {
780 return -VTD_FR_PASID_TABLE_INV;
783 /* Do translation type check */
784 if (!vtd_pe_type_check(x86_iommu, pe)) {
785 return -VTD_FR_PASID_TABLE_INV;
788 if (!vtd_is_level_supported(s, VTD_PE_GET_LEVEL(pe))) {
789 return -VTD_FR_PASID_TABLE_INV;
792 return 0;
796 * Caller of this function should check present bit if wants
797 * to use pasid entry for further usage except for fpd bit check.
799 static int vtd_get_pe_from_pdire(IntelIOMMUState *s,
800 uint32_t pasid,
801 VTDPASIDDirEntry *pdire,
802 VTDPASIDEntry *pe)
804 dma_addr_t addr = pdire->val & VTD_PASID_TABLE_BASE_ADDR_MASK;
806 return vtd_get_pe_in_pasid_leaf_table(s, pasid, addr, pe);
810 * This function gets a pasid entry from a specified pasid
811 * table (includes dir and leaf table) with a specified pasid.
812 * Sanity check should be done to ensure return a present
813 * pasid entry to caller.
815 static int vtd_get_pe_from_pasid_table(IntelIOMMUState *s,
816 dma_addr_t pasid_dir_base,
817 uint32_t pasid,
818 VTDPASIDEntry *pe)
820 int ret;
821 VTDPASIDDirEntry pdire;
823 ret = vtd_get_pdire_from_pdir_table(pasid_dir_base,
824 pasid, &pdire);
825 if (ret) {
826 return ret;
829 if (!vtd_pdire_present(&pdire)) {
830 return -VTD_FR_PASID_TABLE_INV;
833 ret = vtd_get_pe_from_pdire(s, pasid, &pdire, pe);
834 if (ret) {
835 return ret;
838 if (!vtd_pe_present(pe)) {
839 return -VTD_FR_PASID_TABLE_INV;
842 return 0;
845 static int vtd_ce_get_rid2pasid_entry(IntelIOMMUState *s,
846 VTDContextEntry *ce,
847 VTDPASIDEntry *pe,
848 uint32_t pasid)
850 dma_addr_t pasid_dir_base;
851 int ret = 0;
853 if (pasid == PCI_NO_PASID) {
854 pasid = VTD_CE_GET_RID2PASID(ce);
856 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
857 ret = vtd_get_pe_from_pasid_table(s, pasid_dir_base, pasid, pe);
859 return ret;
862 static int vtd_ce_get_pasid_fpd(IntelIOMMUState *s,
863 VTDContextEntry *ce,
864 bool *pe_fpd_set,
865 uint32_t pasid)
867 int ret;
868 dma_addr_t pasid_dir_base;
869 VTDPASIDDirEntry pdire;
870 VTDPASIDEntry pe;
872 if (pasid == PCI_NO_PASID) {
873 pasid = VTD_CE_GET_RID2PASID(ce);
875 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
878 * No present bit check since fpd is meaningful even
879 * if the present bit is clear.
881 ret = vtd_get_pdire_from_pdir_table(pasid_dir_base, pasid, &pdire);
882 if (ret) {
883 return ret;
886 if (pdire.val & VTD_PASID_DIR_FPD) {
887 *pe_fpd_set = true;
888 return 0;
891 if (!vtd_pdire_present(&pdire)) {
892 return -VTD_FR_PASID_TABLE_INV;
896 * No present bit check since fpd is meaningful even
897 * if the present bit is clear.
899 ret = vtd_get_pe_from_pdire(s, pasid, &pdire, &pe);
900 if (ret) {
901 return ret;
904 if (pe.val[0] & VTD_PASID_ENTRY_FPD) {
905 *pe_fpd_set = true;
908 return 0;
911 /* Get the page-table level that hardware should use for the second-level
912 * page-table walk from the Address Width field of context-entry.
914 static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
916 return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
919 static uint32_t vtd_get_iova_level(IntelIOMMUState *s,
920 VTDContextEntry *ce,
921 uint32_t pasid)
923 VTDPASIDEntry pe;
925 if (s->root_scalable) {
926 vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
927 return VTD_PE_GET_LEVEL(&pe);
930 return vtd_ce_get_level(ce);
933 static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
935 return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
938 static uint32_t vtd_get_iova_agaw(IntelIOMMUState *s,
939 VTDContextEntry *ce,
940 uint32_t pasid)
942 VTDPASIDEntry pe;
944 if (s->root_scalable) {
945 vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
946 return 30 + ((pe.val[0] >> 2) & VTD_SM_PASID_ENTRY_AW) * 9;
949 return vtd_ce_get_agaw(ce);
952 static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
954 return ce->lo & VTD_CONTEXT_ENTRY_TT;
957 /* Only for Legacy Mode. Return true if check passed, otherwise false */
958 static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
959 VTDContextEntry *ce)
961 switch (vtd_ce_get_type(ce)) {
962 case VTD_CONTEXT_TT_MULTI_LEVEL:
963 /* Always supported */
964 break;
965 case VTD_CONTEXT_TT_DEV_IOTLB:
966 if (!x86_iommu->dt_supported) {
967 error_report_once("%s: DT specified but not supported", __func__);
968 return false;
970 break;
971 case VTD_CONTEXT_TT_PASS_THROUGH:
972 if (!x86_iommu->pt_supported) {
973 error_report_once("%s: PT specified but not supported", __func__);
974 return false;
976 break;
977 default:
978 /* Unknown type */
979 error_report_once("%s: unknown ce type: %"PRIu32, __func__,
980 vtd_ce_get_type(ce));
981 return false;
983 return true;
986 static inline uint64_t vtd_iova_limit(IntelIOMMUState *s,
987 VTDContextEntry *ce, uint8_t aw,
988 uint32_t pasid)
990 uint32_t ce_agaw = vtd_get_iova_agaw(s, ce, pasid);
991 return 1ULL << MIN(ce_agaw, aw);
994 /* Return true if IOVA passes range check, otherwise false. */
995 static inline bool vtd_iova_range_check(IntelIOMMUState *s,
996 uint64_t iova, VTDContextEntry *ce,
997 uint8_t aw, uint32_t pasid)
1000 * Check if @iova is above 2^X-1, where X is the minimum of MGAW
1001 * in CAP_REG and AW in context-entry.
1003 return !(iova & ~(vtd_iova_limit(s, ce, aw, pasid) - 1));
1006 static dma_addr_t vtd_get_iova_pgtbl_base(IntelIOMMUState *s,
1007 VTDContextEntry *ce,
1008 uint32_t pasid)
1010 VTDPASIDEntry pe;
1012 if (s->root_scalable) {
1013 vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
1014 return pe.val[0] & VTD_SM_PASID_ENTRY_SLPTPTR;
1017 return vtd_ce_get_slpt_base(ce);
1021 * Rsvd field masks for spte:
1022 * vtd_spte_rsvd 4k pages
1023 * vtd_spte_rsvd_large large pages
1025 static uint64_t vtd_spte_rsvd[5];
1026 static uint64_t vtd_spte_rsvd_large[5];
1028 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
1030 uint64_t rsvd_mask = vtd_spte_rsvd[level];
1032 if ((level == VTD_SL_PD_LEVEL || level == VTD_SL_PDP_LEVEL) &&
1033 (slpte & VTD_SL_PT_PAGE_SIZE_MASK)) {
1034 /* large page */
1035 rsvd_mask = vtd_spte_rsvd_large[level];
1038 return slpte & rsvd_mask;
1041 /* Given the @iova, get relevant @slptep. @slpte_level will be the last level
1042 * of the translation, can be used for deciding the size of large page.
1044 static int vtd_iova_to_slpte(IntelIOMMUState *s, VTDContextEntry *ce,
1045 uint64_t iova, bool is_write,
1046 uint64_t *slptep, uint32_t *slpte_level,
1047 bool *reads, bool *writes, uint8_t aw_bits,
1048 uint32_t pasid)
1050 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce, pasid);
1051 uint32_t level = vtd_get_iova_level(s, ce, pasid);
1052 uint32_t offset;
1053 uint64_t slpte;
1054 uint64_t access_right_check;
1055 uint64_t xlat, size;
1057 if (!vtd_iova_range_check(s, iova, ce, aw_bits, pasid)) {
1058 error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 ","
1059 "pasid=0x%" PRIx32 ")", __func__, iova, pasid);
1060 return -VTD_FR_ADDR_BEYOND_MGAW;
1063 /* FIXME: what is the Atomics request here? */
1064 access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
1066 while (true) {
1067 offset = vtd_iova_level_offset(iova, level);
1068 slpte = vtd_get_slpte(addr, offset);
1070 if (slpte == (uint64_t)-1) {
1071 error_report_once("%s: detected read error on DMAR slpte "
1072 "(iova=0x%" PRIx64 ", pasid=0x%" PRIx32 ")",
1073 __func__, iova, pasid);
1074 if (level == vtd_get_iova_level(s, ce, pasid)) {
1075 /* Invalid programming of context-entry */
1076 return -VTD_FR_CONTEXT_ENTRY_INV;
1077 } else {
1078 return -VTD_FR_PAGING_ENTRY_INV;
1081 *reads = (*reads) && (slpte & VTD_SL_R);
1082 *writes = (*writes) && (slpte & VTD_SL_W);
1083 if (!(slpte & access_right_check)) {
1084 error_report_once("%s: detected slpte permission error "
1085 "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
1086 "slpte=0x%" PRIx64 ", write=%d, pasid=0x%"
1087 PRIx32 ")", __func__, iova, level,
1088 slpte, is_write, pasid);
1089 return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
1091 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1092 error_report_once("%s: detected splte reserve non-zero "
1093 "iova=0x%" PRIx64 ", level=0x%" PRIx32
1094 "slpte=0x%" PRIx64 ", pasid=0x%" PRIX32 ")",
1095 __func__, iova, level, slpte, pasid);
1096 return -VTD_FR_PAGING_ENTRY_RSVD;
1099 if (vtd_is_last_slpte(slpte, level)) {
1100 *slptep = slpte;
1101 *slpte_level = level;
1102 break;
1104 addr = vtd_get_slpte_addr(slpte, aw_bits);
1105 level--;
1108 xlat = vtd_get_slpte_addr(*slptep, aw_bits);
1109 size = ~vtd_slpt_level_page_mask(level) + 1;
1112 * From VT-d spec 3.14: Untranslated requests and translation
1113 * requests that result in an address in the interrupt range will be
1114 * blocked with condition code LGN.4 or SGN.8.
1116 if ((xlat > VTD_INTERRUPT_ADDR_LAST ||
1117 xlat + size - 1 < VTD_INTERRUPT_ADDR_FIRST)) {
1118 return 0;
1119 } else {
1120 error_report_once("%s: xlat address is in interrupt range "
1121 "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
1122 "slpte=0x%" PRIx64 ", write=%d, "
1123 "xlat=0x%" PRIx64 ", size=0x%" PRIx64 ", "
1124 "pasid=0x%" PRIx32 ")",
1125 __func__, iova, level, slpte, is_write,
1126 xlat, size, pasid);
1127 return s->scalable_mode ? -VTD_FR_SM_INTERRUPT_ADDR :
1128 -VTD_FR_INTERRUPT_ADDR;
1132 typedef int (*vtd_page_walk_hook)(IOMMUTLBEvent *event, void *private);
1135 * Constant information used during page walking
1137 * @hook_fn: hook func to be called when detected page
1138 * @private: private data to be passed into hook func
1139 * @notify_unmap: whether we should notify invalid entries
1140 * @as: VT-d address space of the device
1141 * @aw: maximum address width
1142 * @domain: domain ID of the page walk
1144 typedef struct {
1145 VTDAddressSpace *as;
1146 vtd_page_walk_hook hook_fn;
1147 void *private;
1148 bool notify_unmap;
1149 uint8_t aw;
1150 uint16_t domain_id;
1151 } vtd_page_walk_info;
1153 static int vtd_page_walk_one(IOMMUTLBEvent *event, vtd_page_walk_info *info)
1155 VTDAddressSpace *as = info->as;
1156 vtd_page_walk_hook hook_fn = info->hook_fn;
1157 void *private = info->private;
1158 IOMMUTLBEntry *entry = &event->entry;
1159 DMAMap target = {
1160 .iova = entry->iova,
1161 .size = entry->addr_mask,
1162 .translated_addr = entry->translated_addr,
1163 .perm = entry->perm,
1165 const DMAMap *mapped = iova_tree_find(as->iova_tree, &target);
1167 if (event->type == IOMMU_NOTIFIER_UNMAP && !info->notify_unmap) {
1168 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1169 return 0;
1172 assert(hook_fn);
1174 /* Update local IOVA mapped ranges */
1175 if (event->type == IOMMU_NOTIFIER_MAP) {
1176 if (mapped) {
1177 /* If it's exactly the same translation, skip */
1178 if (!memcmp(mapped, &target, sizeof(target))) {
1179 trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask,
1180 entry->translated_addr);
1181 return 0;
1182 } else {
1184 * Translation changed. Normally this should not
1185 * happen, but it can happen when with buggy guest
1186 * OSes. Note that there will be a small window that
1187 * we don't have map at all. But that's the best
1188 * effort we can do. The ideal way to emulate this is
1189 * atomically modify the PTE to follow what has
1190 * changed, but we can't. One example is that vfio
1191 * driver only has VFIO_IOMMU_[UN]MAP_DMA but no
1192 * interface to modify a mapping (meanwhile it seems
1193 * meaningless to even provide one). Anyway, let's
1194 * mark this as a TODO in case one day we'll have
1195 * a better solution.
