2 * ARM implementation of KVM hooks
4 * Copyright Christoffer Dall 2009-2010
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
12 #include <sys/types.h>
13 #include <sys/ioctl.h>
16 #include <linux/kvm.h>
18 #include "qemu-common.h"
19 #include "qemu/timer.h"
20 #include "sysemu/sysemu.h"
21 #include "sysemu/kvm.h"
24 #include "internals.h"
25 #include "hw/arm/arm.h"
27 const KVMCapabilityInfo kvm_arch_required_capabilities
[] = {
31 int kvm_arm_vcpu_init(CPUState
*cs
)
33 ARMCPU
*cpu
= ARM_CPU(cs
);
34 struct kvm_vcpu_init init
;
36 init
.target
= cpu
->kvm_target
;
37 memcpy(init
.features
, cpu
->kvm_init_features
, sizeof(init
.features
));
39 return kvm_vcpu_ioctl(cs
, KVM_ARM_VCPU_INIT
, &init
);
42 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try
,
44 struct kvm_vcpu_init
*init
)
46 int ret
, kvmfd
= -1, vmfd
= -1, cpufd
= -1;
48 kvmfd
= qemu_open("/dev/kvm", O_RDWR
);
52 vmfd
= ioctl(kvmfd
, KVM_CREATE_VM
, 0);
56 cpufd
= ioctl(vmfd
, KVM_CREATE_VCPU
, 0);
61 ret
= ioctl(vmfd
, KVM_ARM_PREFERRED_TARGET
, init
);
63 ret
= ioctl(cpufd
, KVM_ARM_VCPU_INIT
, init
);
68 /* Old kernel which doesn't know about the
69 * PREFERRED_TARGET ioctl: we know it will only support
70 * creating one kind of guest CPU which is its preferred
73 while (*cpus_to_try
!= QEMU_KVM_ARM_TARGET_NONE
) {
74 init
->target
= *cpus_to_try
++;
75 memset(init
->features
, 0, sizeof(init
->features
));
76 ret
= ioctl(cpufd
, KVM_ARM_VCPU_INIT
, init
);
106 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray
)
110 for (i
= 2; i
>= 0; i
--) {
115 static void kvm_arm_host_cpu_class_init(ObjectClass
*oc
, void *data
)
117 ARMHostCPUClass
*ahcc
= ARM_HOST_CPU_CLASS(oc
);
119 /* All we really need to set up for the 'host' CPU
120 * is the feature bits -- we rely on the fact that the
121 * various ID register values in ARMCPU are only used for
124 if (!kvm_arm_get_host_cpu_features(ahcc
)) {
125 fprintf(stderr
, "Failed to retrieve host CPU features!\n");
130 static void kvm_arm_host_cpu_initfn(Object
*obj
)
132 ARMHostCPUClass
*ahcc
= ARM_HOST_CPU_GET_CLASS(obj
);
133 ARMCPU
*cpu
= ARM_CPU(obj
);
134 CPUARMState
*env
= &cpu
->env
;
136 cpu
->kvm_target
= ahcc
->target
;
137 cpu
->dtb_compatible
= ahcc
->dtb_compatible
;
138 env
->features
= ahcc
->features
;
141 static const TypeInfo host_arm_cpu_type_info
= {
142 .name
= TYPE_ARM_HOST_CPU
,
143 #ifdef TARGET_AARCH64
144 .parent
= TYPE_AARCH64_CPU
,
146 .parent
= TYPE_ARM_CPU
,
148 .instance_init
= kvm_arm_host_cpu_initfn
,
149 .class_init
= kvm_arm_host_cpu_class_init
,
150 .class_size
= sizeof(ARMHostCPUClass
),
153 int kvm_arch_init(KVMState
*s
)
155 /* For ARM interrupt delivery is always asynchronous,
156 * whether we are using an in-kernel VGIC or not.
158 kvm_async_interrupts_allowed
= true;
160 type_register_static(&host_arm_cpu_type_info
);
165 unsigned long kvm_arch_vcpu_id(CPUState
*cpu
)
167 return cpu
->cpu_index
;
170 /* We track all the KVM devices which need their memory addresses
171 * passing to the kernel in a list of these structures.
172 * When board init is complete we run through the list and
173 * tell the kernel the base addresses of the memory regions.
174 * We use a MemoryListener to track mapping and unmapping of
175 * the regions during board creation, so the board models don't
176 * need to do anything special for the KVM case.
