Add a new qmp command to do checkpoint, query xen replication status
[qemu.git] / qemu-options.hx
blobfaf5cf8d453dddd2a21dec8373f481c69c1df937
1 HXCOMM Use DEFHEADING() to define headings in both help text and texi
2 HXCOMM Text between STEXI and ETEXI are copied to texi version and
3 HXCOMM discarded from C version
4 HXCOMM DEF(option, HAS_ARG/0, opt_enum, opt_help, arch_mask) is used to
5 HXCOMM construct option structures, enums and help message for specified
6 HXCOMM architectures.
7 HXCOMM HXCOMM can be used for comments, discarded from both texi and C
9 DEFHEADING(Standard options)
10 STEXI
11 @table @option
12 ETEXI
14 DEF("help", 0, QEMU_OPTION_h,
15 "-h or -help display this help and exit\n", QEMU_ARCH_ALL)
16 STEXI
17 @item -h
18 @findex -h
19 Display help and exit
20 ETEXI
22 DEF("version", 0, QEMU_OPTION_version,
23 "-version display version information and exit\n", QEMU_ARCH_ALL)
24 STEXI
25 @item -version
26 @findex -version
27 Display version information and exit
28 ETEXI
30 DEF("machine", HAS_ARG, QEMU_OPTION_machine, \
31 "-machine [type=]name[,prop[=value][,...]]\n"
32 " selects emulated machine ('-machine help' for list)\n"
33 " property accel=accel1[:accel2[:...]] selects accelerator\n"
34 " supported accelerators are kvm, xen, tcg (default: tcg)\n"
35 " kernel_irqchip=on|off|split controls accelerated irqchip support (default=off)\n"
36 " vmport=on|off|auto controls emulation of vmport (default: auto)\n"
37 " kvm_shadow_mem=size of KVM shadow MMU in bytes\n"
38 " dump-guest-core=on|off include guest memory in a core dump (default=on)\n"
39 " mem-merge=on|off controls memory merge support (default: on)\n"
40 " igd-passthru=on|off controls IGD GFX passthrough support (default=off)\n"
41 " aes-key-wrap=on|off controls support for AES key wrapping (default=on)\n"
42 " dea-key-wrap=on|off controls support for DEA key wrapping (default=on)\n"
43 " suppress-vmdesc=on|off disables self-describing migration (default=off)\n"
44 " nvdimm=on|off controls NVDIMM support (default=off)\n"
45 " enforce-config-section=on|off enforce configuration section migration (default=off)\n",
46 QEMU_ARCH_ALL)
47 STEXI
48 @item -machine [type=]@var{name}[,prop=@var{value}[,...]]
49 @findex -machine
50 Select the emulated machine by @var{name}. Use @code{-machine help} to list
51 available machines. Supported machine properties are:
52 @table @option
53 @item accel=@var{accels1}[:@var{accels2}[:...]]
54 This is used to enable an accelerator. Depending on the target architecture,
55 kvm, xen, or tcg can be available. By default, tcg is used. If there is more
56 than one accelerator specified, the next one is used if the previous one fails
57 to initialize.
58 @item kernel_irqchip=on|off
59 Controls in-kernel irqchip support for the chosen accelerator when available.
60 @item gfx_passthru=on|off
61 Enables IGD GFX passthrough support for the chosen machine when available.
62 @item vmport=on|off|auto
63 Enables emulation of VMWare IO port, for vmmouse etc. auto says to select the
64 value based on accel. For accel=xen the default is off otherwise the default
65 is on.
66 @item kvm_shadow_mem=size
67 Defines the size of the KVM shadow MMU.
68 @item dump-guest-core=on|off
69 Include guest memory in a core dump. The default is on.
70 @item mem-merge=on|off
71 Enables or disables memory merge support. This feature, when supported by
72 the host, de-duplicates identical memory pages among VMs instances
73 (enabled by default).
74 @item aes-key-wrap=on|off
75 Enables or disables AES key wrapping support on s390-ccw hosts. This feature
76 controls whether AES wrapping keys will be created to allow
77 execution of AES cryptographic functions. The default is on.
78 @item dea-key-wrap=on|off
79 Enables or disables DEA key wrapping support on s390-ccw hosts. This feature
80 controls whether DEA wrapping keys will be created to allow
81 execution of DEA cryptographic functions. The default is on.
82 @item nvdimm=on|off
83 Enables or disables NVDIMM support. The default is off.
84 @end table
85 ETEXI
87 HXCOMM Deprecated by -machine
88 DEF("M", HAS_ARG, QEMU_OPTION_M, "", QEMU_ARCH_ALL)
90 DEF("cpu", HAS_ARG, QEMU_OPTION_cpu,
91 "-cpu cpu select CPU ('-cpu help' for list)\n", QEMU_ARCH_ALL)
92 STEXI
93 @item -cpu @var{model}
94 @findex -cpu
95 Select CPU model (@code{-cpu help} for list and additional feature selection)
96 ETEXI
98 DEF("accel", HAS_ARG, QEMU_OPTION_accel,
99 "-accel [accel=]accelerator[,thread=single|multi]\n"
100 " select accelerator ('-accel help for list')\n"
101 " thread=single|multi (enable multi-threaded TCG)", QEMU_ARCH_ALL)
102 STEXI
103 @item -accel @var{name}[,prop=@var{value}[,...]]
104 @findex -accel
105 This is used to enable an accelerator. Depending on the target architecture,
106 kvm, xen, or tcg can be available. By default, tcg is used. If there is more
107 than one accelerator specified, the next one is used if the previous one fails
108 to initialize.
109 @table @option
110 @item thread=single|multi
111 Controls number of TCG threads. When the TCG is multi-threaded there will be one
112 thread per vCPU therefor taking advantage of additional host cores. The default
113 is to enable multi-threading where both the back-end and front-ends support it and
114 no incompatible TCG features have been enabled (e.g. icount/replay).
115 @end table
116 ETEXI
118 DEF("smp", HAS_ARG, QEMU_OPTION_smp,
119 "-smp [cpus=]n[,maxcpus=cpus][,cores=cores][,threads=threads][,sockets=sockets]\n"
120 " set the number of CPUs to 'n' [default=1]\n"
121 " maxcpus= maximum number of total cpus, including\n"
122 " offline CPUs for hotplug, etc\n"
123 " cores= number of CPU cores on one socket\n"
124 " threads= number of threads on one CPU core\n"
125 " sockets= number of discrete sockets in the system\n",
126 QEMU_ARCH_ALL)
127 STEXI
128 @item -smp [cpus=]@var{n}[,cores=@var{cores}][,threads=@var{threads}][,sockets=@var{sockets}][,maxcpus=@var{maxcpus}]
129 @findex -smp
130 Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
131 CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
132 to 4.
133 For the PC target, the number of @var{cores} per socket, the number
134 of @var{threads} per cores and the total number of @var{sockets} can be
135 specified. Missing values will be computed. If any on the three values is
136 given, the total number of CPUs @var{n} can be omitted. @var{maxcpus}
137 specifies the maximum number of hotpluggable CPUs.
138 ETEXI
140 DEF("numa", HAS_ARG, QEMU_OPTION_numa,
141 "-numa node[,mem=size][,cpus=firstcpu[-lastcpu]][,nodeid=node]\n"
142 "-numa node[,memdev=id][,cpus=firstcpu[-lastcpu]][,nodeid=node]\n", QEMU_ARCH_ALL)
143 STEXI
144 @item -numa node[,mem=@var{size}][,cpus=@var{firstcpu}[-@var{lastcpu}]][,nodeid=@var{node}]
145 @itemx -numa node[,memdev=@var{id}][,cpus=@var{firstcpu}[-@var{lastcpu}]][,nodeid=@var{node}]
146 @findex -numa
147 Simulate a multi node NUMA system. If @samp{mem}, @samp{memdev}
148 and @samp{cpus} are omitted, resources are split equally. Also, note
149 that the -@option{numa} option doesn't allocate any of the specified
150 resources. That is, it just assigns existing resources to NUMA nodes. This
151 means that one still has to use the @option{-m}, @option{-smp} options
152 to allocate RAM and VCPUs respectively, and possibly @option{-object}
153 to specify the memory backend for the @samp{memdev} suboption.
155 @samp{mem} and @samp{memdev} are mutually exclusive. Furthermore, if one
156 node uses @samp{memdev}, all of them have to use it.
157 ETEXI
159 DEF("add-fd", HAS_ARG, QEMU_OPTION_add_fd,
160 "-add-fd fd=fd,set=set[,opaque=opaque]\n"
161 " Add 'fd' to fd 'set'\n", QEMU_ARCH_ALL)
162 STEXI
163 @item -add-fd fd=@var{fd},set=@var{set}[,opaque=@var{opaque}]
164 @findex -add-fd
166 Add a file descriptor to an fd set. Valid options are:
168 @table @option
169 @item fd=@var{fd}
170 This option defines the file descriptor of which a duplicate is added to fd set.
171 The file descriptor cannot be stdin, stdout, or stderr.
172 @item set=@var{set}
173 This option defines the ID of the fd set to add the file descriptor to.
174 @item opaque=@var{opaque}
175 This option defines a free-form string that can be used to describe @var{fd}.
176 @end table
178 You can open an image using pre-opened file descriptors from an fd set:
179 @example
180 qemu-system-i386
181 -add-fd fd=3,set=2,opaque="rdwr:/path/to/file"
182 -add-fd fd=4,set=2,opaque="rdonly:/path/to/file"
183 -drive file=/dev/fdset/2,index=0,media=disk
184 @end example
185 ETEXI
187 DEF("set", HAS_ARG, QEMU_OPTION_set,
188 "-set group.id.arg=value\n"
189 " set <arg> parameter for item <id> of type <group>\n"
190 " i.e. -set drive.$id.file=/path/to/image\n", QEMU_ARCH_ALL)
191 STEXI
192 @item -set @var{group}.@var{id}.@var{arg}=@var{value}
193 @findex -set
194 Set parameter @var{arg} for item @var{id} of type @var{group}
195 ETEXI
197 DEF("global", HAS_ARG, QEMU_OPTION_global,
198 "-global driver.property=value\n"
199 "-global driver=driver,property=property,value=value\n"
200 " set a global default for a driver property\n",
201 QEMU_ARCH_ALL)
202 STEXI
203 @item -global @var{driver}.@var{prop}=@var{value}
204 @itemx -global driver=@var{driver},property=@var{property},value=@var{value}
205 @findex -global
206 Set default value of @var{driver}'s property @var{prop} to @var{value}, e.g.:
208 @example
209 qemu-system-i386 -global ide-drive.physical_block_size=4096 -drive file=file,if=ide,index=0,media=disk
210 @end example
212 In particular, you can use this to set driver properties for devices which are
213 created automatically by the machine model. To create a device which is not
214 created automatically and set properties on it, use -@option{device}.
216 -global @var{driver}.@var{prop}=@var{value} is shorthand for -global
217 driver=@var{driver},property=@var{prop},value=@var{value}. The
218 longhand syntax works even when @var{driver} contains a dot.
219 ETEXI
221 DEF("boot", HAS_ARG, QEMU_OPTION_boot,
222 "-boot [order=drives][,once=drives][,menu=on|off]\n"
223 " [,splash=sp_name][,splash-time=sp_time][,reboot-timeout=rb_time][,strict=on|off]\n"
224 " 'drives': floppy (a), hard disk (c), CD-ROM (d), network (n)\n"
225 " 'sp_name': the file's name that would be passed to bios as logo picture, if menu=on\n"
226 " 'sp_time': the period that splash picture last if menu=on, unit is ms\n"
227 " 'rb_timeout': the timeout before guest reboot when boot failed, unit is ms\n",
228 QEMU_ARCH_ALL)
229 STEXI
230 @item -boot [order=@var{drives}][,once=@var{drives}][,menu=on|off][,splash=@var{sp_name}][,splash-time=@var{sp_time}][,reboot-timeout=@var{rb_timeout}][,strict=on|off]
231 @findex -boot
232 Specify boot order @var{drives} as a string of drive letters. Valid
233 drive letters depend on the target architecture. The x86 PC uses: a, b
234 (floppy 1 and 2), c (first hard disk), d (first CD-ROM), n-p (Etherboot
235 from network adapter 1-4), hard disk boot is the default. To apply a
236 particular boot order only on the first startup, specify it via
237 @option{once}.
239 Interactive boot menus/prompts can be enabled via @option{menu=on} as far
240 as firmware/BIOS supports them. The default is non-interactive boot.
242 A splash picture could be passed to bios, enabling user to show it as logo,
243 when option splash=@var{sp_name} is given and menu=on, If firmware/BIOS
244 supports them. Currently Seabios for X86 system support it.
245 limitation: The splash file could be a jpeg file or a BMP file in 24 BPP
246 format(true color). The resolution should be supported by the SVGA mode, so
247 the recommended is 320x240, 640x480, 800x640.
249 A timeout could be passed to bios, guest will pause for @var{rb_timeout} ms
250 when boot failed, then reboot. If @var{rb_timeout} is '-1', guest will not
251 reboot, qemu passes '-1' to bios by default. Currently Seabios for X86
252 system support it.
254 Do strict boot via @option{strict=on} as far as firmware/BIOS
255 supports it. This only effects when boot priority is changed by
256 bootindex options. The default is non-strict boot.
258 @example
259 # try to boot from network first, then from hard disk
260 qemu-system-i386 -boot order=nc
261 # boot from CD-ROM first, switch back to default order after reboot
262 qemu-system-i386 -boot once=d
263 # boot with a splash picture for 5 seconds.
264 qemu-system-i386 -boot menu=on,splash=/root/boot.bmp,splash-time=5000
265 @end example
267 Note: The legacy format '-boot @var{drives}' is still supported but its
268 use is discouraged as it may be removed from future versions.
269 ETEXI
271 DEF("m", HAS_ARG, QEMU_OPTION_m,
272 "-m [size=]megs[,slots=n,maxmem=size]\n"
273 " configure guest RAM\n"
274 " size: initial amount of guest memory\n"
275 " slots: number of hotplug slots (default: none)\n"
276 " maxmem: maximum amount of guest memory (default: none)\n"
277 "NOTE: Some architectures might enforce a specific granularity\n",
278 QEMU_ARCH_ALL)
279 STEXI
280 @item -m [size=]@var{megs}[,slots=n,maxmem=size]
281 @findex -m
282 Sets guest startup RAM size to @var{megs} megabytes. Default is 128 MiB.
283 Optionally, a suffix of ``M'' or ``G'' can be used to signify a value in
284 megabytes or gigabytes respectively. Optional pair @var{slots}, @var{maxmem}
285 could be used to set amount of hotpluggable memory slots and maximum amount of
286 memory. Note that @var{maxmem} must be aligned to the page size.
288 For example, the following command-line sets the guest startup RAM size to
289 1GB, creates 3 slots to hotplug additional memory and sets the maximum
290 memory the guest can reach to 4GB:
292 @example
293 qemu-system-x86_64 -m 1G,slots=3,maxmem=4G
294 @end example
296 If @var{slots} and @var{maxmem} are not specified, memory hotplug won't
297 be enabled and the guest startup RAM will never increase.
298 ETEXI
300 DEF("mem-path", HAS_ARG, QEMU_OPTION_mempath,
301 "-mem-path FILE provide backing storage for guest RAM\n", QEMU_ARCH_ALL)
302 STEXI
303 @item -mem-path @var{path}
304 @findex -mem-path
305 Allocate guest RAM from a temporarily created file in @var{path}.
306 ETEXI
308 DEF("mem-prealloc", 0, QEMU_OPTION_mem_prealloc,
309 "-mem-prealloc preallocate guest memory (use with -mem-path)\n",
310 QEMU_ARCH_ALL)
311 STEXI
312 @item -mem-prealloc
313 @findex -mem-prealloc
314 Preallocate memory when using -mem-path.
315 ETEXI
317 DEF("k", HAS_ARG, QEMU_OPTION_k,
318 "-k language use keyboard layout (for example 'fr' for French)\n",
319 QEMU_ARCH_ALL)
320 STEXI
321 @item -k @var{language}
322 @findex -k
323 Use keyboard layout @var{language} (for example @code{fr} for
324 French). This option is only needed where it is not easy to get raw PC
325 keycodes (e.g. on Macs, with some X11 servers or with a VNC or curses
326 display). You don't normally need to use it on PC/Linux or PC/Windows
327 hosts.
329 The available layouts are:
330 @example
331 ar de-ch es fo fr-ca hu ja mk no pt-br sv
332 da en-gb et fr fr-ch is lt nl pl ru th
333 de en-us fi fr-be hr it lv nl-be pt sl tr
334 @end example
336 The default is @code{en-us}.
337 ETEXI
340 DEF("audio-help", 0, QEMU_OPTION_audio_help,
341 "-audio-help print list of audio drivers and their options\n",
342 QEMU_ARCH_ALL)
343 STEXI
344 @item -audio-help
345 @findex -audio-help
346 Will show the audio subsystem help: list of drivers, tunable
347 parameters.
348 ETEXI
350 DEF("soundhw", HAS_ARG, QEMU_OPTION_soundhw,
351 "-soundhw c1,... enable audio support\n"
352 " and only specified sound cards (comma separated list)\n"
353 " use '-soundhw help' to get the list of supported cards\n"
354 " use '-soundhw all' to enable all of them\n", QEMU_ARCH_ALL)
355 STEXI
356 @item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
357 @findex -soundhw
358 Enable audio and selected sound hardware. Use 'help' to print all
359 available sound hardware.
361 @example
362 qemu-system-i386 -soundhw sb16,adlib disk.img
363 qemu-system-i386 -soundhw es1370 disk.img
364 qemu-system-i386 -soundhw ac97 disk.img
365 qemu-system-i386 -soundhw hda disk.img
366 qemu-system-i386 -soundhw all disk.img
367 qemu-system-i386 -soundhw help
368 @end example
370 Note that Linux's i810_audio OSS kernel (for AC97) module might
371 require manually specifying clocking.
373 @example
374 modprobe i810_audio clocking=48000
375 @end example
376 ETEXI
378 DEF("balloon", HAS_ARG, QEMU_OPTION_balloon,
379 "-balloon none disable balloon device\n"
380 "-balloon virtio[,addr=str]\n"
381 " enable virtio balloon device (default)\n", QEMU_ARCH_ALL)
382 STEXI
383 @item -balloon none
384 @findex -balloon
385 Disable balloon device.
386 @item -balloon virtio[,addr=@var{addr}]
387 Enable virtio balloon device (default), optionally with PCI address
388 @var{addr}.
389 ETEXI
391 DEF("device", HAS_ARG, QEMU_OPTION_device,
392 "-device driver[,prop[=value][,...]]\n"
393 " add device (based on driver)\n"
394 " prop=value,... sets driver properties\n"
395 " use '-device help' to print all possible drivers\n"
396 " use '-device driver,help' to print all possible properties\n",
397 QEMU_ARCH_ALL)
398 STEXI
399 @item -device @var{driver}[,@var{prop}[=@var{value}][,...]]
400 @findex -device
401 Add device @var{driver}. @var{prop}=@var{value} sets driver
402 properties. Valid properties depend on the driver. To get help on
403 possible drivers and properties, use @code{-device help} and
404 @code{-device @var{driver},help}.
406 Some drivers are:
407 @item -device ipmi-bmc-sim,id=@var{id}[,slave_addr=@var{val}]
409 Add an IPMI BMC. This is a simulation of a hardware management
410 interface processor that normally sits on a system. It provides
411 a watchdog and the ability to reset and power control the system.
412 You need to connect this to an IPMI interface to make it useful
414 The IPMI slave address to use for the BMC. The default is 0x20.
415 This address is the BMC's address on the I2C network of management
416 controllers. If you don't know what this means, it is safe to ignore
419 @item -device ipmi-bmc-extern,id=@var{id},chardev=@var{id}[,slave_addr=@var{val}]
421 Add a connection to an external IPMI BMC simulator. Instead of
422 locally emulating the BMC like the above item, instead connect
423 to an external entity that provides the IPMI services.
425 A connection is made to an external BMC simulator. If you do this, it
426 is strongly recommended that you use the "reconnect=" chardev option
427 to reconnect to the simulator if the connection is lost. Note that if
428 this is not used carefully, it can be a security issue, as the
429 interface has the ability to send resets, NMIs, and power off the VM.
430 It's best if QEMU makes a connection to an external simulator running
431 on a secure port on localhost, so neither the simulator nor QEMU is
432 exposed to any outside network.
434 See the "lanserv/README.vm" file in the OpenIPMI library for more
435 details on the external interface.
437 @item -device isa-ipmi-kcs,bmc=@var{id}[,ioport=@var{val}][,irq=@var{val}]
439 Add a KCS IPMI interafce on the ISA bus. This also adds a
440 corresponding ACPI and SMBIOS entries, if appropriate.
442 @table @option
443 @item bmc=@var{id}
444 The BMC to connect to, one of ipmi-bmc-sim or ipmi-bmc-extern above.
445 @item ioport=@var{val}
446 Define the I/O address of the interface. The default is 0xca0 for KCS.
447 @item irq=@var{val}
448 Define the interrupt to use. The default is 5. To disable interrupts,
449 set this to 0.
450 @end table
452 @item -device isa-ipmi-bt,bmc=@var{id}[,ioport=@var{val}][,irq=@var{val}]
454 Like the KCS interface, but defines a BT interface. The default port is
455 0xe4 and the default interrupt is 5.
457 ETEXI
459 DEF("name", HAS_ARG, QEMU_OPTION_name,
460 "-name string1[,process=string2][,debug-threads=on|off]\n"
461 " set the name of the guest\n"
462 " string1 sets the window title and string2 the process name (on Linux)\n"
463 " When debug-threads is enabled, individual threads are given a separate name (on Linux)\n"
464 " NOTE: The thread names are for debugging and not a stable API.\n",
465 QEMU_ARCH_ALL)
466 STEXI
467 @item -name @var{name}
468 @findex -name
469 Sets the @var{name} of the guest.
470 This name will be displayed in the SDL window caption.
471 The @var{name} will also be used for the VNC server.
472 Also optionally set the top visible process name in Linux.
473 Naming of individual threads can also be enabled on Linux to aid debugging.
474 ETEXI
476 DEF("uuid", HAS_ARG, QEMU_OPTION_uuid,
477 "-uuid %08x-%04x-%04x-%04x-%012x\n"
478 " specify machine UUID\n", QEMU_ARCH_ALL)
479 STEXI
480 @item -uuid @var{uuid}
481 @findex -uuid
482 Set system UUID.
483 ETEXI
485 STEXI
486 @end table
487 ETEXI
488 DEFHEADING()
490 DEFHEADING(Block device options)
491 STEXI
492 @table @option
493 ETEXI
495 DEF("fda", HAS_ARG, QEMU_OPTION_fda,
496 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n", QEMU_ARCH_ALL)
497 DEF("fdb", HAS_ARG, QEMU_OPTION_fdb, "", QEMU_ARCH_ALL)
498 STEXI
499 @item -fda @var{file}
500 @itemx -fdb @var{file}
501 @findex -fda
502 @findex -fdb
503 Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}).