1197 IOMMUAccessFlags cache_perm = entry->perm;
1198 int ret;
1200 /* Emulate an UNMAP */
1201 event->type = IOMMU_NOTIFIER_UNMAP;
1202 entry->perm = IOMMU_NONE;
1203 trace_vtd_page_walk_one(info->domain_id,
1204 entry->iova,
1205 entry->translated_addr,
1206 entry->addr_mask,
1207 entry->perm);
1208 ret = hook_fn(event, private);
1209 if (ret) {
1210 return ret;
1212 /* Drop any existing mapping */
1213 iova_tree_remove(as->iova_tree, target);
1214 /* Recover the correct type */
1215 event->type = IOMMU_NOTIFIER_MAP;
1216 entry->perm = cache_perm;
1219 iova_tree_insert(as->iova_tree, &target);
1220 } else {
1221 if (!mapped) {
1222 /* Skip since we didn't map this range at all */
1223 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1224 return 0;
1226 iova_tree_remove(as->iova_tree, target);
1229 trace_vtd_page_walk_one(info->domain_id, entry->iova,
1230 entry->translated_addr, entry->addr_mask,
1231 entry->perm);
1232 return hook_fn(event, private);
1236 * vtd_page_walk_level - walk over specific level for IOVA range
1238 * @addr: base GPA addr to start the walk
1239 * @start: IOVA range start address
1240 * @end: IOVA range end address (start <= addr < end)
1241 * @read: whether parent level has read permission
1242 * @write: whether parent level has write permission
1243 * @info: constant information for the page walk
1245 static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
1246 uint64_t end, uint32_t level, bool read,
1247 bool write, vtd_page_walk_info *info)
1249 bool read_cur, write_cur, entry_valid;
1250 uint32_t offset;
1251 uint64_t slpte;
1252 uint64_t subpage_size, subpage_mask;
1253 IOMMUTLBEvent event;
1254 uint64_t iova = start;
1255 uint64_t iova_next;
1256 int ret = 0;
1258 trace_vtd_page_walk_level(addr, level, start, end);
1260 subpage_size = 1ULL << vtd_slpt_level_shift(level);
1261 subpage_mask = vtd_slpt_level_page_mask(level);
1263 while (iova < end) {
1264 iova_next = (iova & subpage_mask) + subpage_size;
1266 offset = vtd_iova_level_offset(iova, level);
1267 slpte = vtd_get_slpte(addr, offset);
1269 if (slpte == (uint64_t)-1) {
1270 trace_vtd_page_walk_skip_read(iova, iova_next);
1271 goto next;
1274 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1275 trace_vtd_page_walk_skip_reserve(iova, iova_next);
1276 goto next;
1279 /* Permissions are stacked with parents' */
1280 read_cur = read && (slpte & VTD_SL_R);
1281 write_cur = write && (slpte & VTD_SL_W);
1284 * As long as we have either read/write permission, this is a
1285 * valid entry. The rule works for both page entries and page
1286 * table entries.
1288 entry_valid = read_cur | write_cur;
1290 if (!vtd_is_last_slpte(slpte, level) && entry_valid) {
1292 * This is a valid PDE (or even bigger than PDE). We need
1293 * to walk one further level.
1295 ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw),
1296 iova, MIN(iova_next, end), level - 1,
1297 read_cur, write_cur, info);
1298 } else {
1300 * This means we are either:
1302 * (1) the real page entry (either 4K page, or huge page)
1303 * (2) the whole range is invalid
1305 * In either case, we send an IOTLB notification down.
1307 event.entry.target_as = &address_space_memory;
1308 event.entry.iova = iova & subpage_mask;
1309 event.entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
1310 event.entry.addr_mask = ~subpage_mask;
1311 /* NOTE: this is only meaningful if entry_valid == true */
1312 event.entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw);
1313 event.type = event.entry.perm ? IOMMU_NOTIFIER_MAP :
1314 IOMMU_NOTIFIER_UNMAP;
1315 ret = vtd_page_walk_one(&event, info);
1318 if (ret < 0) {
1319 return ret;
1322 next:
1323 iova = iova_next;
1326 return 0;
1330 * vtd_page_walk - walk specific IOVA range, and call the hook
1332 * @s: intel iommu state
1333 * @ce: context entry to walk upon
1334 * @start: IOVA address to start the walk
1335 * @end: IOVA range end address (start <= addr < end)
1336 * @info: page walking information struct
1338 static int vtd_page_walk(IntelIOMMUState *s, VTDContextEntry *ce,
1339 uint64_t start, uint64_t end,
1340 vtd_page_walk_info *info,
1341 uint32_t pasid)
1343 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce, pasid);
1344 uint32_t level = vtd_get_iova_level(s, ce, pasid);
1346 if (!vtd_iova_range_check(s, start, ce, info->aw, pasid)) {
1347 return -VTD_FR_ADDR_BEYOND_MGAW;
1350 if (!vtd_iova_range_check(s, end, ce, info->aw, pasid)) {
1351 /* Fix end so that it reaches the maximum */
1352 end = vtd_iova_limit(s, ce, info->aw, pasid);
1355 return vtd_page_walk_level(addr, start, end, level, true, true, info);
1358 static int vtd_root_entry_rsvd_bits_check(IntelIOMMUState *s,
1359 VTDRootEntry *re)
1361 /* Legacy Mode reserved bits check */
1362 if (!s->root_scalable &&
1363 (re->hi || (re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1364 goto rsvd_err;
1366 /* Scalable Mode reserved bits check */
1367 if (s->root_scalable &&
1368 ((re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)) ||
1369 (re->hi & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1370 goto rsvd_err;
1372 return 0;
1374 rsvd_err:
1375 error_report_once("%s: invalid root entry: hi=0x%"PRIx64
1376 ", lo=0x%"PRIx64,
1377 __func__, re->hi, re->lo);
1378 return -VTD_FR_ROOT_ENTRY_RSVD;
1381 static inline int vtd_context_entry_rsvd_bits_check(IntelIOMMUState *s,
1382 VTDContextEntry *ce)
1384 if (!s->root_scalable &&
1385 (ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI ||
1386 ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
1387 error_report_once("%s: invalid context entry: hi=%"PRIx64
1388 ", lo=%"PRIx64" (reserved nonzero)",
1389 __func__, ce->hi, ce->lo);
1390 return -VTD_FR_CONTEXT_ENTRY_RSVD;
1393 if (s->root_scalable &&
1394 (ce->val[0] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL0(s->aw_bits) ||
1395 ce->val[1] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL1 ||
1396 ce->val[2] ||
1397 ce->val[3])) {
1398 error_report_once("%s: invalid context entry: val[3]=%"PRIx64
1399 ", val[2]=%"PRIx64
1400 ", val[1]=%"PRIx64
1401 ", val[0]=%"PRIx64" (reserved nonzero)",
1402 __func__, ce->val[3], ce->val[2],
1403 ce->val[1], ce->val[0]);
1404 return -VTD_FR_CONTEXT_ENTRY_RSVD;
1407 return 0;
1410 static int vtd_ce_rid2pasid_check(IntelIOMMUState *s,
1411 VTDContextEntry *ce)
1413 VTDPASIDEntry pe;
1416 * Make sure in Scalable Mode, a present context entry
1417 * has valid rid2pasid setting, which includes valid
1418 * rid2pasid field and corresponding pasid entry setting
1420 return vtd_ce_get_rid2pasid_entry(s, ce, &pe, PCI_NO_PASID);
1423 /* Map a device to its corresponding domain (context-entry) */
1424 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
1425 uint8_t devfn, VTDContextEntry *ce)
1427 VTDRootEntry re;
1428 int ret_fr;
1429 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
1431 ret_fr = vtd_get_root_entry(s, bus_num, &re);
1432 if (ret_fr) {
1433 return ret_fr;
1436 if (!vtd_root_entry_present(s, &re, devfn)) {
1437 /* Not error - it's okay we don't have root entry. */
1438 trace_vtd_re_not_present(bus_num);
1439 return -VTD_FR_ROOT_ENTRY_P;
1442 ret_fr = vtd_root_entry_rsvd_bits_check(s, &re);
1443 if (ret_fr) {
1444 return ret_fr;
1447 ret_fr = vtd_get_context_entry_from_root(s, &re, devfn, ce);
1448 if (ret_fr) {
1449 return ret_fr;
1452 if (!vtd_ce_present(ce)) {
1453 /* Not error - it's okay we don't have context entry. */
1454 trace_vtd_ce_not_present(bus_num, devfn);
1455 return -VTD_FR_CONTEXT_ENTRY_P;
1458 ret_fr = vtd_context_entry_rsvd_bits_check(s, ce);
1459 if (ret_fr) {
1460 return ret_fr;
1463 /* Check if the programming of context-entry is valid */
1464 if (!s->root_scalable &&
1465 !vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
1466 error_report_once("%s: invalid context entry: hi=%"PRIx64
1467 ", lo=%"PRIx64" (level %d not supported)",
1468 __func__, ce->hi, ce->lo,
1469 vtd_ce_get_level(ce));
1470 return -VTD_FR_CONTEXT_ENTRY_INV;
1473 if (!s->root_scalable) {
1474 /* Do translation type check */
1475 if (!vtd_ce_type_check(x86_iommu, ce)) {
1476 /* Errors dumped in vtd_ce_type_check() */
1477 return -VTD_FR_CONTEXT_ENTRY_INV;
1479 } else {
1481 * Check if the programming of context-entry.rid2pasid
1482 * and corresponding pasid setting is valid, and thus
1483 * avoids to check pasid entry fetching result in future
1484 * helper function calling.
1486 ret_fr = vtd_ce_rid2pasid_check(s, ce);
1487 if (ret_fr) {
1488 return ret_fr;
1492 return 0;
1495 static int vtd_sync_shadow_page_hook(IOMMUTLBEvent *event,
1496 void *private)
1498 memory_region_notify_iommu(private, 0, *event);
1499 return 0;
1502 static uint16_t vtd_get_domain_id(IntelIOMMUState *s,
1503 VTDContextEntry *ce,
1504 uint32_t pasid)
1506 VTDPASIDEntry pe;
1508 if (s->root_scalable) {
1509 vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
1510 return VTD_SM_PASID_ENTRY_DID(pe.val[1]);
1513 return VTD_CONTEXT_ENTRY_DID(ce->hi);
1516 static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as,
1517 VTDContextEntry *ce,
1518 hwaddr addr, hwaddr size)
1520 IntelIOMMUState *s = vtd_as->iommu_state;
1521 vtd_page_walk_info info = {
1522 .hook_fn = vtd_sync_shadow_page_hook,
1523 .private = (void *)&vtd_as->iommu,
1524 .notify_unmap = true,
1525 .aw = s->aw_bits,
1526 .as = vtd_as,
1527 .domain_id = vtd_get_domain_id(s, ce, vtd_as->pasid),
1530 return vtd_page_walk(s, ce, addr, addr + size, &info, vtd_as->pasid);
1533 static int vtd_sync_shadow_page_table(VTDAddressSpace *vtd_as)
1535 int ret;
1536 VTDContextEntry ce;
1537 IOMMUNotifier *n;
1539 if (!(vtd_as->iommu.iommu_notify_flags & IOMMU_NOTIFIER_IOTLB_EVENTS)) {
1540 return 0;
1543 ret = vtd_dev_to_context_entry(vtd_as->iommu_state,
1544 pci_bus_num(vtd_as->bus),
1545 vtd_as->devfn, &ce);
1546 if (ret) {
1547 if (ret == -VTD_FR_CONTEXT_ENTRY_P) {
1549 * It's a valid scenario to have a context entry that is
1550 * not present. For example, when a device is removed
1551 * from an existing domain then the context entry will be
1552 * zeroed by the guest before it was put into another
1553 * domain. When this happens, instead of synchronizing
1554 * the shadow pages we should invalidate all existing
1555 * mappings and notify the backends.
1557 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
1558 vtd_address_space_unmap(vtd_as, n);
1560 ret = 0;
1562 return ret;
1565 return vtd_sync_shadow_page_table_range(vtd_as, &ce, 0, UINT64_MAX);
1569 * Check if specific device is configured to bypass address
1570 * translation for DMA requests. In Scalable Mode, bypass
1571 * 1st-level translation or 2nd-level translation, it depends
1572 * on PGTT setting.
1574 static bool vtd_dev_pt_enabled(IntelIOMMUState *s, VTDContextEntry *ce,
1575 uint32_t pasid)
1577 VTDPASIDEntry pe;
1578 int ret;
1580 if (s->root_scalable) {
1581 ret = vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
1582 if (ret) {
1584 * This error is guest triggerable. We should assumt PT
1585 * not enabled for safety.
1587 return false;
1589 return (VTD_PE_GET_TYPE(&pe) == VTD_SM_PASID_ENTRY_PT);
1592 return (vtd_ce_get_type(ce) == VTD_CONTEXT_TT_PASS_THROUGH);
1596 static bool vtd_as_pt_enabled(VTDAddressSpace *as)
1598 IntelIOMMUState *s;
1599 VTDContextEntry ce;
1601 assert(as);
1603 s = as->iommu_state;
1604 if (vtd_dev_to_context_entry(s, pci_bus_num(as->bus), as->devfn,
1605 &ce)) {
1607 * Possibly failed to parse the context entry for some reason
1608 * (e.g., during init, or any guest configuration errors on
1609 * context entries). We should assume PT not enabled for
1610 * safety.