178 typedef struct KVMDevice
{
179 struct kvm_arm_device_addr kda
;
180 struct kvm_device_attr kdattr
;
182 QSLIST_ENTRY(KVMDevice
) entries
;
186 static QSLIST_HEAD(kvm_devices_head
, KVMDevice
) kvm_devices_head
;
188 static void kvm_arm_devlistener_add(MemoryListener
*listener
,
189 MemoryRegionSection
*section
)
193 QSLIST_FOREACH(kd
, &kvm_devices_head
, entries
) {
194 if (section
->mr
== kd
->mr
) {
195 kd
->kda
.addr
= section
->offset_within_address_space
;
200 static void kvm_arm_devlistener_del(MemoryListener
*listener
,
201 MemoryRegionSection
*section
)
205 QSLIST_FOREACH(kd
, &kvm_devices_head
, entries
) {
206 if (section
->mr
== kd
->mr
) {
212 static MemoryListener devlistener
= {
213 .region_add
= kvm_arm_devlistener_add
,
214 .region_del
= kvm_arm_devlistener_del
,
217 static void kvm_arm_set_device_addr(KVMDevice
*kd
)
219 struct kvm_device_attr
*attr
= &kd
->kdattr
;
222 /* If the device control API is available and we have a device fd on the
223 * KVMDevice struct, let's use the newer API
225 if (kd
->dev_fd
>= 0) {
226 uint64_t addr
= kd
->kda
.addr
;
227 attr
->addr
= (uintptr_t)&addr
;
228 ret
= kvm_device_ioctl(kd
->dev_fd
, KVM_SET_DEVICE_ATTR
, attr
);
230 ret
= kvm_vm_ioctl(kvm_state
, KVM_ARM_SET_DEVICE_ADDR
, &kd
->kda
);
234 fprintf(stderr
, "Failed to set device address: %s\n",
240 static void kvm_arm_machine_init_done(Notifier
*notifier
, void *data
)
244 memory_listener_unregister(&devlistener
);
245 QSLIST_FOREACH_SAFE(kd
, &kvm_devices_head
, entries
, tkd
) {
246 if (kd
->kda
.addr
!= -1) {
247 kvm_arm_set_device_addr(kd
);
249 memory_region_unref(kd
->mr
);
254 static Notifier notify
= {
255 .notify
= kvm_arm_machine_init_done
,
258 void kvm_arm_register_device(MemoryRegion
*mr
, uint64_t devid
, uint64_t group
,
259 uint64_t attr
, int dev_fd
)
263 if (!kvm_irqchip_in_kernel()) {
267 if (QSLIST_EMPTY(&kvm_devices_head
)) {
268 memory_listener_register(&devlistener
, NULL
);
269 qemu_add_machine_init_done_notifier(¬ify
);
271 kd
= g_new0(KVMDevice
, 1);
275 kd
->kdattr
.flags
= 0;
276 kd
->kdattr
.group
= group
;
277 kd
->kdattr
.attr
= attr
;
279 QSLIST_INSERT_HEAD(&kvm_devices_head
, kd
, entries
);
280 memory_region_ref(kd
->mr
);
283 static int compare_u64(const void *a
, const void *b
)
285 if (*(uint64_t *)a
> *(uint64_t *)b
) {
288 if (*(uint64_t *)a
< *(uint64_t *)b
) {
294 /* Initialize the CPUState's cpreg list according to the kernel's
295 * definition of what CPU registers it knows about (and throw away
296 * the previous TCG-created cpreg list).
298 int kvm_arm_init_cpreg_list(ARMCPU
*cpu
)
300 struct kvm_reg_list rl
;
301 struct kvm_reg_list
*rlp
;
302 int i
, ret
, arraylen
;
303 CPUState
*cs
= CPU(cpu
);
306 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_REG_LIST
, &rl
);
310 rlp
= g_malloc(sizeof(struct kvm_reg_list
) + rl
.n
* sizeof(uint64_t));
312 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_REG_LIST
, rlp
);
316 /* Sort the list we get back from the kernel, since cpreg_tuples
317 * must be in strictly ascending order.
319 qsort(&rlp
->reg
, rlp
->n
, sizeof(rlp
->reg
[0]), compare_u64
);
321 for (i
= 0, arraylen
= 0; i
< rlp
->n
; i
++) {
322 if (!kvm_arm_reg_syncs_via_cpreg_list(rlp
->reg
[i
])) {
325 switch (rlp
->reg
[i
] & KVM_REG_SIZE_MASK
) {
326 case KVM_REG_SIZE_U32
:
327 case KVM_REG_SIZE_U64
:
330 fprintf(stderr
, "Can't handle size of register in kernel list\n");
338 cpu
->cpreg_indexes
= g_renew(uint64_t, cpu
->cpreg_indexes
, arraylen
);
339 cpu
->cpreg_values
= g_renew(uint64_t, cpu
->cpreg_values
, arraylen
);
340 cpu
->cpreg_vmstate_indexes
= g_renew(uint64_t, cpu
->cpreg_vmstate_indexes
,
342 cpu
->cpreg_vmstate_values
= g_renew(uint64_t, cpu
->cpreg_vmstate_values
,
344 cpu
->cpreg_array_len
= arraylen
;
345 cpu
->cpreg_vmstate_array_len
= arraylen
;
347 for (i
= 0, arraylen
= 0; i
< rlp
->n
; i
++) {
348 uint64_t regidx
= rlp
->reg
[i
];
349 if (!kvm_arm_reg_syncs_via_cpreg_list(regidx
)) {
352 cpu
->cpreg_indexes
[arraylen
] = regidx
;
355 assert(cpu
->cpreg_array_len
== arraylen
);
357 if (!write_kvmstate_to_list(cpu
)) {
358 /* Shouldn't happen unless kernel is inconsistent about
359 * what registers exist.