504 ETEXI
506 DEF("hda", HAS_ARG, QEMU_OPTION_hda,
507 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n", QEMU_ARCH_ALL)
508 DEF("hdb", HAS_ARG, QEMU_OPTION_hdb, "", QEMU_ARCH_ALL)
509 DEF("hdc", HAS_ARG, QEMU_OPTION_hdc,
510 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n", QEMU_ARCH_ALL)
511 DEF("hdd", HAS_ARG, QEMU_OPTION_hdd, "", QEMU_ARCH_ALL)
512 STEXI
513 @item -hda @var{file}
514 @itemx -hdb @var{file}
515 @itemx -hdc @var{file}
516 @itemx -hdd @var{file}
517 @findex -hda
518 @findex -hdb
519 @findex -hdc
520 @findex -hdd
521 Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
522 ETEXI
524 DEF("cdrom", HAS_ARG, QEMU_OPTION_cdrom,
525 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n",
526 QEMU_ARCH_ALL)
527 STEXI
528 @item -cdrom @var{file}
529 @findex -cdrom
530 Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
531 @option{-cdrom} at the same time). You can use the host CD-ROM by
532 using @file{/dev/cdrom} as filename (@pxref{host_drives}).
533 ETEXI
535 DEF("drive", HAS_ARG, QEMU_OPTION_drive,
536 "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
537 " [,cyls=c,heads=h,secs=s[,trans=t]][,snapshot=on|off]\n"
538 " [,cache=writethrough|writeback|none|directsync|unsafe][,format=f]\n"
539 " [,serial=s][,addr=A][,rerror=ignore|stop|report]\n"
540 " [,werror=ignore|stop|report|enospc][,id=name][,aio=threads|native]\n"
541 " [,readonly=on|off][,copy-on-read=on|off]\n"
542 " [,discard=ignore|unmap][,detect-zeroes=on|off|unmap]\n"
543 " [[,bps=b]|[[,bps_rd=r][,bps_wr=w]]]\n"
544 " [[,iops=i]|[[,iops_rd=r][,iops_wr=w]]]\n"
545 " [[,bps_max=bm]|[[,bps_rd_max=rm][,bps_wr_max=wm]]]\n"
546 " [[,iops_max=im]|[[,iops_rd_max=irm][,iops_wr_max=iwm]]]\n"
547 " [[,iops_size=is]]\n"
548 " [[,group=g]]\n"
549 " use 'file' as a drive image\n", QEMU_ARCH_ALL)
550 STEXI
551 @item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
552 @findex -drive
554 Define a new drive. Valid options are:
556 @table @option
557 @item file=@var{file}
558 This option defines which disk image (@pxref{disk_images}) to use with
559 this drive. If the filename contains comma, you must double it
560 (for instance, "file=my,,file" to use file "my,file").
562 Special files such as iSCSI devices can be specified using protocol
563 specific URLs. See the section for "Device URL Syntax" for more information.
564 @item if=@var{interface}
565 This option defines on which type on interface the drive is connected.
566 Available types are: ide, scsi, sd, mtd, floppy, pflash, virtio.
567 @item bus=@var{bus},unit=@var{unit}
568 These options define where is connected the drive by defining the bus number and
569 the unit id.
570 @item index=@var{index}
571 This option defines where is connected the drive by using an index in the list
572 of available connectors of a given interface type.
573 @item media=@var{media}
574 This option defines the type of the media: disk or cdrom.
575 @item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
576 These options have the same definition as they have in @option{-hdachs}.
577 @item snapshot=@var{snapshot}
578 @var{snapshot} is "on" or "off" and controls snapshot mode for the given drive
579 (see @option{-snapshot}).
580 @item cache=@var{cache}
581 @var{cache} is "none", "writeback", "unsafe", "directsync" or "writethrough" and controls how the host cache is used to access block data.
582 @item aio=@var{aio}
583 @var{aio} is "threads", or "native" and selects between pthread based disk I/O and native Linux AIO.
584 @item discard=@var{discard}
585 @var{discard} is one of "ignore" (or "off") or "unmap" (or "on") and controls whether @dfn{discard} (also known as @dfn{trim} or @dfn{unmap}) requests are ignored or passed to the filesystem. Some machine types may not support discard requests.
586 @item format=@var{format}
587 Specify which disk @var{format} will be used rather than detecting
588 the format. Can be used to specify format=raw to avoid interpreting
589 an untrusted format header.
590 @item serial=@var{serial}
591 This option specifies the serial number to assign to the device.
592 @item addr=@var{addr}
593 Specify the controller's PCI address (if=virtio only).
594 @item werror=@var{action},rerror=@var{action}
595 Specify which @var{action} to take on write and read errors. Valid actions are:
596 "ignore" (ignore the error and try to continue), "stop" (pause QEMU),
597 "report" (report the error to the guest), "enospc" (pause QEMU only if the
598 host disk is full; report the error to the guest otherwise).
599 The default setting is @option{werror=enospc} and @option{rerror=report}.
600 @item readonly
601 Open drive @option{file} as read-only. Guest write attempts will fail.
602 @item copy-on-read=@var{copy-on-read}
603 @var{copy-on-read} is "on" or "off" and enables whether to copy read backing
604 file sectors into the image file.
605 @item detect-zeroes=@var{detect-zeroes}
606 @var{detect-zeroes} is "off", "on" or "unmap" and enables the automatic
607 conversion of plain zero writes by the OS to driver specific optimized
608 zero write commands. You may even choose "unmap" if @var{discard} is set
609 to "unmap" to allow a zero write to be converted to an UNMAP operation.
610 @end table
612 By default, the @option{cache=writeback} mode is used. It will report data
613 writes as completed as soon as the data is present in the host page cache.
614 This is safe as long as your guest OS makes sure to correctly flush disk caches
615 where needed. If your guest OS does not handle volatile disk write caches
616 correctly and your host crashes or loses power, then the guest may experience
617 data corruption.
619 For such guests, you should consider using @option{cache=writethrough}. This
620 means that the host page cache will be used to read and write data, but write
621 notification will be sent to the guest only after QEMU has made sure to flush
622 each write to the disk. Be aware that this has a major impact on performance.
624 The host page cache can be avoided entirely with @option{cache=none}. This will
625 attempt to do disk IO directly to the guest's memory. QEMU may still perform
626 an internal copy of the data. Note that this is considered a writeback mode and
627 the guest OS must handle the disk write cache correctly in order to avoid data
628 corruption on host crashes.
630 The host page cache can be avoided while only sending write notifications to
631 the guest when the data has been flushed to the disk using
632 @option{cache=directsync}.
634 In case you don't care about data integrity over host failures, use
635 @option{cache=unsafe}. This option tells QEMU that it never needs to write any
636 data to the disk but can instead keep things in cache. If anything goes wrong,
637 like your host losing power, the disk storage getting disconnected accidentally,
638 etc. your image will most probably be rendered unusable. When using
639 the @option{-snapshot} option, unsafe caching is always used.
641 Copy-on-read avoids accessing the same backing file sectors repeatedly and is
642 useful when the backing file is over a slow network. By default copy-on-read
643 is off.
645 Instead of @option{-cdrom} you can use:
646 @example
647 qemu-system-i386 -drive file=file,index=2,media=cdrom
648 @end example
650 Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
651 use:
652 @example
653 qemu-system-i386 -drive file=file,index=0,media=disk
654 qemu-system-i386 -drive file=file,index=1,media=disk
655 qemu-system-i386 -drive file=file,index=2,media=disk
656 qemu-system-i386 -drive file=file,index=3,media=disk
657 @end example
659 You can open an image using pre-opened file descriptors from an fd set:
660 @example
661 qemu-system-i386
662 -add-fd fd=3,set=2,opaque="rdwr:/path/to/file"
663 -add-fd fd=4,set=2,opaque="rdonly:/path/to/file"
664 -drive file=/dev/fdset/2,index=0,media=disk
665 @end example
667 You can connect a CDROM to the slave of ide0:
668 @example
669 qemu-system-i386 -drive file=file,if=ide,index=1,media=cdrom
670 @end example
672 If you don't specify the "file=" argument, you define an empty drive:
673 @example
674 qemu-system-i386 -drive if=ide,index=1,media=cdrom
675 @end example
677 Instead of @option{-fda}, @option{-fdb}, you can use:
678 @example
679 qemu-system-i386 -drive file=file,index=0,if=floppy
680 qemu-system-i386 -drive file=file,index=1,if=floppy
681 @end example
683 By default, @var{interface} is "ide" and @var{index} is automatically
684 incremented:
685 @example
686 qemu-system-i386 -drive file=a -drive file=b"
687 @end example
688 is interpreted like:
689 @example
690 qemu-system-i386 -hda a -hdb b
691 @end example
692 ETEXI
694 DEF("mtdblock", HAS_ARG, QEMU_OPTION_mtdblock,
695 "-mtdblock file use 'file' as on-board Flash memory image\n",
696 QEMU_ARCH_ALL)
697 STEXI
698 @item -mtdblock @var{file}
699 @findex -mtdblock
700 Use @var{file} as on-board Flash memory image.
701 ETEXI
703 DEF("sd", HAS_ARG, QEMU_OPTION_sd,
704 "-sd file use 'file' as SecureDigital card image\n", QEMU_ARCH_ALL)
705 STEXI
706 @item -sd @var{file}
707 @findex -sd
708 Use @var{file} as SecureDigital card image.
709 ETEXI
711 DEF("pflash", HAS_ARG, QEMU_OPTION_pflash,
712 "-pflash file use 'file' as a parallel flash image\n", QEMU_ARCH_ALL)
713 STEXI
714 @item -pflash @var{file}
715 @findex -pflash
716 Use @var{file} as a parallel flash image.
717 ETEXI
719 DEF("snapshot", 0, QEMU_OPTION_snapshot,
720 "-snapshot write to temporary files instead of disk image files\n",
721 QEMU_ARCH_ALL)
722 STEXI
723 @item -snapshot
724 @findex -snapshot
725 Write to temporary files instead of disk image files. In this case,
726 the raw disk image you use is not written back. You can however force
727 the write back by pressing @key{C-a s} (@pxref{disk_images}).
728 ETEXI
730 DEF("hdachs", HAS_ARG, QEMU_OPTION_hdachs, \
731 "-hdachs c,h,s[,t]\n" \
732 " force hard disk 0 physical geometry and the optional BIOS\n" \
733 " translation (t=none or lba) (usually QEMU can guess them)\n",
734 QEMU_ARCH_ALL)
735 STEXI
736 @item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
737 @findex -hdachs
738 Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
739 @var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
740 translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
741 all those parameters. This option is useful for old MS-DOS disk
742 images.
743 ETEXI
745 DEF("fsdev", HAS_ARG, QEMU_OPTION_fsdev,
746 "-fsdev fsdriver,id=id[,path=path,][security_model={mapped-xattr|mapped-file|passthrough|none}]\n"
747 " [,writeout=immediate][,readonly][,socket=socket|sock_fd=sock_fd]\n",
748 QEMU_ARCH_ALL)
750 STEXI
752 @item -fsdev @var{fsdriver},id=@var{id},path=@var{path},[security_model=@var{security_model}][,writeout=@var{writeout}][,readonly][,socket=@var{socket}|sock_fd=@var{sock_fd}]
753 @findex -fsdev
754 Define a new file system device. Valid options are:
755 @table @option
756 @item @var{fsdriver}
757 This option specifies the fs driver backend to use.
758 Currently "local", "handle" and "proxy" file system drivers are supported.
759 @item id=@var{id}
760 Specifies identifier for this device
761 @item path=@var{path}
762 Specifies the export path for the file system device. Files under
763 this path will be available to the 9p client on the guest.
764 @item security_model=@var{security_model}
765 Specifies the security model to be used for this export path.
766 Supported security models are "passthrough", "mapped-xattr", "mapped-file" and "none".
767 In "passthrough" security model, files are stored using the same
768 credentials as they are created on the guest. This requires QEMU
769 to run as root. In "mapped-xattr" security model, some of the file
770 attributes like uid, gid, mode bits and link target are stored as
771 file attributes. For "mapped-file" these attributes are stored in the
772 hidden .virtfs_metadata directory. Directories exported by this security model cannot
773 interact with other unix tools. "none" security model is same as
774 passthrough except the sever won't report failures if it fails to
775 set file attributes like ownership. Security model is mandatory
776 only for local fsdriver. Other fsdrivers (like handle, proxy) don't take
777 security model as a parameter.
778 @item writeout=@var{writeout}
779 This is an optional argument. The only supported value is "immediate".
780 This means that host page cache will be used to read and write data but
781 write notification will be sent to the guest only when the data has been
782 reported as written by the storage subsystem.
783 @item readonly
784 Enables exporting 9p share as a readonly mount for guests. By default
785 read-write access is given.
786 @item socket=@var{socket}
787 Enables proxy filesystem driver to use passed socket file for communicating
788 with virtfs-proxy-helper
789 @item sock_fd=@var{sock_fd}
790 Enables proxy filesystem driver to use passed socket descriptor for
791 communicating with virtfs-proxy-helper. Usually a helper like libvirt
792 will create socketpair and pass one of the fds as sock_fd
793 @end table
795 -fsdev option is used along with -device driver "virtio-9p-pci".
796 @item -device virtio-9p-pci,fsdev=@var{id},mount_tag=@var{mount_tag}
797 Options for virtio-9p-pci driver are:
798 @table @option
799 @item fsdev=@var{id}
800 Specifies the id value specified along with -fsdev option
801 @item mount_tag=@var{mount_tag}
802 Specifies the tag name to be used by the guest to mount this export point
803 @end table
805 ETEXI
807 DEF("virtfs", HAS_ARG, QEMU_OPTION_virtfs,
808 "-virtfs local,path=path,mount_tag=tag,security_model=[mapped-xattr|mapped-file|passthrough|none]\n"
809 " [,writeout=immediate][,readonly][,socket=socket|sock_fd=sock_fd]\n",
810 QEMU_ARCH_ALL)
812 STEXI
814 @item -virtfs @var{fsdriver}[,path=@var{path}],mount_tag=@var{mount_tag}[,security_model=@var{security_model}][,writeout=@var{writeout}][,readonly][,socket=@var{socket}|sock_fd=@var{sock_fd}]
815 @findex -virtfs
817 The general form of a Virtual File system pass-through options are:
818 @table @option
819 @item @var{fsdriver}
820 This option specifies the fs driver backend to use.
821 Currently "local", "handle" and "proxy" file system drivers are supported.
822 @item id=@var{id}
823 Specifies identifier for this device
824 @item path=@var{path}
825 Specifies the export path for the file system device. Files under
826 this path will be available to the 9p client on the guest.
827 @item security_model=@var{security_model}
828 Specifies the security model to be used for this export path.
829 Supported security models are "passthrough", "mapped-xattr", "mapped-file" and "none".
830 In "passthrough" security model, files are stored using the same
831 credentials as they are created on the guest. This requires QEMU
832 to run as root. In "mapped-xattr" security model, some of the file
833 attributes like uid, gid, mode bits and link target are stored as
834 file attributes. For "mapped-file" these attributes are stored in the
835 hidden .virtfs_metadata directory. Directories exported by this security model cannot
836 interact with other unix tools. "none" security model is same as
837 passthrough except the sever won't report failures if it fails to
838 set file attributes like ownership. Security model is mandatory only
839 for local fsdriver. Other fsdrivers (like handle, proxy) don't take security
840 model as a parameter.
841 @item writeout=@var{writeout}
842 This is an optional argument. The only supported value is "immediate".
843 This means that host page cache will be used to read and write data but
844 write notification will be sent to the guest only when the data has been
845 reported as written by the storage subsystem.
846 @item readonly
847 Enables exporting 9p share as a readonly mount for guests. By default
848 read-write access is given.
849 @item socket=@var{socket}
850 Enables proxy filesystem driver to use passed socket file for
851 communicating with virtfs-proxy-helper. Usually a helper like libvirt
852 will create socketpair and pass one of the fds as sock_fd
853 @item sock_fd
854 Enables proxy filesystem driver to use passed 'sock_fd' as the socket
855 descriptor for interfacing with virtfs-proxy-helper
856 @end table
857 ETEXI
859 DEF("virtfs_synth", 0, QEMU_OPTION_virtfs_synth,
860 "-virtfs_synth Create synthetic file system image\n",
861 QEMU_ARCH_ALL)
862 STEXI
863 @item -virtfs_synth
864 @findex -virtfs_synth
865 Create synthetic file system image
866 ETEXI
868 STEXI
869 @end table
870 ETEXI
871 DEFHEADING()
873 DEFHEADING(USB options)
874 STEXI
875 @table @option
876 ETEXI
878 DEF("usb", 0, QEMU_OPTION_usb,
879 "-usb enable the USB driver (will be the default soon)\n",
880 QEMU_ARCH_ALL)
881 STEXI
882 @item -usb
883 @findex -usb
884 Enable the USB driver (will be the default soon)
885 ETEXI
887 DEF("usbdevice", HAS_ARG, QEMU_OPTION_usbdevice,
888 "-usbdevice name add the host or guest USB device 'name'\n",
889 QEMU_ARCH_ALL)
890 STEXI
892 @item -usbdevice @var{devname}
893 @findex -usbdevice
894 Add the USB device @var{devname}. @xref{usb_devices}.
896 @table @option
898 @item mouse
899 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
901 @item tablet
902 Pointer device that uses absolute coordinates (like a touchscreen). This
903 means QEMU is able to report the mouse position without having to grab the
904 mouse. Also overrides the PS/2 mouse emulation when activated.
906 @item disk:[format=@var{format}]:@var{file}
907 Mass storage device based on file. The optional @var{format} argument
908 will be used rather than detecting the format. Can be used to specify
909 @code{format=raw} to avoid interpreting an untrusted format header.
911 @item host:@var{bus}.@var{addr}
912 Pass through the host device identified by @var{bus}.@var{addr} (Linux only).
914 @item host:@var{vendor_id}:@var{product_id}
915 Pass through the host device identified by @var{vendor_id}:@var{product_id}
916 (Linux only).
918 @item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
919 Serial converter to host character device @var{dev}, see @code{-serial} for the
920 available devices.
922 @item braille
923 Braille device. This will use BrlAPI to display the braille output on a real
924 or fake device.
926 @item net:@var{options}
927 Network adapter that supports CDC ethernet and RNDIS protocols.
929 @end table
930 ETEXI
932 STEXI
933 @end table
934 ETEXI
935 DEFHEADING()
937 DEFHEADING(Display options)
938 STEXI
939 @table @option
940 ETEXI
942 DEF("display", HAS_ARG, QEMU_OPTION_display,
943 "-display sdl[,frame=on|off][,alt_grab=on|off][,ctrl_grab=on|off]\n"
944 " [,window_close=on|off][,gl=on|off]\n"
945 "-display gtk[,grab_on_hover=on|off][,gl=on|off]|\n"
946 "-display vnc=<display>[,<optargs>]\n"
947 "-display curses\n"
948 "-display none"
949 " select display type\n"
950 "The default display is equivalent to\n"
951 #if defined(CONFIG_GTK)
952 "\t\"-display gtk\"\n"
953 #elif defined(CONFIG_SDL)
954 "\t\"-display sdl\"\n"
955 #elif defined(CONFIG_COCOA)
956 "\t\"-display cocoa\"\n"
957 #elif defined(CONFIG_VNC)
958 "\t\"-vnc localhost:0,to=99,id=default\"\n"
959 #else
960 "\t\"-display none\"\n"
961 #endif
962 , QEMU_ARCH_ALL)
963 STEXI
964 @item -display @var{type}
965 @findex -display
966 Select type of display to use. This option is a replacement for the
967 old style -sdl/-curses/... options. Valid values for @var{type} are
968 @table @option
969 @item sdl
970 Display video output via SDL (usually in a separate graphics
971 window; see the SDL documentation for other possibilities).
972 @item curses
973 Display video output via curses. For graphics device models which
974 support a text mode, QEMU can display this output using a
975 curses/ncurses interface. Nothing is displayed when the graphics
976 device is in graphical mode or if the graphics device does not support
977 a text mode. Generally only the VGA device models support text mode.
978 @item none
979 Do not display video output. The guest will still see an emulated
980 graphics card, but its output will not be displayed to the QEMU
981 user. This option differs from the -nographic option in that it
982 only affects what is done with video output; -nographic also changes
983 the destination of the serial and parallel port data.
984 @item gtk
985 Display video output in a GTK window. This interface provides drop-down
986 menus and other UI elements to configure and control the VM during
987 runtime.
988 @item vnc
989 Start a VNC server on display <arg>
990 @end table
991 ETEXI
993 DEF("nographic", 0, QEMU_OPTION_nographic,
994 "-nographic disable graphical output and redirect serial I/Os to console\n",
995 QEMU_ARCH_ALL)
996 STEXI
997 @item -nographic
998 @findex -nographic
999 Normally, if QEMU is compiled with graphical window support, it displays
1000 output such as guest graphics, guest console, and the QEMU monitor in a
1001 window. With this option, you can totally disable graphical output so
1002 that QEMU is a simple command line application. The emulated serial port
1003 is redirected on the console and muxed with the monitor (unless
1004 redirected elsewhere explicitly). Therefore, you can still use QEMU to
1005 debug a Linux kernel with a serial console. Use @key{C-a h} for help on
1006 switching between the console and monitor.
1007 ETEXI
1009 DEF("curses", 0, QEMU_OPTION_curses,
1010 "-curses shorthand for -display curses\n",
1011 QEMU_ARCH_ALL)
1012 STEXI
1013 @item -curses
1014 @findex -curses
1015 Normally, if QEMU is compiled with graphical window support, it displays
1016 output such as guest graphics, guest console, and the QEMU monitor in a
1017 window. With this option, QEMU can display the VGA output when in text
1018 mode using a curses/ncurses interface. Nothing is displayed in graphical
1019 mode.
1020 ETEXI
1022 DEF("no-frame", 0, QEMU_OPTION_no_frame,
1023 "-no-frame open SDL window without a frame and window decorations\n",
1024 QEMU_ARCH_ALL)
1025 STEXI
1026 @item -no-frame
1027 @findex -no-frame
1028 Do not use decorations for SDL windows and start them using the whole
1029 available screen space. This makes the using QEMU in a dedicated desktop
1030 workspace more convenient.
1031 ETEXI
1033 DEF("alt-grab", 0, QEMU_OPTION_alt_grab,
1034 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n",
1035 QEMU_ARCH_ALL)
1036 STEXI
1037 @item -alt-grab
1038 @findex -alt-grab
1039 Use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt). Note that this also
1040 affects the special keys (for fullscreen, monitor-mode switching, etc).