1612 return false;
1615 return vtd_dev_pt_enabled(s, &ce, as->pasid);
1618 /* Return whether the device is using IOMMU translation. */
1619 static bool vtd_switch_address_space(VTDAddressSpace *as)
1621 bool use_iommu, pt;
1622 /* Whether we need to take the BQL on our own */
1623 bool take_bql = !qemu_mutex_iothread_locked();
1625 assert(as);
1627 use_iommu = as->iommu_state->dmar_enabled && !vtd_as_pt_enabled(as);
1628 pt = as->iommu_state->dmar_enabled && vtd_as_pt_enabled(as);
1630 trace_vtd_switch_address_space(pci_bus_num(as->bus),
1631 VTD_PCI_SLOT(as->devfn),
1632 VTD_PCI_FUNC(as->devfn),
1633 use_iommu);
1636 * It's possible that we reach here without BQL, e.g., when called
1637 * from vtd_pt_enable_fast_path(). However the memory APIs need
1638 * it. We'd better make sure we have had it already, or, take it.
1640 if (take_bql) {
1641 qemu_mutex_lock_iothread();
1644 /* Turn off first then on the other */
1645 if (use_iommu) {
1646 memory_region_set_enabled(&as->nodmar, false);
1647 memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
1649 * vt-d spec v3.4 3.14:
1651 * """
1652 * Requests-with-PASID with input address in range 0xFEEx_xxxx
1653 * are translated normally like any other request-with-PASID
1654 * through DMA-remapping hardware.
1655 * """
1657 * Need to disable ir for as with PASID.
1659 if (as->pasid != PCI_NO_PASID) {
1660 memory_region_set_enabled(&as->iommu_ir, false);
1661 } else {
1662 memory_region_set_enabled(&as->iommu_ir, true);
1664 } else {
1665 memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
1666 memory_region_set_enabled(&as->nodmar, true);
1670 * vtd-spec v3.4 3.14:
1672 * """
1673 * Requests-with-PASID with input address in range 0xFEEx_xxxx are
1674 * translated normally like any other request-with-PASID through
1675 * DMA-remapping hardware. However, if such a request is processed
1676 * using pass-through translation, it will be blocked as described
1677 * in the paragraph below.
1679 * Software must not program paging-structure entries to remap any
1680 * address to the interrupt address range. Untranslated requests
1681 * and translation requests that result in an address in the
1682 * interrupt range will be blocked with condition code LGN.4 or
1683 * SGN.8.
1684 * """
1686 * We enable per as memory region (iommu_ir_fault) for catching
1687 * the tranlsation for interrupt range through PASID + PT.
1689 if (pt && as->pasid != PCI_NO_PASID) {
1690 memory_region_set_enabled(&as->iommu_ir_fault, true);
1691 } else {
1692 memory_region_set_enabled(&as->iommu_ir_fault, false);
1695 if (take_bql) {
1696 qemu_mutex_unlock_iothread();
1699 return use_iommu;
1702 static void vtd_switch_address_space_all(IntelIOMMUState *s)
1704 VTDAddressSpace *vtd_as;
1705 GHashTableIter iter;
1707 g_hash_table_iter_init(&iter, s->vtd_address_spaces);
1708 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_as)) {
1709 vtd_switch_address_space(vtd_as);
1713 static const bool vtd_qualified_faults[] = {
1714 [VTD_FR_RESERVED] = false,
1715 [VTD_FR_ROOT_ENTRY_P] = false,
1716 [VTD_FR_CONTEXT_ENTRY_P] = true,
1717 [VTD_FR_CONTEXT_ENTRY_INV] = true,
1718 [VTD_FR_ADDR_BEYOND_MGAW] = true,
1719 [VTD_FR_WRITE] = true,
1720 [VTD_FR_READ] = true,
1721 [VTD_FR_PAGING_ENTRY_INV] = true,
1722 [VTD_FR_ROOT_TABLE_INV] = false,
1723 [VTD_FR_CONTEXT_TABLE_INV] = false,
1724 [VTD_FR_INTERRUPT_ADDR] = true,
1725 [VTD_FR_ROOT_ENTRY_RSVD] = false,
1726 [VTD_FR_PAGING_ENTRY_RSVD] = true,
1727 [VTD_FR_CONTEXT_ENTRY_TT] = true,
1728 [VTD_FR_PASID_TABLE_INV] = false,
1729 [VTD_FR_SM_INTERRUPT_ADDR] = true,
1730 [VTD_FR_MAX] = false,
1733 /* To see if a fault condition is "qualified", which is reported to software
1734 * only if the FPD field in the context-entry used to process the faulting
1735 * request is 0.
1737 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
1739 return vtd_qualified_faults[fault];
1742 static inline bool vtd_is_interrupt_addr(hwaddr addr)
1744 return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
1747 static gboolean vtd_find_as_by_sid(gpointer key, gpointer value,
1748 gpointer user_data)
1750 struct vtd_as_key *as_key = (struct vtd_as_key *)key;
1751 uint16_t target_sid = *(uint16_t *)user_data;
1752 uint16_t sid = PCI_BUILD_BDF(pci_bus_num(as_key->bus), as_key->devfn);
1753 return sid == target_sid;
1756 static VTDAddressSpace *vtd_get_as_by_sid(IntelIOMMUState *s, uint16_t sid)
1758 uint8_t bus_num = PCI_BUS_NUM(sid);
1759 VTDAddressSpace *vtd_as = s->vtd_as_cache[bus_num];
1761 if (vtd_as &&
1762 (sid == PCI_BUILD_BDF(pci_bus_num(vtd_as->bus), vtd_as->devfn))) {
1763 return vtd_as;
1766 vtd_as = g_hash_table_find(s->vtd_address_spaces, vtd_find_as_by_sid, &sid);
1767 s->vtd_as_cache[bus_num] = vtd_as;
1769 return vtd_as;
1772 static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
1774 VTDAddressSpace *vtd_as;
1775 bool success = false;
1777 vtd_as = vtd_get_as_by_sid(s, source_id);
1778 if (!vtd_as) {
1779 goto out;
1782 if (vtd_switch_address_space(vtd_as) == false) {
1783 /* We switched off IOMMU region successfully. */
1784 success = true;
1787 out:
1788 trace_vtd_pt_enable_fast_path(source_id, success);
1791 static void vtd_report_fault(IntelIOMMUState *s,
1792 int err, bool is_fpd_set,
1793 uint16_t source_id,
1794 hwaddr addr,
1795 bool is_write,
1796 bool is_pasid,
1797 uint32_t pasid)
1799 if (is_fpd_set && vtd_is_qualified_fault(err)) {
1800 trace_vtd_fault_disabled();
1801 } else {
1802 vtd_report_dmar_fault(s, source_id, addr, err, is_write,
1803 is_pasid, pasid);
1807 /* Map dev to context-entry then do a paging-structures walk to do a iommu
1808 * translation.
1810 * Called from RCU critical section.
1812 * @bus_num: The bus number
1813 * @devfn: The devfn, which is the combined of device and function number
1814 * @is_write: The access is a write operation
1815 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
1817 * Returns true if translation is successful, otherwise false.
1819 static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
1820 uint8_t devfn, hwaddr addr, bool is_write,
1821 IOMMUTLBEntry *entry)
1823 IntelIOMMUState *s = vtd_as->iommu_state;
1824 VTDContextEntry ce;
1825 uint8_t bus_num = pci_bus_num(bus);
1826 VTDContextCacheEntry *cc_entry;
1827 uint64_t slpte, page_mask;
1828 uint32_t level, pasid = vtd_as->pasid;
1829 uint16_t source_id = PCI_BUILD_BDF(bus_num, devfn);
1830 int ret_fr;
1831 bool is_fpd_set = false;
1832 bool reads = true;
1833 bool writes = true;
1834 uint8_t access_flags;
1835 bool rid2pasid = (pasid == PCI_NO_PASID) && s->root_scalable;
1836 VTDIOTLBEntry *iotlb_entry;
1839 * We have standalone memory region for interrupt addresses, we
1840 * should never receive translation requests in this region.
1842 assert(!vtd_is_interrupt_addr(addr));
1844 vtd_iommu_lock(s);
1846 cc_entry = &vtd_as->context_cache_entry;
1848 /* Try to fetch slpte form IOTLB, we don't need RID2PASID logic */
1849 if (!rid2pasid) {
1850 iotlb_entry = vtd_lookup_iotlb(s, source_id, pasid, addr);
1851 if (iotlb_entry) {
1852 trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1853 iotlb_entry->domain_id);
1854 slpte = iotlb_entry->slpte;
1855 access_flags = iotlb_entry->access_flags;
1856 page_mask = iotlb_entry->mask;
1857 goto out;
1861 /* Try to fetch context-entry from cache first */
1862 if (cc_entry->context_cache_gen == s->context_cache_gen) {
1863 trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
1864 cc_entry->context_entry.lo,
1865 cc_entry->context_cache_gen);
1866 ce = cc_entry->context_entry;
1867 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1868 if (!is_fpd_set && s->root_scalable) {
1869 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, pasid);
1870 if (ret_fr) {
1871 vtd_report_fault(s, -ret_fr, is_fpd_set,
1872 source_id, addr, is_write,
1873 false, 0);
1874 goto error;
1877 } else {
1878 ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
1879 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1880 if (!ret_fr && !is_fpd_set && s->root_scalable) {
1881 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, pasid);
1883 if (ret_fr) {
1884 vtd_report_fault(s, -ret_fr, is_fpd_set,
1885 source_id, addr, is_write,
1886 false, 0);
1887 goto error;
1889 /* Update context-cache */
1890 trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
1891 cc_entry->context_cache_gen,
1892 s->context_cache_gen);
1893 cc_entry->context_entry = ce;
1894 cc_entry->context_cache_gen = s->context_cache_gen;
1897 if (rid2pasid) {
1898 pasid = VTD_CE_GET_RID2PASID(&ce);
1902 * We don't need to translate for pass-through context entries.
1903 * Also, let's ignore IOTLB caching as well for PT devices.
1905 if (vtd_dev_pt_enabled(s, &ce, pasid)) {
1906 entry->iova = addr & VTD_PAGE_MASK_4K;
1907 entry->translated_addr = entry->iova;
1908 entry->addr_mask = ~VTD_PAGE_MASK_4K;
1909 entry->perm = IOMMU_RW;
1910 trace_vtd_translate_pt(source_id, entry->iova);
1913 * When this happens, it means firstly caching-mode is not
1914 * enabled, and this is the first passthrough translation for
1915 * the device. Let's enable the fast path for passthrough.
1917 * When passthrough is disabled again for the device, we can
1918 * capture it via the context entry invalidation, then the
1919 * IOMMU region can be swapped back.
1921 vtd_pt_enable_fast_path(s, source_id);
1922 vtd_iommu_unlock(s);
1923 return true;
1926 /* Try to fetch slpte form IOTLB for RID2PASID slow path */
1927 if (rid2pasid) {
1928 iotlb_entry = vtd_lookup_iotlb(s, source_id, pasid, addr);
1929 if (iotlb_entry) {
1930 trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1931 iotlb_entry->domain_id);
1932 slpte = iotlb_entry->slpte;
1933 access_flags = iotlb_entry->access_flags;
1934 page_mask = iotlb_entry->mask;
1935 goto out;
1939 ret_fr = vtd_iova_to_slpte(s, &ce, addr, is_write, &slpte, &level,
1940 &reads, &writes, s->aw_bits, pasid);
1941 if (ret_fr) {
1942 vtd_report_fault(s, -ret_fr, is_fpd_set, source_id,
1943 addr, is_write, pasid != PCI_NO_PASID, pasid);
1944 goto error;
1947 page_mask = vtd_slpt_level_page_mask(level);
1948 access_flags = IOMMU_ACCESS_FLAG(reads, writes);
1949 vtd_update_iotlb(s, source_id, vtd_get_domain_id(s, &ce, pasid),
1950 addr, slpte, access_flags, level, pasid);
1951 out:
1952 vtd_iommu_unlock(s);
1953 entry->iova = addr & page_mask;
1954 entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask;
1955 entry->addr_mask = ~page_mask;
1956 entry->perm = access_flags;
1957 return true;
1959 error:
1960 vtd_iommu_unlock(s);
1961 entry->iova = 0;
1962 entry->translated_addr = 0;
1963 entry->addr_mask = 0;
1964 entry->perm = IOMMU_NONE;
1965 return false;
1968 static void vtd_root_table_setup(IntelIOMMUState *s)
1970 s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
1971 s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
1973 vtd_update_scalable_state(s);
1975 trace_vtd_reg_dmar_root(s->root, s->root_scalable);
1978 static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
1979 uint32_t index, uint32_t mask)
1981 x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
1984 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
1986 uint64_t value = 0;
1987 value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
1988 s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
1989 s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
1990 s->intr_eime = value & VTD_IRTA_EIME;
1992 /* Notify global invalidation */
1993 vtd_iec_notify_all(s, true, 0, 0);
1995 trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
1998 static void vtd_iommu_replay_all(IntelIOMMUState *s)
2000 VTDAddressSpace *vtd_as;
2002 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
2003 vtd_sync_shadow_page_table(vtd_as);
2007 static void vtd_context_global_invalidate(IntelIOMMUState *s)
2009 trace_vtd_inv_desc_cc_global();
2010 /* Protects context cache */
2011 vtd_iommu_lock(s);
2012 s->context_cache_gen++;
2013 if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
2014 vtd_reset_context_cache_locked(s);
2016 vtd_iommu_unlock(s);
2017 vtd_address_space_refresh_all(s);
2019 * From VT-d spec 6.5.2.1, a global context entry invalidation
2020 * should be followed by a IOTLB global invalidation, so we should
2021 * be safe even without this. Hoewever, let's replay the region as
2022 * well to be safer, and go back here when we need finer tunes for
2023 * VT-d emulation codes.
