machine: Remove no_tco field
[qemu.git] / hw / timer / mc146818rtc.c
blobeb0100aa25314667a46c01efd0684bf09af287c0
1 /*
2 * QEMU MC146818 RTC emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "qemu/osdep.h"
25 #include "hw/hw.h"
26 #include "qemu/timer.h"
27 #include "sysemu/sysemu.h"
28 #include "hw/timer/mc146818rtc.h"
29 #include "qapi/visitor.h"
30 #include "qapi-event.h"
31 #include "qmp-commands.h"
33 #ifdef TARGET_I386
34 #include "hw/i386/apic.h"
35 #endif
37 //#define DEBUG_CMOS
38 //#define DEBUG_COALESCED
40 #ifdef DEBUG_CMOS
41 # define CMOS_DPRINTF(format, ...) printf(format, ## __VA_ARGS__)
42 #else
43 # define CMOS_DPRINTF(format, ...) do { } while (0)
44 #endif
46 #ifdef DEBUG_COALESCED
47 # define DPRINTF_C(format, ...) printf(format, ## __VA_ARGS__)
48 #else
49 # define DPRINTF_C(format, ...) do { } while (0)
50 #endif
52 #define SEC_PER_MIN 60
53 #define MIN_PER_HOUR 60
54 #define SEC_PER_HOUR 3600
55 #define HOUR_PER_DAY 24
56 #define SEC_PER_DAY 86400
58 #define RTC_REINJECT_ON_ACK_COUNT 20
59 #define RTC_CLOCK_RATE 32768
60 #define UIP_HOLD_LENGTH (8 * NANOSECONDS_PER_SECOND / 32768)
62 #define MC146818_RTC(obj) OBJECT_CHECK(RTCState, (obj), TYPE_MC146818_RTC)
64 typedef struct RTCState {
65 ISADevice parent_obj;
67 MemoryRegion io;
68 uint8_t cmos_data[128];
69 uint8_t cmos_index;
70 int32_t base_year;
71 uint64_t base_rtc;
72 uint64_t last_update;
73 int64_t offset;
74 qemu_irq irq;
75 int it_shift;
76 /* periodic timer */
77 QEMUTimer *periodic_timer;
78 int64_t next_periodic_time;
79 /* update-ended timer */
80 QEMUTimer *update_timer;
81 uint64_t next_alarm_time;
82 uint16_t irq_reinject_on_ack_count;
83 uint32_t irq_coalesced;
84 uint32_t period;
85 QEMUTimer *coalesced_timer;
86 Notifier clock_reset_notifier;
87 LostTickPolicy lost_tick_policy;
88 Notifier suspend_notifier;
89 QLIST_ENTRY(RTCState) link;
90 } RTCState;
92 static void rtc_set_time(RTCState *s);
93 static void rtc_update_time(RTCState *s);
94 static void rtc_set_cmos(RTCState *s, const struct tm *tm);
95 static inline int rtc_from_bcd(RTCState *s, int a);
96 static uint64_t get_next_alarm(RTCState *s);
98 static inline bool rtc_running(RTCState *s)
100 return (!(s->cmos_data[RTC_REG_B] & REG_B_SET) &&
101 (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20);
104 static uint64_t get_guest_rtc_ns(RTCState *s)
106 uint64_t guest_rtc;
107 uint64_t guest_clock = qemu_clock_get_ns(rtc_clock);
109 guest_rtc = s->base_rtc * NANOSECONDS_PER_SECOND
110 + guest_clock - s->last_update + s->offset;
111 return guest_rtc;
114 #ifdef TARGET_I386
115 static void rtc_coalesced_timer_update(RTCState *s)
117 if (s->irq_coalesced == 0) {
118 timer_del(s->coalesced_timer);
119 } else {
120 /* divide each RTC interval to 2 - 8 smaller intervals */
121 int c = MIN(s->irq_coalesced, 7) + 1;
122 int64_t next_clock = qemu_clock_get_ns(rtc_clock) +
123 muldiv64(s->period / c, get_ticks_per_sec(), RTC_CLOCK_RATE);
124 timer_mod(s->coalesced_timer, next_clock);
128 static void rtc_coalesced_timer(void *opaque)
130 RTCState *s = opaque;
132 if (s->irq_coalesced != 0) {
133 apic_reset_irq_delivered();
134 s->cmos_data[RTC_REG_C] |= 0xc0;