361 fprintf(stderr
, "Initial read of kernel register state failed\n");
371 bool write_kvmstate_to_list(ARMCPU
*cpu
)
373 CPUState
*cs
= CPU(cpu
);
377 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
378 struct kvm_one_reg r
;
379 uint64_t regidx
= cpu
->cpreg_indexes
[i
];
385 switch (regidx
& KVM_REG_SIZE_MASK
) {
386 case KVM_REG_SIZE_U32
:
387 r
.addr
= (uintptr_t)&v32
;
388 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
390 cpu
->cpreg_values
[i
] = v32
;
393 case KVM_REG_SIZE_U64
:
394 r
.addr
= (uintptr_t)(cpu
->cpreg_values
+ i
);
395 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
407 bool write_list_to_kvmstate(ARMCPU
*cpu
)
409 CPUState
*cs
= CPU(cpu
);
413 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
414 struct kvm_one_reg r
;
415 uint64_t regidx
= cpu
->cpreg_indexes
[i
];
420 switch (regidx
& KVM_REG_SIZE_MASK
) {
421 case KVM_REG_SIZE_U32
:
422 v32
= cpu
->cpreg_values
[i
];
423 r
.addr
= (uintptr_t)&v32
;
425 case KVM_REG_SIZE_U64
:
426 r
.addr
= (uintptr_t)(cpu
->cpreg_values
+ i
);
431 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, &r
);
433 /* We might fail for "unknown register" and also for
434 * "you tried to set a register which is constant with
435 * a different value from what it actually contains".
443 void kvm_arm_reset_vcpu(ARMCPU
*cpu
)
447 /* Re-init VCPU so that all registers are set to
448 * their respective reset values.
450 ret
= kvm_arm_vcpu_init(CPU(cpu
));
452 fprintf(stderr
, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret
));
455 if (!write_kvmstate_to_list(cpu
)) {
456 fprintf(stderr
, "write_kvmstate_to_list failed\n");
461 void kvm_arch_pre_run(CPUState
*cs
, struct kvm_run
*run
)
465 void kvm_arch_post_run(CPUState
*cs
, struct kvm_run
*run
)
469 int kvm_arch_handle_exit(CPUState
*cs
, struct kvm_run
*run
)
474 bool kvm_arch_stop_on_emulation_error(CPUState
*cs
)
479 int kvm_arch_process_async_events(CPUState
*cs
)
484 int kvm_arch_on_sigbus_vcpu(CPUState
*cs
, int code
, void *addr
)
489 int kvm_arch_on_sigbus(int code
, void *addr
)
494 void kvm_arch_update_guest_debug(CPUState
*cs
, struct kvm_guest_debug
*dbg
)
496 qemu_log_mask(LOG_UNIMP
, "%s: not implemented\n", __func__
);
499 int kvm_arch_insert_sw_breakpoint(CPUState
*cs
,
500 struct kvm_sw_breakpoint
*bp
)
502 qemu_log_mask(LOG_UNIMP
, "%s: not implemented\n", __func__
);
506 int kvm_arch_insert_hw_breakpoint(target_ulong addr
,
507 target_ulong len
, int type
)
509 qemu_log_mask(LOG_UNIMP
, "%s: not implemented\n", __func__
);
513 int kvm_arch_remove_hw_breakpoint(target_ulong addr
,
514 target_ulong len
, int type
)
516 qemu_log_mask(LOG_UNIMP
, "%s: not implemented\n", __func__
);
520 int kvm_arch_remove_sw_breakpoint(CPUState
*cs
,
521 struct kvm_sw_breakpoint
*bp
)
523 qemu_log_mask(LOG_UNIMP
, "%s: not implemented\n", __func__
);
527 void kvm_arch_remove_all_hw_breakpoints(void)
529 qemu_log_mask(LOG_UNIMP
, "%s: not implemented\n", __func__
);
532 void kvm_arch_init_irq_routing(KVMState
*s
)
536 int kvm_arch_irqchip_create(KVMState
*s
)
540 /* If we can create the VGIC using the newer device control API, we
541 * let the device do this when it initializes itself, otherwise we
542 * fall back to the old API */
544 ret
= kvm_create_device(s
, KVM_DEV_TYPE_ARM_VGIC_V2
, true);