2025 vtd_iommu_replay_all(s);
2028 /* Do a context-cache device-selective invalidation.
2029 * @func_mask: FM field after shifting
2031 static void vtd_context_device_invalidate(IntelIOMMUState *s,
2032 uint16_t source_id,
2033 uint16_t func_mask)
2035 GHashTableIter as_it;
2036 uint16_t mask;
2037 VTDAddressSpace *vtd_as;
2038 uint8_t bus_n, devfn;
2040 trace_vtd_inv_desc_cc_devices(source_id, func_mask);
2042 switch (func_mask & 3) {
2043 case 0:
2044 mask = 0; /* No bits in the SID field masked */
2045 break;
2046 case 1:
2047 mask = 4; /* Mask bit 2 in the SID field */
2048 break;
2049 case 2:
2050 mask = 6; /* Mask bit 2:1 in the SID field */
2051 break;
2052 case 3:
2053 mask = 7; /* Mask bit 2:0 in the SID field */
2054 break;
2055 default:
2056 g_assert_not_reached();
2058 mask = ~mask;
2060 bus_n = VTD_SID_TO_BUS(source_id);
2061 devfn = VTD_SID_TO_DEVFN(source_id);
2063 g_hash_table_iter_init(&as_it, s->vtd_address_spaces);
2064 while (g_hash_table_iter_next(&as_it, NULL, (void **)&vtd_as)) {
2065 if ((pci_bus_num(vtd_as->bus) == bus_n) &&
2066 (vtd_as->devfn & mask) == (devfn & mask)) {
2067 trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(vtd_as->devfn),
2068 VTD_PCI_FUNC(vtd_as->devfn));
2069 vtd_iommu_lock(s);
2070 vtd_as->context_cache_entry.context_cache_gen = 0;
2071 vtd_iommu_unlock(s);
2073 * Do switch address space when needed, in case if the
2074 * device passthrough bit is switched.
2076 vtd_switch_address_space(vtd_as);
2078 * So a device is moving out of (or moving into) a
2079 * domain, resync the shadow page table.
2080 * This won't bring bad even if we have no such
2081 * notifier registered - the IOMMU notification
2082 * framework will skip MAP notifications if that
2083 * happened.
2085 vtd_sync_shadow_page_table(vtd_as);
2090 /* Context-cache invalidation
2091 * Returns the Context Actual Invalidation Granularity.
2092 * @val: the content of the CCMD_REG
2094 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
2096 uint64_t caig;
2097 uint64_t type = val & VTD_CCMD_CIRG_MASK;
2099 switch (type) {
2100 case VTD_CCMD_DOMAIN_INVL:
2101 /* Fall through */
2102 case VTD_CCMD_GLOBAL_INVL:
2103 caig = VTD_CCMD_GLOBAL_INVL_A;
2104 vtd_context_global_invalidate(s);
2105 break;
2107 case VTD_CCMD_DEVICE_INVL:
2108 caig = VTD_CCMD_DEVICE_INVL_A;
2109 vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
2110 break;
2112 default:
2113 error_report_once("%s: invalid context: 0x%" PRIx64,
2114 __func__, val);
2115 caig = 0;
2117 return caig;
2120 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
2122 trace_vtd_inv_desc_iotlb_global();
2123 vtd_reset_iotlb(s);
2124 vtd_iommu_replay_all(s);
2127 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
2129 VTDContextEntry ce;
2130 VTDAddressSpace *vtd_as;
2132 trace_vtd_inv_desc_iotlb_domain(domain_id);
2134 vtd_iommu_lock(s);
2135 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
2136 &domain_id);
2137 vtd_iommu_unlock(s);
2139 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
2140 if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
2141 vtd_as->devfn, &ce) &&
2142 domain_id == vtd_get_domain_id(s, &ce, vtd_as->pasid)) {
2143 vtd_sync_shadow_page_table(vtd_as);
2148 static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
2149 uint16_t domain_id, hwaddr addr,
2150 uint8_t am, uint32_t pasid)
2152 VTDAddressSpace *vtd_as;
2153 VTDContextEntry ce;
2154 int ret;
2155 hwaddr size = (1 << am) * VTD_PAGE_SIZE;
2157 QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) {
2158 if (pasid != PCI_NO_PASID && pasid != vtd_as->pasid) {
2159 continue;
2161 ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
2162 vtd_as->devfn, &ce);
2163 if (!ret && domain_id == vtd_get_domain_id(s, &ce, vtd_as->pasid)) {
2164 if (vtd_as_has_map_notifier(vtd_as)) {
2166 * As long as we have MAP notifications registered in
2167 * any of our IOMMU notifiers, we need to sync the
2168 * shadow page table.
2170 vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size);
2171 } else {
2173 * For UNMAP-only notifiers, we don't need to walk the
2174 * page tables. We just deliver the PSI down to
2175 * invalidate caches.
2177 IOMMUTLBEvent event = {
2178 .type = IOMMU_NOTIFIER_UNMAP,
2179 .entry = {
2180 .target_as = &address_space_memory,
2181 .iova = addr,
2182 .translated_addr = 0,
2183 .addr_mask = size - 1,
2184 .perm = IOMMU_NONE,
2187 memory_region_notify_iommu(&vtd_as->iommu, 0, event);
2193 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
2194 hwaddr addr, uint8_t am)
2196 VTDIOTLBPageInvInfo info;
2198 trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
2200 assert(am <= VTD_MAMV);
2201 info.domain_id = domain_id;
2202 info.addr = addr;
2203 info.mask = ~((1 << am) - 1);
2204 vtd_iommu_lock(s);
2205 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
2206 vtd_iommu_unlock(s);
2207 vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am, PCI_NO_PASID);
2210 /* Flush IOTLB
2211 * Returns the IOTLB Actual Invalidation Granularity.
2212 * @val: the content of the IOTLB_REG
2214 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
2216 uint64_t iaig;
2217 uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
2218 uint16_t domain_id;
2219 hwaddr addr;
2220 uint8_t am;
2222 switch (type) {
2223 case VTD_TLB_GLOBAL_FLUSH:
2224 iaig = VTD_TLB_GLOBAL_FLUSH_A;
2225 vtd_iotlb_global_invalidate(s);
2226 break;
2228 case VTD_TLB_DSI_FLUSH:
2229 domain_id = VTD_TLB_DID(val);
2230 iaig = VTD_TLB_DSI_FLUSH_A;
2231 vtd_iotlb_domain_invalidate(s, domain_id);
2232 break;
2234 case VTD_TLB_PSI_FLUSH:
2235 domain_id = VTD_TLB_DID(val);
2236 addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
2237 am = VTD_IVA_AM(addr);
2238 addr = VTD_IVA_ADDR(addr);
2239 if (am > VTD_MAMV) {
2240 error_report_once("%s: address mask overflow: 0x%" PRIx64,
2241 __func__, vtd_get_quad_raw(s, DMAR_IVA_REG));
2242 iaig = 0;
2243 break;
2245 iaig = VTD_TLB_PSI_FLUSH_A;
2246 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2247 break;
2249 default:
2250 error_report_once("%s: invalid granularity: 0x%" PRIx64,
2251 __func__, val);
2252 iaig = 0;
2254 return iaig;
2257 static void vtd_fetch_inv_desc(IntelIOMMUState *s);
2259 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
2261 return s->qi_enabled && (s->iq_tail == s->iq_head) &&
2262 (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
2265 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
2267 uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
2269 trace_vtd_inv_qi_enable(en);
2271 if (en) {
2272 s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
2273 /* 2^(x+8) entries */
2274 s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8 - (s->iq_dw ? 1 : 0));
2275 s->qi_enabled = true;
2276 trace_vtd_inv_qi_setup(s->iq, s->iq_size);
2277 /* Ok - report back to driver */
2278 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
2280 if (s->iq_tail != 0) {
2282 * This is a spec violation but Windows guests are known to set up
2283 * Queued Invalidation this way so we allow the write and process
2284 * Invalidation Descriptors right away.
2286 trace_vtd_warn_invalid_qi_tail(s->iq_tail);
2287 if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2288 vtd_fetch_inv_desc(s);
2291 } else {
2292 if (vtd_queued_inv_disable_check(s)) {
2293 /* disable Queued Invalidation */
2294 vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
2295 s->iq_head = 0;
2296 s->qi_enabled = false;
2297 /* Ok - report back to driver */
2298 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
2299 } else {
2300 error_report_once("%s: detected improper state when disable QI "
2301 "(head=0x%x, tail=0x%x, last_type=%d)",
2302 __func__,
2303 s->iq_head, s->iq_tail, s->iq_last_desc_type);
2308 /* Set Root Table Pointer */
2309 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
2311 vtd_root_table_setup(s);
2312 /* Ok - report back to driver */
2313 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
2314 vtd_reset_caches(s);
2315 vtd_address_space_refresh_all(s);
2318 /* Set Interrupt Remap Table Pointer */
2319 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
2321 vtd_interrupt_remap_table_setup(s);
2322 /* Ok - report back to driver */
2323 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
2326 /* Handle Translation Enable/Disable */
2327 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
2329 if (s->dmar_enabled == en) {
2330 return;
2333 trace_vtd_dmar_enable(en);
2335 if (en) {
2336 s->dmar_enabled = true;
2337 /* Ok - report back to driver */
2338 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
2339 } else {
2340 s->dmar_enabled = false;
2342 /* Clear the index of Fault Recording Register */
2343 s->next_frcd_reg = 0;
2344 /* Ok - report back to driver */
2345 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
2348 vtd_reset_caches(s);
2349 vtd_address_space_refresh_all(s);
2352 /* Handle Interrupt Remap Enable/Disable */
2353 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
2355 trace_vtd_ir_enable(en);
2357 if (en) {
2358 s->intr_enabled = true;
2359 /* Ok - report back to driver */
2360 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
2361 } else {
2362 s->intr_enabled = false;
2363 /* Ok - report back to driver */
2364 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
2368 /* Handle write to Global Command Register */
2369 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
2371 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
2372 uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
2373 uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
2374 uint32_t changed = status ^ val;
2376 trace_vtd_reg_write_gcmd(status, val);
2377 if ((changed & VTD_GCMD_TE) && s->dma_translation) {
2378 /* Translation enable/disable */
2379 vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
2381 if (val & VTD_GCMD_SRTP) {
2382 /* Set/update the root-table pointer */
2383 vtd_handle_gcmd_srtp(s);
2385 if (changed & VTD_GCMD_QIE) {
2386 /* Queued Invalidation Enable */
2387 vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
2389 if (val & VTD_GCMD_SIRTP) {
2390 /* Set/update the interrupt remapping root-table pointer */
2391 vtd_handle_gcmd_sirtp(s);
2393 if ((changed & VTD_GCMD_IRE) &&
2394 x86_iommu_ir_supported(x86_iommu)) {
2395 /* Interrupt remap enable/disable */
2396 vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
2400 /* Handle write to Context Command Register */
2401 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
2403 uint64_t ret;
2404 uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
2406 /* Context-cache invalidation request */
2407 if (val & VTD_CCMD_ICC) {
2408 if (s->qi_enabled) {
2409 error_report_once("Queued Invalidation enabled, "
2410 "should not use register-based invalidation");
2411 return;
2413 ret = vtd_context_cache_invalidate(s, val);
2414 /* Invalidation completed. Change something to show */
2415 vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
2416 ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
2417 ret);
2421 /* Handle write to IOTLB Invalidation Register */
2422 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
2424 uint64_t ret;
2425 uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
2427 /* IOTLB invalidation request */
2428 if (val & VTD_TLB_IVT) {
2429 if (s->qi_enabled) {
2430 error_report_once("Queued Invalidation enabled, "
2431 "should not use register-based invalidation");
2432 return;
2434 ret = vtd_iotlb_flush(s, val);
2435 /* Invalidation completed. Change something to show */
2436 vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
2437 ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
2438 VTD_TLB_FLUSH_GRANU_MASK_A, ret);
2442 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
2443 static bool vtd_get_inv_desc(IntelIOMMUState *s,
2444 VTDInvDesc *inv_desc)
2446 dma_addr_t base_addr = s->iq;
2447 uint32_t offset = s->iq_head;
2448 uint32_t dw = s->iq_dw ? 32 : 16;
2449 dma_addr_t addr = base_addr + offset * dw;
2451 if (dma_memory_read(&address_space_memory, addr,
2452 inv_desc, dw, MEMTXATTRS_UNSPECIFIED)) {
2453 error_report_once("Read INV DESC failed.");
2454 return false;
2456 inv_desc->lo = le64_to_cpu(inv_desc->lo);
2457 inv_desc->hi = le64_to_cpu(inv_desc->hi);
2458 if (dw == 32) {
2459 inv_desc->val[2] = le64_to_cpu(inv_desc->val[2]);
2460 inv_desc->val[3] = le64_to_cpu(inv_desc->val[3]);
2462 return true;
2465 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2467 if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
2468 (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
2469 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2470 " (reserved nonzero)", __func__, inv_desc->hi,
2471 inv_desc->lo);
2472 return false;
2474 if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
2475 /* Status Write */
2476 uint32_t status_data = (uint32_t)(inv_desc->lo >>
2477 VTD_INV_DESC_WAIT_DATA_SHIFT);
2479 assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
2481 /* FIXME: need to be masked with HAW? */
2482 dma_addr_t status_addr = inv_desc->hi;
2483 trace_vtd_inv_desc_wait_sw(status_addr, status_data);
2484 status_data = cpu_to_le32(status_data);
2485 if (dma_memory_write(&address_space_memory, status_addr,
2486 &status_data, sizeof(status_data),
2487 MEMTXATTRS_UNSPECIFIED)) {
2488 trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
2489 return false;