135 DPRINTF_C("cmos: injecting from timer\n");
136 qemu_irq_raise(s->irq);
137 if (apic_get_irq_delivered()) {
138 s->irq_coalesced--;
139 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
140 s->irq_coalesced);
144 rtc_coalesced_timer_update(s);
146 #endif
148 /* handle periodic timer */
149 static void periodic_timer_update(RTCState *s, int64_t current_time)
151 int period_code, period;
152 int64_t cur_clock, next_irq_clock;
154 period_code = s->cmos_data[RTC_REG_A] & 0x0f;
155 if (period_code != 0
156 && (s->cmos_data[RTC_REG_B] & REG_B_PIE)) {
157 if (period_code <= 2)
158 period_code += 7;
159 /* period in 32 Khz cycles */
160 period = 1 << (period_code - 1);
161 #ifdef TARGET_I386
162 if (period != s->period) {
163 s->irq_coalesced = (s->irq_coalesced * s->period) / period;
164 DPRINTF_C("cmos: coalesced irqs scaled to %d\n", s->irq_coalesced);
166 s->period = period;
167 #endif
168 /* compute 32 khz clock */
169 cur_clock = muldiv64(current_time, RTC_CLOCK_RATE, get_ticks_per_sec());
170 next_irq_clock = (cur_clock & ~(period - 1)) + period;
171 s->next_periodic_time =
172 muldiv64(next_irq_clock, get_ticks_per_sec(), RTC_CLOCK_RATE) + 1;
173 timer_mod(s->periodic_timer, s->next_periodic_time);
174 } else {
175 #ifdef TARGET_I386
176 s->irq_coalesced = 0;
177 #endif
178 timer_del(s->periodic_timer);
182 static void rtc_periodic_timer(void *opaque)
184 RTCState *s = opaque;
186 periodic_timer_update(s, s->next_periodic_time);
187 s->cmos_data[RTC_REG_C] |= REG_C_PF;
188 if (s->cmos_data[RTC_REG_B] & REG_B_PIE) {
189 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
190 #ifdef TARGET_I386
191 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
192 if (s->irq_reinject_on_ack_count >= RTC_REINJECT_ON_ACK_COUNT)
193 s->irq_reinject_on_ack_count = 0;
194 apic_reset_irq_delivered();
195 qemu_irq_raise(s->irq);
196 if (!apic_get_irq_delivered()) {
197 s->irq_coalesced++;
198 rtc_coalesced_timer_update(s);
199 DPRINTF_C("cmos: coalesced irqs increased to %d\n",
200 s->irq_coalesced);
202 } else
203 #endif
204 qemu_irq_raise(s->irq);
208 /* handle update-ended timer */
209 static void check_update_timer(RTCState *s)
211 uint64_t next_update_time;
212 uint64_t guest_nsec;
213 int next_alarm_sec;
215 /* From the data sheet: "Holding the dividers in reset prevents
216 * interrupts from operating, while setting the SET bit allows"
217 * them to occur. However, it will prevent an alarm interrupt
218 * from occurring, because the time of day is not updated.
220 if ((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) {
221 timer_del(s->update_timer);
222 return;
224 if ((s->cmos_data[RTC_REG_C] & REG_C_UF) &&
225 (s->cmos_data[RTC_REG_B] & REG_B_SET)) {
226 timer_del(s->update_timer);
227 return;
229 if ((s->cmos_data[RTC_REG_C] & REG_C_UF) &&
230 (s->cmos_data[RTC_REG_C] & REG_C_AF)) {
231 timer_del(s->update_timer);
232 return;
235 guest_nsec = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND;
236 /* if UF is clear, reprogram to next second */
237 next_update_time = qemu_clock_get_ns(rtc_clock)
238 + NANOSECONDS_PER_SECOND - guest_nsec;
240 /* Compute time of next alarm. One second is already accounted
241 * for in next_update_time.