1041 ETEXI
1043 DEF("ctrl-grab", 0, QEMU_OPTION_ctrl_grab,
1044 "-ctrl-grab use Right-Ctrl to grab mouse (instead of Ctrl-Alt)\n",
1045 QEMU_ARCH_ALL)
1046 STEXI
1047 @item -ctrl-grab
1048 @findex -ctrl-grab
1049 Use Right-Ctrl to grab mouse (instead of Ctrl-Alt). Note that this also
1050 affects the special keys (for fullscreen, monitor-mode switching, etc).
1051 ETEXI
1053 DEF("no-quit", 0, QEMU_OPTION_no_quit,
1054 "-no-quit disable SDL window close capability\n", QEMU_ARCH_ALL)
1055 STEXI
1056 @item -no-quit
1057 @findex -no-quit
1058 Disable SDL window close capability.
1059 ETEXI
1061 DEF("sdl", 0, QEMU_OPTION_sdl,
1062 "-sdl shorthand for -display sdl\n", QEMU_ARCH_ALL)
1063 STEXI
1064 @item -sdl
1065 @findex -sdl
1066 Enable SDL.
1067 ETEXI
1069 DEF("spice", HAS_ARG, QEMU_OPTION_spice,
1070 "-spice [port=port][,tls-port=secured-port][,x509-dir=<dir>]\n"
1071 " [,x509-key-file=<file>][,x509-key-password=<file>]\n"
1072 " [,x509-cert-file=<file>][,x509-cacert-file=<file>]\n"
1073 " [,x509-dh-key-file=<file>][,addr=addr][,ipv4|ipv6|unix]\n"
1074 " [,tls-ciphers=<list>]\n"
1075 " [,tls-channel=[main|display|cursor|inputs|record|playback]]\n"
1076 " [,plaintext-channel=[main|display|cursor|inputs|record|playback]]\n"
1077 " [,sasl][,password=<secret>][,disable-ticketing]\n"
1078 " [,image-compression=[auto_glz|auto_lz|quic|glz|lz|off]]\n"
1079 " [,jpeg-wan-compression=[auto|never|always]]\n"
1080 " [,zlib-glz-wan-compression=[auto|never|always]]\n"
1081 " [,streaming-video=[off|all|filter]][,disable-copy-paste]\n"
1082 " [,disable-agent-file-xfer][,agent-mouse=[on|off]]\n"
1083 " [,playback-compression=[on|off]][,seamless-migration=[on|off]]\n"
1084 " [,gl=[on|off]][,rendernode=<file>]\n"
1085 " enable spice\n"
1086 " at least one of {port, tls-port} is mandatory\n",
1087 QEMU_ARCH_ALL)
1088 STEXI
1089 @item -spice @var{option}[,@var{option}[,...]]
1090 @findex -spice
1091 Enable the spice remote desktop protocol. Valid options are
1093 @table @option
1095 @item port=<nr>
1096 Set the TCP port spice is listening on for plaintext channels.
1098 @item addr=<addr>
1099 Set the IP address spice is listening on. Default is any address.
1101 @item ipv4
1102 @itemx ipv6
1103 @itemx unix
1104 Force using the specified IP version.
1106 @item password=<secret>
1107 Set the password you need to authenticate.
1109 @item sasl
1110 Require that the client use SASL to authenticate with the spice.
1111 The exact choice of authentication method used is controlled from the
1112 system / user's SASL configuration file for the 'qemu' service. This
1113 is typically found in /etc/sasl2/qemu.conf. If running QEMU as an
1114 unprivileged user, an environment variable SASL_CONF_PATH can be used
1115 to make it search alternate locations for the service config.
1116 While some SASL auth methods can also provide data encryption (eg GSSAPI),
1117 it is recommended that SASL always be combined with the 'tls' and
1118 'x509' settings to enable use of SSL and server certificates. This
1119 ensures a data encryption preventing compromise of authentication
1120 credentials.
1122 @item disable-ticketing
1123 Allow client connects without authentication.
1125 @item disable-copy-paste
1126 Disable copy paste between the client and the guest.
1128 @item disable-agent-file-xfer
1129 Disable spice-vdagent based file-xfer between the client and the guest.
1131 @item tls-port=<nr>
1132 Set the TCP port spice is listening on for encrypted channels.
1134 @item x509-dir=<dir>
1135 Set the x509 file directory. Expects same filenames as -vnc $display,x509=$dir
1137 @item x509-key-file=<file>
1138 @itemx x509-key-password=<file>
1139 @itemx x509-cert-file=<file>
1140 @itemx x509-cacert-file=<file>
1141 @itemx x509-dh-key-file=<file>
1142 The x509 file names can also be configured individually.
1144 @item tls-ciphers=<list>
1145 Specify which ciphers to use.
1147 @item tls-channel=[main|display|cursor|inputs|record|playback]
1148 @itemx plaintext-channel=[main|display|cursor|inputs|record|playback]
1149 Force specific channel to be used with or without TLS encryption. The
1150 options can be specified multiple times to configure multiple
1151 channels. The special name "default" can be used to set the default
1152 mode. For channels which are not explicitly forced into one mode the
1153 spice client is allowed to pick tls/plaintext as he pleases.
1155 @item image-compression=[auto_glz|auto_lz|quic|glz|lz|off]
1156 Configure image compression (lossless).
1157 Default is auto_glz.
1159 @item jpeg-wan-compression=[auto|never|always]
1160 @itemx zlib-glz-wan-compression=[auto|never|always]
1161 Configure wan image compression (lossy for slow links).
1162 Default is auto.
1164 @item streaming-video=[off|all|filter]
1165 Configure video stream detection. Default is off.
1167 @item agent-mouse=[on|off]
1168 Enable/disable passing mouse events via vdagent. Default is on.
1170 @item playback-compression=[on|off]
1171 Enable/disable audio stream compression (using celt 0.5.1). Default is on.
1173 @item seamless-migration=[on|off]
1174 Enable/disable spice seamless migration. Default is off.
1176 @item gl=[on|off]
1177 Enable/disable OpenGL context. Default is off.
1179 @item rendernode=<file>
1180 DRM render node for OpenGL rendering. If not specified, it will pick
1181 the first available. (Since 2.9)
1183 @end table
1184 ETEXI
1186 DEF("portrait", 0, QEMU_OPTION_portrait,
1187 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n",
1188 QEMU_ARCH_ALL)
1189 STEXI
1190 @item -portrait
1191 @findex -portrait
1192 Rotate graphical output 90 deg left (only PXA LCD).
1193 ETEXI
1195 DEF("rotate", HAS_ARG, QEMU_OPTION_rotate,
1196 "-rotate <deg> rotate graphical output some deg left (only PXA LCD)\n",
1197 QEMU_ARCH_ALL)
1198 STEXI
1199 @item -rotate @var{deg}
1200 @findex -rotate
1201 Rotate graphical output some deg left (only PXA LCD).
1202 ETEXI
1204 DEF("vga", HAS_ARG, QEMU_OPTION_vga,
1205 "-vga [std|cirrus|vmware|qxl|xenfb|tcx|cg3|virtio|none]\n"
1206 " select video card type\n", QEMU_ARCH_ALL)
1207 STEXI
1208 @item -vga @var{type}
1209 @findex -vga
1210 Select type of VGA card to emulate. Valid values for @var{type} are
1211 @table @option
1212 @item cirrus
1213 Cirrus Logic GD5446 Video card. All Windows versions starting from
1214 Windows 95 should recognize and use this graphic card. For optimal
1215 performances, use 16 bit color depth in the guest and the host OS.
1216 (This card was the default before QEMU 2.2)
1217 @item std
1218 Standard VGA card with Bochs VBE extensions. If your guest OS
1219 supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if you want
1220 to use high resolution modes (>= 1280x1024x16) then you should use
1221 this option. (This card is the default since QEMU 2.2)
1222 @item vmware
1223 VMWare SVGA-II compatible adapter. Use it if you have sufficiently
1224 recent XFree86/XOrg server or Windows guest with a driver for this
1225 card.
1226 @item qxl
1227 QXL paravirtual graphic card. It is VGA compatible (including VESA
1228 2.0 VBE support). Works best with qxl guest drivers installed though.
1229 Recommended choice when using the spice protocol.
1230 @item tcx
1231 (sun4m only) Sun TCX framebuffer. This is the default framebuffer for
1232 sun4m machines and offers both 8-bit and 24-bit colour depths at a
1233 fixed resolution of 1024x768.
1234 @item cg3
1235 (sun4m only) Sun cgthree framebuffer. This is a simple 8-bit framebuffer
1236 for sun4m machines available in both 1024x768 (OpenBIOS) and 1152x900 (OBP)
1237 resolutions aimed at people wishing to run older Solaris versions.
1238 @item virtio
1239 Virtio VGA card.
1240 @item none
1241 Disable VGA card.
1242 @end table
1243 ETEXI
1245 DEF("full-screen", 0, QEMU_OPTION_full_screen,
1246 "-full-screen start in full screen\n", QEMU_ARCH_ALL)
1247 STEXI
1248 @item -full-screen
1249 @findex -full-screen
1250 Start in full screen.
1251 ETEXI
1253 DEF("g", 1, QEMU_OPTION_g ,
1254 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n",
1255 QEMU_ARCH_PPC | QEMU_ARCH_SPARC)
1256 STEXI
1257 @item -g @var{width}x@var{height}[x@var{depth}]
1258 @findex -g
1259 Set the initial graphical resolution and depth (PPC, SPARC only).
1260 ETEXI
1262 DEF("vnc", HAS_ARG, QEMU_OPTION_vnc ,
1263 "-vnc <display> shorthand for -display vnc=<display>\n", QEMU_ARCH_ALL)
1264 STEXI
1265 @item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
1266 @findex -vnc
1267 Normally, if QEMU is compiled with graphical window support, it displays
1268 output such as guest graphics, guest console, and the QEMU monitor in a
1269 window. With this option, you can have QEMU listen on VNC display
1270 @var{display} and redirect the VGA display over the VNC session. It is
1271 very useful to enable the usb tablet device when using this option
1272 (option @option{-usbdevice tablet}). When using the VNC display, you
1273 must use the @option{-k} parameter to set the keyboard layout if you are
1274 not using en-us. Valid syntax for the @var{display} is
1276 @table @option
1278 @item to=@var{L}
1280 With this option, QEMU will try next available VNC @var{display}s, until the
1281 number @var{L}, if the origianlly defined "-vnc @var{display}" is not
1282 available, e.g. port 5900+@var{display} is already used by another
1283 application. By default, to=0.
1285 @item @var{host}:@var{d}
1287 TCP connections will only be allowed from @var{host} on display @var{d}.
1288 By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
1289 be omitted in which case the server will accept connections from any host.
1291 @item unix:@var{path}
1293 Connections will be allowed over UNIX domain sockets where @var{path} is the
1294 location of a unix socket to listen for connections on.
1296 @item none
1298 VNC is initialized but not started. The monitor @code{change} command
1299 can be used to later start the VNC server.
1301 @end table
1303 Following the @var{display} value there may be one or more @var{option} flags
1304 separated by commas. Valid options are
1306 @table @option
1308 @item reverse
1310 Connect to a listening VNC client via a ``reverse'' connection. The
1311 client is specified by the @var{display}. For reverse network
1312 connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
1313 is a TCP port number, not a display number.
1315 @item websocket
1317 Opens an additional TCP listening port dedicated to VNC Websocket connections.
1318 If a bare @var{websocket} option is given, the Websocket port is
1319 5700+@var{display}. An alternative port can be specified with the
1320 syntax @code{websocket}=@var{port}.
1322 If @var{host} is specified connections will only be allowed from this host.
1323 It is possible to control the websocket listen address independently, using
1324 the syntax @code{websocket}=@var{host}:@var{port}.
1326 If no TLS credentials are provided, the websocket connection runs in
1327 unencrypted mode. If TLS credentials are provided, the websocket connection
1328 requires encrypted client connections.
1330 @item password
1332 Require that password based authentication is used for client connections.
1334 The password must be set separately using the @code{set_password} command in
1335 the @ref{pcsys_monitor}. The syntax to change your password is:
1336 @code{set_password <protocol> <password>} where <protocol> could be either
1337 "vnc" or "spice".
1339 If you would like to change <protocol> password expiration, you should use
1340 @code{expire_password <protocol> <expiration-time>} where expiration time could
1341 be one of the following options: now, never, +seconds or UNIX time of
1342 expiration, e.g. +60 to make password expire in 60 seconds, or 1335196800
1343 to make password expire on "Mon Apr 23 12:00:00 EDT 2012" (UNIX time for this
1344 date and time).
1346 You can also use keywords "now" or "never" for the expiration time to
1347 allow <protocol> password to expire immediately or never expire.
1349 @item tls-creds=@var{ID}
1351 Provides the ID of a set of TLS credentials to use to secure the
1352 VNC server. They will apply to both the normal VNC server socket
1353 and the websocket socket (if enabled). Setting TLS credentials
1354 will cause the VNC server socket to enable the VeNCrypt auth
1355 mechanism. The credentials should have been previously created
1356 using the @option{-object tls-creds} argument.
1358 The @option{tls-creds} parameter obsoletes the @option{tls},
1359 @option{x509}, and @option{x509verify} options, and as such
1360 it is not permitted to set both new and old type options at
1361 the same time.
1363 @item tls
1365 Require that client use TLS when communicating with the VNC server. This
1366 uses anonymous TLS credentials so is susceptible to a man-in-the-middle
1367 attack. It is recommended that this option be combined with either the
1368 @option{x509} or @option{x509verify} options.
1370 This option is now deprecated in favor of using the @option{tls-creds}
1371 argument.
1373 @item x509=@var{/path/to/certificate/dir}
1375 Valid if @option{tls} is specified. Require that x509 credentials are used
1376 for negotiating the TLS session. The server will send its x509 certificate
1377 to the client. It is recommended that a password be set on the VNC server
1378 to provide authentication of the client when this is used. The path following
1379 this option specifies where the x509 certificates are to be loaded from.
1380 See the @ref{vnc_security} section for details on generating certificates.
1382 This option is now deprecated in favour of using the @option{tls-creds}
1383 argument.
1385 @item x509verify=@var{/path/to/certificate/dir}
1387 Valid if @option{tls} is specified. Require that x509 credentials are used
1388 for negotiating the TLS session. The server will send its x509 certificate
1389 to the client, and request that the client send its own x509 certificate.
1390 The server will validate the client's certificate against the CA certificate,
1391 and reject clients when validation fails. If the certificate authority is
1392 trusted, this is a sufficient authentication mechanism. You may still wish
1393 to set a password on the VNC server as a second authentication layer. The
1394 path following this option specifies where the x509 certificates are to
1395 be loaded from. See the @ref{vnc_security} section for details on generating
1396 certificates.
1398 This option is now deprecated in favour of using the @option{tls-creds}
1399 argument.
1401 @item sasl
1403 Require that the client use SASL to authenticate with the VNC server.
1404 The exact choice of authentication method used is controlled from the
1405 system / user's SASL configuration file for the 'qemu' service. This
1406 is typically found in /etc/sasl2/qemu.conf. If running QEMU as an
1407 unprivileged user, an environment variable SASL_CONF_PATH can be used
1408 to make it search alternate locations for the service config.
1409 While some SASL auth methods can also provide data encryption (eg GSSAPI),
1410 it is recommended that SASL always be combined with the 'tls' and
1411 'x509' settings to enable use of SSL and server certificates. This
1412 ensures a data encryption preventing compromise of authentication
1413 credentials. See the @ref{vnc_security} section for details on using
1414 SASL authentication.
1416 @item acl
1418 Turn on access control lists for checking of the x509 client certificate
1419 and SASL party. For x509 certs, the ACL check is made against the
1420 certificate's distinguished name. This is something that looks like
1421 @code{C=GB,O=ACME,L=Boston,CN=bob}. For SASL party, the ACL check is
1422 made against the username, which depending on the SASL plugin, may
1423 include a realm component, eg @code{bob} or @code{bob@@EXAMPLE.COM}.
1424 When the @option{acl} flag is set, the initial access list will be
1425 empty, with a @code{deny} policy. Thus no one will be allowed to
1426 use the VNC server until the ACLs have been loaded. This can be
1427 achieved using the @code{acl} monitor command.
1429 @item lossy
1431 Enable lossy compression methods (gradient, JPEG, ...). If this
1432 option is set, VNC client may receive lossy framebuffer updates
1433 depending on its encoding settings. Enabling this option can save
1434 a lot of bandwidth at the expense of quality.
1436 @item non-adaptive
1438 Disable adaptive encodings. Adaptive encodings are enabled by default.
1439 An adaptive encoding will try to detect frequently updated screen regions,
1440 and send updates in these regions using a lossy encoding (like JPEG).
1441 This can be really helpful to save bandwidth when playing videos. Disabling
1442 adaptive encodings restores the original static behavior of encodings
1443 like Tight.
1445 @item share=[allow-exclusive|force-shared|ignore]
1447 Set display sharing policy. 'allow-exclusive' allows clients to ask
1448 for exclusive access. As suggested by the rfb spec this is
1449 implemented by dropping other connections. Connecting multiple
1450 clients in parallel requires all clients asking for a shared session
1451 (vncviewer: -shared switch). This is the default. 'force-shared'
1452 disables exclusive client access. Useful for shared desktop sessions,
1453 where you don't want someone forgetting specify -shared disconnect
1454 everybody else. 'ignore' completely ignores the shared flag and
1455 allows everybody connect unconditionally. Doesn't conform to the rfb
1456 spec but is traditional QEMU behavior.
1458 @item key-delay-ms
1460 Set keyboard delay, for key down and key up events, in milliseconds.
1461 Default is 1. Keyboards are low-bandwidth devices, so this slowdown
1462 can help the device and guest to keep up and not lose events in case
1463 events are arriving in bulk. Possible causes for the latter are flaky
1464 network connections, or scripts for automated testing.
1466 @end table
1467 ETEXI
1469 STEXI
1470 @end table
1471 ETEXI
1472 ARCHHEADING(, QEMU_ARCH_I386)
1474 ARCHHEADING(i386 target only, QEMU_ARCH_I386)
1475 STEXI
1476 @table @option
1477 ETEXI
1479 DEF("win2k-hack", 0, QEMU_OPTION_win2k_hack,
1480 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n",
1481 QEMU_ARCH_I386)
1482 STEXI
1483 @item -win2k-hack
1484 @findex -win2k-hack
1485 Use it when installing Windows 2000 to avoid a disk full bug. After
1486 Windows 2000 is installed, you no longer need this option (this option
1487 slows down the IDE transfers).
1488 ETEXI
1490 HXCOMM Deprecated by -rtc
1491 DEF("rtc-td-hack", 0, QEMU_OPTION_rtc_td_hack, "", QEMU_ARCH_I386)
1493 DEF("no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk,
1494 "-no-fd-bootchk disable boot signature checking for floppy disks\n",
1495 QEMU_ARCH_I386)
1496 STEXI
1497 @item -no-fd-bootchk
1498 @findex -no-fd-bootchk
1499 Disable boot signature checking for floppy disks in BIOS. May
1500 be needed to boot from old floppy disks.
1501 ETEXI
1503 DEF("no-acpi", 0, QEMU_OPTION_no_acpi,
1504 "-no-acpi disable ACPI\n", QEMU_ARCH_I386 | QEMU_ARCH_ARM)
1505 STEXI
1506 @item -no-acpi
1507 @findex -no-acpi
1508 Disable ACPI (Advanced Configuration and Power Interface) support. Use
1509 it if your guest OS complains about ACPI problems (PC target machine
1510 only).
1511 ETEXI
1513 DEF("no-hpet", 0, QEMU_OPTION_no_hpet,
1514 "-no-hpet disable HPET\n", QEMU_ARCH_I386)
1515 STEXI
1516 @item -no-hpet
1517 @findex -no-hpet
1518 Disable HPET support.
1519 ETEXI
1521 DEF("acpitable", HAS_ARG, QEMU_OPTION_acpitable,
1522 "-acpitable [sig=str][,rev=n][,oem_id=str][,oem_table_id=str][,oem_rev=n][,asl_compiler_id=str][,asl_compiler_rev=n][,{data|file}=file1[:file2]...]\n"
1523 " ACPI table description\n", QEMU_ARCH_I386)
1524 STEXI
1525 @item -acpitable [sig=@var{str}][,rev=@var{n}][,oem_id=@var{str}][,oem_table_id=@var{str}][,oem_rev=@var{n}] [,asl_compiler_id=@var{str}][,asl_compiler_rev=@var{n}][,data=@var{file1}[:@var{file2}]...]
1526 @findex -acpitable
1527 Add ACPI table with specified header fields and context from specified files.
1528 For file=, take whole ACPI table from the specified files, including all
1529 ACPI headers (possible overridden by other options).
1530 For data=, only data
1531 portion of the table is used, all header information is specified in the
1532 command line.
1533 If a SLIC table is supplied to QEMU, then the SLIC's oem_id and oem_table_id
1534 fields will override the same in the RSDT and the FADT (a.k.a. FACP), in order
1535 to ensure the field matches required by the Microsoft SLIC spec and the ACPI
1536 spec.