2491 } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
2492 /* Interrupt flag */
2493 vtd_generate_completion_event(s);
2494 } else {
2495 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2496 " (unknown type)", __func__, inv_desc->hi,
2497 inv_desc->lo);
2498 return false;
2500 return true;
2503 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
2504 VTDInvDesc *inv_desc)
2506 uint16_t sid, fmask;
2508 if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
2509 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2510 " (reserved nonzero)", __func__, inv_desc->hi,
2511 inv_desc->lo);
2512 return false;
2514 switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
2515 case VTD_INV_DESC_CC_DOMAIN:
2516 trace_vtd_inv_desc_cc_domain(
2517 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
2518 /* Fall through */
2519 case VTD_INV_DESC_CC_GLOBAL:
2520 vtd_context_global_invalidate(s);
2521 break;
2523 case VTD_INV_DESC_CC_DEVICE:
2524 sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
2525 fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
2526 vtd_context_device_invalidate(s, sid, fmask);
2527 break;
2529 default:
2530 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2531 " (invalid type)", __func__, inv_desc->hi,
2532 inv_desc->lo);
2533 return false;
2535 return true;
2538 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2540 uint16_t domain_id;
2541 uint8_t am;
2542 hwaddr addr;
2544 if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
2545 (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
2546 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2547 ", lo=0x%"PRIx64" (reserved bits unzero)",
2548 __func__, inv_desc->hi, inv_desc->lo);
2549 return false;
2552 switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
2553 case VTD_INV_DESC_IOTLB_GLOBAL:
2554 vtd_iotlb_global_invalidate(s);
2555 break;
2557 case VTD_INV_DESC_IOTLB_DOMAIN:
2558 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2559 vtd_iotlb_domain_invalidate(s, domain_id);
2560 break;
2562 case VTD_INV_DESC_IOTLB_PAGE:
2563 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2564 addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
2565 am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
2566 if (am > VTD_MAMV) {
2567 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2568 ", lo=0x%"PRIx64" (am=%u > VTD_MAMV=%u)",
2569 __func__, inv_desc->hi, inv_desc->lo,
2570 am, (unsigned)VTD_MAMV);
2571 return false;
2573 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2574 break;
2576 default:
2577 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2578 ", lo=0x%"PRIx64" (type mismatch: 0x%llx)",
2579 __func__, inv_desc->hi, inv_desc->lo,
2580 inv_desc->lo & VTD_INV_DESC_IOTLB_G);
2581 return false;
2583 return true;
2586 static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
2587 VTDInvDesc *inv_desc)
2589 trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
2590 inv_desc->iec.index,
2591 inv_desc->iec.index_mask);
2593 vtd_iec_notify_all(s, !inv_desc->iec.granularity,
2594 inv_desc->iec.index,
2595 inv_desc->iec.index_mask);
2596 return true;
2599 static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
2600 VTDInvDesc *inv_desc)
2602 VTDAddressSpace *vtd_dev_as;
2603 IOMMUTLBEvent event;
2604 hwaddr addr;
2605 uint64_t sz;
2606 uint16_t sid;
2607 bool size;
2609 addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
2610 sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
2611 size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
2613 if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
2614 (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
2615 error_report_once("%s: invalid dev-iotlb inv desc: hi=%"PRIx64
2616 ", lo=%"PRIx64" (reserved nonzero)", __func__,
2617 inv_desc->hi, inv_desc->lo);
2618 return false;
2622 * Using sid is OK since the guest should have finished the
2623 * initialization of both the bus and device.
2625 vtd_dev_as = vtd_get_as_by_sid(s, sid);
2626 if (!vtd_dev_as) {
2627 goto done;
2630 /* According to ATS spec table 2.4:
2631 * S = 0, bits 15:12 = xxxx range size: 4K
2632 * S = 1, bits 15:12 = xxx0 range size: 8K
2633 * S = 1, bits 15:12 = xx01 range size: 16K
2634 * S = 1, bits 15:12 = x011 range size: 32K
2635 * S = 1, bits 15:12 = 0111 range size: 64K
2636 * ...
2638 if (size) {
2639 sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
2640 addr &= ~(sz - 1);
2641 } else {
2642 sz = VTD_PAGE_SIZE;
2645 event.type = IOMMU_NOTIFIER_DEVIOTLB_UNMAP;
2646 event.entry.target_as = &vtd_dev_as->as;
2647 event.entry.addr_mask = sz - 1;
2648 event.entry.iova = addr;
2649 event.entry.perm = IOMMU_NONE;
2650 event.entry.translated_addr = 0;
2651 memory_region_notify_iommu(&vtd_dev_as->iommu, 0, event);
2653 done:
2654 return true;
2657 static bool vtd_process_inv_desc(IntelIOMMUState *s)
2659 VTDInvDesc inv_desc;
2660 uint8_t desc_type;
2662 trace_vtd_inv_qi_head(s->iq_head);
2663 if (!vtd_get_inv_desc(s, &inv_desc)) {
2664 s->iq_last_desc_type = VTD_INV_DESC_NONE;
2665 return false;
2668 desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
2669 /* FIXME: should update at first or at last? */
2670 s->iq_last_desc_type = desc_type;
2672 switch (desc_type) {
2673 case VTD_INV_DESC_CC:
2674 trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
2675 if (!vtd_process_context_cache_desc(s, &inv_desc)) {
2676 return false;
2678 break;
2680 case VTD_INV_DESC_IOTLB:
2681 trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
2682 if (!vtd_process_iotlb_desc(s, &inv_desc)) {
2683 return false;
2685 break;
2688 * TODO: the entity of below two cases will be implemented in future series.
2689 * To make guest (which integrates scalable mode support patch set in
2690 * iommu driver) work, just return true is enough so far.
2692 case VTD_INV_DESC_PC:
2693 break;
2695 case VTD_INV_DESC_PIOTLB:
2696 break;
2698 case VTD_INV_DESC_WAIT:
2699 trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
2700 if (!vtd_process_wait_desc(s, &inv_desc)) {
2701 return false;
2703 break;
2705 case VTD_INV_DESC_IEC:
2706 trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
2707 if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
2708 return false;
2710 break;
2712 case VTD_INV_DESC_DEVICE:
2713 trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
2714 if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
2715 return false;
2717 break;
2719 default:
2720 error_report_once("%s: invalid inv desc: hi=%"PRIx64", lo=%"PRIx64
2721 " (unknown type)", __func__, inv_desc.hi,
2722 inv_desc.lo);
2723 return false;
2725 s->iq_head++;
2726 if (s->iq_head == s->iq_size) {
2727 s->iq_head = 0;
2729 return true;
2732 /* Try to fetch and process more Invalidation Descriptors */
2733 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
2735 int qi_shift;
2737 /* Refer to 10.4.23 of VT-d spec 3.0 */
2738 qi_shift = s->iq_dw ? VTD_IQH_QH_SHIFT_5 : VTD_IQH_QH_SHIFT_4;
2740 trace_vtd_inv_qi_fetch();
2742 if (s->iq_tail >= s->iq_size) {
2743 /* Detects an invalid Tail pointer */
2744 error_report_once("%s: detected invalid QI tail "
2745 "(tail=0x%x, size=0x%x)",
2746 __func__, s->iq_tail, s->iq_size);
2747 vtd_handle_inv_queue_error(s);
2748 return;
2750 while (s->iq_head != s->iq_tail) {
2751 if (!vtd_process_inv_desc(s)) {
2752 /* Invalidation Queue Errors */
2753 vtd_handle_inv_queue_error(s);
2754 break;
2756 /* Must update the IQH_REG in time */
2757 vtd_set_quad_raw(s, DMAR_IQH_REG,
2758 (((uint64_t)(s->iq_head)) << qi_shift) &
2759 VTD_IQH_QH_MASK);
2763 /* Handle write to Invalidation Queue Tail Register */
2764 static void vtd_handle_iqt_write(IntelIOMMUState *s)
2766 uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
2768 if (s->iq_dw && (val & VTD_IQT_QT_256_RSV_BIT)) {
2769 error_report_once("%s: RSV bit is set: val=0x%"PRIx64,
2770 __func__, val);
2771 return;
2773 s->iq_tail = VTD_IQT_QT(s->iq_dw, val);
2774 trace_vtd_inv_qi_tail(s->iq_tail);
2776 if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2777 /* Process Invalidation Queue here */
2778 vtd_fetch_inv_desc(s);
2782 static void vtd_handle_fsts_write(IntelIOMMUState *s)
2784 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
2785 uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2786 uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
2788 if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
2789 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2790 trace_vtd_fsts_clear_ip();
2792 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
2793 * Descriptors if there are any when Queued Invalidation is enabled?
2797 static void vtd_handle_fectl_write(IntelIOMMUState *s)
2799 uint32_t fectl_reg;
2800 /* FIXME: when software clears the IM field, check the IP field. But do we
2801 * need to compare the old value and the new value to conclude that
2802 * software clears the IM field? Or just check if the IM field is zero?
2804 fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2806 trace_vtd_reg_write_fectl(fectl_reg);
2808 if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
2809 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
2810 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2814 static void vtd_handle_ics_write(IntelIOMMUState *s)
2816 uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
2817 uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2819 if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
2820 trace_vtd_reg_ics_clear_ip();
2821 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2825 static void vtd_handle_iectl_write(IntelIOMMUState *s)
2827 uint32_t iectl_reg;
2828 /* FIXME: when software clears the IM field, check the IP field. But do we
2829 * need to compare the old value and the new value to conclude that
2830 * software clears the IM field? Or just check if the IM field is zero?
2832 iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2834 trace_vtd_reg_write_iectl(iectl_reg);
2836 if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
2837 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
2838 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2842 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
2844 IntelIOMMUState *s = opaque;
2845 uint64_t val;
2847 trace_vtd_reg_read(addr, size);
2849 if (addr + size > DMAR_REG_SIZE) {
2850 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2851 " size=0x%x", __func__, addr, size);
2852 return (uint64_t)-1;
2855 switch (addr) {
2856 /* Root Table Address Register, 64-bit */
2857 case DMAR_RTADDR_REG:
2858 val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
2859 if (size == 4) {
2860 val = val & ((1ULL << 32) - 1);
2862 break;
2864 case DMAR_RTADDR_REG_HI:
2865 assert(size == 4);
2866 val = vtd_get_quad_raw(s, DMAR_RTADDR_REG) >> 32;
2867 break;
2869 /* Invalidation Queue Address Register, 64-bit */
2870 case DMAR_IQA_REG:
2871 val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
2872 if (size == 4) {
2873 val = val & ((1ULL << 32) - 1);
2875 break;
2877 case DMAR_IQA_REG_HI:
2878 assert(size == 4);
2879 val = s->iq >> 32;
2880 break;
2882 default:
2883 if (size == 4) {
2884 val = vtd_get_long(s, addr);
2885 } else {
2886 val = vtd_get_quad(s, addr);
2890 return val;
2893 static void vtd_mem_write(void *opaque, hwaddr addr,
2894 uint64_t val, unsigned size)
2896 IntelIOMMUState *s = opaque;
2898 trace_vtd_reg_write(addr, size, val);
2900 if (addr + size > DMAR_REG_SIZE) {
2901 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2902 " size=0x%x", __func__, addr, size);
2903 return;
2906 switch (addr) {
2907 /* Global Command Register, 32-bit */
2908 case DMAR_GCMD_REG:
2909 vtd_set_long(s, addr, val);
2910 vtd_handle_gcmd_write(s);
2911 break;
2913 /* Context Command Register, 64-bit */
2914 case DMAR_CCMD_REG:
2915 if (size == 4) {
2916 vtd_set_long(s, addr, val);
2917 } else {
2918 vtd_set_quad(s, addr, val);
2919 vtd_handle_ccmd_write(s);
2921 break;
2923 case DMAR_CCMD_REG_HI:
2924 assert(size == 4);
2925 vtd_set_long(s, addr, val);
2926 vtd_handle_ccmd_write(s);
2927 break;
2929 /* IOTLB Invalidation Register, 64-bit */
2930 case DMAR_IOTLB_REG:
2931 if (size == 4) {
2932 vtd_set_long(s, addr, val);
2933 } else {
2934 vtd_set_quad(s, addr, val);
2935 vtd_handle_iotlb_write(s);
2937 break;
2939 case DMAR_IOTLB_REG_HI:
2940 assert(size == 4);
2941 vtd_set_long(s, addr, val);
2942 vtd_handle_iotlb_write(s);
2943 break;
2945 /* Invalidate Address Register, 64-bit */
2946 case DMAR_IVA_REG:
2947 if (size == 4) {
2948 vtd_set_long(s, addr, val);
2949 } else {
2950 vtd_set_quad(s, addr, val);
2952 break;
2954 case DMAR_IVA_REG_HI:
2955 assert(size == 4);
2956 vtd_set_long(s, addr, val);
2957 break;
2959 /* Fault Status Register, 32-bit */
2960 case DMAR_FSTS_REG:
2961 assert(size == 4);
2962 vtd_set_long(s, addr, val);
2963 vtd_handle_fsts_write(s);
2964 break;
2966 /* Fault Event Control Register, 32-bit */
2967 case DMAR_FECTL_REG:
2968 assert(size == 4);
2969 vtd_set_long(s, addr, val);
2970 vtd_handle_fectl_write(s);
2971 break;
2973 /* Fault Event Data Register, 32-bit */
2974 case DMAR_FEDATA_REG:
2975 assert(size == 4);
2976 vtd_set_long(s, addr, val);
2977 break;
2979 /* Fault Event Address Register, 32-bit */
2980 case DMAR_FEADDR_REG:
2981 if (size == 4) {
2982 vtd_set_long(s, addr, val);
2983 } else {
2985 * While the register is 32-bit only, some guests (Xen...) write to
2986 * it with 64-bit.