243 next_alarm_sec = get_next_alarm(s);
244 s->next_alarm_time = next_update_time +
245 (next_alarm_sec - 1) * NANOSECONDS_PER_SECOND;
247 if (s->cmos_data[RTC_REG_C] & REG_C_UF) {
248 /* UF is set, but AF is clear. Program the timer to target
249 * the alarm time. */
250 next_update_time = s->next_alarm_time;
252 if (next_update_time != timer_expire_time_ns(s->update_timer)) {
253 timer_mod(s->update_timer, next_update_time);
257 static inline uint8_t convert_hour(RTCState *s, uint8_t hour)
259 if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
260 hour %= 12;
261 if (s->cmos_data[RTC_HOURS] & 0x80) {
262 hour += 12;
265 return hour;
268 static uint64_t get_next_alarm(RTCState *s)
270 int32_t alarm_sec, alarm_min, alarm_hour, cur_hour, cur_min, cur_sec;
271 int32_t hour, min, sec;
273 rtc_update_time(s);
275 alarm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS_ALARM]);
276 alarm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES_ALARM]);
277 alarm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS_ALARM]);
278 alarm_hour = alarm_hour == -1 ? -1 : convert_hour(s, alarm_hour);
280 cur_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
281 cur_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
282 cur_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS]);
283 cur_hour = convert_hour(s, cur_hour);
285 if (alarm_hour == -1) {
286 alarm_hour = cur_hour;
287 if (alarm_min == -1) {
288 alarm_min = cur_min;
289 if (alarm_sec == -1) {
290 alarm_sec = cur_sec + 1;
291 } else if (cur_sec > alarm_sec) {
292 alarm_min++;
294 } else if (cur_min == alarm_min) {
295 if (alarm_sec == -1) {
296 alarm_sec = cur_sec + 1;
297 } else {
298 if (cur_sec > alarm_sec) {
299 alarm_hour++;
302 if (alarm_sec == SEC_PER_MIN) {
303 /* wrap to next hour, minutes is not in don't care mode */
304 alarm_sec = 0;
305 alarm_hour++;
307 } else if (cur_min > alarm_min) {
308 alarm_hour++;
310 } else if (cur_hour == alarm_hour) {
311 if (alarm_min == -1) {
312 alarm_min = cur_min;
313 if (alarm_sec == -1) {
314 alarm_sec = cur_sec + 1;
315 } else if (cur_sec > alarm_sec) {
316 alarm_min++;
319 if (alarm_sec == SEC_PER_MIN) {
320 alarm_sec = 0;
321 alarm_min++;
323 /* wrap to next day, hour is not in don't care mode */
324 alarm_min %= MIN_PER_HOUR;
325 } else if (cur_min == alarm_min) {
326 if (alarm_sec == -1) {
327 alarm_sec = cur_sec + 1;
329 /* wrap to next day, hours+minutes not in don't care mode */
330 alarm_sec %= SEC_PER_MIN;
334 /* values that are still don't care fire at the next min/sec */
335 if (alarm_min == -1) {
336 alarm_min = 0;
338 if (alarm_sec == -1) {
339 alarm_sec = 0;
342 /* keep values in range */
343 if (alarm_sec == SEC_PER_MIN) {
344 alarm_sec = 0;
345 alarm_min++;
347 if (alarm_min == MIN_PER_HOUR) {
348 alarm_min = 0;
349 alarm_hour++;
351 alarm_hour %= HOUR_PER_DAY;
353 hour = alarm_hour - cur_hour;
354 min = hour * MIN_PER_HOUR + alarm_min - cur_min;
355 sec = min * SEC_PER_MIN + alarm_sec - cur_sec;
356 return sec <= 0 ? sec + SEC_PER_DAY : sec;
359 static void rtc_update_timer(void *opaque)
361 RTCState *s = opaque;
362 int32_t irqs = REG_C_UF;
363 int32_t new_irqs;
365 assert((s->cmos_data[RTC_REG_A] & 0x60) != 0x60);
367 /* UIP might have been latched, update time and clear it. */
368 rtc_update_time(s);
369 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