1537 ETEXI
1539 DEF("smbios", HAS_ARG, QEMU_OPTION_smbios,
1540 "-smbios file=binary\n"
1541 " load SMBIOS entry from binary file\n"
1542 "-smbios type=0[,vendor=str][,version=str][,date=str][,release=%d.%d]\n"
1543 " [,uefi=on|off]\n"
1544 " specify SMBIOS type 0 fields\n"
1545 "-smbios type=1[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
1546 " [,uuid=uuid][,sku=str][,family=str]\n"
1547 " specify SMBIOS type 1 fields\n"
1548 "-smbios type=2[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
1549 " [,asset=str][,location=str]\n"
1550 " specify SMBIOS type 2 fields\n"
1551 "-smbios type=3[,manufacturer=str][,version=str][,serial=str][,asset=str]\n"
1552 " [,sku=str]\n"
1553 " specify SMBIOS type 3 fields\n"
1554 "-smbios type=4[,sock_pfx=str][,manufacturer=str][,version=str][,serial=str]\n"
1555 " [,asset=str][,part=str]\n"
1556 " specify SMBIOS type 4 fields\n"
1557 "-smbios type=17[,loc_pfx=str][,bank=str][,manufacturer=str][,serial=str]\n"
1558 " [,asset=str][,part=str][,speed=%d]\n"
1559 " specify SMBIOS type 17 fields\n",
1560 QEMU_ARCH_I386 | QEMU_ARCH_ARM)
1561 STEXI
1562 @item -smbios file=@var{binary}
1563 @findex -smbios
1564 Load SMBIOS entry from binary file.
1566 @item -smbios type=0[,vendor=@var{str}][,version=@var{str}][,date=@var{str}][,release=@var{%d.%d}][,uefi=on|off]
1567 Specify SMBIOS type 0 fields
1569 @item -smbios type=1[,manufacturer=@var{str}][,product=@var{str}][,version=@var{str}][,serial=@var{str}][,uuid=@var{uuid}][,sku=@var{str}][,family=@var{str}]
1570 Specify SMBIOS type 1 fields
1572 @item -smbios type=2[,manufacturer=@var{str}][,product=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,location=@var{str}][,family=@var{str}]
1573 Specify SMBIOS type 2 fields
1575 @item -smbios type=3[,manufacturer=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,sku=@var{str}]
1576 Specify SMBIOS type 3 fields
1578 @item -smbios type=4[,sock_pfx=@var{str}][,manufacturer=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,part=@var{str}]
1579 Specify SMBIOS type 4 fields
1581 @item -smbios type=17[,loc_pfx=@var{str}][,bank=@var{str}][,manufacturer=@var{str}][,serial=@var{str}][,asset=@var{str}][,part=@var{str}][,speed=@var{%d}]
1582 Specify SMBIOS type 17 fields
1583 ETEXI
1585 STEXI
1586 @end table
1587 ETEXI
1588 DEFHEADING()
1590 DEFHEADING(Network options)
1591 STEXI
1592 @table @option
1593 ETEXI
1595 HXCOMM Legacy slirp options (now moved to -net user):
1596 #ifdef CONFIG_SLIRP
1597 DEF("tftp", HAS_ARG, QEMU_OPTION_tftp, "", QEMU_ARCH_ALL)
1598 DEF("bootp", HAS_ARG, QEMU_OPTION_bootp, "", QEMU_ARCH_ALL)
1599 DEF("redir", HAS_ARG, QEMU_OPTION_redir, "", QEMU_ARCH_ALL)
1600 #ifndef _WIN32
1601 DEF("smb", HAS_ARG, QEMU_OPTION_smb, "", QEMU_ARCH_ALL)
1602 #endif
1603 #endif
1605 DEF("netdev", HAS_ARG, QEMU_OPTION_netdev,
1606 #ifdef CONFIG_SLIRP
1607 "-netdev user,id=str[,ipv4[=on|off]][,net=addr[/mask]][,host=addr]\n"
1608 " [,ipv6[=on|off]][,ipv6-net=addr[/int]][,ipv6-host=addr]\n"
1609 " [,restrict=on|off][,hostname=host][,dhcpstart=addr]\n"
1610 " [,dns=addr][,ipv6-dns=addr][,dnssearch=domain][,tftp=dir]\n"
1611 " [,bootfile=f][,hostfwd=rule][,guestfwd=rule]"
1612 #ifndef _WIN32
1613 "[,smb=dir[,smbserver=addr]]\n"
1614 #endif
1615 " configure a user mode network backend with ID 'str',\n"
1616 " its DHCP server and optional services\n"
1617 #endif
1618 #ifdef _WIN32
1619 "-netdev tap,id=str,ifname=name\n"
1620 " configure a host TAP network backend with ID 'str'\n"
1621 #else
1622 "-netdev tap,id=str[,fd=h][,fds=x:y:...:z][,ifname=name][,script=file][,downscript=dfile]\n"
1623 " [,br=bridge][,helper=helper][,sndbuf=nbytes][,vnet_hdr=on|off][,vhost=on|off]\n"
1624 " [,vhostfd=h][,vhostfds=x:y:...:z][,vhostforce=on|off][,queues=n]\n"
1625 " [,poll-us=n]\n"
1626 " configure a host TAP network backend with ID 'str'\n"
1627 " connected to a bridge (default=" DEFAULT_BRIDGE_INTERFACE ")\n"
1628 " use network scripts 'file' (default=" DEFAULT_NETWORK_SCRIPT ")\n"
1629 " to configure it and 'dfile' (default=" DEFAULT_NETWORK_DOWN_SCRIPT ")\n"
1630 " to deconfigure it\n"
1631 " use '[down]script=no' to disable script execution\n"
1632 " use network helper 'helper' (default=" DEFAULT_BRIDGE_HELPER ") to\n"
1633 " configure it\n"
1634 " use 'fd=h' to connect to an already opened TAP interface\n"
1635 " use 'fds=x:y:...:z' to connect to already opened multiqueue capable TAP interfaces\n"
1636 " use 'sndbuf=nbytes' to limit the size of the send buffer (the\n"
1637 " default is disabled 'sndbuf=0' to enable flow control set 'sndbuf=1048576')\n"
1638 " use vnet_hdr=off to avoid enabling the IFF_VNET_HDR tap flag\n"
1639 " use vnet_hdr=on to make the lack of IFF_VNET_HDR support an error condition\n"
1640 " use vhost=on to enable experimental in kernel accelerator\n"
1641 " (only has effect for virtio guests which use MSIX)\n"
1642 " use vhostforce=on to force vhost on for non-MSIX virtio guests\n"
1643 " use 'vhostfd=h' to connect to an already opened vhost net device\n"
1644 " use 'vhostfds=x:y:...:z to connect to multiple already opened vhost net devices\n"
1645 " use 'queues=n' to specify the number of queues to be created for multiqueue TAP\n"
1646 " use 'poll-us=n' to speciy the maximum number of microseconds that could be\n"
1647 " spent on busy polling for vhost net\n"
1648 "-netdev bridge,id=str[,br=bridge][,helper=helper]\n"
1649 " configure a host TAP network backend with ID 'str' that is\n"
1650 " connected to a bridge (default=" DEFAULT_BRIDGE_INTERFACE ")\n"
1651 " using the program 'helper (default=" DEFAULT_BRIDGE_HELPER ")\n"
1652 #endif
1653 #ifdef __linux__
1654 "-netdev l2tpv3,id=str,src=srcaddr,dst=dstaddr[,srcport=srcport][,dstport=dstport]\n"
1655 " [,rxsession=rxsession],txsession=txsession[,ipv6=on/off][,udp=on/off]\n"
1656 " [,cookie64=on/off][,counter][,pincounter][,txcookie=txcookie]\n"
1657 " [,rxcookie=rxcookie][,offset=offset]\n"
1658 " configure a network backend with ID 'str' connected to\n"
1659 " an Ethernet over L2TPv3 pseudowire.\n"
1660 " Linux kernel 3.3+ as well as most routers can talk\n"
1661 " L2TPv3. This transport allows connecting a VM to a VM,\n"
1662 " VM to a router and even VM to Host. It is a nearly-universal\n"
1663 " standard (RFC3391). Note - this implementation uses static\n"
1664 " pre-configured tunnels (same as the Linux kernel).\n"
1665 " use 'src=' to specify source address\n"
1666 " use 'dst=' to specify destination address\n"
1667 " use 'udp=on' to specify udp encapsulation\n"
1668 " use 'srcport=' to specify source udp port\n"
1669 " use 'dstport=' to specify destination udp port\n"
1670 " use 'ipv6=on' to force v6\n"
1671 " L2TPv3 uses cookies to prevent misconfiguration as\n"
1672 " well as a weak security measure\n"
1673 " use 'rxcookie=0x012345678' to specify a rxcookie\n"
1674 " use 'txcookie=0x012345678' to specify a txcookie\n"
1675 " use 'cookie64=on' to set cookie size to 64 bit, otherwise 32\n"
1676 " use 'counter=off' to force a 'cut-down' L2TPv3 with no counter\n"
1677 " use 'pincounter=on' to work around broken counter handling in peer\n"
1678 " use 'offset=X' to add an extra offset between header and data\n"
1679 #endif
1680 "-netdev socket,id=str[,fd=h][,listen=[host]:port][,connect=host:port]\n"
1681 " configure a network backend to connect to another network\n"
1682 " using a socket connection\n"
1683 "-netdev socket,id=str[,fd=h][,mcast=maddr:port[,localaddr=addr]]\n"
1684 " configure a network backend to connect to a multicast maddr and port\n"
1685 " use 'localaddr=addr' to specify the host address to send packets from\n"
1686 "-netdev socket,id=str[,fd=h][,udp=host:port][,localaddr=host:port]\n"
1687 " configure a network backend to connect to another network\n"
1688 " using an UDP tunnel\n"
1689 #ifdef CONFIG_VDE
1690 "-netdev vde,id=str[,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
1691 " configure a network backend to connect to port 'n' of a vde switch\n"
1692 " running on host and listening for incoming connections on 'socketpath'.\n"
1693 " Use group 'groupname' and mode 'octalmode' to change default\n"
1694 " ownership and permissions for communication port.\n"
1695 #endif
1696 #ifdef CONFIG_NETMAP
1697 "-netdev netmap,id=str,ifname=name[,devname=nmname]\n"
1698 " attach to the existing netmap-enabled network interface 'name', or to a\n"
1699 " VALE port (created on the fly) called 'name' ('nmname' is name of the \n"
1700 " netmap device, defaults to '/dev/netmap')\n"
1701 #endif
1702 "-netdev vhost-user,id=str,chardev=dev[,vhostforce=on|off]\n"
1703 " configure a vhost-user network, backed by a chardev 'dev'\n"
1704 "-netdev hubport,id=str,hubid=n\n"
1705 " configure a hub port on QEMU VLAN 'n'\n", QEMU_ARCH_ALL)
1706 DEF("net", HAS_ARG, QEMU_OPTION_net,
1707 "-net nic[,vlan=n][,macaddr=mac][,model=type][,name=str][,addr=str][,vectors=v]\n"
1708 " old way to create a new NIC and connect it to VLAN 'n'\n"
1709 " (use the '-device devtype,netdev=str' option if possible instead)\n"
1710 "-net dump[,vlan=n][,file=f][,len=n]\n"
1711 " dump traffic on vlan 'n' to file 'f' (max n bytes per packet)\n"
1712 "-net none use it alone to have zero network devices. If no -net option\n"
1713 " is provided, the default is '-net nic -net user'\n"
1714 "-net ["
1715 #ifdef CONFIG_SLIRP
1716 "user|"
1717 #endif
1718 "tap|"
1719 "bridge|"
1720 #ifdef CONFIG_VDE
1721 "vde|"
1722 #endif
1723 #ifdef CONFIG_NETMAP
1724 "netmap|"
1725 #endif
1726 "socket][,vlan=n][,option][,option][,...]\n"
1727 " old way to initialize a host network interface\n"
1728 " (use the -netdev option if possible instead)\n", QEMU_ARCH_ALL)
1729 STEXI
1730 @item -net nic[,vlan=@var{n}][,macaddr=@var{mac}][,model=@var{type}] [,name=@var{name}][,addr=@var{addr}][,vectors=@var{v}]
1731 @findex -net
1732 Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
1733 = 0 is the default). The NIC is an e1000 by default on the PC
1734 target. Optionally, the MAC address can be changed to @var{mac}, the
1735 device address set to @var{addr} (PCI cards only),
1736 and a @var{name} can be assigned for use in monitor commands.
1737 Optionally, for PCI cards, you can specify the number @var{v} of MSI-X vectors
1738 that the card should have; this option currently only affects virtio cards; set
1739 @var{v} = 0 to disable MSI-X. If no @option{-net} option is specified, a single
1740 NIC is created. QEMU can emulate several different models of network card.
1741 Valid values for @var{type} are
1742 @code{virtio}, @code{i82551}, @code{i82557b}, @code{i82559er},
1743 @code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
1744 @code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
1745 Not all devices are supported on all targets. Use @code{-net nic,model=help}
1746 for a list of available devices for your target.
1748 @item -netdev user,id=@var{id}[,@var{option}][,@var{option}][,...]
1749 @findex -netdev
1750 @item -net user[,@var{option}][,@var{option}][,...]
1751 Use the user mode network stack which requires no administrator
1752 privilege to run. Valid options are:
1754 @table @option
1755 @item vlan=@var{n}
1756 Connect user mode stack to VLAN @var{n} (@var{n} = 0 is the default).
1758 @item id=@var{id}
1759 @itemx name=@var{name}
1760 Assign symbolic name for use in monitor commands.
1762 @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must
1763 be enabled. If neither is specified both protocols are enabled.
1765 @item net=@var{addr}[/@var{mask}]
1766 Set IP network address the guest will see. Optionally specify the netmask,
1767 either in the form a.b.c.d or as number of valid top-most bits. Default is
1768 10.0.2.0/24.
1770 @item host=@var{addr}
1771 Specify the guest-visible address of the host. Default is the 2nd IP in the
1772 guest network, i.e. x.x.x.2.
1774 @item ipv6-net=@var{addr}[/@var{int}]
1775 Set IPv6 network address the guest will see (default is fec0::/64). The
1776 network prefix is given in the usual hexadecimal IPv6 address
1777 notation. The prefix size is optional, and is given as the number of
1778 valid top-most bits (default is 64).
1780 @item ipv6-host=@var{addr}
1781 Specify the guest-visible IPv6 address of the host. Default is the 2nd IPv6 in
1782 the guest network, i.e. xxxx::2.
1784 @item restrict=on|off
1785 If this option is enabled, the guest will be isolated, i.e. it will not be
1786 able to contact the host and no guest IP packets will be routed over the host
1787 to the outside. This option does not affect any explicitly set forwarding rules.
1789 @item hostname=@var{name}
1790 Specifies the client hostname reported by the built-in DHCP server.
1792 @item dhcpstart=@var{addr}
1793 Specify the first of the 16 IPs the built-in DHCP server can assign. Default
1794 is the 15th to 31st IP in the guest network, i.e. x.x.x.15 to x.x.x.31.
1796 @item dns=@var{addr}
1797 Specify the guest-visible address of the virtual nameserver. The address must
1798 be different from the host address. Default is the 3rd IP in the guest network,
1799 i.e. x.x.x.3.
1801 @item ipv6-dns=@var{addr}
1802 Specify the guest-visible address of the IPv6 virtual nameserver. The address
1803 must be different from the host address. Default is the 3rd IP in the guest
1804 network, i.e. xxxx::3.
1806 @item dnssearch=@var{domain}
1807 Provides an entry for the domain-search list sent by the built-in
1808 DHCP server. More than one domain suffix can be transmitted by specifying
1809 this option multiple times. If supported, this will cause the guest to
1810 automatically try to append the given domain suffix(es) in case a domain name
1811 can not be resolved.
1813 Example:
1814 @example
1815 qemu -net user,dnssearch=mgmt.example.org,dnssearch=example.org [...]
1816 @end example
1818 @item tftp=@var{dir}
1819 When using the user mode network stack, activate a built-in TFTP
1820 server. The files in @var{dir} will be exposed as the root of a TFTP server.
1821 The TFTP client on the guest must be configured in binary mode (use the command
1822 @code{bin} of the Unix TFTP client).
1824 @item bootfile=@var{file}
1825 When using the user mode network stack, broadcast @var{file} as the BOOTP
1826 filename. In conjunction with @option{tftp}, this can be used to network boot
1827 a guest from a local directory.
1829 Example (using pxelinux):
1830 @example
1831 qemu-system-i386 -hda linux.img -boot n -net user,tftp=/path/to/tftp/files,bootfile=/pxelinux.0
1832 @end example
1834 @item smb=@var{dir}[,smbserver=@var{addr}]
1835 When using the user mode network stack, activate a built-in SMB
1836 server so that Windows OSes can access to the host files in @file{@var{dir}}
1837 transparently. The IP address of the SMB server can be set to @var{addr}. By
1838 default the 4th IP in the guest network is used, i.e. x.x.x.4.
1840 In the guest Windows OS, the line:
1841 @example
1842 10.0.2.4 smbserver
1843 @end example
1844 must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
1845 or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
1847 Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
1849 Note that a SAMBA server must be installed on the host OS.
1850 QEMU was tested successfully with smbd versions from Red Hat 9,
1851 Fedora Core 3 and OpenSUSE 11.x.
1853 @item hostfwd=[tcp|udp]:[@var{hostaddr}]:@var{hostport}-[@var{guestaddr}]:@var{guestport}
1854 Redirect incoming TCP or UDP connections to the host port @var{hostport} to
1855 the guest IP address @var{guestaddr} on guest port @var{guestport}. If
1856 @var{guestaddr} is not specified, its value is x.x.x.15 (default first address
1857 given by the built-in DHCP server). By specifying @var{hostaddr}, the rule can
1858 be bound to a specific host interface. If no connection type is set, TCP is
1859 used. This option can be given multiple times.
1861 For example, to redirect host X11 connection from screen 1 to guest
1862 screen 0, use the following:
1864 @example
1865 # on the host
1866 qemu-system-i386 -net user,hostfwd=tcp:127.0.0.1:6001-:6000 [...]
1867 # this host xterm should open in the guest X11 server
1868 xterm -display :1
1869 @end example
1871 To redirect telnet connections from host port 5555 to telnet port on
1872 the guest, use the following:
1874 @example
1875 # on the host
1876 qemu-system-i386 -net user,hostfwd=tcp::5555-:23 [...]
1877 telnet localhost 5555
1878 @end example
1880 Then when you use on the host @code{telnet localhost 5555}, you
1881 connect to the guest telnet server.
1883 @item guestfwd=[tcp]:@var{server}:@var{port}-@var{dev}
1884 @itemx guestfwd=[tcp]:@var{server}:@var{port}-@var{cmd:command}
1885 Forward guest TCP connections to the IP address @var{server} on port @var{port}
1886 to the character device @var{dev} or to a program executed by @var{cmd:command}
1887 which gets spawned for each connection. This option can be given multiple times.
1889 You can either use a chardev directly and have that one used throughout QEMU's
1890 lifetime, like in the following example:
1892 @example
1893 # open 10.10.1.1:4321 on bootup, connect 10.0.2.100:1234 to it whenever
1894 # the guest accesses it
1895 qemu -net user,guestfwd=tcp:10.0.2.100:1234-tcp:10.10.1.1:4321 [...]
1896 @end example
1898 Or you can execute a command on every TCP connection established by the guest,
1899 so that QEMU behaves similar to an inetd process for that virtual server:
1901 @example
1902 # call "netcat 10.10.1.1 4321" on every TCP connection to 10.0.2.100:1234
1903 # and connect the TCP stream to its stdin/stdout
1904 qemu -net 'user,guestfwd=tcp:10.0.2.100:1234-cmd:netcat 10.10.1.1 4321'
1905 @end example
1907 @end table
1909 Note: Legacy stand-alone options -tftp, -bootp, -smb and -redir are still
1910 processed and applied to -net user. Mixing them with the new configuration
1911 syntax gives undefined results. Their use for new applications is discouraged
1912 as they will be removed from future versions.
1914 @item -netdev tap,id=@var{id}[,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}][,br=@var{bridge}][,helper=@var{helper}]
1915 @itemx -net tap[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}][,br=@var{bridge}][,helper=@var{helper}]
1916 Connect the host TAP network interface @var{name} to VLAN @var{n}.
1918 Use the network script @var{file} to configure it and the network script
1919 @var{dfile} to deconfigure it. If @var{name} is not provided, the OS
1920 automatically provides one. The default network configure script is
1921 @file{/etc/qemu-ifup} and the default network deconfigure script is
1922 @file{/etc/qemu-ifdown}. Use @option{script=no} or @option{downscript=no}
1923 to disable script execution.
1925 If running QEMU as an unprivileged user, use the network helper
1926 @var{helper} to configure the TAP interface and attach it to the bridge.
1927 The default network helper executable is @file{/path/to/qemu-bridge-helper}
1928 and the default bridge device is @file{br0}.
1930 @option{fd}=@var{h} can be used to specify the handle of an already
1931 opened host TAP interface.
1933 Examples:
1935 @example
1936 #launch a QEMU instance with the default network script
1937 qemu-system-i386 linux.img -net nic -net tap
1938 @end example
1940 @example
1941 #launch a QEMU instance with two NICs, each one connected
1942 #to a TAP device
1943 qemu-system-i386 linux.img \
1944 -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
1945 -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
1946 @end example
1948 @example
1949 #launch a QEMU instance with the default network helper to
1950 #connect a TAP device to bridge br0
1951 qemu-system-i386 linux.img \
1952 -net nic -net tap,"helper=/path/to/qemu-bridge-helper"
1953 @end example
1955 @item -netdev bridge,id=@var{id}[,br=@var{bridge}][,helper=@var{helper}]
1956 @itemx -net bridge[,vlan=@var{n}][,name=@var{name}][,br=@var{bridge}][,helper=@var{helper}]
1957 Connect a host TAP network interface to a host bridge device.
1959 Use the network helper @var{helper} to configure the TAP interface and
1960 attach it to the bridge. The default network helper executable is
1961 @file{/path/to/qemu-bridge-helper} and the default bridge
1962 device is @file{br0}.
1964 Examples:
1966 @example
1967 #launch a QEMU instance with the default network helper to
1968 #connect a TAP device to bridge br0
1969 qemu-system-i386 linux.img -net bridge -net nic,model=virtio
1970 @end example
1972 @example
1973 #launch a QEMU instance with the default network helper to
1974 #connect a TAP device to bridge qemubr0
1975 qemu-system-i386 linux.img -net bridge,br=qemubr0 -net nic,model=virtio
1976 @end example
1978 @item -netdev socket,id=@var{id}[,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
1979 @itemx -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}] [,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
1981 Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
1982 machine using a TCP socket connection. If @option{listen} is
1983 specified, QEMU waits for incoming connections on @var{port}
1984 (@var{host} is optional). @option{connect} is used to connect to
1985 another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
1986 specifies an already opened TCP socket.
1988 Example:
1989 @example
1990 # launch a first QEMU instance
1991 qemu-system-i386 linux.img \
1992 -net nic,macaddr=52:54:00:12:34:56 \
1993 -net socket,listen=:1234
1994 # connect the VLAN 0 of this instance to the VLAN 0
1995 # of the first instance
1996 qemu-system-i386 linux.img \
1997 -net nic,macaddr=52:54:00:12:34:57 \
1998 -net socket,connect=127.0.0.1:1234
1999 @end example
2001 @item -netdev socket,id=@var{id}[,fd=@var{h}][,mcast=@var{maddr}:@var{port}[,localaddr=@var{addr}]]
2002 @itemx -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}[,localaddr=@var{addr}]]
2004 Create a VLAN @var{n} shared with another QEMU virtual
2005 machines using a UDP multicast socket, effectively making a bus for
2006 every QEMU with same multicast address @var{maddr} and @var{port}.
2007 NOTES:
2008 @enumerate
2009 @item
2010 Several QEMU can be running on different hosts and share same bus (assuming
2011 correct multicast setup for these hosts).
2012 @item
2013 mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
2014 @url{http://user-mode-linux.sf.net}.