2988 vtd_set_quad(s, addr, val);
2990 break;
2992 /* Fault Event Upper Address Register, 32-bit */
2993 case DMAR_FEUADDR_REG:
2994 assert(size == 4);
2995 vtd_set_long(s, addr, val);
2996 break;
2998 /* Protected Memory Enable Register, 32-bit */
2999 case DMAR_PMEN_REG:
3000 assert(size == 4);
3001 vtd_set_long(s, addr, val);
3002 break;
3004 /* Root Table Address Register, 64-bit */
3005 case DMAR_RTADDR_REG:
3006 if (size == 4) {
3007 vtd_set_long(s, addr, val);
3008 } else {
3009 vtd_set_quad(s, addr, val);
3011 break;
3013 case DMAR_RTADDR_REG_HI:
3014 assert(size == 4);
3015 vtd_set_long(s, addr, val);
3016 break;
3018 /* Invalidation Queue Tail Register, 64-bit */
3019 case DMAR_IQT_REG:
3020 if (size == 4) {
3021 vtd_set_long(s, addr, val);
3022 } else {
3023 vtd_set_quad(s, addr, val);
3025 vtd_handle_iqt_write(s);
3026 break;
3028 case DMAR_IQT_REG_HI:
3029 assert(size == 4);
3030 vtd_set_long(s, addr, val);
3031 /* 19:63 of IQT_REG is RsvdZ, do nothing here */
3032 break;
3034 /* Invalidation Queue Address Register, 64-bit */
3035 case DMAR_IQA_REG:
3036 if (size == 4) {
3037 vtd_set_long(s, addr, val);
3038 } else {
3039 vtd_set_quad(s, addr, val);
3041 vtd_update_iq_dw(s);
3042 break;
3044 case DMAR_IQA_REG_HI:
3045 assert(size == 4);
3046 vtd_set_long(s, addr, val);
3047 break;
3049 /* Invalidation Completion Status Register, 32-bit */
3050 case DMAR_ICS_REG:
3051 assert(size == 4);
3052 vtd_set_long(s, addr, val);
3053 vtd_handle_ics_write(s);
3054 break;
3056 /* Invalidation Event Control Register, 32-bit */
3057 case DMAR_IECTL_REG:
3058 assert(size == 4);
3059 vtd_set_long(s, addr, val);
3060 vtd_handle_iectl_write(s);
3061 break;
3063 /* Invalidation Event Data Register, 32-bit */
3064 case DMAR_IEDATA_REG:
3065 assert(size == 4);
3066 vtd_set_long(s, addr, val);
3067 break;
3069 /* Invalidation Event Address Register, 32-bit */
3070 case DMAR_IEADDR_REG:
3071 assert(size == 4);
3072 vtd_set_long(s, addr, val);
3073 break;
3075 /* Invalidation Event Upper Address Register, 32-bit */
3076 case DMAR_IEUADDR_REG:
3077 assert(size == 4);
3078 vtd_set_long(s, addr, val);
3079 break;
3081 /* Fault Recording Registers, 128-bit */
3082 case DMAR_FRCD_REG_0_0:
3083 if (size == 4) {
3084 vtd_set_long(s, addr, val);
3085 } else {
3086 vtd_set_quad(s, addr, val);
3088 break;
3090 case DMAR_FRCD_REG_0_1:
3091 assert(size == 4);
3092 vtd_set_long(s, addr, val);
3093 break;
3095 case DMAR_FRCD_REG_0_2:
3096 if (size == 4) {
3097 vtd_set_long(s, addr, val);
3098 } else {
3099 vtd_set_quad(s, addr, val);
3100 /* May clear bit 127 (Fault), update PPF */
3101 vtd_update_fsts_ppf(s);
3103 break;
3105 case DMAR_FRCD_REG_0_3:
3106 assert(size == 4);
3107 vtd_set_long(s, addr, val);
3108 /* May clear bit 127 (Fault), update PPF */
3109 vtd_update_fsts_ppf(s);
3110 break;
3112 case DMAR_IRTA_REG:
3113 if (size == 4) {
3114 vtd_set_long(s, addr, val);
3115 } else {
3116 vtd_set_quad(s, addr, val);
3118 break;
3120 case DMAR_IRTA_REG_HI:
3121 assert(size == 4);
3122 vtd_set_long(s, addr, val);
3123 break;
3125 default:
3126 if (size == 4) {
3127 vtd_set_long(s, addr, val);
3128 } else {
3129 vtd_set_quad(s, addr, val);
3134 static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
3135 IOMMUAccessFlags flag, int iommu_idx)
3137 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
3138 IntelIOMMUState *s = vtd_as->iommu_state;
3139 IOMMUTLBEntry iotlb = {
3140 /* We'll fill in the rest later. */
3141 .target_as = &address_space_memory,
3143 bool success;
3145 if (likely(s->dmar_enabled)) {
3146 success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
3147 addr, flag & IOMMU_WO, &iotlb);
3148 } else {
3149 /* DMAR disabled, passthrough, use 4k-page*/
3150 iotlb.iova = addr & VTD_PAGE_MASK_4K;
3151 iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
3152 iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
3153 iotlb.perm = IOMMU_RW;
3154 success = true;
3157 if (likely(success)) {
3158 trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
3159 VTD_PCI_SLOT(vtd_as->devfn),
3160 VTD_PCI_FUNC(vtd_as->devfn),
3161 iotlb.iova, iotlb.translated_addr,
3162 iotlb.addr_mask);
3163 } else {
3164 error_report_once("%s: detected translation failure "
3165 "(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")",
3166 __func__, pci_bus_num(vtd_as->bus),
3167 VTD_PCI_SLOT(vtd_as->devfn),
3168 VTD_PCI_FUNC(vtd_as->devfn),
3169 addr);
3172 return iotlb;
3175 static int vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
3176 IOMMUNotifierFlag old,
3177 IOMMUNotifierFlag new,
3178 Error **errp)
3180 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
3181 IntelIOMMUState *s = vtd_as->iommu_state;
3183 /* TODO: add support for VFIO and vhost users */
3184 if (s->snoop_control) {
3185 error_setg_errno(errp, ENOTSUP,
3186 "Snoop Control with vhost or VFIO is not supported");
3187 return -ENOTSUP;
3190 /* Update per-address-space notifier flags */
3191 vtd_as->notifier_flags = new;
3193 if (old == IOMMU_NOTIFIER_NONE) {
3194 QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next);
3195 } else if (new == IOMMU_NOTIFIER_NONE) {
3196 QLIST_REMOVE(vtd_as, next);
3198 return 0;
3201 static int vtd_post_load(void *opaque, int version_id)
3203 IntelIOMMUState *iommu = opaque;
3206 * We don't need to migrate the root_scalable because we can
3207 * simply do the calculation after the loading is complete. We
3208 * can actually do similar things with root, dmar_enabled, etc.
3209 * however since we've had them already so we'd better keep them
3210 * for compatibility of migration.
3212 vtd_update_scalable_state(iommu);
3214 vtd_update_iq_dw(iommu);
3217 * Memory regions are dynamically turned on/off depending on
3218 * context entry configurations from the guest. After migration,
3219 * we need to make sure the memory regions are still correct.
3221 vtd_switch_address_space_all(iommu);
3223 return 0;
3226 static const VMStateDescription vtd_vmstate = {
3227 .name = "iommu-intel",
3228 .version_id = 1,
3229 .minimum_version_id = 1,
3230 .priority = MIG_PRI_IOMMU,
3231 .post_load = vtd_post_load,
3232 .fields = (VMStateField[]) {
3233 VMSTATE_UINT64(root, IntelIOMMUState),
3234 VMSTATE_UINT64(intr_root, IntelIOMMUState),
3235 VMSTATE_UINT64(iq, IntelIOMMUState),
3236 VMSTATE_UINT32(intr_size, IntelIOMMUState),
3237 VMSTATE_UINT16(iq_head, IntelIOMMUState),
3238 VMSTATE_UINT16(iq_tail, IntelIOMMUState),
3239 VMSTATE_UINT16(iq_size, IntelIOMMUState),
3240 VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
3241 VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
3242 VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
3243 VMSTATE_UNUSED(1), /* bool root_extended is obsolete by VT-d */
3244 VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
3245 VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
3246 VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
3247 VMSTATE_BOOL(intr_eime, IntelIOMMUState),
3248 VMSTATE_END_OF_LIST()
3252 static const MemoryRegionOps vtd_mem_ops = {
3253 .read = vtd_mem_read,
3254 .write = vtd_mem_write,
3255 .endianness = DEVICE_LITTLE_ENDIAN,
3256 .impl = {
3257 .min_access_size = 4,
3258 .max_access_size = 8,
3260 .valid = {
3261 .min_access_size = 4,
3262 .max_access_size = 8,
3266 static Property vtd_properties[] = {
3267 DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
3268 DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
3269 ON_OFF_AUTO_AUTO),
3270 DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
3271 DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState, aw_bits,
3272 VTD_HOST_ADDRESS_WIDTH),
3273 DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
3274 DEFINE_PROP_BOOL("x-scalable-mode", IntelIOMMUState, scalable_mode, FALSE),
3275 DEFINE_PROP_BOOL("snoop-control", IntelIOMMUState, snoop_control, false),
3276 DEFINE_PROP_BOOL("x-pasid-mode", IntelIOMMUState, pasid, false),
3277 DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState, dma_drain, true),
3278 DEFINE_PROP_BOOL("dma-translation", IntelIOMMUState, dma_translation, true),
3279 DEFINE_PROP_END_OF_LIST(),
3282 /* Read IRTE entry with specific index */
3283 static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
3284 VTD_IR_TableEntry *entry, uint16_t sid)
3286 static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
3287 {0xffff, 0xfffb, 0xfff9, 0xfff8};
3288 dma_addr_t addr = 0x00;
3289 uint16_t mask, source_id;
3290 uint8_t bus, bus_max, bus_min;
3292 if (index >= iommu->intr_size) {
3293 error_report_once("%s: index too large: ind=0x%x",
3294 __func__, index);
3295 return -VTD_FR_IR_INDEX_OVER;
3298 addr = iommu->intr_root + index * sizeof(*entry);
3299 if (dma_memory_read(&address_space_memory, addr,
3300 entry, sizeof(*entry), MEMTXATTRS_UNSPECIFIED)) {
3301 error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64,
3302 __func__, index, addr);
3303 return -VTD_FR_IR_ROOT_INVAL;
3306 trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]),
3307 le64_to_cpu(entry->data[0]));
3309 if (!entry->irte.present) {
3310 error_report_once("%s: detected non-present IRTE "
3311 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3312 __func__, index, le64_to_cpu(entry->data[1]),
3313 le64_to_cpu(entry->data[0]));
3314 return -VTD_FR_IR_ENTRY_P;
3317 if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
3318 entry->irte.__reserved_2) {
3319 error_report_once("%s: detected non-zero reserved IRTE "
3320 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3321 __func__, index, le64_to_cpu(entry->data[1]),
3322 le64_to_cpu(entry->data[0]));
3323 return -VTD_FR_IR_IRTE_RSVD;
3326 if (sid != X86_IOMMU_SID_INVALID) {
3327 /* Validate IRTE SID */
3328 source_id = le32_to_cpu(entry->irte.source_id);
3329 switch (entry->irte.sid_vtype) {
3330 case VTD_SVT_NONE:
3331 break;
3333 case VTD_SVT_ALL:
3334 mask = vtd_svt_mask[entry->irte.sid_q];
3335 if ((source_id & mask) != (sid & mask)) {
3336 error_report_once("%s: invalid IRTE SID "
3337 "(index=%u, sid=%u, source_id=%u)",
3338 __func__, index, sid, source_id);
3339 return -VTD_FR_IR_SID_ERR;
3341 break;
3343 case VTD_SVT_BUS:
3344 bus_max = source_id >> 8;
3345 bus_min = source_id & 0xff;
3346 bus = sid >> 8;
3347 if (bus > bus_max || bus < bus_min) {
3348 error_report_once("%s: invalid SVT_BUS "
3349 "(index=%u, bus=%u, min=%u, max=%u)",
3350 __func__, index, bus, bus_min, bus_max);
3351 return -VTD_FR_IR_SID_ERR;
3353 break;
3355 default:
3356 error_report_once("%s: detected invalid IRTE SVT "
3357 "(index=%u, type=%d)", __func__,
3358 index, entry->irte.sid_vtype);
3359 /* Take this as verification failure. */
3360 return -VTD_FR_IR_SID_ERR;
3364 return 0;
3367 /* Fetch IRQ information of specific IR index */
3368 static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
3369 X86IOMMUIrq *irq, uint16_t sid)
3371 VTD_IR_TableEntry irte = {};
3372 int ret = 0;
3374 ret = vtd_irte_get(iommu, index, &irte, sid);
3375 if (ret) {
3376 return ret;
3379 irq->trigger_mode = irte.irte.trigger_mode;
3380 irq->vector = irte.irte.vector;
3381 irq->delivery_mode = irte.irte.delivery_mode;
3382 irq->dest = le32_to_cpu(irte.irte.dest_id);
3383 if (!iommu->intr_eime) {
3384 #define VTD_IR_APIC_DEST_MASK (0xff00ULL)
3385 #define VTD_IR_APIC_DEST_SHIFT (8)
3386 irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
3387 VTD_IR_APIC_DEST_SHIFT;
3389 irq->dest_mode = irte.irte.dest_mode;
3390 irq->redir_hint = irte.irte.redir_hint;
3392 trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
3393 irq->delivery_mode, irq->dest, irq->dest_mode);
3395 return 0;
3398 /* Interrupt remapping for MSI/MSI-X entry */
3399 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
3400 MSIMessage *origin,
3401 MSIMessage *translated,
3402 uint16_t sid)
3404 int ret = 0;
3405 VTD_IR_MSIAddress addr;
3406 uint16_t index;
3407 X86IOMMUIrq irq = {};
3409 assert(origin && translated);
3411 trace_vtd_ir_remap_msi_req(origin->address, origin->data);
3413 if (!iommu || !iommu->intr_enabled) {
3414 memcpy(translated, origin, sizeof(*origin));
3415 goto out;
3418 if (origin->address & VTD_MSI_ADDR_HI_MASK) {
3419 error_report_once("%s: MSI address high 32 bits non-zero detected: "
3420 "address=0x%" PRIx64, __func__, origin->address);
3421 return -VTD_FR_IR_REQ_RSVD;
3424 addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
3425 if (addr.addr.__head != 0xfee) {
3426 error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32,
3427 __func__, addr.data);
3428 return -VTD_FR_IR_REQ_RSVD;
3431 /* This is compatible mode. */
3432 if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
3433 memcpy(translated, origin, sizeof(*origin));
3434 goto out;
3437 index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
3439 #define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff)
3440 #define VTD_IR_MSI_DATA_RESERVED (0xffff0000)
3442 if (addr.addr.sub_valid) {
3443 /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
3444 index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
3447 ret = vtd_remap_irq_get(iommu, index, &irq, sid);
3448 if (ret) {
3449 return ret;
3452 if (addr.addr.sub_valid) {
3453 trace_vtd_ir_remap_type("MSI");
3454 if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
3455 error_report_once("%s: invalid IR MSI "
3456 "(sid=%u, address=0x%" PRIx64
3457 ", data=0x%" PRIx32 ")",
3458 __func__, sid, origin->address, origin->data);
3459 return -VTD_FR_IR_REQ_RSVD;
3461 } else {
3462 uint8_t vector = origin->data & 0xff;
3463 uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
3465 trace_vtd_ir_remap_type("IOAPIC");
3466 /* IOAPIC entry vector should be aligned with IRTE vector
3467 * (see vt-d spec 5.1.5.1). */
3468 if (vector != irq.vector) {
3469 trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
3472 /* The Trigger Mode field must match the Trigger Mode in the IRTE.