371 if (qemu_clock_get_ns(rtc_clock) >= s->next_alarm_time) {
372 irqs |= REG_C_AF;
373 if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
374 qemu_system_wakeup_request(QEMU_WAKEUP_REASON_RTC);
378 new_irqs = irqs & ~s->cmos_data[RTC_REG_C];
379 s->cmos_data[RTC_REG_C] |= irqs;
380 if ((new_irqs & s->cmos_data[RTC_REG_B]) != 0) {
381 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
382 qemu_irq_raise(s->irq);
384 check_update_timer(s);
387 static void cmos_ioport_write(void *opaque, hwaddr addr,
388 uint64_t data, unsigned size)
390 RTCState *s = opaque;
392 if ((addr & 1) == 0) {
393 s->cmos_index = data & 0x7f;
394 } else {
395 CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02" PRIx64 "\n",
396 s->cmos_index, data);
397 switch(s->cmos_index) {
398 case RTC_SECONDS_ALARM:
399 case RTC_MINUTES_ALARM:
400 case RTC_HOURS_ALARM:
401 s->cmos_data[s->cmos_index] = data;
402 check_update_timer(s);
403 break;
404 case RTC_IBM_PS2_CENTURY_BYTE:
405 s->cmos_index = RTC_CENTURY;
406 /* fall through */
407 case RTC_CENTURY:
408 case RTC_SECONDS:
409 case RTC_MINUTES:
410 case RTC_HOURS:
411 case RTC_DAY_OF_WEEK:
412 case RTC_DAY_OF_MONTH:
413 case RTC_MONTH:
414 case RTC_YEAR:
415 s->cmos_data[s->cmos_index] = data;
416 /* if in set mode, do not update the time */
417 if (rtc_running(s)) {
418 rtc_set_time(s);
419 check_update_timer(s);
421 break;
422 case RTC_REG_A:
423 if ((data & 0x60) == 0x60) {
424 if (rtc_running(s)) {
425 rtc_update_time(s);
427 /* What happens to UIP when divider reset is enabled is
428 * unclear from the datasheet. Shouldn't matter much
429 * though.
431 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
432 } else if (((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) &&
433 (data & 0x70) <= 0x20) {
434 /* when the divider reset is removed, the first update cycle
435 * begins one-half second later*/
436 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
437 s->offset = 500000000;
438 rtc_set_time(s);
440 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
442 /* UIP bit is read only */
443 s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
444 (s->cmos_data[RTC_REG_A] & REG_A_UIP);
445 periodic_timer_update(s, qemu_clock_get_ns(rtc_clock));
446 check_update_timer(s);
447 break;
448 case RTC_REG_B:
449 if (data & REG_B_SET) {
450 /* update cmos to when the rtc was stopping */
451 if (rtc_running(s)) {
452 rtc_update_time(s);
454 /* set mode: reset UIP mode */
455 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
456 data &= ~REG_B_UIE;
457 } else {
458 /* if disabling set mode, update the time */
459 if ((s->cmos_data[RTC_REG_B] & REG_B_SET) &&
460 (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20) {
461 s->offset = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND;
462 rtc_set_time(s);
465 /* if an interrupt flag is already set when the interrupt
466 * becomes enabled, raise an interrupt immediately. */
467 if (data & s->cmos_data[RTC_REG_C] & REG_C_MASK) {
468 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
469 qemu_irq_raise(s->irq);
470 } else {
471 s->cmos_data[RTC_REG_C] &= ~REG_C_IRQF;
472 qemu_irq_lower(s->irq);
474 s->cmos_data[RTC_REG_B] = data;
475 periodic_timer_update(s, qemu_clock_get_ns(rtc_clock));
476 check_update_timer(s);
477 break;
478 case RTC_REG_C:
479 case RTC_REG_D:
480 /* cannot write to them */
481 break;
482 default:
483 s->cmos_data[s->cmos_index] = data;
484 break;
489 static inline int rtc_to_bcd(RTCState *s, int a)
491 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
492 return a;
493 } else {
494 return ((a / 10) << 4) | (a % 10);
498 static inline int rtc_from_bcd(RTCState *s, int a)
500 if ((a & 0xc0) == 0xc0) {
501 return -1;
503 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
504 return a;
505 } else {
506 return ((a >> 4) * 10) + (a & 0x0f);
510 static void rtc_get_time(RTCState *s, struct tm *tm)
512 tm->tm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
513 tm->tm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
514 tm->tm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
515 if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
516 tm->tm_hour %= 12;
517 if (s->cmos_data[RTC_HOURS] & 0x80) {
518 tm->tm_hour += 12;
521 tm->tm_wday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1;
522 tm->tm_mday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
523 tm->tm_mon = rtc_from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
524 tm->tm_year =
525 rtc_from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year +
526 rtc_from_bcd(s, s->cmos_data[RTC_CENTURY]) * 100 - 1900;
529 static QLIST_HEAD(, RTCState) rtc_devices =
530 QLIST_HEAD_INITIALIZER(rtc_devices);
532 #ifdef TARGET_I386
533 void qmp_rtc_reset_reinjection(Error **errp)
535 RTCState *s;
537 QLIST_FOREACH(s, &rtc_devices, link) {
538 s->irq_coalesced = 0;
541 #endif
543 static void rtc_set_time(RTCState *s)
545 struct tm tm;
547 rtc_get_time(s, &tm);
548 s->base_rtc = mktimegm(&tm);
549 s->last_update = qemu_clock_get_ns(rtc_clock);
551 qapi_event_send_rtc_change(qemu_timedate_diff(&tm), &error_abort);
554 static void rtc_set_cmos(RTCState *s, const struct tm *tm)
556 int year;
558 s->cmos_data[RTC_SECONDS] = rtc_to_bcd(s, tm->tm_sec);
559 s->cmos_data[RTC_MINUTES] = rtc_to_bcd(s, tm->tm_min);
560 if (s->cmos_data[RTC_REG_B] & REG_B_24H) {
561 /* 24 hour format */
562 s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour);
563 } else {
564 /* 12 hour format */
565 int h = (tm->tm_hour % 12) ? tm->tm_hour % 12 : 12;
566 s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, h);
567 if (tm->tm_hour >= 12)
568 s->cmos_data[RTC_HOURS] |= 0x80;
570 s->cmos_data[RTC_DAY_OF_WEEK] = rtc_to_bcd(s, tm->tm_wday + 1);
571 s->cmos_data[RTC_DAY_OF_MONTH] = rtc_to_bcd(s, tm->tm_mday);
572 s->cmos_data[RTC_MONTH] = rtc_to_bcd(s, tm->tm_mon + 1);
573 year = tm->tm_year + 1900 - s->base_year;
574 s->cmos_data[RTC_YEAR] = rtc_to_bcd(s, year % 100);
575 s->cmos_data[RTC_CENTURY] = rtc_to_bcd(s, year / 100);
578 static void rtc_update_time(RTCState *s)
580 struct tm ret;
581 time_t guest_sec;
582 int64_t guest_nsec;
584 guest_nsec = get_guest_rtc_ns(s);
585 guest_sec = guest_nsec / NANOSECONDS_PER_SECOND;
586 gmtime_r(&guest_sec, &ret);
588 /* Is SET flag of Register B disabled? */
589 if ((s->cmos_data[RTC_REG_B] & REG_B_SET) == 0) {
590 rtc_set_cmos(s, &ret);
594 static int update_in_progress(RTCState *s)
596 int64_t guest_nsec;
598 if (!rtc_running(s)) {
599 return 0;
601 if (timer_pending(s->update_timer)) {
602 int64_t next_update_time = timer_expire_time_ns(s->update_timer);
603 /* Latch UIP until the timer expires. */