2015 @item
2016 Use @option{fd=h} to specify an already opened UDP multicast socket.
2017 @end enumerate
2019 Example:
2020 @example
2021 # launch one QEMU instance
2022 qemu-system-i386 linux.img \
2023 -net nic,macaddr=52:54:00:12:34:56 \
2024 -net socket,mcast=230.0.0.1:1234
2025 # launch another QEMU instance on same "bus"
2026 qemu-system-i386 linux.img \
2027 -net nic,macaddr=52:54:00:12:34:57 \
2028 -net socket,mcast=230.0.0.1:1234
2029 # launch yet another QEMU instance on same "bus"
2030 qemu-system-i386 linux.img \
2031 -net nic,macaddr=52:54:00:12:34:58 \
2032 -net socket,mcast=230.0.0.1:1234
2033 @end example
2035 Example (User Mode Linux compat.):
2036 @example
2037 # launch QEMU instance (note mcast address selected
2038 # is UML's default)
2039 qemu-system-i386 linux.img \
2040 -net nic,macaddr=52:54:00:12:34:56 \
2041 -net socket,mcast=239.192.168.1:1102
2042 # launch UML
2043 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
2044 @end example
2046 Example (send packets from host's 1.2.3.4):
2047 @example
2048 qemu-system-i386 linux.img \
2049 -net nic,macaddr=52:54:00:12:34:56 \
2050 -net socket,mcast=239.192.168.1:1102,localaddr=1.2.3.4
2051 @end example
2053 @item -netdev l2tpv3,id=@var{id},src=@var{srcaddr},dst=@var{dstaddr}[,srcport=@var{srcport}][,dstport=@var{dstport}],txsession=@var{txsession}[,rxsession=@var{rxsession}][,ipv6][,udp][,cookie64][,counter][,pincounter][,txcookie=@var{txcookie}][,rxcookie=@var{rxcookie}][,offset=@var{offset}]
2054 @itemx -net l2tpv3[,vlan=@var{n}][,name=@var{name}],src=@var{srcaddr},dst=@var{dstaddr}[,srcport=@var{srcport}][,dstport=@var{dstport}],txsession=@var{txsession}[,rxsession=@var{rxsession}][,ipv6][,udp][,cookie64][,counter][,pincounter][,txcookie=@var{txcookie}][,rxcookie=@var{rxcookie}][,offset=@var{offset}]
2055 Connect VLAN @var{n} to L2TPv3 pseudowire. L2TPv3 (RFC3391) is a popular
2056 protocol to transport Ethernet (and other Layer 2) data frames between
2057 two systems. It is present in routers, firewalls and the Linux kernel
2058 (from version 3.3 onwards).
2060 This transport allows a VM to communicate to another VM, router or firewall directly.
2062 @item src=@var{srcaddr}
2063 source address (mandatory)
2064 @item dst=@var{dstaddr}
2065 destination address (mandatory)
2066 @item udp
2067 select udp encapsulation (default is ip).
2068 @item srcport=@var{srcport}
2069 source udp port.
2070 @item dstport=@var{dstport}
2071 destination udp port.
2072 @item ipv6
2073 force v6, otherwise defaults to v4.
2074 @item rxcookie=@var{rxcookie}
2075 @itemx txcookie=@var{txcookie}
2076 Cookies are a weak form of security in the l2tpv3 specification.
2077 Their function is mostly to prevent misconfiguration. By default they are 32
2078 bit.
2079 @item cookie64
2080 Set cookie size to 64 bit instead of the default 32
2081 @item counter=off
2082 Force a 'cut-down' L2TPv3 with no counter as in
2083 draft-mkonstan-l2tpext-keyed-ipv6-tunnel-00
2084 @item pincounter=on
2085 Work around broken counter handling in peer. This may also help on
2086 networks which have packet reorder.
2087 @item offset=@var{offset}
2088 Add an extra offset between header and data
2090 For example, to attach a VM running on host 4.3.2.1 via L2TPv3 to the bridge br-lan
2091 on the remote Linux host 1.2.3.4:
2092 @example
2093 # Setup tunnel on linux host using raw ip as encapsulation
2094 # on 1.2.3.4
2095 ip l2tp add tunnel remote 4.3.2.1 local 1.2.3.4 tunnel_id 1 peer_tunnel_id 1 \
2096 encap udp udp_sport 16384 udp_dport 16384
2097 ip l2tp add session tunnel_id 1 name vmtunnel0 session_id \
2098 0xFFFFFFFF peer_session_id 0xFFFFFFFF
2099 ifconfig vmtunnel0 mtu 1500
2100 ifconfig vmtunnel0 up
2101 brctl addif br-lan vmtunnel0
2104 # on 4.3.2.1
2105 # launch QEMU instance - if your network has reorder or is very lossy add ,pincounter
2107 qemu-system-i386 linux.img -net nic -net l2tpv3,src=4.2.3.1,dst=1.2.3.4,udp,srcport=16384,dstport=16384,rxsession=0xffffffff,txsession=0xffffffff,counter
2110 @end example
2112 @item -netdev vde,id=@var{id}[,sock=@var{socketpath}][,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
2113 @itemx -net vde[,vlan=@var{n}][,name=@var{name}][,sock=@var{socketpath}] [,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
2114 Connect VLAN @var{n} to PORT @var{n} of a vde switch running on host and
2115 listening for incoming connections on @var{socketpath}. Use GROUP @var{groupname}
2116 and MODE @var{octalmode} to change default ownership and permissions for
2117 communication port. This option is only available if QEMU has been compiled
2118 with vde support enabled.
2120 Example:
2121 @example
2122 # launch vde switch
2123 vde_switch -F -sock /tmp/myswitch
2124 # launch QEMU instance
2125 qemu-system-i386 linux.img -net nic -net vde,sock=/tmp/myswitch
2126 @end example
2128 @item -netdev hubport,id=@var{id},hubid=@var{hubid}
2130 Create a hub port on QEMU "vlan" @var{hubid}.
2132 The hubport netdev lets you connect a NIC to a QEMU "vlan" instead of a single
2133 netdev. @code{-net} and @code{-device} with parameter @option{vlan} create the
2134 required hub automatically.
2136 @item -netdev vhost-user,chardev=@var{id}[,vhostforce=on|off][,queues=n]
2138 Establish a vhost-user netdev, backed by a chardev @var{id}. The chardev should
2139 be a unix domain socket backed one. The vhost-user uses a specifically defined
2140 protocol to pass vhost ioctl replacement messages to an application on the other
2141 end of the socket. On non-MSIX guests, the feature can be forced with
2142 @var{vhostforce}. Use 'queues=@var{n}' to specify the number of queues to
2143 be created for multiqueue vhost-user.
2145 Example:
2146 @example
2147 qemu -m 512 -object memory-backend-file,id=mem,size=512M,mem-path=/hugetlbfs,share=on \
2148 -numa node,memdev=mem \
2149 -chardev socket,id=chr0,path=/path/to/socket \
2150 -netdev type=vhost-user,id=net0,chardev=chr0 \
2151 -device virtio-net-pci,netdev=net0
2152 @end example
2154 @item -net dump[,vlan=@var{n}][,file=@var{file}][,len=@var{len}]
2155 Dump network traffic on VLAN @var{n} to file @var{file} (@file{qemu-vlan0.pcap} by default).
2156 At most @var{len} bytes (64k by default) per packet are stored. The file format is
2157 libpcap, so it can be analyzed with tools such as tcpdump or Wireshark.
2158 Note: For devices created with '-netdev', use '-object filter-dump,...' instead.
2160 @item -net none
2161 Indicate that no network devices should be configured. It is used to
2162 override the default configuration (@option{-net nic -net user}) which
2163 is activated if no @option{-net} options are provided.
2164 ETEXI
2166 STEXI
2167 @end table
2168 ETEXI
2169 DEFHEADING()
2171 DEFHEADING(Character device options)
2172 STEXI
2174 The general form of a character device option is:
2175 @table @option
2176 ETEXI
2178 DEF("chardev", HAS_ARG, QEMU_OPTION_chardev,
2179 "-chardev help\n"
2180 "-chardev null,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2181 "-chardev socket,id=id[,host=host],port=port[,to=to][,ipv4][,ipv6][,nodelay][,reconnect=seconds]\n"
2182 " [,server][,nowait][,telnet][,reconnect=seconds][,mux=on|off]\n"
2183 " [,logfile=PATH][,logappend=on|off][,tls-creds=ID] (tcp)\n"
2184 "-chardev socket,id=id,path=path[,server][,nowait][,telnet][,reconnect=seconds]\n"
2185 " [,mux=on|off][,logfile=PATH][,logappend=on|off] (unix)\n"
2186 "-chardev udp,id=id[,host=host],port=port[,localaddr=localaddr]\n"
2187 " [,localport=localport][,ipv4][,ipv6][,mux=on|off]\n"
2188 " [,logfile=PATH][,logappend=on|off]\n"
2189 "-chardev msmouse,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2190 "-chardev vc,id=id[[,width=width][,height=height]][[,cols=cols][,rows=rows]]\n"
2191 " [,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2192 "-chardev ringbuf,id=id[,size=size][,logfile=PATH][,logappend=on|off]\n"
2193 "-chardev file,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2194 "-chardev pipe,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2195 #ifdef _WIN32
2196 "-chardev console,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2197 "-chardev serial,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2198 #else
2199 "-chardev pty,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2200 "-chardev stdio,id=id[,mux=on|off][,signal=on|off][,logfile=PATH][,logappend=on|off]\n"
2201 #endif
2202 #ifdef CONFIG_BRLAPI
2203 "-chardev braille,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2204 #endif
2205 #if defined(__linux__) || defined(__sun__) || defined(__FreeBSD__) \
2206 || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__)
2207 "-chardev serial,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2208 "-chardev tty,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2209 #endif
2210 #if defined(__linux__) || defined(__FreeBSD__) || defined(__DragonFly__)
2211 "-chardev parallel,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2212 "-chardev parport,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2213 #endif
2214 #if defined(CONFIG_SPICE)
2215 "-chardev spicevmc,id=id,name=name[,debug=debug][,logfile=PATH][,logappend=on|off]\n"
2216 "-chardev spiceport,id=id,name=name[,debug=debug][,logfile=PATH][,logappend=on|off]\n"
2217 #endif
2218 , QEMU_ARCH_ALL
2221 STEXI
2222 @item -chardev @var{backend} ,id=@var{id} [,mux=on|off] [,@var{options}]
2223 @findex -chardev
2224 Backend is one of:
2225 @option{null},
2226 @option{socket},
2227 @option{udp},
2228 @option{msmouse},
2229 @option{vc},
2230 @option{ringbuf},
2231 @option{file},
2232 @option{pipe},
2233 @option{console},
2234 @option{serial},
2235 @option{pty},
2236 @option{stdio},
2237 @option{braille},
2238 @option{tty},
2239 @option{parallel},
2240 @option{parport},
2241 @option{spicevmc}.
2242 @option{spiceport}.
2243 The specific backend will determine the applicable options.
2245 Use "-chardev help" to print all available chardev backend types.
2247 All devices must have an id, which can be any string up to 127 characters long.
2248 It is used to uniquely identify this device in other command line directives.
2250 A character device may be used in multiplexing mode by multiple front-ends.
2251 Specify @option{mux=on} to enable this mode.
2252 A multiplexer is a "1:N" device, and here the "1" end is your specified chardev
2253 backend, and the "N" end is the various parts of QEMU that can talk to a chardev.
2254 If you create a chardev with @option{id=myid} and @option{mux=on}, QEMU will
2255 create a multiplexer with your specified ID, and you can then configure multiple
2256 front ends to use that chardev ID for their input/output. Up to four different
2257 front ends can be connected to a single multiplexed chardev. (Without
2258 multiplexing enabled, a chardev can only be used by a single front end.)
2259 For instance you could use this to allow a single stdio chardev to be used by
2260 two serial ports and the QEMU monitor:
2262 @example
2263 -chardev stdio,mux=on,id=char0 \
2264 -mon chardev=char0,mode=readline \
2265 -serial chardev:char0 \
2266 -serial chardev:char0
2267 @end example
2269 You can have more than one multiplexer in a system configuration; for instance
2270 you could have a TCP port multiplexed between UART 0 and UART 1, and stdio
2271 multiplexed between the QEMU monitor and a parallel port:
2273 @example
2274 -chardev stdio,mux=on,id=char0 \
2275 -mon chardev=char0,mode=readline \
2276 -parallel chardev:char0 \
2277 -chardev tcp,...,mux=on,id=char1 \
2278 -serial chardev:char1 \
2279 -serial chardev:char1
2280 @end example
2282 When you're using a multiplexed character device, some escape sequences are
2283 interpreted in the input. @xref{mux_keys, Keys in the character backend
2284 multiplexer}.
2286 Note that some other command line options may implicitly create multiplexed
2287 character backends; for instance @option{-serial mon:stdio} creates a
2288 multiplexed stdio backend connected to the serial port and the QEMU monitor,
2289 and @option{-nographic} also multiplexes the console and the monitor to
2290 stdio.
2292 There is currently no support for multiplexing in the other direction
2293 (where a single QEMU front end takes input and output from multiple chardevs).
2295 Every backend supports the @option{logfile} option, which supplies the path
2296 to a file to record all data transmitted via the backend. The @option{logappend}
2297 option controls whether the log file will be truncated or appended to when
2298 opened.
2300 Further options to each backend are described below.
2302 @item -chardev null ,id=@var{id}
2303 A void device. This device will not emit any data, and will drop any data it
2304 receives. The null backend does not take any options.
2306 @item -chardev socket ,id=@var{id} [@var{TCP options} or @var{unix options}] [,server] [,nowait] [,telnet] [,reconnect=@var{seconds}] [,tls-creds=@var{id}]
2308 Create a two-way stream socket, which can be either a TCP or a unix socket. A
2309 unix socket will be created if @option{path} is specified. Behaviour is
2310 undefined if TCP options are specified for a unix socket.
2312 @option{server} specifies that the socket shall be a listening socket.
2314 @option{nowait} specifies that QEMU should not block waiting for a client to
2315 connect to a listening socket.
2317 @option{telnet} specifies that traffic on the socket should interpret telnet
2318 escape sequences.
2320 @option{reconnect} sets the timeout for reconnecting on non-server sockets when
2321 the remote end goes away. qemu will delay this many seconds and then attempt
2322 to reconnect. Zero disables reconnecting, and is the default.
2324 @option{tls-creds} requests enablement of the TLS protocol for encryption,
2325 and specifies the id of the TLS credentials to use for the handshake. The
2326 credentials must be previously created with the @option{-object tls-creds}
2327 argument.
2329 TCP and unix socket options are given below:
2331 @table @option
2333 @item TCP options: port=@var{port} [,host=@var{host}] [,to=@var{to}] [,ipv4] [,ipv6] [,nodelay]
2335 @option{host} for a listening socket specifies the local address to be bound.
2336 For a connecting socket species the remote host to connect to. @option{host} is
2337 optional for listening sockets. If not specified it defaults to @code{0.0.0.0}.
2339 @option{port} for a listening socket specifies the local port to be bound. For a
2340 connecting socket specifies the port on the remote host to connect to.
2341 @option{port} can be given as either a port number or a service name.
2342 @option{port} is required.
2344 @option{to} is only relevant to listening sockets. If it is specified, and
2345 @option{port} cannot be bound, QEMU will attempt to bind to subsequent ports up
2346 to and including @option{to} until it succeeds. @option{to} must be specified
2347 as a port number.
2349 @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must be used.
2350 If neither is specified the socket may use either protocol.
2352 @option{nodelay} disables the Nagle algorithm.
2354 @item unix options: path=@var{path}
2356 @option{path} specifies the local path of the unix socket. @option{path} is
2357 required.
2359 @end table
2361 @item -chardev udp ,id=@var{id} [,host=@var{host}] ,port=@var{port} [,localaddr=@var{localaddr}] [,localport=@var{localport}] [,ipv4] [,ipv6]
2363 Sends all traffic from the guest to a remote host over UDP.
2365 @option{host} specifies the remote host to connect to. If not specified it
2366 defaults to @code{localhost}.
2368 @option{port} specifies the port on the remote host to connect to. @option{port}
2369 is required.
2371 @option{localaddr} specifies the local address to bind to. If not specified it
2372 defaults to @code{0.0.0.0}.
2374 @option{localport} specifies the local port to bind to. If not specified any
2375 available local port will be used.
2377 @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must be used.
2378 If neither is specified the device may use either protocol.
2380 @item -chardev msmouse ,id=@var{id}
2382 Forward QEMU's emulated msmouse events to the guest. @option{msmouse} does not
2383 take any options.
2385 @item -chardev vc ,id=@var{id} [[,width=@var{width}] [,height=@var{height}]] [[,cols=@var{cols}] [,rows=@var{rows}]]
2387 Connect to a QEMU text console. @option{vc} may optionally be given a specific
2388 size.
2390 @option{width} and @option{height} specify the width and height respectively of
2391 the console, in pixels.
2393 @option{cols} and @option{rows} specify that the console be sized to fit a text
2394 console with the given dimensions.
2396 @item -chardev ringbuf ,id=@var{id} [,size=@var{size}]
2398 Create a ring buffer with fixed size @option{size}.
2399 @var{size} must be a power of two and defaults to @code{64K}.
2401 @item -chardev file ,id=@var{id} ,path=@var{path}
2403 Log all traffic received from the guest to a file.
2405 @option{path} specifies the path of the file to be opened. This file will be
2406 created if it does not already exist, and overwritten if it does. @option{path}
2407 is required.
2409 @item -chardev pipe ,id=@var{id} ,path=@var{path}
2411 Create a two-way connection to the guest. The behaviour differs slightly between
2412 Windows hosts and other hosts:
2414 On Windows, a single duplex pipe will be created at
2415 @file{\\.pipe\@option{path}}.
2417 On other hosts, 2 pipes will be created called @file{@option{path}.in} and
2418 @file{@option{path}.out}. Data written to @file{@option{path}.in} will be
2419 received by the guest. Data written by the guest can be read from
2420 @file{@option{path}.out}. QEMU will not create these fifos, and requires them to
2421 be present.
2423 @option{path} forms part of the pipe path as described above. @option{path} is
2424 required.
2426 @item -chardev console ,id=@var{id}
2428 Send traffic from the guest to QEMU's standard output. @option{console} does not
2429 take any options.
2431 @option{console} is only available on Windows hosts.
2433 @item -chardev serial ,id=@var{id} ,path=@option{path}
2435 Send traffic from the guest to a serial device on the host.
2437 On Unix hosts serial will actually accept any tty device,
2438 not only serial lines.
2440 @option{path} specifies the name of the serial device to open.
2442 @item -chardev pty ,id=@var{id}
2444 Create a new pseudo-terminal on the host and connect to it. @option{pty} does
2445 not take any options.
2447 @option{pty} is not available on Windows hosts.
2449 @item -chardev stdio ,id=@var{id} [,signal=on|off]
2450 Connect to standard input and standard output of the QEMU process.
2452 @option{signal} controls if signals are enabled on the terminal, that includes
2453 exiting QEMU with the key sequence @key{Control-c}. This option is enabled by
2454 default, use @option{signal=off} to disable it.
2456 @item -chardev braille ,id=@var{id}
2458 Connect to a local BrlAPI server. @option{braille} does not take any options.
2460 @item -chardev tty ,id=@var{id} ,path=@var{path}
2462 @option{tty} is only available on Linux, Sun, FreeBSD, NetBSD, OpenBSD and
2463 DragonFlyBSD hosts. It is an alias for @option{serial}.
2465 @option{path} specifies the path to the tty. @option{path} is required.
2467 @item -chardev parallel ,id=@var{id} ,path=@var{path}
2468 @itemx -chardev parport ,id=@var{id} ,path=@var{path}
2470 @option{parallel} is only available on Linux, FreeBSD and DragonFlyBSD hosts.
2472 Connect to a local parallel port.
2474 @option{path} specifies the path to the parallel port device. @option{path} is
2475 required.
2477 @item -chardev spicevmc ,id=@var{id} ,debug=@var{debug}, name=@var{name}
2479 @option{spicevmc} is only available when spice support is built in.
2481 @option{debug} debug level for spicevmc
2483 @option{name} name of spice channel to connect to
2485 Connect to a spice virtual machine channel, such as vdiport.
2487 @item -chardev spiceport ,id=@var{id} ,debug=@var{debug}, name=@var{name}
2489 @option{spiceport} is only available when spice support is built in.
2491 @option{debug} debug level for spicevmc
2493 @option{name} name of spice port to connect to
2495 Connect to a spice port, allowing a Spice client to handle the traffic
2496 identified by a name (preferably a fqdn).
2497 ETEXI
2499 STEXI
2500 @end table
2501 ETEXI
2502 DEFHEADING()
2504 DEFHEADING(Device URL Syntax)
2505 STEXI
2507 In addition to using normal file images for the emulated storage devices,
2508 QEMU can also use networked resources such as iSCSI devices. These are
2509 specified using a special URL syntax.
2511 @table @option
2512 @item iSCSI
2513 iSCSI support allows QEMU to access iSCSI resources directly and use as
2514 images for the guest storage. Both disk and cdrom images are supported.
2516 Syntax for specifying iSCSI LUNs is
2517 ``iscsi://<target-ip>[:<port>]/<target-iqn>/<lun>''
2519 By default qemu will use the iSCSI initiator-name
2520 'iqn.2008-11.org.linux-kvm[:<name>]' but this can also be set from the command
2521 line or a configuration file.
2523 Since version Qemu 2.4 it is possible to specify a iSCSI request timeout to detect
2524 stalled requests and force a reestablishment of the session. The timeout
2525 is specified in seconds. The default is 0 which means no timeout. Libiscsi
2526 1.15.0 or greater is required for this feature.
2528 Example (without authentication):
2529 @example
2530 qemu-system-i386 -iscsi initiator-name=iqn.2001-04.com.example:my-initiator \
2531 -cdrom iscsi://192.0.2.1/iqn.2001-04.com.example/2 \
2532 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
2533 @end example
2535 Example (CHAP username/password via URL):
2536 @example
2537 qemu-system-i386 -drive file=iscsi://user%password@@192.0.2.1/iqn.2001-04.com.example/1
2538 @end example
2540 Example (CHAP username/password via environment variables):
2541 @example
2542 LIBISCSI_CHAP_USERNAME="user" \
2543 LIBISCSI_CHAP_PASSWORD="password" \
2544 qemu-system-i386 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
2545 @end example
2547 iSCSI support is an optional feature of QEMU and only available when
2548 compiled and linked against libiscsi.
2549 ETEXI
2550 DEF("iscsi", HAS_ARG, QEMU_OPTION_iscsi,
2551 "-iscsi [user=user][,password=password]\n"
2552 " [,header-digest=CRC32C|CR32C-NONE|NONE-CRC32C|NONE\n"
2553 " [,initiator-name=initiator-iqn][,id=target-iqn]\n"
2554 " [,timeout=timeout]\n"
2555 " iSCSI session parameters\n", QEMU_ARCH_ALL)
2556 STEXI
2558 iSCSI parameters such as username and password can also be specified via
2559 a configuration file. See qemu-doc for more information and examples.