3473 * (see vt-d spec 5.1.5.1). */
3474 if (trigger_mode != irq.trigger_mode) {
3475 trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
3476 irq.trigger_mode);
3481 * We'd better keep the last two bits, assuming that guest OS
3482 * might modify it. Keep it does not hurt after all.
3484 irq.msi_addr_last_bits = addr.addr.__not_care;
3486 /* Translate X86IOMMUIrq to MSI message */
3487 x86_iommu_irq_to_msi_message(&irq, translated);
3489 out:
3490 trace_vtd_ir_remap_msi(origin->address, origin->data,
3491 translated->address, translated->data);
3492 return 0;
3495 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
3496 MSIMessage *dst, uint16_t sid)
3498 return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
3499 src, dst, sid);
3502 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
3503 uint64_t *data, unsigned size,
3504 MemTxAttrs attrs)
3506 return MEMTX_OK;
3509 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
3510 uint64_t value, unsigned size,
3511 MemTxAttrs attrs)
3513 int ret = 0;
3514 MSIMessage from = {}, to = {};
3515 uint16_t sid = X86_IOMMU_SID_INVALID;
3517 from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
3518 from.data = (uint32_t) value;
3520 if (!attrs.unspecified) {
3521 /* We have explicit Source ID */
3522 sid = attrs.requester_id;
3525 ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
3526 if (ret) {
3527 /* TODO: report error */
3528 /* Drop this interrupt */
3529 return MEMTX_ERROR;
3532 apic_get_class(NULL)->send_msi(&to);
3534 return MEMTX_OK;
3537 static const MemoryRegionOps vtd_mem_ir_ops = {
3538 .read_with_attrs = vtd_mem_ir_read,
3539 .write_with_attrs = vtd_mem_ir_write,
3540 .endianness = DEVICE_LITTLE_ENDIAN,
3541 .impl = {
3542 .min_access_size = 4,
3543 .max_access_size = 4,
3545 .valid = {
3546 .min_access_size = 4,
3547 .max_access_size = 4,
3551 static void vtd_report_ir_illegal_access(VTDAddressSpace *vtd_as,
3552 hwaddr addr, bool is_write)
3554 IntelIOMMUState *s = vtd_as->iommu_state;
3555 uint8_t bus_n = pci_bus_num(vtd_as->bus);
3556 uint16_t sid = PCI_BUILD_BDF(bus_n, vtd_as->devfn);
3557 bool is_fpd_set = false;
3558 VTDContextEntry ce;
3560 assert(vtd_as->pasid != PCI_NO_PASID);
3562 /* Try out best to fetch FPD, we can't do anything more */
3563 if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
3564 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
3565 if (!is_fpd_set && s->root_scalable) {
3566 vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, vtd_as->pasid);
3570 vtd_report_fault(s, VTD_FR_SM_INTERRUPT_ADDR,
3571 is_fpd_set, sid, addr, is_write,
3572 true, vtd_as->pasid);
3575 static MemTxResult vtd_mem_ir_fault_read(void *opaque, hwaddr addr,
3576 uint64_t *data, unsigned size,
3577 MemTxAttrs attrs)
3579 vtd_report_ir_illegal_access(opaque, addr, false);
3581 return MEMTX_ERROR;
3584 static MemTxResult vtd_mem_ir_fault_write(void *opaque, hwaddr addr,
3585 uint64_t value, unsigned size,
3586 MemTxAttrs attrs)
3588 vtd_report_ir_illegal_access(opaque, addr, true);
3590 return MEMTX_ERROR;
3593 static const MemoryRegionOps vtd_mem_ir_fault_ops = {
3594 .read_with_attrs = vtd_mem_ir_fault_read,
3595 .write_with_attrs = vtd_mem_ir_fault_write,
3596 .endianness = DEVICE_LITTLE_ENDIAN,
3597 .impl = {
3598 .min_access_size = 1,
3599 .max_access_size = 8,
3601 .valid = {
3602 .min_access_size = 1,
3603 .max_access_size = 8,
3607 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus,
3608 int devfn, unsigned int pasid)
3611 * We can't simply use sid here since the bus number might not be
3612 * initialized by the guest.
3614 struct vtd_as_key key = {
3615 .bus = bus,
3616 .devfn = devfn,
3617 .pasid = pasid,
3619 VTDAddressSpace *vtd_dev_as;
3620 char name[128];
3622 vtd_dev_as = g_hash_table_lookup(s->vtd_address_spaces, &key);
3623 if (!vtd_dev_as) {
3624 struct vtd_as_key *new_key = g_malloc(sizeof(*new_key));
3626 new_key->bus = bus;
3627 new_key->devfn = devfn;
3628 new_key->pasid = pasid;
3630 if (pasid == PCI_NO_PASID) {
3631 snprintf(name, sizeof(name), "vtd-%02x.%x", PCI_SLOT(devfn),
3632 PCI_FUNC(devfn));
3633 } else {
3634 snprintf(name, sizeof(name), "vtd-%02x.%x-pasid-%x", PCI_SLOT(devfn),
3635 PCI_FUNC(devfn), pasid);
3638 vtd_dev_as = g_new0(VTDAddressSpace, 1);
3640 vtd_dev_as->bus = bus;
3641 vtd_dev_as->devfn = (uint8_t)devfn;
3642 vtd_dev_as->pasid = pasid;
3643 vtd_dev_as->iommu_state = s;
3644 vtd_dev_as->context_cache_entry.context_cache_gen = 0;
3645 vtd_dev_as->iova_tree = iova_tree_new();
3647 memory_region_init(&vtd_dev_as->root, OBJECT(s), name, UINT64_MAX);
3648 address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, "vtd-root");
3651 * Build the DMAR-disabled container with aliases to the
3652 * shared MRs. Note that aliasing to a shared memory region
3653 * could help the memory API to detect same FlatViews so we
3654 * can have devices to share the same FlatView when DMAR is
3655 * disabled (either by not providing "intel_iommu=on" or with
3656 * "iommu=pt"). It will greatly reduce the total number of
3657 * FlatViews of the system hence VM runs faster.
3659 memory_region_init_alias(&vtd_dev_as->nodmar, OBJECT(s),
3660 "vtd-nodmar", &s->mr_nodmar, 0,
3661 memory_region_size(&s->mr_nodmar));
3664 * Build the per-device DMAR-enabled container.
3666 * TODO: currently we have per-device IOMMU memory region only
3667 * because we have per-device IOMMU notifiers for devices. If
3668 * one day we can abstract the IOMMU notifiers out of the
3669 * memory regions then we can also share the same memory
3670 * region here just like what we've done above with the nodmar
3671 * region.
3673 strcat(name, "-dmar");
3674 memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
3675 TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
3676 name, UINT64_MAX);
3677 memory_region_init_alias(&vtd_dev_as->iommu_ir, OBJECT(s), "vtd-ir",
3678 &s->mr_ir, 0, memory_region_size(&s->mr_ir));
3679 memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->iommu),
3680 VTD_INTERRUPT_ADDR_FIRST,
3681 &vtd_dev_as->iommu_ir, 1);
3684 * This region is used for catching fault to access interrupt
3685 * range via passthrough + PASID. See also
3686 * vtd_switch_address_space(). We can't use alias since we
3687 * need to know the sid which is valid for MSI who uses
3688 * bus_master_as (see msi_send_message()).
3690 memory_region_init_io(&vtd_dev_as->iommu_ir_fault, OBJECT(s),
3691 &vtd_mem_ir_fault_ops, vtd_dev_as, "vtd-no-ir",
3692 VTD_INTERRUPT_ADDR_SIZE);
3694 * Hook to root since when PT is enabled vtd_dev_as->iommu
3695 * will be disabled.
3697 memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->root),
3698 VTD_INTERRUPT_ADDR_FIRST,
3699 &vtd_dev_as->iommu_ir_fault, 2);
3702 * Hook both the containers under the root container, we
3703 * switch between DMAR & noDMAR by enable/disable
3704 * corresponding sub-containers
3706 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3707 MEMORY_REGION(&vtd_dev_as->iommu),
3709 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3710 &vtd_dev_as->nodmar, 0);
3712 vtd_switch_address_space(vtd_dev_as);
3714 g_hash_table_insert(s->vtd_address_spaces, new_key, vtd_dev_as);
3716 return vtd_dev_as;
3719 /* Unmap the whole range in the notifier's scope. */
3720 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
3722 hwaddr size, remain;
3723 hwaddr start = n->start;
3724 hwaddr end = n->end;
3725 IntelIOMMUState *s = as->iommu_state;
3726 DMAMap map;
3729 * Note: all the codes in this function has a assumption that IOVA
3730 * bits are no more than VTD_MGAW bits (which is restricted by
3731 * VT-d spec), otherwise we need to consider overflow of 64 bits.