604 if (qemu_clock_get_ns(rtc_clock) >=
605 (next_update_time - UIP_HOLD_LENGTH)) {
606 s->cmos_data[RTC_REG_A] |= REG_A_UIP;
607 return 1;
611 guest_nsec = get_guest_rtc_ns(s);
612 /* UIP bit will be set at last 244us of every second. */
613 if ((guest_nsec % NANOSECONDS_PER_SECOND) >=
614 (NANOSECONDS_PER_SECOND - UIP_HOLD_LENGTH)) {
615 return 1;
617 return 0;
620 static uint64_t cmos_ioport_read(void *opaque, hwaddr addr,
621 unsigned size)
623 RTCState *s = opaque;
624 int ret;
625 if ((addr & 1) == 0) {
626 return 0xff;
627 } else {
628 switch(s->cmos_index) {
629 case RTC_IBM_PS2_CENTURY_BYTE:
630 s->cmos_index = RTC_CENTURY;
631 /* fall through */
632 case RTC_CENTURY:
633 case RTC_SECONDS:
634 case RTC_MINUTES:
635 case RTC_HOURS:
636 case RTC_DAY_OF_WEEK:
637 case RTC_DAY_OF_MONTH:
638 case RTC_MONTH:
639 case RTC_YEAR:
640 /* if not in set mode, calibrate cmos before
641 * reading*/
642 if (rtc_running(s)) {
643 rtc_update_time(s);
645 ret = s->cmos_data[s->cmos_index];
646 break;
647 case RTC_REG_A:
648 if (update_in_progress(s)) {
649 s->cmos_data[s->cmos_index] |= REG_A_UIP;
650 } else {
651 s->cmos_data[s->cmos_index] &= ~REG_A_UIP;
653 ret = s->cmos_data[s->cmos_index];
654 break;
655 case RTC_REG_C:
656 ret = s->cmos_data[s->cmos_index];
657 qemu_irq_lower(s->irq);
658 s->cmos_data[RTC_REG_C] = 0x00;
659 if (ret & (REG_C_UF | REG_C_AF)) {
660 check_update_timer(s);
662 #ifdef TARGET_I386
663 if(s->irq_coalesced &&
664 (s->cmos_data[RTC_REG_B] & REG_B_PIE) &&
665 s->irq_reinject_on_ack_count < RTC_REINJECT_ON_ACK_COUNT) {
666 s->irq_reinject_on_ack_count++;
667 s->cmos_data[RTC_REG_C] |= REG_C_IRQF | REG_C_PF;
668 apic_reset_irq_delivered();
669 DPRINTF_C("cmos: injecting on ack\n");
670 qemu_irq_raise(s->irq);
671 if (apic_get_irq_delivered()) {
672 s->irq_coalesced--;
673 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
674 s->irq_coalesced);
677 #endif
678 break;
679 default:
680 ret = s->cmos_data[s->cmos_index];
681 break;
683 CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n",
684 s->cmos_index, ret);
685 return ret;
689 void rtc_set_memory(ISADevice *dev, int addr, int val)
691 RTCState *s = MC146818_RTC(dev);
692 if (addr >= 0 && addr <= 127)
693 s->cmos_data[addr] = val;
696 int rtc_get_memory(ISADevice *dev, int addr)
698 RTCState *s = MC146818_RTC(dev);
699 assert(addr >= 0 && addr <= 127);
700 return s->cmos_data[addr];
703 static void rtc_set_date_from_host(ISADevice *dev)
705 RTCState *s = MC146818_RTC(dev);
706 struct tm tm;
708 qemu_get_timedate(&tm, 0);
710 s->base_rtc = mktimegm(&tm);
711 s->last_update = qemu_clock_get_ns(rtc_clock);
712 s->offset = 0;
714 /* set the CMOS date */
715 rtc_set_cmos(s, &tm);
718 static int rtc_post_load(void *opaque, int version_id)
720 RTCState *s = opaque;
722 if (version_id <= 2) {
723 rtc_set_time(s);
724 s->offset = 0;
725 check_update_timer(s);
728 uint64_t now = qemu_clock_get_ns(rtc_clock);
729 if (now < s->next_periodic_time ||
730 now > (s->next_periodic_time + get_max_clock_jump())) {
731 periodic_timer_update(s, qemu_clock_get_ns(rtc_clock));
734 #ifdef TARGET_I386
735 if (version_id >= 2) {
736 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
737 rtc_coalesced_timer_update(s);
740 #endif
741 return 0;
744 static bool rtc_irq_reinject_on_ack_count_needed(void *opaque)
