2 * defines common to all virtual CPUs
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
22 #include "qemu-common.h"
24 #include "cpu-common.h"
26 /* some important defines:
28 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
31 * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and
32 * otherwise little endian.
34 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
36 * TARGET_WORDS_BIGENDIAN : same for target cpu
39 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
45 static inline uint16_t tswap16(uint16_t s
)
50 static inline uint32_t tswap32(uint32_t s
)
55 static inline uint64_t tswap64(uint64_t s
)
60 static inline void tswap16s(uint16_t *s
)
65 static inline void tswap32s(uint32_t *s
)
70 static inline void tswap64s(uint64_t *s
)
77 static inline uint16_t tswap16(uint16_t s
)
82 static inline uint32_t tswap32(uint32_t s
)
87 static inline uint64_t tswap64(uint64_t s
)
92 static inline void tswap16s(uint16_t *s
)
96 static inline void tswap32s(uint32_t *s
)
100 static inline void tswap64s(uint64_t *s
)
106 #if TARGET_LONG_SIZE == 4
107 #define tswapl(s) tswap32(s)
108 #define tswapls(s) tswap32s((uint32_t *)(s))
109 #define bswaptls(s) bswap32s(s)
111 #define tswapl(s) tswap64(s)
112 #define tswapls(s) tswap64s((uint64_t *)(s))
113 #define bswaptls(s) bswap64s(s)
116 /* CPU memory access without any memory or io remapping */
119 * the generic syntax for the memory accesses is:
121 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
123 * store: st{type}{size}{endian}_{access_type}(ptr, val)
126 * (empty): integer access
130 * (empty): for floats or 32 bit size
141 * (empty): target cpu endianness or 8 bit access
142 * r : reversed target cpu endianness (not implemented yet)
143 * be : big endian (not implemented yet)
144 * le : little endian (not implemented yet)
147 * raw : host memory access
148 * user : user mode access using soft MMU
149 * kernel : kernel mode access using soft MMU
152 /* target-endianness CPU memory access functions */
153 #if defined(TARGET_WORDS_BIGENDIAN)
154 #define lduw_p(p) lduw_be_p(p)
155 #define ldsw_p(p) ldsw_be_p(p)
156 #define ldl_p(p) ldl_be_p(p)
157 #define ldq_p(p) ldq_be_p(p)
158 #define ldfl_p(p) ldfl_be_p(p)
159 #define ldfq_p(p) ldfq_be_p(p)
160 #define stw_p(p, v) stw_be_p(p, v)
161 #define stl_p(p, v) stl_be_p(p, v)
162 #define stq_p(p, v) stq_be_p(p, v)
163 #define stfl_p(p, v) stfl_be_p(p, v)
164 #define stfq_p(p, v) stfq_be_p(p, v)
166 #define lduw_p(p) lduw_le_p(p)
167 #define ldsw_p(p) ldsw_le_p(p)
168 #define ldl_p(p) ldl_le_p(p)
169 #define ldq_p(p) ldq_le_p(p)
170 #define ldfl_p(p) ldfl_le_p(p)
171 #define ldfq_p(p) ldfq_le_p(p)
172 #define stw_p(p, v) stw_le_p(p, v)
173 #define stl_p(p, v) stl_le_p(p, v)
174 #define stq_p(p, v) stq_le_p(p, v)
175 #define stfl_p(p, v) stfl_le_p(p, v)
176 #define stfq_p(p, v) stfq_le_p(p, v)
179 /* MMU memory access macros */
181 #if defined(CONFIG_USER_ONLY)
183 #include "qemu-types.h"
185 /* On some host systems the guest address space is reserved on the host.
186 * This allows the guest address space to be offset to a convenient location.