2561 @item NBD
2562 QEMU supports NBD (Network Block Devices) both using TCP protocol as well
2563 as Unix Domain Sockets.
2565 Syntax for specifying a NBD device using TCP
2566 ``nbd:<server-ip>:<port>[:exportname=<export>]''
2568 Syntax for specifying a NBD device using Unix Domain Sockets
2569 ``nbd:unix:<domain-socket>[:exportname=<export>]''
2572 Example for TCP
2573 @example
2574 qemu-system-i386 --drive file=nbd:192.0.2.1:30000
2575 @end example
2577 Example for Unix Domain Sockets
2578 @example
2579 qemu-system-i386 --drive file=nbd:unix:/tmp/nbd-socket
2580 @end example
2582 @item SSH
2583 QEMU supports SSH (Secure Shell) access to remote disks.
2585 Examples:
2586 @example
2587 qemu-system-i386 -drive file=ssh://user@@host/path/to/disk.img
2588 qemu-system-i386 -drive file.driver=ssh,file.user=user,file.host=host,file.port=22,file.path=/path/to/disk.img
2589 @end example
2591 Currently authentication must be done using ssh-agent. Other
2592 authentication methods may be supported in future.
2594 @item Sheepdog
2595 Sheepdog is a distributed storage system for QEMU.
2596 QEMU supports using either local sheepdog devices or remote networked
2597 devices.
2599 Syntax for specifying a sheepdog device
2600 @example
2601 sheepdog[+tcp|+unix]://[host:port]/vdiname[?socket=path][#snapid|#tag]
2602 @end example
2604 Example
2605 @example
2606 qemu-system-i386 --drive file=sheepdog://192.0.2.1:30000/MyVirtualMachine
2607 @end example
2609 See also @url{https://sheepdog.github.io/sheepdog/}.
2611 @item GlusterFS
2612 GlusterFS is a user space distributed file system.
2613 QEMU supports the use of GlusterFS volumes for hosting VM disk images using
2614 TCP, Unix Domain Sockets and RDMA transport protocols.
2616 Syntax for specifying a VM disk image on GlusterFS volume is
2617 @example
2619 URI:
2620 gluster[+type]://[host[:port]]/volume/path[?socket=...][,debug=N][,logfile=...]
2622 JSON:
2623 'json:@{"driver":"qcow2","file":@{"driver":"gluster","volume":"testvol","path":"a.img","debug":N,"logfile":"...",
2624 @ "server":[@{"type":"tcp","host":"...","port":"..."@},
2625 @ @{"type":"unix","socket":"..."@}]@}@}'
2626 @end example
2629 Example
2630 @example
2631 URI:
2632 qemu-system-x86_64 --drive file=gluster://192.0.2.1/testvol/a.img,
2633 @ file.debug=9,file.logfile=/var/log/qemu-gluster.log
2635 JSON:
2636 qemu-system-x86_64 'json:@{"driver":"qcow2",
2637 @ "file":@{"driver":"gluster",
2638 @ "volume":"testvol","path":"a.img",
2639 @ "debug":9,"logfile":"/var/log/qemu-gluster.log",
2640 @ "server":[@{"type":"tcp","host":"1.2.3.4","port":24007@},
2641 @ @{"type":"unix","socket":"/var/run/glusterd.socket"@}]@}@}'
2642 qemu-system-x86_64 -drive driver=qcow2,file.driver=gluster,file.volume=testvol,file.path=/path/a.img,
2643 @ file.debug=9,file.logfile=/var/log/qemu-gluster.log,
2644 @ file.server.0.type=tcp,file.server.0.host=1.2.3.4,file.server.0.port=24007,
2645 @ file.server.1.type=unix,file.server.1.socket=/var/run/glusterd.socket
2646 @end example
2648 See also @url{http://www.gluster.org}.
2650 @item HTTP/HTTPS/FTP/FTPS
2651 QEMU supports read-only access to files accessed over http(s) and ftp(s).
2653 Syntax using a single filename:
2654 @example
2655 <protocol>://[<username>[:<password>]@@]<host>/<path>
2656 @end example
2658 where:
2659 @table @option
2660 @item protocol
2661 'http', 'https', 'ftp', or 'ftps'.
2663 @item username
2664 Optional username for authentication to the remote server.
2666 @item password
2667 Optional password for authentication to the remote server.
2669 @item host
2670 Address of the remote server.
2672 @item path
2673 Path on the remote server, including any query string.
2674 @end table
2676 The following options are also supported:
2677 @table @option
2678 @item url
2679 The full URL when passing options to the driver explicitly.
2681 @item readahead
2682 The amount of data to read ahead with each range request to the remote server.
2683 This value may optionally have the suffix 'T', 'G', 'M', 'K', 'k' or 'b'. If it
2684 does not have a suffix, it will be assumed to be in bytes. The value must be a
2685 multiple of 512 bytes. It defaults to 256k.
2687 @item sslverify
2688 Whether to verify the remote server's certificate when connecting over SSL. It
2689 can have the value 'on' or 'off'. It defaults to 'on'.
2691 @item cookie
2692 Send this cookie (it can also be a list of cookies separated by ';') with
2693 each outgoing request. Only supported when using protocols such as HTTP
2694 which support cookies, otherwise ignored.
2696 @item timeout
2697 Set the timeout in seconds of the CURL connection. This timeout is the time
2698 that CURL waits for a response from the remote server to get the size of the
2699 image to be downloaded. If not set, the default timeout of 5 seconds is used.
2700 @end table
2702 Note that when passing options to qemu explicitly, @option{driver} is the value
2703 of <protocol>.
2705 Example: boot from a remote Fedora 20 live ISO image
2706 @example
2707 qemu-system-x86_64 --drive media=cdrom,file=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
2709 qemu-system-x86_64 --drive media=cdrom,file.driver=http,file.url=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
2710 @end example
2712 Example: boot from a remote Fedora 20 cloud image using a local overlay for
2713 writes, copy-on-read, and a readahead of 64k
2714 @example
2715 qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"http",, "file.url":"https://dl.fedoraproject.org/pub/fedora/linux/releases/20/Images/x86_64/Fedora-x86_64-20-20131211.1-sda.qcow2",, "file.readahead":"64k"@}' /tmp/Fedora-x86_64-20-20131211.1-sda.qcow2
2717 qemu-system-x86_64 -drive file=/tmp/Fedora-x86_64-20-20131211.1-sda.qcow2,copy-on-read=on
2718 @end example
2720 Example: boot from an image stored on a VMware vSphere server with a self-signed
2721 certificate using a local overlay for writes, a readahead of 64k and a timeout
2722 of 10 seconds.
2723 @example
2724 qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"https",, "file.url":"https://user:password@@vsphere.example.com/folder/test/test-flat.vmdk?dcPath=Datacenter&dsName=datastore1",, "file.sslverify":"off",, "file.readahead":"64k",, "file.timeout":10@}' /tmp/test.qcow2
2726 qemu-system-x86_64 -drive file=/tmp/test.qcow2
2727 @end example
2728 ETEXI
2730 STEXI
2731 @end table
2732 ETEXI
2734 DEFHEADING(Bluetooth(R) options)
2735 STEXI
2736 @table @option
2737 ETEXI
2739 DEF("bt", HAS_ARG, QEMU_OPTION_bt, \
2740 "-bt hci,null dumb bluetooth HCI - doesn't respond to commands\n" \
2741 "-bt hci,host[:id]\n" \
2742 " use host's HCI with the given name\n" \
2743 "-bt hci[,vlan=n]\n" \
2744 " emulate a standard HCI in virtual scatternet 'n'\n" \
2745 "-bt vhci[,vlan=n]\n" \
2746 " add host computer to virtual scatternet 'n' using VHCI\n" \
2747 "-bt device:dev[,vlan=n]\n" \
2748 " emulate a bluetooth device 'dev' in scatternet 'n'\n",
2749 QEMU_ARCH_ALL)
2750 STEXI
2751 @item -bt hci[...]
2752 @findex -bt
2753 Defines the function of the corresponding Bluetooth HCI. -bt options
2754 are matched with the HCIs present in the chosen machine type. For
2755 example when emulating a machine with only one HCI built into it, only
2756 the first @code{-bt hci[...]} option is valid and defines the HCI's
2757 logic. The Transport Layer is decided by the machine type. Currently
2758 the machines @code{n800} and @code{n810} have one HCI and all other
2759 machines have none.
2761 @anchor{bt-hcis}
2762 The following three types are recognized:
2764 @table @option
2765 @item -bt hci,null
2766 (default) The corresponding Bluetooth HCI assumes no internal logic
2767 and will not respond to any HCI commands or emit events.
2769 @item -bt hci,host[:@var{id}]
2770 (@code{bluez} only) The corresponding HCI passes commands / events
2771 to / from the physical HCI identified by the name @var{id} (default:
2772 @code{hci0}) on the computer running QEMU. Only available on @code{bluez}
2773 capable systems like Linux.
2775 @item -bt hci[,vlan=@var{n}]
2776 Add a virtual, standard HCI that will participate in the Bluetooth
2777 scatternet @var{n} (default @code{0}). Similarly to @option{-net}
2778 VLANs, devices inside a bluetooth network @var{n} can only communicate
2779 with other devices in the same network (scatternet).
2780 @end table
2782 @item -bt vhci[,vlan=@var{n}]
2783 (Linux-host only) Create a HCI in scatternet @var{n} (default 0) attached
2784 to the host bluetooth stack instead of to the emulated target. This
2785 allows the host and target machines to participate in a common scatternet
2786 and communicate. Requires the Linux @code{vhci} driver installed. Can
2787 be used as following:
2789 @example
2790 qemu-system-i386 [...OPTIONS...] -bt hci,vlan=5 -bt vhci,vlan=5
2791 @end example
2793 @item -bt device:@var{dev}[,vlan=@var{n}]
2794 Emulate a bluetooth device @var{dev} and place it in network @var{n}
2795 (default @code{0}). QEMU can only emulate one type of bluetooth devices
2796 currently:
2798 @table @option
2799 @item keyboard
2800 Virtual wireless keyboard implementing the HIDP bluetooth profile.
2801 @end table
2802 ETEXI
2804 STEXI
2805 @end table
2806 ETEXI
2807 DEFHEADING()
2809 #ifdef CONFIG_TPM
2810 DEFHEADING(TPM device options)
2812 DEF("tpmdev", HAS_ARG, QEMU_OPTION_tpmdev, \
2813 "-tpmdev passthrough,id=id[,path=path][,cancel-path=path]\n"
2814 " use path to provide path to a character device; default is /dev/tpm0\n"
2815 " use cancel-path to provide path to TPM's cancel sysfs entry; if\n"
2816 " not provided it will be searched for in /sys/class/misc/tpm?/device\n",
2817 QEMU_ARCH_ALL)
2818 STEXI
2820 The general form of a TPM device option is:
2821 @table @option
2823 @item -tpmdev @var{backend} ,id=@var{id} [,@var{options}]
2824 @findex -tpmdev
2825 Backend type must be:
2826 @option{passthrough}.
2828 The specific backend type will determine the applicable options.
2829 The @code{-tpmdev} option creates the TPM backend and requires a
2830 @code{-device} option that specifies the TPM frontend interface model.
2832 Options to each backend are described below.
2834 Use 'help' to print all available TPM backend types.
2835 @example
2836 qemu -tpmdev help
2837 @end example
2839 @item -tpmdev passthrough, id=@var{id}, path=@var{path}, cancel-path=@var{cancel-path}
2841 (Linux-host only) Enable access to the host's TPM using the passthrough
2842 driver.
2844 @option{path} specifies the path to the host's TPM device, i.e., on
2845 a Linux host this would be @code{/dev/tpm0}.
2846 @option{path} is optional and by default @code{/dev/tpm0} is used.
2848 @option{cancel-path} specifies the path to the host TPM device's sysfs
2849 entry allowing for cancellation of an ongoing TPM command.
2850 @option{cancel-path} is optional and by default QEMU will search for the
2851 sysfs entry to use.
2853 Some notes about using the host's TPM with the passthrough driver:
2855 The TPM device accessed by the passthrough driver must not be
2856 used by any other application on the host.
2858 Since the host's firmware (BIOS/UEFI) has already initialized the TPM,
2859 the VM's firmware (BIOS/UEFI) will not be able to initialize the
2860 TPM again and may therefore not show a TPM-specific menu that would
2861 otherwise allow the user to configure the TPM, e.g., allow the user to
2862 enable/disable or activate/deactivate the TPM.
2863 Further, if TPM ownership is released from within a VM then the host's TPM
2864 will get disabled and deactivated. To enable and activate the
2865 TPM again afterwards, the host has to be rebooted and the user is
2866 required to enter the firmware's menu to enable and activate the TPM.
2867 If the TPM is left disabled and/or deactivated most TPM commands will fail.
2869 To create a passthrough TPM use the following two options:
2870 @example
2871 -tpmdev passthrough,id=tpm0 -device tpm-tis,tpmdev=tpm0
2872 @end example
2873 Note that the @code{-tpmdev} id is @code{tpm0} and is referenced by
2874 @code{tpmdev=tpm0} in the device option.
2876 @end table
2878 ETEXI
2880 DEFHEADING()
2882 #endif
2884 DEFHEADING(Linux/Multiboot boot specific)
2885 STEXI
2887 When using these options, you can use a given Linux or Multiboot
2888 kernel without installing it in the disk image. It can be useful
2889 for easier testing of various kernels.
2891 @table @option
2892 ETEXI
2894 DEF("kernel", HAS_ARG, QEMU_OPTION_kernel, \
2895 "-kernel bzImage use 'bzImage' as kernel image\n", QEMU_ARCH_ALL)
2896 STEXI
2897 @item -kernel @var{bzImage}
2898 @findex -kernel
2899 Use @var{bzImage} as kernel image. The kernel can be either a Linux kernel
2900 or in multiboot format.
2901 ETEXI
2903 DEF("append", HAS_ARG, QEMU_OPTION_append, \
2904 "-append cmdline use 'cmdline' as kernel command line\n", QEMU_ARCH_ALL)
2905 STEXI
2906 @item -append @var{cmdline}
2907 @findex -append
2908 Use @var{cmdline} as kernel command line
2909 ETEXI
2911 DEF("initrd", HAS_ARG, QEMU_OPTION_initrd, \
2912 "-initrd file use 'file' as initial ram disk\n", QEMU_ARCH_ALL)
2913 STEXI
2914 @item -initrd @var{file}
2915 @findex -initrd
2916 Use @var{file} as initial ram disk.
2918 @item -initrd "@var{file1} arg=foo,@var{file2}"
2920 This syntax is only available with multiboot.
2922 Use @var{file1} and @var{file2} as modules and pass arg=foo as parameter to the
2923 first module.
2924 ETEXI
2926 DEF("dtb", HAS_ARG, QEMU_OPTION_dtb, \
2927 "-dtb file use 'file' as device tree image\n", QEMU_ARCH_ALL)
2928 STEXI
2929 @item -dtb @var{file}
2930 @findex -dtb
2931 Use @var{file} as a device tree binary (dtb) image and pass it to the kernel
2932 on boot.
2933 ETEXI
2935 STEXI
2936 @end table
2937 ETEXI
2938 DEFHEADING()
2940 DEFHEADING(Debug/Expert options)
2941 STEXI
2942 @table @option
2943 ETEXI
2945 DEF("fw_cfg", HAS_ARG, QEMU_OPTION_fwcfg,
2946 "-fw_cfg [name=]<name>,file=<file>\n"
2947 " add named fw_cfg entry with contents from file\n"
2948 "-fw_cfg [name=]<name>,string=<str>\n"
2949 " add named fw_cfg entry with contents from string\n",
2950 QEMU_ARCH_ALL)
2951 STEXI
2953 @item -fw_cfg [name=]@var{name},file=@var{file}
2954 @findex -fw_cfg
2955 Add named fw_cfg entry with contents from file @var{file}.
2957 @item -fw_cfg [name=]@var{name},string=@var{str}
2958 Add named fw_cfg entry with contents from string @var{str}.
2960 The terminating NUL character of the contents of @var{str} will not be
2961 included as part of the fw_cfg item data. To insert contents with
2962 embedded NUL characters, you have to use the @var{file} parameter.
2964 The fw_cfg entries are passed by QEMU through to the guest.
2966 Example:
2967 @example
2968 -fw_cfg name=opt/com.mycompany/blob,file=./my_blob.bin
2969 @end example
2970 creates an fw_cfg entry named opt/com.mycompany/blob with contents
2971 from ./my_blob.bin.
2973 ETEXI
2975 DEF("serial", HAS_ARG, QEMU_OPTION_serial, \
2976 "-serial dev redirect the serial port to char device 'dev'\n",
2977 QEMU_ARCH_ALL)
2978 STEXI
2979 @item -serial @var{dev}
2980 @findex -serial
2981 Redirect the virtual serial port to host character device
2982 @var{dev}. The default device is @code{vc} in graphical mode and
2983 @code{stdio} in non graphical mode.
2985 This option can be used several times to simulate up to 4 serial
2986 ports.
2988 Use @code{-serial none} to disable all serial ports.
2990 Available character devices are:
2991 @table @option
2992 @item vc[:@var{W}x@var{H}]
2993 Virtual console. Optionally, a width and height can be given in pixel with
2994 @example
2995 vc:800x600
2996 @end example
2997 It is also possible to specify width or height in characters:
2998 @example
2999 vc:80Cx24C
3000 @end example
3001 @item pty
3002 [Linux only] Pseudo TTY (a new PTY is automatically allocated)
3003 @item none
3004 No device is allocated.
3005 @item null
3006 void device
3007 @item chardev:@var{id}
3008 Use a named character device defined with the @code{-chardev} option.
3009 @item /dev/XXX
3010 [Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
3011 parameters are set according to the emulated ones.
3012 @item /dev/parport@var{N}
3013 [Linux only, parallel port only] Use host parallel port
3014 @var{N}. Currently SPP and EPP parallel port features can be used.
3015 @item file:@var{filename}
3016 Write output to @var{filename}. No character can be read.
3017 @item stdio
3018 [Unix only] standard input/output
3019 @item pipe:@var{filename}
3020 name pipe @var{filename}
3021 @item COM@var{n}
3022 [Windows only] Use host serial port @var{n}
3023 @item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
3024 This implements UDP Net Console.
3025 When @var{remote_host} or @var{src_ip} are not specified
3026 they default to @code{0.0.0.0}.
3027 When not using a specified @var{src_port} a random port is automatically chosen.
3029 If you just want a simple readonly console you can use @code{netcat} or
3030 @code{nc}, by starting QEMU with: @code{-serial udp::4555} and nc as:
3031 @code{nc -u -l -p 4555}. Any time QEMU writes something to that port it
3032 will appear in the netconsole session.
3034 If you plan to send characters back via netconsole or you want to stop
3035 and start QEMU a lot of times, you should have QEMU use the same
3036 source port each time by using something like @code{-serial
3037 udp::4555@@:4556} to QEMU. Another approach is to use a patched
3038 version of netcat which can listen to a TCP port and send and receive
3039 characters via udp. If you have a patched version of netcat which
3040 activates telnet remote echo and single char transfer, then you can
3041 use the following options to set up a netcat redirector to allow
3042 telnet on port 5555 to access the QEMU port.
3043 @table @code
3044 @item QEMU Options:
3045 -serial udp::4555@@:4556
3046 @item netcat options:
3047 -u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
3048 @item telnet options:
3049 localhost 5555
3050 @end table
3052 @item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay][,reconnect=@var{seconds}]
3053 The TCP Net Console has two modes of operation. It can send the serial
3054 I/O to a location or wait for a connection from a location. By default
3055 the TCP Net Console is sent to @var{host} at the @var{port}. If you use
3056 the @var{server} option QEMU will wait for a client socket application
3057 to connect to the port before continuing, unless the @code{nowait}
3058 option was specified. The @code{nodelay} option disables the Nagle buffering
3059 algorithm. The @code{reconnect} option only applies if @var{noserver} is
3060 set, if the connection goes down it will attempt to reconnect at the
3061 given interval. If @var{host} is omitted, 0.0.0.0 is assumed. Only
3062 one TCP connection at a time is accepted. You can use @code{telnet} to
3063 connect to the corresponding character device.
3064 @table @code
3065 @item Example to send tcp console to 192.168.0.2 port 4444
3066 -serial tcp:192.168.0.2:4444
3067 @item Example to listen and wait on port 4444 for connection
3068 -serial tcp::4444,server
3069 @item Example to not wait and listen on ip 192.168.0.100 port 4444
3070 -serial tcp:192.168.0.100:4444,server,nowait
3071 @end table
3073 @item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
3074 The telnet protocol is used instead of raw tcp sockets. The options
3075 work the same as if you had specified @code{-serial tcp}. The
3076 difference is that the port acts like a telnet server or client using
3077 telnet option negotiation. This will also allow you to send the
3078 MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
3079 sequence. Typically in unix telnet you do it with Control-] and then
3080 type "send break" followed by pressing the enter key.
3082 @item unix:@var{path}[,server][,nowait][,reconnect=@var{seconds}]
3083 A unix domain socket is used instead of a tcp socket. The option works the
3084 same as if you had specified @code{-serial tcp} except the unix domain socket
3085 @var{path} is used for connections.
3087 @item mon:@var{dev_string}
3088 This is a special option to allow the monitor to be multiplexed onto
3089 another serial port. The monitor is accessed with key sequence of
3090 @key{Control-a} and then pressing @key{c}.
3091 @var{dev_string} should be any one of the serial devices specified
3092 above. An example to multiplex the monitor onto a telnet server
3093 listening on port 4444 would be:
3094 @table @code
3095 @item -serial mon:telnet::4444,server,nowait
3096 @end table
3097 When the monitor is multiplexed to stdio in this way, Ctrl+C will not terminate
3098 QEMU any more but will be passed to the guest instead.
3100 @item braille
3101 Braille device. This will use BrlAPI to display the braille output on a real
3102 or fake device.
3104 @item msmouse
3105 Three button serial mouse. Configure the guest to use Microsoft protocol.
3106 @end table
3107 ETEXI
3109 DEF("parallel", HAS_ARG, QEMU_OPTION_parallel, \
3110 "-parallel dev redirect the parallel port to char device 'dev'\n",
3111 QEMU_ARCH_ALL)
3112 STEXI
3113 @item -parallel @var{dev}
3114 @findex -parallel
3115 Redirect the virtual parallel port to host device @var{dev} (same
3116 devices as the serial port). On Linux hosts, @file{/dev/parportN} can
3117 be used to use hardware devices connected on the corresponding host
3118 parallel port.
3120 This option can be used several times to simulate up to 3 parallel
3121 ports.