746 RTCState *s = (RTCState *)opaque;
747 return s->irq_reinject_on_ack_count != 0;
750 static const VMStateDescription vmstate_rtc_irq_reinject_on_ack_count = {
751 .name = "mc146818rtc/irq_reinject_on_ack_count",
752 .version_id = 1,
753 .minimum_version_id = 1,
754 .needed = rtc_irq_reinject_on_ack_count_needed,
755 .fields = (VMStateField[]) {
756 VMSTATE_UINT16(irq_reinject_on_ack_count, RTCState),
757 VMSTATE_END_OF_LIST()
761 static const VMStateDescription vmstate_rtc = {
762 .name = "mc146818rtc",
763 .version_id = 3,
764 .minimum_version_id = 1,
765 .post_load = rtc_post_load,
766 .fields = (VMStateField[]) {
767 VMSTATE_BUFFER(cmos_data, RTCState),
768 VMSTATE_UINT8(cmos_index, RTCState),
769 VMSTATE_UNUSED(7*4),
770 VMSTATE_TIMER_PTR(periodic_timer, RTCState),
771 VMSTATE_INT64(next_periodic_time, RTCState),
772 VMSTATE_UNUSED(3*8),
773 VMSTATE_UINT32_V(irq_coalesced, RTCState, 2),
774 VMSTATE_UINT32_V(period, RTCState, 2),
775 VMSTATE_UINT64_V(base_rtc, RTCState, 3),
776 VMSTATE_UINT64_V(last_update, RTCState, 3),
777 VMSTATE_INT64_V(offset, RTCState, 3),
778 VMSTATE_TIMER_PTR_V(update_timer, RTCState, 3),
779 VMSTATE_UINT64_V(next_alarm_time, RTCState, 3),
780 VMSTATE_END_OF_LIST()
782 .subsections = (const VMStateDescription*[]) {
783 &vmstate_rtc_irq_reinject_on_ack_count,
784 NULL
788 static void rtc_notify_clock_reset(Notifier *notifier, void *data)
790 RTCState *s = container_of(notifier, RTCState, clock_reset_notifier);
791 int64_t now = *(int64_t *)data;
793 rtc_set_date_from_host(ISA_DEVICE(s));
794 periodic_timer_update(s, now);
795 check_update_timer(s);
796 #ifdef TARGET_I386
797 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
798 rtc_coalesced_timer_update(s);
800 #endif
803 /* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE)
804 BIOS will read it and start S3 resume at POST Entry */
805 static void rtc_notify_suspend(Notifier *notifier, void *data)
807 RTCState *s = container_of(notifier, RTCState, suspend_notifier);
808 rtc_set_memory(ISA_DEVICE(s), 0xF, 0xFE);
811 static void rtc_reset(void *opaque)
813 RTCState *s = opaque;
815 s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE);
816 s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF);
817 check_update_timer(s);
819 qemu_irq_lower(s->irq);
821 #ifdef TARGET_I386
822 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
823 s->irq_coalesced = 0;
824 s->irq_reinject_on_ack_count = 0;
826 #endif
829 static const MemoryRegionOps cmos_ops = {
830 .read = cmos_ioport_read,
831 .write = cmos_ioport_write,
832 .impl = {
833 .min_access_size = 1,
834 .max_access_size = 1,
836 .endianness = DEVICE_LITTLE_ENDIAN,
839 static void rtc_get_date(Object *obj, struct tm *current_tm, Error **errp)
841 RTCState *s = MC146818_RTC(obj);
843 rtc_update_time(s);
844 rtc_get_time(s, current_tm);
847 static void rtc_realizefn(DeviceState *dev, Error **errp)
849 ISADevice *isadev = ISA_DEVICE(dev);
850 RTCState *s = MC146818_RTC(dev);
851 int base = 0x70;
853 s->cmos_data[RTC_REG_A] = 0x26;
854 s->cmos_data[RTC_REG_B] = 0x02;
855 s->cmos_data[RTC_REG_C] = 0x00;
856 s->cmos_data[RTC_REG_D] = 0x80;
858 /* This is for historical reasons. The default base year qdev property
859 * was set to 2000 for most machine types before the century byte was
860 * implemented.