3734 if (end > VTD_ADDRESS_SIZE(s->aw_bits) - 1) {
3736 * Don't need to unmap regions that is bigger than the whole
3737 * VT-d supported address space size
3739 end = VTD_ADDRESS_SIZE(s->aw_bits) - 1;
3742 assert(start <= end);
3743 size = remain = end - start + 1;
3745 while (remain >= VTD_PAGE_SIZE) {
3746 IOMMUTLBEvent event;
3747 uint64_t mask = dma_aligned_pow2_mask(start, end, s->aw_bits);
3748 uint64_t size = mask + 1;
3750 assert(size);
3752 event.type = IOMMU_NOTIFIER_UNMAP;
3753 event.entry.iova = start;
3754 event.entry.addr_mask = mask;
3755 event.entry.target_as = &address_space_memory;
3756 event.entry.perm = IOMMU_NONE;
3757 /* This field is meaningless for unmap */
3758 event.entry.translated_addr = 0;
3760 memory_region_notify_iommu_one(n, &event);
3762 start += size;
3763 remain -= size;
3766 assert(!remain);
3768 trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
3769 VTD_PCI_SLOT(as->devfn),
3770 VTD_PCI_FUNC(as->devfn),
3771 n->start, size);
3773 map.iova = n->start;
3774 map.size = size;
3775 iova_tree_remove(as->iova_tree, map);
3778 static void vtd_address_space_unmap_all(IntelIOMMUState *s)
3780 VTDAddressSpace *vtd_as;
3781 IOMMUNotifier *n;
3783 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
3784 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
3785 vtd_address_space_unmap(vtd_as, n);
3790 static void vtd_address_space_refresh_all(IntelIOMMUState *s)
3792 vtd_address_space_unmap_all(s);
3793 vtd_switch_address_space_all(s);
3796 static int vtd_replay_hook(IOMMUTLBEvent *event, void *private)
3798 memory_region_notify_iommu_one(private, event);
3799 return 0;
3802 static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
3804 VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
3805 IntelIOMMUState *s = vtd_as->iommu_state;
3806 uint8_t bus_n = pci_bus_num(vtd_as->bus);
3807 VTDContextEntry ce;
3810 * The replay can be triggered by either a invalidation or a newly
3811 * created entry. No matter what, we release existing mappings
3812 * (it means flushing caches for UNMAP-only registers).
3814 vtd_address_space_unmap(vtd_as, n);
3816 if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
3817 trace_vtd_replay_ce_valid(s->root_scalable ? "scalable mode" :
3818 "legacy mode",
3819 bus_n, PCI_SLOT(vtd_as->devfn),
3820 PCI_FUNC(vtd_as->devfn),
3821 vtd_get_domain_id(s, &ce, vtd_as->pasid),
3822 ce.hi, ce.lo);
3823 if (vtd_as_has_map_notifier(vtd_as)) {
3824 /* This is required only for MAP typed notifiers */
3825 vtd_page_walk_info info = {
3826 .hook_fn = vtd_replay_hook,
3827 .private = (void *)n,
3828 .notify_unmap = false,
3829 .aw = s->aw_bits,
3830 .as = vtd_as,
3831 .domain_id = vtd_get_domain_id(s, &ce, vtd_as->pasid),
3834 vtd_page_walk(s, &ce, 0, ~0ULL, &info, vtd_as->pasid);
3836 } else {
3837 trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
3838 PCI_FUNC(vtd_as->devfn));
3841 return;
3844 /* Do the initialization. It will also be called when reset, so pay
3845 * attention when adding new initialization stuff.
3847 static void vtd_init(IntelIOMMUState *s)
3849 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3851 memset(s->csr, 0, DMAR_REG_SIZE);
3852 memset(s->wmask, 0, DMAR_REG_SIZE);
3853 memset(s->w1cmask, 0, DMAR_REG_SIZE);
3854 memset(s->womask, 0, DMAR_REG_SIZE);
3856 s->root = 0;
3857 s->root_scalable = false;
3858 s->dmar_enabled = false;
3859 s->intr_enabled = false;
3860 s->iq_head = 0;
3861 s->iq_tail = 0;
3862 s->iq = 0;
3863 s->iq_size = 0;
3864 s->qi_enabled = false;
3865 s->iq_last_desc_type = VTD_INV_DESC_NONE;
3866 s->iq_dw = false;
3867 s->next_frcd_reg = 0;
3868 s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
3869 VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
3870 VTD_CAP_MGAW(s->aw_bits);
3871 if (s->dma_drain) {
3872 s->cap |= VTD_CAP_DRAIN;
3874 if (s->dma_translation) {
3875 if (s->aw_bits >= VTD_HOST_AW_39BIT) {
3876 s->cap |= VTD_CAP_SAGAW_39bit;
3878 if (s->aw_bits >= VTD_HOST_AW_48BIT) {
3879 s->cap |= VTD_CAP_SAGAW_48bit;
3882 s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
3885 * Rsvd field masks for spte
3887 vtd_spte_rsvd[0] = ~0ULL;
3888 vtd_spte_rsvd[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits,
3889 x86_iommu->dt_supported);
3890 vtd_spte_rsvd[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
3891 vtd_spte_rsvd[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
3892 vtd_spte_rsvd[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
3894 vtd_spte_rsvd_large[2] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits,
3895 x86_iommu->dt_supported);
3896 vtd_spte_rsvd_large[3] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits,
3897 x86_iommu->dt_supported);
3899 if (s->scalable_mode || s->snoop_control) {
3900 vtd_spte_rsvd[1] &= ~VTD_SPTE_SNP;
3901 vtd_spte_rsvd_large[2] &= ~VTD_SPTE_SNP;
3902 vtd_spte_rsvd_large[3] &= ~VTD_SPTE_SNP;
3905 if (x86_iommu_ir_supported(x86_iommu)) {
3906 s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
3907 if (s->intr_eim == ON_OFF_AUTO_ON) {
3908 s->ecap |= VTD_ECAP_EIM;
3910 assert(s->intr_eim != ON_OFF_AUTO_AUTO);
3913 if (x86_iommu->dt_supported) {
3914 s->ecap |= VTD_ECAP_DT;
3917 if (x86_iommu->pt_supported) {
3918 s->ecap |= VTD_ECAP_PT;
3921 if (s->caching_mode) {
3922 s->cap |= VTD_CAP_CM;
3925 /* TODO: read cap/ecap from host to decide which cap to be exposed. */
3926 if (s->scalable_mode) {
3927 s->ecap |= VTD_ECAP_SMTS | VTD_ECAP_SRS | VTD_ECAP_SLTS;
3930 if (s->snoop_control) {
3931 s->ecap |= VTD_ECAP_SC;
3934 if (s->pasid) {
3935 s->ecap |= VTD_ECAP_PASID;
3938 vtd_reset_caches(s);
3940 /* Define registers with default values and bit semantics */
3941 vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
3942 vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
3943 vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
3944 vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
3945 vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
3946 vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
3947 vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffffc00ULL, 0);
3948 vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
3949 vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
3951 /* Advanced Fault Logging not supported */
3952 vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
3953 vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3954 vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
3955 vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
3957 /* Treated as RsvdZ when EIM in ECAP_REG is not supported
3958 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
3960 vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
3962 /* Treated as RO for implementations that PLMR and PHMR fields reported
3963 * as Clear in the CAP_REG.
3964 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
3966 vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
3968 vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
3969 vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
3970 vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff807ULL, 0);
3971 vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
3972 vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3973 vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
3974 vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
3975 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
3976 vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
3978 /* IOTLB registers */
3979 vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
3980 vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
3981 vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
3983 /* Fault Recording Registers, 128-bit */
3984 vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
3985 vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
3988 * Interrupt remapping registers.
3990 vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
3993 /* Should not reset address_spaces when reset because devices will still use
3994 * the address space they got at first (won't ask the bus again).
3996 static void vtd_reset(DeviceState *dev)
3998 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
4000 vtd_init(s);
4001 vtd_address_space_refresh_all(s);
4004 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
4006 IntelIOMMUState *s = opaque;
4007 VTDAddressSpace *vtd_as;
4009 assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
4011 vtd_as = vtd_find_add_as(s, bus, devfn, PCI_NO_PASID);
4012 return &vtd_as->as;
4015 static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
4017 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
4019 if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu_ir_supported(x86_iommu)) {
4020 error_setg(errp, "eim=on cannot be selected without intremap=on");
4021 return false;
4024 if (s->intr_eim == ON_OFF_AUTO_AUTO) {
4025 s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
4026 && x86_iommu_ir_supported(x86_iommu) ?
4027 ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
4029 if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
4030 if (!kvm_irqchip_is_split()) {
4031 error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
4032 return false;
4034 if (!kvm_enable_x2apic()) {
4035 error_setg(errp, "eim=on requires support on the KVM side"
4036 "(X2APIC_API, first shipped in v4.7)");
4037 return false;
4041 /* Currently only address widths supported are 39 and 48 bits */
4042 if ((s->aw_bits != VTD_HOST_AW_39BIT) &&
4043 (s->aw_bits != VTD_HOST_AW_48BIT)) {
4044 error_setg(errp, "Supported values for aw-bits are: %d, %d",
4045 VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
4046 return false;
4049 if (s->scalable_mode && !s->dma_drain) {
4050 error_setg(errp, "Need to set dma_drain for scalable mode");
4051 return false;
4054 if (s->pasid && !s->scalable_mode) {
4055 error_setg(errp, "Need to set scalable mode for PASID");
4056 return false;
4059 return true;
4062 static int vtd_machine_done_notify_one(Object *child, void *unused)
4064 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
4067 * We hard-coded here because vfio-pci is the only special case
4068 * here. Let's be more elegant in the future when we can, but so
4069 * far there seems to be no better way.
4071 if (object_dynamic_cast(child, "vfio-pci") && !iommu->caching_mode) {
4072 vtd_panic_require_caching_mode();
4075 return 0;
4078 static void vtd_machine_done_hook(Notifier *notifier, void *unused)
4080 object_child_foreach_recursive(object_get_root(),
4081 vtd_machine_done_notify_one, NULL);
4084 static Notifier vtd_machine_done_notify = {
4085 .notify = vtd_machine_done_hook,
4088 static void vtd_realize(DeviceState *dev, Error **errp)
4090 MachineState *ms = MACHINE(qdev_get_machine());
4091 PCMachineState *pcms = PC_MACHINE(ms);
4092 X86MachineState *x86ms = X86_MACHINE(ms);
4093 PCIBus *bus = pcms->bus;
4094 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
4095 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
4097 if (s->pasid && x86_iommu->dt_supported) {
4099 * PASID-based-Device-TLB Invalidate Descriptor is not
4100 * implemented and it requires support from vhost layer which
4101 * needs to be implemented in the future.
4103 error_setg(errp, "PASID based device IOTLB is not supported");
4104 return;
4107 if (!vtd_decide_config(s, errp)) {
4108 return;
4111 QLIST_INIT(&s->vtd_as_with_notifiers);
4112 qemu_mutex_init(&s->iommu_lock);
4113 memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
4114 "intel_iommu", DMAR_REG_SIZE);
4116 /* Create the shared memory regions by all devices */
4117 memory_region_init(&s->mr_nodmar, OBJECT(s), "vtd-nodmar",
4118 UINT64_MAX);
4119 memory_region_init_io(&s->mr_ir, OBJECT(s), &vtd_mem_ir_ops,
4120 s, "vtd-ir", VTD_INTERRUPT_ADDR_SIZE);
4121 memory_region_init_alias(&s->mr_sys_alias, OBJECT(s),
4122 "vtd-sys-alias", get_system_memory(), 0,
4123 memory_region_size(get_system_memory()));
4124 memory_region_add_subregion_overlap(&s->mr_nodmar, 0,
4125 &s->mr_sys_alias, 0);
4126 memory_region_add_subregion_overlap(&s->mr_nodmar,
4127 VTD_INTERRUPT_ADDR_FIRST,
4128 &s->mr_ir, 1);
4130 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
4131 /* No corresponding destroy */
4132 s->iotlb = g_hash_table_new_full(vtd_iotlb_hash, vtd_iotlb_equal,
4133 g_free, g_free);
4134 s->vtd_address_spaces = g_hash_table_new_full(vtd_as_hash, vtd_as_equal,
4135 g_free, g_free);
4136 vtd_init(s);
4137 sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
4138 pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
4139 /* Pseudo address space under root PCI bus. */
4140 x86ms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
4141 qemu_add_machine_init_done_notifier(&vtd_machine_done_notify);
4144 static void vtd_class_init(ObjectClass *klass, void *data)
4146 DeviceClass *dc = DEVICE_CLASS(klass);
4147 X86IOMMUClass *x86_class = X86_IOMMU_DEVICE_CLASS(klass);
4149 dc->reset = vtd_reset;
4150 dc->vmsd = &vtd_vmstate;
4151 device_class_set_props(dc, vtd_properties);
4152 dc->hotpluggable = false;
4153 x86_class->realize = vtd_realize;
4154 x86_class->int_remap = vtd_int_remap;
4155 /* Supported by the pc-q35-* machine types */
4156 dc->user_creatable = true;
4157 set_bit(DEVICE_CATEGORY_MISC, dc->categories);
4158 dc->desc = "Intel IOMMU (VT-d) DMA Remapping device";
4161 static const TypeInfo vtd_info = {
4162 .name = TYPE_INTEL_IOMMU_DEVICE,
4163 .parent = TYPE_X86_IOMMU_DEVICE,
4164 .instance_size = sizeof(IntelIOMMUState),
4165 .class_init = vtd_class_init,
4168 static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
4169 void *data)
4171 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
4173 imrc->translate = vtd_iommu_translate;
4174 imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
4175 imrc->replay = vtd_iommu_replay;
4178 static const TypeInfo vtd_iommu_memory_region_info = {
4179 .parent = TYPE_IOMMU_MEMORY_REGION,
4180 .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
4181 .class_init = vtd_iommu_memory_region_class_init,
4184 static void vtd_register_types(void)
4186 type_register_static(&vtd_info);
4187 type_register_static(&vtd_iommu_memory_region_info);
4190 type_init(vtd_register_types)