3123 Use @code{-parallel none} to disable all parallel ports.
3124 ETEXI
3126 DEF("monitor", HAS_ARG, QEMU_OPTION_monitor, \
3127 "-monitor dev redirect the monitor to char device 'dev'\n",
3128 QEMU_ARCH_ALL)
3129 STEXI
3130 @item -monitor @var{dev}
3131 @findex -monitor
3132 Redirect the monitor to host device @var{dev} (same devices as the
3133 serial port).
3134 The default device is @code{vc} in graphical mode and @code{stdio} in
3135 non graphical mode.
3136 Use @code{-monitor none} to disable the default monitor.
3137 ETEXI
3138 DEF("qmp", HAS_ARG, QEMU_OPTION_qmp, \
3139 "-qmp dev like -monitor but opens in 'control' mode\n",
3140 QEMU_ARCH_ALL)
3141 STEXI
3142 @item -qmp @var{dev}
3143 @findex -qmp
3144 Like -monitor but opens in 'control' mode.
3145 ETEXI
3146 DEF("qmp-pretty", HAS_ARG, QEMU_OPTION_qmp_pretty, \
3147 "-qmp-pretty dev like -qmp but uses pretty JSON formatting\n",
3148 QEMU_ARCH_ALL)
3149 STEXI
3150 @item -qmp-pretty @var{dev}
3151 @findex -qmp-pretty
3152 Like -qmp but uses pretty JSON formatting.
3153 ETEXI
3155 DEF("mon", HAS_ARG, QEMU_OPTION_mon, \
3156 "-mon [chardev=]name[,mode=readline|control]\n", QEMU_ARCH_ALL)
3157 STEXI
3158 @item -mon [chardev=]name[,mode=readline|control]
3159 @findex -mon
3160 Setup monitor on chardev @var{name}.
3161 ETEXI
3163 DEF("debugcon", HAS_ARG, QEMU_OPTION_debugcon, \
3164 "-debugcon dev redirect the debug console to char device 'dev'\n",
3165 QEMU_ARCH_ALL)
3166 STEXI
3167 @item -debugcon @var{dev}
3168 @findex -debugcon
3169 Redirect the debug console to host device @var{dev} (same devices as the
3170 serial port). The debug console is an I/O port which is typically port
3171 0xe9; writing to that I/O port sends output to this device.
3172 The default device is @code{vc} in graphical mode and @code{stdio} in
3173 non graphical mode.
3174 ETEXI
3176 DEF("pidfile", HAS_ARG, QEMU_OPTION_pidfile, \
3177 "-pidfile file write PID to 'file'\n", QEMU_ARCH_ALL)
3178 STEXI
3179 @item -pidfile @var{file}
3180 @findex -pidfile
3181 Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
3182 from a script.
3183 ETEXI
3185 DEF("singlestep", 0, QEMU_OPTION_singlestep, \
3186 "-singlestep always run in singlestep mode\n", QEMU_ARCH_ALL)
3187 STEXI
3188 @item -singlestep
3189 @findex -singlestep
3190 Run the emulation in single step mode.
3191 ETEXI
3193 DEF("S", 0, QEMU_OPTION_S, \
3194 "-S freeze CPU at startup (use 'c' to start execution)\n",
3195 QEMU_ARCH_ALL)
3196 STEXI
3197 @item -S
3198 @findex -S
3199 Do not start CPU at startup (you must type 'c' in the monitor).
3200 ETEXI
3202 DEF("realtime", HAS_ARG, QEMU_OPTION_realtime,
3203 "-realtime [mlock=on|off]\n"
3204 " run qemu with realtime features\n"
3205 " mlock=on|off controls mlock support (default: on)\n",
3206 QEMU_ARCH_ALL)
3207 STEXI
3208 @item -realtime mlock=on|off
3209 @findex -realtime
3210 Run qemu with realtime features.
3211 mlocking qemu and guest memory can be enabled via @option{mlock=on}
3212 (enabled by default).
3213 ETEXI
3215 DEF("gdb", HAS_ARG, QEMU_OPTION_gdb, \
3216 "-gdb dev wait for gdb connection on 'dev'\n", QEMU_ARCH_ALL)
3217 STEXI
3218 @item -gdb @var{dev}
3219 @findex -gdb
3220 Wait for gdb connection on device @var{dev} (@pxref{gdb_usage}). Typical
3221 connections will likely be TCP-based, but also UDP, pseudo TTY, or even
3222 stdio are reasonable use case. The latter is allowing to start QEMU from
3223 within gdb and establish the connection via a pipe:
3224 @example
3225 (gdb) target remote | exec qemu-system-i386 -gdb stdio ...
3226 @end example
3227 ETEXI
3229 DEF("s", 0, QEMU_OPTION_s, \
3230 "-s shorthand for -gdb tcp::" DEFAULT_GDBSTUB_PORT "\n",
3231 QEMU_ARCH_ALL)
3232 STEXI
3233 @item -s
3234 @findex -s
3235 Shorthand for -gdb tcp::1234, i.e. open a gdbserver on TCP port 1234
3236 (@pxref{gdb_usage}).
3237 ETEXI
3239 DEF("d", HAS_ARG, QEMU_OPTION_d, \
3240 "-d item1,... enable logging of specified items (use '-d help' for a list of log items)\n",
3241 QEMU_ARCH_ALL)
3242 STEXI
3243 @item -d @var{item1}[,...]
3244 @findex -d
3245 Enable logging of specified items. Use '-d help' for a list of log items.
3246 ETEXI
3248 DEF("D", HAS_ARG, QEMU_OPTION_D, \
3249 "-D logfile output log to logfile (default stderr)\n",
3250 QEMU_ARCH_ALL)
3251 STEXI
3252 @item -D @var{logfile}
3253 @findex -D
3254 Output log in @var{logfile} instead of to stderr
3255 ETEXI
3257 DEF("dfilter", HAS_ARG, QEMU_OPTION_DFILTER, \
3258 "-dfilter range,.. filter debug output to range of addresses (useful for -d cpu,exec,etc..)\n",
3259 QEMU_ARCH_ALL)
3260 STEXI
3261 @item -dfilter @var{range1}[,...]
3262 @findex -dfilter
3263 Filter debug output to that relevant to a range of target addresses. The filter
3264 spec can be either @var{start}+@var{size}, @var{start}-@var{size} or
3265 @var{start}..@var{end} where @var{start} @var{end} and @var{size} are the
3266 addresses and sizes required. For example:
3267 @example
3268 -dfilter 0x8000..0x8fff,0xffffffc000080000+0x200,0xffffffc000060000-0x1000
3269 @end example
3270 Will dump output for any code in the 0x1000 sized block starting at 0x8000 and
3271 the 0x200 sized block starting at 0xffffffc000080000 and another 0x1000 sized
3272 block starting at 0xffffffc00005f000.
3273 ETEXI
3275 DEF("L", HAS_ARG, QEMU_OPTION_L, \
3276 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n",
3277 QEMU_ARCH_ALL)
3278 STEXI
3279 @item -L @var{path}
3280 @findex -L
3281 Set the directory for the BIOS, VGA BIOS and keymaps.
3283 To list all the data directories, use @code{-L help}.
3284 ETEXI
3286 DEF("bios", HAS_ARG, QEMU_OPTION_bios, \
3287 "-bios file set the filename for the BIOS\n", QEMU_ARCH_ALL)
3288 STEXI
3289 @item -bios @var{file}
3290 @findex -bios
3291 Set the filename for the BIOS.
3292 ETEXI
3294 DEF("enable-kvm", 0, QEMU_OPTION_enable_kvm, \
3295 "-enable-kvm enable KVM full virtualization support\n", QEMU_ARCH_ALL)
3296 STEXI
3297 @item -enable-kvm
3298 @findex -enable-kvm
3299 Enable KVM full virtualization support. This option is only available
3300 if KVM support is enabled when compiling.
3301 ETEXI
3303 DEF("enable-hax", 0, QEMU_OPTION_enable_hax, \
3304 "-enable-hax enable HAX virtualization support\n", QEMU_ARCH_I386)
3305 STEXI
3306 @item -enable-hax
3307 @findex -enable-hax
3308 Enable HAX (Hardware-based Acceleration eXecution) support. This option
3309 is only available if HAX support is enabled when compiling. HAX is only
3310 applicable to MAC and Windows platform, and thus does not conflict with
3311 KVM.
3312 ETEXI
3314 DEF("xen-domid", HAS_ARG, QEMU_OPTION_xen_domid,
3315 "-xen-domid id specify xen guest domain id\n", QEMU_ARCH_ALL)
3316 DEF("xen-create", 0, QEMU_OPTION_xen_create,
3317 "-xen-create create domain using xen hypercalls, bypassing xend\n"
3318 " warning: should not be used when xend is in use\n",
3319 QEMU_ARCH_ALL)
3320 DEF("xen-attach", 0, QEMU_OPTION_xen_attach,
3321 "-xen-attach attach to existing xen domain\n"
3322 " xend will use this when starting QEMU\n",
3323 QEMU_ARCH_ALL)
3324 STEXI
3325 @item -xen-domid @var{id}
3326 @findex -xen-domid
3327 Specify xen guest domain @var{id} (XEN only).
3328 @item -xen-create
3329 @findex -xen-create
3330 Create domain using xen hypercalls, bypassing xend.
3331 Warning: should not be used when xend is in use (XEN only).
3332 @item -xen-attach
3333 @findex -xen-attach
3334 Attach to existing xen domain.
3335 xend will use this when starting QEMU (XEN only).
3336 ETEXI
3338 DEF("no-reboot", 0, QEMU_OPTION_no_reboot, \
3339 "-no-reboot exit instead of rebooting\n", QEMU_ARCH_ALL)
3340 STEXI
3341 @item -no-reboot
3342 @findex -no-reboot
3343 Exit instead of rebooting.
3344 ETEXI
3346 DEF("no-shutdown", 0, QEMU_OPTION_no_shutdown, \
3347 "-no-shutdown stop before shutdown\n", QEMU_ARCH_ALL)
3348 STEXI
3349 @item -no-shutdown
3350 @findex -no-shutdown
3351 Don't exit QEMU on guest shutdown, but instead only stop the emulation.
3352 This allows for instance switching to monitor to commit changes to the
3353 disk image.
3354 ETEXI
3356 DEF("loadvm", HAS_ARG, QEMU_OPTION_loadvm, \
3357 "-loadvm [tag|id]\n" \
3358 " start right away with a saved state (loadvm in monitor)\n",
3359 QEMU_ARCH_ALL)
3360 STEXI
3361 @item -loadvm @var{file}
3362 @findex -loadvm
3363 Start right away with a saved state (@code{loadvm} in monitor)
3364 ETEXI
3366 #ifndef _WIN32
3367 DEF("daemonize", 0, QEMU_OPTION_daemonize, \
3368 "-daemonize daemonize QEMU after initializing\n", QEMU_ARCH_ALL)
3369 #endif
3370 STEXI
3371 @item -daemonize
3372 @findex -daemonize
3373 Daemonize the QEMU process after initialization. QEMU will not detach from
3374 standard IO until it is ready to receive connections on any of its devices.
3375 This option is a useful way for external programs to launch QEMU without having
3376 to cope with initialization race conditions.
3377 ETEXI
3379 DEF("option-rom", HAS_ARG, QEMU_OPTION_option_rom, \
3380 "-option-rom rom load a file, rom, into the option ROM space\n",
3381 QEMU_ARCH_ALL)
3382 STEXI
3383 @item -option-rom @var{file}
3384 @findex -option-rom
3385 Load the contents of @var{file} as an option ROM.
3386 This option is useful to load things like EtherBoot.
3387 ETEXI
3389 HXCOMM Silently ignored for compatibility
3390 DEF("clock", HAS_ARG, QEMU_OPTION_clock, "", QEMU_ARCH_ALL)
3392 HXCOMM Options deprecated by -rtc
3393 DEF("localtime", 0, QEMU_OPTION_localtime, "", QEMU_ARCH_ALL)
3394 DEF("startdate", HAS_ARG, QEMU_OPTION_startdate, "", QEMU_ARCH_ALL)
3396 DEF("rtc", HAS_ARG, QEMU_OPTION_rtc, \
3397 "-rtc [base=utc|localtime|date][,clock=host|rt|vm][,driftfix=none|slew]\n" \
3398 " set the RTC base and clock, enable drift fix for clock ticks (x86 only)\n",
3399 QEMU_ARCH_ALL)
3401 STEXI
3403 @item -rtc [base=utc|localtime|@var{date}][,clock=host|vm][,driftfix=none|slew]
3404 @findex -rtc
3405 Specify @option{base} as @code{utc} or @code{localtime} to let the RTC start at the current
3406 UTC or local time, respectively. @code{localtime} is required for correct date in
3407 MS-DOS or Windows. To start at a specific point in time, provide @var{date} in the
3408 format @code{2006-06-17T16:01:21} or @code{2006-06-17}. The default base is UTC.
3410 By default the RTC is driven by the host system time. This allows using of the
3411 RTC as accurate reference clock inside the guest, specifically if the host
3412 time is smoothly following an accurate external reference clock, e.g. via NTP.
3413 If you want to isolate the guest time from the host, you can set @option{clock}
3414 to @code{rt} instead. To even prevent it from progressing during suspension,
3415 you can set it to @code{vm}.
3417 Enable @option{driftfix} (i386 targets only) if you experience time drift problems,
3418 specifically with Windows' ACPI HAL. This option will try to figure out how
3419 many timer interrupts were not processed by the Windows guest and will
3420 re-inject them.
3421 ETEXI
3423 DEF("icount", HAS_ARG, QEMU_OPTION_icount, \
3424 "-icount [shift=N|auto][,align=on|off][,sleep=on|off,rr=record|replay,rrfile=<filename>,rrsnapshot=<snapshot>]\n" \
3425 " enable virtual instruction counter with 2^N clock ticks per\n" \
3426 " instruction, enable aligning the host and virtual clocks\n" \
3427 " or disable real time cpu sleeping\n", QEMU_ARCH_ALL)
3428 STEXI
3429 @item -icount [shift=@var{N}|auto][,rr=record|replay,rrfile=@var{filename},rrsnapshot=@var{snapshot}]
3430 @findex -icount
3431 Enable virtual instruction counter. The virtual cpu will execute one
3432 instruction every 2^@var{N} ns of virtual time. If @code{auto} is specified
3433 then the virtual cpu speed will be automatically adjusted to keep virtual
3434 time within a few seconds of real time.
3436 When the virtual cpu is sleeping, the virtual time will advance at default
3437 speed unless @option{sleep=on|off} is specified.
3438 With @option{sleep=on|off}, the virtual time will jump to the next timer deadline
3439 instantly whenever the virtual cpu goes to sleep mode and will not advance
3440 if no timer is enabled. This behavior give deterministic execution times from
3441 the guest point of view.
3443 Note that while this option can give deterministic behavior, it does not
3444 provide cycle accurate emulation. Modern CPUs contain superscalar out of
3445 order cores with complex cache hierarchies. The number of instructions
3446 executed often has little or no correlation with actual performance.
3448 @option{align=on} will activate the delay algorithm which will try
3449 to synchronise the host clock and the virtual clock. The goal is to
3450 have a guest running at the real frequency imposed by the shift option.
3451 Whenever the guest clock is behind the host clock and if
3452 @option{align=on} is specified then we print a message to the user
3453 to inform about the delay.
3454 Currently this option does not work when @option{shift} is @code{auto}.
3455 Note: The sync algorithm will work for those shift values for which
3456 the guest clock runs ahead of the host clock. Typically this happens
3457 when the shift value is high (how high depends on the host machine).
3459 When @option{rr} option is specified deterministic record/replay is enabled.
3460 Replay log is written into @var{filename} file in record mode and
3461 read from this file in replay mode.
3463 Option rrsnapshot is used to create new vm snapshot named @var{snapshot}
3464 at the start of execution recording. In replay mode this option is used
3465 to load the initial VM state.
3466 ETEXI
3468 DEF("watchdog", HAS_ARG, QEMU_OPTION_watchdog, \
3469 "-watchdog model\n" \
3470 " enable virtual hardware watchdog [default=none]\n",
3471 QEMU_ARCH_ALL)
3472 STEXI
3473 @item -watchdog @var{model}
3474 @findex -watchdog
3475 Create a virtual hardware watchdog device. Once enabled (by a guest
3476 action), the watchdog must be periodically polled by an agent inside
3477 the guest or else the guest will be restarted. Choose a model for
3478 which your guest has drivers.
3480 The @var{model} is the model of hardware watchdog to emulate. Use
3481 @code{-watchdog help} to list available hardware models. Only one
3482 watchdog can be enabled for a guest.
3484 The following models may be available:
3485 @table @option
3486 @item ib700
3487 iBASE 700 is a very simple ISA watchdog with a single timer.
3488 @item i6300esb
3489 Intel 6300ESB I/O controller hub is a much more featureful PCI-based
3490 dual-timer watchdog.
3491 @item diag288
3492 A virtual watchdog for s390x backed by the diagnose 288 hypercall
3493 (currently KVM only).
3494 @end table
3495 ETEXI
3497 DEF("watchdog-action", HAS_ARG, QEMU_OPTION_watchdog_action, \
3498 "-watchdog-action reset|shutdown|poweroff|pause|debug|none\n" \
3499 " action when watchdog fires [default=reset]\n",
3500 QEMU_ARCH_ALL)
3501 STEXI
3502 @item -watchdog-action @var{action}
3503 @findex -watchdog-action
3505 The @var{action} controls what QEMU will do when the watchdog timer
3506 expires.
3507 The default is
3508 @code{reset} (forcefully reset the guest).
3509 Other possible actions are:
3510 @code{shutdown} (attempt to gracefully shutdown the guest),
3511 @code{poweroff} (forcefully poweroff the guest),
3512 @code{pause} (pause the guest),
3513 @code{debug} (print a debug message and continue), or
3514 @code{none} (do nothing).
3516 Note that the @code{shutdown} action requires that the guest responds
3517 to ACPI signals, which it may not be able to do in the sort of
3518 situations where the watchdog would have expired, and thus
3519 @code{-watchdog-action shutdown} is not recommended for production use.
3521 Examples:
3523 @table @code
3524 @item -watchdog i6300esb -watchdog-action pause
3525 @itemx -watchdog ib700
3526 @end table
3527 ETEXI
3529 DEF("echr", HAS_ARG, QEMU_OPTION_echr, \
3530 "-echr chr set terminal escape character instead of ctrl-a\n",
3531 QEMU_ARCH_ALL)
3532 STEXI
3534 @item -echr @var{numeric_ascii_value}
3535 @findex -echr
3536 Change the escape character used for switching to the monitor when using
3537 monitor and serial sharing. The default is @code{0x01} when using the
3538 @code{-nographic} option. @code{0x01} is equal to pressing
3539 @code{Control-a}. You can select a different character from the ascii
3540 control keys where 1 through 26 map to Control-a through Control-z. For
3541 instance you could use the either of the following to change the escape
3542 character to Control-t.
3543 @table @code
3544 @item -echr 0x14
3545 @itemx -echr 20
3546 @end table
3547 ETEXI
3549 DEF("virtioconsole", HAS_ARG, QEMU_OPTION_virtiocon, \
3550 "-virtioconsole c\n" \
3551 " set virtio console\n", QEMU_ARCH_ALL)
3552 STEXI
3553 @item -virtioconsole @var{c}
3554 @findex -virtioconsole
3555 Set virtio console.
3557 This option is maintained for backward compatibility.
3559 Please use @code{-device virtconsole} for the new way of invocation.
3560 ETEXI
3562 DEF("show-cursor", 0, QEMU_OPTION_show_cursor, \
3563 "-show-cursor show cursor\n", QEMU_ARCH_ALL)
3564 STEXI
3565 @item -show-cursor
3566 @findex -show-cursor
3567 Show cursor.
3568 ETEXI
3570 DEF("tb-size", HAS_ARG, QEMU_OPTION_tb_size, \
3571 "-tb-size n set TB size\n", QEMU_ARCH_ALL)
3572 STEXI
3573 @item -tb-size @var{n}
3574 @findex -tb-size
3575 Set TB size.
3576 ETEXI
3578 DEF("incoming", HAS_ARG, QEMU_OPTION_incoming, \
3579 "-incoming tcp:[host]:port[,to=maxport][,ipv4][,ipv6]\n" \
3580 "-incoming rdma:host:port[,ipv4][,ipv6]\n" \
3581 "-incoming unix:socketpath\n" \
3582 " prepare for incoming migration, listen on\n" \
3583 " specified protocol and socket address\n" \
3584 "-incoming fd:fd\n" \
3585 "-incoming exec:cmdline\n" \
3586 " accept incoming migration on given file descriptor\n" \
3587 " or from given external command\n" \
3588 "-incoming defer\n" \
3589 " wait for the URI to be specified via migrate_incoming\n",
3590 QEMU_ARCH_ALL)
3591 STEXI
3592 @item -incoming tcp:[@var{host}]:@var{port}[,to=@var{maxport}][,ipv4][,ipv6]
3593 @itemx -incoming rdma:@var{host}:@var{port}[,ipv4][,ipv6]
3594 @findex -incoming
3595 Prepare for incoming migration, listen on a given tcp port.
3597 @item -incoming unix:@var{socketpath}
3598 Prepare for incoming migration, listen on a given unix socket.
3600 @item -incoming fd:@var{fd}
3601 Accept incoming migration from a given filedescriptor.
3603 @item -incoming exec:@var{cmdline}
3604 Accept incoming migration as an output from specified external command.
3606 @item -incoming defer
3607 Wait for the URI to be specified via migrate_incoming. The monitor can
3608 be used to change settings (such as migration parameters) prior to issuing
3609 the migrate_incoming to allow the migration to begin.
3610 ETEXI
3612 DEF("only-migratable", 0, QEMU_OPTION_only_migratable, \
3613 "-only-migratable allow only migratable devices\n", QEMU_ARCH_ALL)
3614 STEXI
3615 @item -only-migratable
3616 @findex -only-migratable
3617 Only allow migratable devices. Devices will not be allowed to enter an
3618 unmigratable state.
3619 ETEXI
3621 DEF("nodefaults", 0, QEMU_OPTION_nodefaults, \
3622 "-nodefaults don't create default devices\n", QEMU_ARCH_ALL)
3623 STEXI
3624 @item -nodefaults
3625 @findex -nodefaults
3626 Don't create default devices. Normally, QEMU sets the default devices like serial
3627 port, parallel port, virtual console, monitor device, VGA adapter, floppy and
3628 CD-ROM drive and others. The @code{-nodefaults} option will disable all those
3629 default devices.
3630 ETEXI
3632 #ifndef _WIN32
3633 DEF("chroot", HAS_ARG, QEMU_OPTION_chroot, \
3634 "-chroot dir chroot to dir just before starting the VM\n",
3635 QEMU_ARCH_ALL)
3636 #endif
3637 STEXI
3638 @item -chroot @var{dir}
3639 @findex -chroot
3640 Immediately before starting guest execution, chroot to the specified
3641 directory. Especially useful in combination with -runas.