862 * This if statement means that the century byte will be always 0
863 * (at least until 2079...) for base_year = 1980, but will be set
864 * correctly for base_year = 2000.
866 if (s->base_year == 2000) {
867 s->base_year = 0;
870 rtc_set_date_from_host(isadev);
872 #ifdef TARGET_I386
873 switch (s->lost_tick_policy) {
874 case LOST_TICK_POLICY_SLEW:
875 s->coalesced_timer =
876 timer_new_ns(rtc_clock, rtc_coalesced_timer, s);
877 break;
878 case LOST_TICK_POLICY_DISCARD:
879 break;
880 default:
881 error_setg(errp, "Invalid lost tick policy.");
882 return;
884 #endif
886 s->periodic_timer = timer_new_ns(rtc_clock, rtc_periodic_timer, s);
887 s->update_timer = timer_new_ns(rtc_clock, rtc_update_timer, s);
888 check_update_timer(s);
890 s->clock_reset_notifier.notify = rtc_notify_clock_reset;
891 qemu_clock_register_reset_notifier(rtc_clock,
892 &s->clock_reset_notifier);
894 s->suspend_notifier.notify = rtc_notify_suspend;
895 qemu_register_suspend_notifier(&s->suspend_notifier);
897 memory_region_init_io(&s->io, OBJECT(s), &cmos_ops, s, "rtc", 2);
898 isa_register_ioport(isadev, &s->io, base);
900 qdev_set_legacy_instance_id(dev, base, 3);
901 qemu_register_reset(rtc_reset, s);
903 object_property_add_tm(OBJECT(s), "date", rtc_get_date, NULL);
905 object_property_add_alias(qdev_get_machine(), "rtc-time",
906 OBJECT(s), "date", NULL);
909 ISADevice *rtc_init(ISABus *bus, int base_year, qemu_irq intercept_irq)
911 DeviceState *dev;
912 ISADevice *isadev;
913 RTCState *s;
915 isadev = isa_create(bus, TYPE_MC146818_RTC);
916 dev = DEVICE(isadev);
917 s = MC146818_RTC(isadev);
918 qdev_prop_set_int32(dev, "base_year", base_year);
919 qdev_init_nofail(dev);
920 if (intercept_irq) {
921 s->irq = intercept_irq;
922 } else {
923 isa_init_irq(isadev, &s->irq, RTC_ISA_IRQ);
925 QLIST_INSERT_HEAD(&rtc_devices, s, link);
927 return isadev;
930 static Property mc146818rtc_properties[] = {
931 DEFINE_PROP_INT32("base_year", RTCState, base_year, 1980),
932 DEFINE_PROP_LOSTTICKPOLICY("lost_tick_policy", RTCState,
933 lost_tick_policy, LOST_TICK_POLICY_DISCARD),
934 DEFINE_PROP_END_OF_LIST(),
937 static void rtc_class_initfn(ObjectClass *klass, void *data)
939 DeviceClass *dc = DEVICE_CLASS(klass);
941 dc->realize = rtc_realizefn;
942 dc->vmsd = &vmstate_rtc;
943 dc->props = mc146818rtc_properties;
944 /* Reason: needs to be wired up by rtc_init() */
945 dc->cannot_instantiate_with_device_add_yet = true;
948 static void rtc_finalize(Object *obj)
950 object_property_del(qdev_get_machine(), "rtc", NULL);
953 static const TypeInfo mc146818rtc_info = {
954 .name = TYPE_MC146818_RTC,
955 .parent = TYPE_ISA_DEVICE,
956 .instance_size = sizeof(RTCState),
957 .class_init = rtc_class_initfn,
958 .instance_finalize = rtc_finalize,
961 static void mc146818rtc_register_types(void)
963 type_register_static(&mc146818rtc_info);
966 type_init(mc146818rtc_register_types)