3642 ETEXI
3644 #ifndef _WIN32
3645 DEF("runas", HAS_ARG, QEMU_OPTION_runas, \
3646 "-runas user change to user id user just before starting the VM\n",
3647 QEMU_ARCH_ALL)
3648 #endif
3649 STEXI
3650 @item -runas @var{user}
3651 @findex -runas
3652 Immediately before starting guest execution, drop root privileges, switching
3653 to the specified user.
3654 ETEXI
3656 DEF("prom-env", HAS_ARG, QEMU_OPTION_prom_env,
3657 "-prom-env variable=value\n"
3658 " set OpenBIOS nvram variables\n",
3659 QEMU_ARCH_PPC | QEMU_ARCH_SPARC)
3660 STEXI
3661 @item -prom-env @var{variable}=@var{value}
3662 @findex -prom-env
3663 Set OpenBIOS nvram @var{variable} to given @var{value} (PPC, SPARC only).
3664 ETEXI
3665 DEF("semihosting", 0, QEMU_OPTION_semihosting,
3666 "-semihosting semihosting mode\n",
3667 QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA | QEMU_ARCH_LM32 |
3668 QEMU_ARCH_MIPS)
3669 STEXI
3670 @item -semihosting
3671 @findex -semihosting
3672 Enable semihosting mode (ARM, M68K, Xtensa, MIPS only).
3673 ETEXI
3674 DEF("semihosting-config", HAS_ARG, QEMU_OPTION_semihosting_config,
3675 "-semihosting-config [enable=on|off][,target=native|gdb|auto][,arg=str[,...]]\n" \
3676 " semihosting configuration\n",
3677 QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA | QEMU_ARCH_LM32 |
3678 QEMU_ARCH_MIPS)
3679 STEXI
3680 @item -semihosting-config [enable=on|off][,target=native|gdb|auto][,arg=str[,...]]
3681 @findex -semihosting-config
3682 Enable and configure semihosting (ARM, M68K, Xtensa, MIPS only).
3683 @table @option
3684 @item target=@code{native|gdb|auto}
3685 Defines where the semihosting calls will be addressed, to QEMU (@code{native})
3686 or to GDB (@code{gdb}). The default is @code{auto}, which means @code{gdb}
3687 during debug sessions and @code{native} otherwise.
3688 @item arg=@var{str1},arg=@var{str2},...
3689 Allows the user to pass input arguments, and can be used multiple times to build
3690 up a list. The old-style @code{-kernel}/@code{-append} method of passing a
3691 command line is still supported for backward compatibility. If both the
3692 @code{--semihosting-config arg} and the @code{-kernel}/@code{-append} are
3693 specified, the former is passed to semihosting as it always takes precedence.
3694 @end table
3695 ETEXI
3696 DEF("old-param", 0, QEMU_OPTION_old_param,
3697 "-old-param old param mode\n", QEMU_ARCH_ARM)
3698 STEXI
3699 @item -old-param
3700 @findex -old-param (ARM)
3701 Old param mode (ARM only).
3702 ETEXI
3704 DEF("sandbox", HAS_ARG, QEMU_OPTION_sandbox, \
3705 "-sandbox <arg> Enable seccomp mode 2 system call filter (default 'off').\n",
3706 QEMU_ARCH_ALL)
3707 STEXI
3708 @item -sandbox @var{arg}
3709 @findex -sandbox
3710 Enable Seccomp mode 2 system call filter. 'on' will enable syscall filtering and 'off' will
3711 disable it. The default is 'off'.
3712 ETEXI
3714 DEF("readconfig", HAS_ARG, QEMU_OPTION_readconfig,
3715 "-readconfig <file>\n", QEMU_ARCH_ALL)
3716 STEXI
3717 @item -readconfig @var{file}
3718 @findex -readconfig
3719 Read device configuration from @var{file}. This approach is useful when you want to spawn
3720 QEMU process with many command line options but you don't want to exceed the command line
3721 character limit.
3722 ETEXI
3723 DEF("writeconfig", HAS_ARG, QEMU_OPTION_writeconfig,
3724 "-writeconfig <file>\n"
3725 " read/write config file\n", QEMU_ARCH_ALL)
3726 STEXI
3727 @item -writeconfig @var{file}
3728 @findex -writeconfig
3729 Write device configuration to @var{file}. The @var{file} can be either filename to save
3730 command line and device configuration into file or dash @code{-}) character to print the
3731 output to stdout. This can be later used as input file for @code{-readconfig} option.
3732 ETEXI
3733 DEF("nodefconfig", 0, QEMU_OPTION_nodefconfig,
3734 "-nodefconfig\n"
3735 " do not load default config files at startup\n",
3736 QEMU_ARCH_ALL)
3737 STEXI
3738 @item -nodefconfig
3739 @findex -nodefconfig
3740 Normally QEMU loads configuration files from @var{sysconfdir} and @var{datadir} at startup.
3741 The @code{-nodefconfig} option will prevent QEMU from loading any of those config files.
3742 ETEXI
3743 DEF("no-user-config", 0, QEMU_OPTION_nouserconfig,
3744 "-no-user-config\n"
3745 " do not load user-provided config files at startup\n",
3746 QEMU_ARCH_ALL)
3747 STEXI
3748 @item -no-user-config
3749 @findex -no-user-config
3750 The @code{-no-user-config} option makes QEMU not load any of the user-provided
3751 config files on @var{sysconfdir}, but won't make it skip the QEMU-provided config
3752 files from @var{datadir}.
3753 ETEXI
3754 DEF("trace", HAS_ARG, QEMU_OPTION_trace,
3755 "-trace [[enable=]<pattern>][,events=<file>][,file=<file>]\n"
3756 " specify tracing options\n",
3757 QEMU_ARCH_ALL)
3758 STEXI
3759 HXCOMM This line is not accurate, as some sub-options are backend-specific but
3760 HXCOMM HX does not support conditional compilation of text.
3761 @item -trace [[enable=]@var{pattern}][,events=@var{file}][,file=@var{file}]
3762 @findex -trace
3763 @include qemu-option-trace.texi
3764 ETEXI
3766 HXCOMM Internal use
3767 DEF("qtest", HAS_ARG, QEMU_OPTION_qtest, "", QEMU_ARCH_ALL)
3768 DEF("qtest-log", HAS_ARG, QEMU_OPTION_qtest_log, "", QEMU_ARCH_ALL)
3770 #ifdef __linux__
3771 DEF("enable-fips", 0, QEMU_OPTION_enablefips,
3772 "-enable-fips enable FIPS 140-2 compliance\n",
3773 QEMU_ARCH_ALL)
3774 #endif
3775 STEXI
3776 @item -enable-fips
3777 @findex -enable-fips
3778 Enable FIPS 140-2 compliance mode.
3779 ETEXI
3781 HXCOMM Deprecated by -machine accel=tcg property
3782 DEF("no-kvm", 0, QEMU_OPTION_no_kvm, "", QEMU_ARCH_I386)
3784 HXCOMM Deprecated by kvm-pit driver properties
3785 DEF("no-kvm-pit-reinjection", 0, QEMU_OPTION_no_kvm_pit_reinjection,
3786 "", QEMU_ARCH_I386)
3788 HXCOMM Deprecated (ignored)
3789 DEF("no-kvm-pit", 0, QEMU_OPTION_no_kvm_pit, "", QEMU_ARCH_I386)
3791 HXCOMM Deprecated by -machine kernel_irqchip=on|off property
3792 DEF("no-kvm-irqchip", 0, QEMU_OPTION_no_kvm_irqchip, "", QEMU_ARCH_I386)
3794 HXCOMM Deprecated (ignored)
3795 DEF("tdf", 0, QEMU_OPTION_tdf,"", QEMU_ARCH_ALL)
3797 DEF("msg", HAS_ARG, QEMU_OPTION_msg,
3798 "-msg timestamp[=on|off]\n"
3799 " change the format of messages\n"
3800 " on|off controls leading timestamps (default:on)\n",
3801 QEMU_ARCH_ALL)
3802 STEXI
3803 @item -msg timestamp[=on|off]
3804 @findex -msg
3805 prepend a timestamp to each log message.(default:on)
3806 ETEXI
3808 DEF("dump-vmstate", HAS_ARG, QEMU_OPTION_dump_vmstate,
3809 "-dump-vmstate <file>\n"
3810 " Output vmstate information in JSON format to file.\n"
3811 " Use the scripts/vmstate-static-checker.py file to\n"
3812 " check for possible regressions in migration code\n"
3813 " by comparing two such vmstate dumps.\n",
3814 QEMU_ARCH_ALL)
3815 STEXI
3816 @item -dump-vmstate @var{file}
3817 @findex -dump-vmstate
3818 Dump json-encoded vmstate information for current machine type to file
3819 in @var{file}
3820 ETEXI
3822 STEXI
3823 @end table
3824 ETEXI
3825 DEFHEADING()
3826 DEFHEADING(Generic object creation)
3827 STEXI
3828 @table @option
3829 ETEXI
3831 DEF("object", HAS_ARG, QEMU_OPTION_object,
3832 "-object TYPENAME[,PROP1=VALUE1,...]\n"
3833 " create a new object of type TYPENAME setting properties\n"
3834 " in the order they are specified. Note that the 'id'\n"
3835 " property must be set. These objects are placed in the\n"
3836 " '/objects' path.\n",
3837 QEMU_ARCH_ALL)
3838 STEXI
3839 @item -object @var{typename}[,@var{prop1}=@var{value1},...]
3840 @findex -object
3841 Create a new object of type @var{typename} setting properties
3842 in the order they are specified. Note that the 'id'
3843 property must be set. These objects are placed in the
3844 '/objects' path.
3846 @table @option
3848 @item -object memory-backend-file,id=@var{id},size=@var{size},mem-path=@var{dir},share=@var{on|off}
3850 Creates a memory file backend object, which can be used to back
3851 the guest RAM with huge pages. The @option{id} parameter is a
3852 unique ID that will be used to reference this memory region
3853 when configuring the @option{-numa} argument. The @option{size}
3854 option provides the size of the memory region, and accepts
3855 common suffixes, eg @option{500M}. The @option{mem-path} provides
3856 the path to either a shared memory or huge page filesystem mount.
3857 The @option{share} boolean option determines whether the memory
3858 region is marked as private to QEMU, or shared. The latter allows
3859 a co-operating external process to access the QEMU memory region.
3861 @item -object rng-random,id=@var{id},filename=@var{/dev/random}
3863 Creates a random number generator backend which obtains entropy from
3864 a device on the host. The @option{id} parameter is a unique ID that
3865 will be used to reference this entropy backend from the @option{virtio-rng}
3866 device. The @option{filename} parameter specifies which file to obtain
3867 entropy from and if omitted defaults to @option{/dev/random}.
3869 @item -object rng-egd,id=@var{id},chardev=@var{chardevid}
3871 Creates a random number generator backend which obtains entropy from
3872 an external daemon running on the host. The @option{id} parameter is
3873 a unique ID that will be used to reference this entropy backend from
3874 the @option{virtio-rng} device. The @option{chardev} parameter is
3875 the unique ID of a character device backend that provides the connection
3876 to the RNG daemon.
3878 @item -object tls-creds-anon,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/cred/dir},verify-peer=@var{on|off}
3880 Creates a TLS anonymous credentials object, which can be used to provide
3881 TLS support on network backends. The @option{id} parameter is a unique
3882 ID which network backends will use to access the credentials. The
3883 @option{endpoint} is either @option{server} or @option{client} depending
3884 on whether the QEMU network backend that uses the credentials will be
3885 acting as a client or as a server. If @option{verify-peer} is enabled
3886 (the default) then once the handshake is completed, the peer credentials
3887 will be verified, though this is a no-op for anonymous credentials.
3889 The @var{dir} parameter tells QEMU where to find the credential
3890 files. For server endpoints, this directory may contain a file
3891 @var{dh-params.pem} providing diffie-hellman parameters to use
3892 for the TLS server. If the file is missing, QEMU will generate
3893 a set of DH parameters at startup. This is a computationally
3894 expensive operation that consumes random pool entropy, so it is
3895 recommended that a persistent set of parameters be generated
3896 upfront and saved.
3898 @item -object tls-creds-x509,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/cred/dir},verify-peer=@var{on|off},passwordid=@var{id}
3900 Creates a TLS anonymous credentials object, which can be used to provide
3901 TLS support on network backends. The @option{id} parameter is a unique
3902 ID which network backends will use to access the credentials. The
3903 @option{endpoint} is either @option{server} or @option{client} depending
3904 on whether the QEMU network backend that uses the credentials will be
3905 acting as a client or as a server. If @option{verify-peer} is enabled
3906 (the default) then once the handshake is completed, the peer credentials
3907 will be verified. With x509 certificates, this implies that the clients
3908 must be provided with valid client certificates too.
3910 The @var{dir} parameter tells QEMU where to find the credential
3911 files. For server endpoints, this directory may contain a file
3912 @var{dh-params.pem} providing diffie-hellman parameters to use
3913 for the TLS server. If the file is missing, QEMU will generate
3914 a set of DH parameters at startup. This is a computationally
3915 expensive operation that consumes random pool entropy, so it is
3916 recommended that a persistent set of parameters be generated
3917 upfront and saved.
3919 For x509 certificate credentials the directory will contain further files
3920 providing the x509 certificates. The certificates must be stored
3921 in PEM format, in filenames @var{ca-cert.pem}, @var{ca-crl.pem} (optional),
3922 @var{server-cert.pem} (only servers), @var{server-key.pem} (only servers),
3923 @var{client-cert.pem} (only clients), and @var{client-key.pem} (only clients).
3925 For the @var{server-key.pem} and @var{client-key.pem} files which
3926 contain sensitive private keys, it is possible to use an encrypted
3927 version by providing the @var{passwordid} parameter. This provides
3928 the ID of a previously created @code{secret} object containing the
3929 password for decryption.
3931 @item -object filter-buffer,id=@var{id},netdev=@var{netdevid},interval=@var{t}[,queue=@var{all|rx|tx}][,status=@var{on|off}]
3933 Interval @var{t} can't be 0, this filter batches the packet delivery: all
3934 packets arriving in a given interval on netdev @var{netdevid} are delayed
3935 until the end of the interval. Interval is in microseconds.
3936 @option{status} is optional that indicate whether the netfilter is
3937 on (enabled) or off (disabled), the default status for netfilter will be 'on'.
3939 queue @var{all|rx|tx} is an option that can be applied to any netfilter.
3941 @option{all}: the filter is attached both to the receive and the transmit
3942 queue of the netdev (default).
3944 @option{rx}: the filter is attached to the receive queue of the netdev,
3945 where it will receive packets sent to the netdev.
3947 @option{tx}: the filter is attached to the transmit queue of the netdev,
3948 where it will receive packets sent by the netdev.
3950 @item -object filter-mirror,id=@var{id},netdev=@var{netdevid},outdev=@var{chardevid}[,queue=@var{all|rx|tx}]
3952 filter-mirror on netdev @var{netdevid},mirror net packet to chardev
3953 @var{chardevid}
3955 @item -object filter-redirector,id=@var{id},netdev=@var{netdevid},indev=@var{chardevid},
3956 outdev=@var{chardevid}[,queue=@var{all|rx|tx}]
3958 filter-redirector on netdev @var{netdevid},redirect filter's net packet to chardev
3959 @var{chardevid},and redirect indev's packet to filter.
3960 Create a filter-redirector we need to differ outdev id from indev id, id can not
3961 be the same. we can just use indev or outdev, but at least one of indev or outdev
3962 need to be specified.
3964 @item -object filter-rewriter,id=@var{id},netdev=@var{netdevid},rewriter-mode=@var{mode}[,queue=@var{all|rx|tx}]
3966 Filter-rewriter is a part of COLO project.It will rewrite tcp packet to
3967 secondary from primary to keep secondary tcp connection,and rewrite
3968 tcp packet to primary from secondary make tcp packet can be handled by
3969 client.
3971 usage:
3972 colo secondary:
3973 -object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
3974 -object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1
3975 -object filter-rewriter,id=rew0,netdev=hn0,queue=all
3977 @item -object filter-dump,id=@var{id},netdev=@var{dev}[,file=@var{filename}][,maxlen=@var{len}]
3979 Dump the network traffic on netdev @var{dev} to the file specified by
3980 @var{filename}. At most @var{len} bytes (64k by default) per packet are stored.
3981 The file format is libpcap, so it can be analyzed with tools such as tcpdump
3982 or Wireshark.
3984 @item -object colo-compare,id=@var{id},primary_in=@var{chardevid},secondary_in=@var{chardevid},
3985 outdev=@var{chardevid}
3987 Colo-compare gets packet from primary_in@var{chardevid} and secondary_in@var{chardevid}, than compare primary packet with
3988 secondary packet. If the packets are same, we will output primary
3989 packet to outdev@var{chardevid}, else we will notify colo-frame
3990 do checkpoint and send primary packet to outdev@var{chardevid}.
3992 we must use it with the help of filter-mirror and filter-redirector.
3994 @example
3996 primary:
3997 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,downscript=/etc/qemu-ifdown
3998 -device e1000,id=e0,netdev=hn0,mac=52:a4:00:12:78:66
3999 -chardev socket,id=mirror0,host=3.3.3.3,port=9003,server,nowait
4000 -chardev socket,id=compare1,host=3.3.3.3,port=9004,server,nowait
4001 -chardev socket,id=compare0,host=3.3.3.3,port=9001,server,nowait
4002 -chardev socket,id=compare0-0,host=3.3.3.3,port=9001
4003 -chardev socket,id=compare_out,host=3.3.3.3,port=9005,server,nowait
4004 -chardev socket,id=compare_out0,host=3.3.3.3,port=9005
4005 -object filter-mirror,id=m0,netdev=hn0,queue=tx,outdev=mirror0
4006 -object filter-redirector,netdev=hn0,id=redire0,queue=rx,indev=compare_out
4007 -object filter-redirector,netdev=hn0,id=redire1,queue=rx,outdev=compare0
4008 -object colo-compare,id=comp0,primary_in=compare0-0,secondary_in=compare1,outdev=compare_out0
4010 secondary:
4011 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,down script=/etc/qemu-ifdown
4012 -device e1000,netdev=hn0,mac=52:a4:00:12:78:66
4013 -chardev socket,id=red0,host=3.3.3.3,port=9003
4014 -chardev socket,id=red1,host=3.3.3.3,port=9004
4015 -object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
4016 -object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1
4018 @end example
4020 If you want to know the detail of above command line, you can read
4021 the colo-compare git log.
4023 @item -object cryptodev-backend-builtin,id=@var{id}[,queues=@var{queues}]
4025 Creates a cryptodev backend which executes crypto opreation from
4026 the QEMU cipher APIS. The @var{id} parameter is
4027 a unique ID that will be used to reference this cryptodev backend from
4028 the @option{virtio-crypto} device. The @var{queues} parameter is optional,
4029 which specify the queue number of cryptodev backend, the default of
4030 @var{queues} is 1.
4032 @example
4034 # qemu-system-x86_64 \
4035 [...] \
4036 -object cryptodev-backend-builtin,id=cryptodev0 \
4037 -device virtio-crypto-pci,id=crypto0,cryptodev=cryptodev0 \
4038 [...]
4039 @end example
4041 @item -object secret,id=@var{id},data=@var{string},format=@var{raw|base64}[,keyid=@var{secretid},iv=@var{string}]
4042 @item -object secret,id=@var{id},file=@var{filename},format=@var{raw|base64}[,keyid=@var{secretid},iv=@var{string}]
4044 Defines a secret to store a password, encryption key, or some other sensitive
4045 data. The sensitive data can either be passed directly via the @var{data}
4046 parameter, or indirectly via the @var{file} parameter. Using the @var{data}
4047 parameter is insecure unless the sensitive data is encrypted.
4049 The sensitive data can be provided in raw format (the default), or base64.
4050 When encoded as JSON, the raw format only supports valid UTF-8 characters,
4051 so base64 is recommended for sending binary data. QEMU will convert from
4052 which ever format is provided to the format it needs internally. eg, an
4053 RBD password can be provided in raw format, even though it will be base64
4054 encoded when passed onto the RBD sever.
4056 For added protection, it is possible to encrypt the data associated with
4057 a secret using the AES-256-CBC cipher. Use of encryption is indicated
4058 by providing the @var{keyid} and @var{iv} parameters. The @var{keyid}
4059 parameter provides the ID of a previously defined secret that contains
4060 the AES-256 decryption key. This key should be 32-bytes long and be
4061 base64 encoded. The @var{iv} parameter provides the random initialization
4062 vector used for encryption of this particular secret and should be a
4063 base64 encrypted string of the 16-byte IV.
4065 The simplest (insecure) usage is to provide the secret inline
4067 @example
4069 # $QEMU -object secret,id=sec0,data=letmein,format=raw
4071 @end example
4073 The simplest secure usage is to provide the secret via a file
4075 # echo -n "letmein" > mypasswd.txt
4076 # $QEMU -object secret,id=sec0,file=mypasswd.txt,format=raw
4078 For greater security, AES-256-CBC should be used. To illustrate usage,
4079 consider the openssl command line tool which can encrypt the data. Note
4080 that when encrypting, the plaintext must be padded to the cipher block
4081 size (32 bytes) using the standard PKCS#5/6 compatible padding algorithm.
4083 First a master key needs to be created in base64 encoding:
4085 @example
4086 # openssl rand -base64 32 > key.b64
4087 # KEY=$(base64 -d key.b64 | hexdump -v -e '/1 "%02X"')
4088 @end example
4090 Each secret to be encrypted needs to have a random initialization vector
4091 generated. These do not need to be kept secret
4093 @example
4094 # openssl rand -base64 16 > iv.b64
4095 # IV=$(base64 -d iv.b64 | hexdump -v -e '/1 "%02X"')
4096 @end example
4098 The secret to be defined can now be encrypted, in this case we're
4099 telling openssl to base64 encode the result, but it could be left
4100 as raw bytes if desired.
4102 @example
4103 # SECRET=$(echo -n "letmein" |
4104 openssl enc -aes-256-cbc -a -K $KEY -iv $IV)
4105 @end example
4107 When launching QEMU, create a master secret pointing to @code{key.b64}
4108 and specify that to be used to decrypt the user password. Pass the
4109 contents of @code{iv.b64} to the second secret
4111 @example
4112 # $QEMU \
4113 -object secret,id=secmaster0,format=base64,file=key.b64 \
4114 -object secret,id=sec0,keyid=secmaster0,format=base64,\
4115 data=$SECRET,iv=$(<iv.b64)
4116 @end example
4118 @end table
4120 ETEXI
4123 HXCOMM This is the last statement. Insert new options before this line!
4124 STEXI
4125 @end table
4126 ETEXI