188 #if defined(CONFIG_USE_GUEST_BASE)
189 extern unsigned long guest_base
;
190 extern int have_guest_base
;
191 extern unsigned long reserved_va
;
192 #define GUEST_BASE guest_base
193 #define RESERVED_VA reserved_va
195 #define GUEST_BASE 0ul
196 #define RESERVED_VA 0ul
199 /* All direct uses of g2h and h2g need to go away for usermode softmmu. */
200 #define g2h(x) ((void *)((unsigned long)(target_ulong)(x) + GUEST_BASE))
202 #if HOST_LONG_BITS <= TARGET_VIRT_ADDR_SPACE_BITS
203 #define h2g_valid(x) 1
205 #define h2g_valid(x) ({ \
206 unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
207 (__guest < (1ul << TARGET_VIRT_ADDR_SPACE_BITS)) && \
208 (!RESERVED_VA || (__guest < RESERVED_VA)); \
213 unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
214 /* Check if given address fits target address space */ \
215 assert(h2g_valid(x)); \
219 #define saddr(x) g2h(x)
220 #define laddr(x) g2h(x)
222 #else /* !CONFIG_USER_ONLY */
223 /* NOTE: we use double casts if pointers and target_ulong have
225 #define saddr(x) (uint8_t *)(intptr_t)(x)
226 #define laddr(x) (uint8_t *)(intptr_t)(x)
229 #define ldub_raw(p) ldub_p(laddr((p)))
230 #define ldsb_raw(p) ldsb_p(laddr((p)))
231 #define lduw_raw(p) lduw_p(laddr((p)))
232 #define ldsw_raw(p) ldsw_p(laddr((p)))
233 #define ldl_raw(p) ldl_p(laddr((p)))
234 #define ldq_raw(p) ldq_p(laddr((p)))
235 #define ldfl_raw(p) ldfl_p(laddr((p)))
236 #define ldfq_raw(p) ldfq_p(laddr((p)))
237 #define stb_raw(p, v) stb_p(saddr((p)), v)
238 #define stw_raw(p, v) stw_p(saddr((p)), v)
239 #define stl_raw(p, v) stl_p(saddr((p)), v)
240 #define stq_raw(p, v) stq_p(saddr((p)), v)
241 #define stfl_raw(p, v) stfl_p(saddr((p)), v)
242 #define stfq_raw(p, v) stfq_p(saddr((p)), v)
245 #if defined(CONFIG_USER_ONLY)
247 /* if user mode, no other memory access functions */
248 #define ldub(p) ldub_raw(p)
249 #define ldsb(p) ldsb_raw(p)
250 #define lduw(p) lduw_raw(p)
251 #define ldsw(p) ldsw_raw(p)
252 #define ldl(p) ldl_raw(p)
253 #define ldq(p) ldq_raw(p)
254 #define ldfl(p) ldfl_raw(p)
255 #define ldfq(p) ldfq_raw(p)
256 #define stb(p, v) stb_raw(p, v)
257 #define stw(p, v) stw_raw(p, v)
258 #define stl(p, v) stl_raw(p, v)
259 #define stq(p, v) stq_raw(p, v)
260 #define stfl(p, v) stfl_raw(p, v)
261 #define stfq(p, v) stfq_raw(p, v)
263 #define cpu_ldub_code(env1, p) ldub_raw(p)
264 #define cpu_ldsb_code(env1, p) ldsb_raw(p)
265 #define cpu_lduw_code(env1, p) lduw_raw(p)
266 #define cpu_ldsw_code(env1, p) ldsw_raw(p)
267 #define cpu_ldl_code(env1, p) ldl_raw(p)
268 #define cpu_ldq_code(env1, p) ldq_raw(p)
270 #define cpu_ldub_data(env, addr) ldub_raw(addr)
271 #define cpu_lduw_data(env, addr) lduw_raw(addr)
272 #define cpu_ldsw_data(env, addr) ldsw_raw(addr)
273 #define cpu_ldl_data(env, addr) ldl_raw(addr)
274 #define cpu_ldq_data(env, addr) ldq_raw(addr)
276 #define cpu_stb_data(env, addr, data) stb_raw(addr, data)
277 #define cpu_stw_data(env, addr, data) stw_raw(addr, data)
278 #define cpu_stl_data(env, addr, data) stl_raw(addr, data)
279 #define cpu_stq_data(env, addr, data) stq_raw(addr, data)
281 #define cpu_ldub_kernel(env, addr) ldub_raw(addr)
282 #define cpu_lduw_kernel(env, addr) lduw_raw(addr)
283 #define cpu_ldsw_kernel(env, addr) ldsw_raw(addr)
284 #define cpu_ldl_kernel(env, addr) ldl_raw(addr)
285 #define cpu_ldq_kernel(env, addr) ldq_raw(addr)
287 #define cpu_stb_kernel(env, addr, data) stb_raw(addr, data)
288 #define cpu_stw_kernel(env, addr, data) stw_raw(addr, data)
289 #define cpu_stl_kernel(env, addr, data) stl_raw(addr, data)
290 #define cpu_stq_kernel(env, addr, data) stq_raw(addr, data)
292 #define ldub_kernel(p) ldub_raw(p)
293 #define ldsb_kernel(p) ldsb_raw(p)
294 #define lduw_kernel(p) lduw_raw(p)
295 #define ldsw_kernel(p) ldsw_raw(p)
296 #define ldl_kernel(p) ldl_raw(p)
297 #define ldq_kernel(p) ldq_raw(p)
298 #define ldfl_kernel(p) ldfl_raw(p)
299 #define ldfq_kernel(p) ldfq_raw(p)
300 #define stb_kernel(p, v) stb_raw(p, v)
301 #define stw_kernel(p, v) stw_raw(p, v)
302 #define stl_kernel(p, v) stl_raw(p, v)
303 #define stq_kernel(p, v) stq_raw(p, v)
304 #define stfl_kernel(p, v) stfl_raw(p, v)
305 #define stfq_kernel(p, vt) stfq_raw(p, v)
307 #define cpu_ldub_data(env, addr) ldub_raw(addr)
308 #define cpu_lduw_data(env, addr) lduw_raw(addr)
309 #define cpu_ldl_data(env, addr) ldl_raw(addr)
311 #define cpu_stb_data(env, addr, data) stb_raw(addr, data)
312 #define cpu_stw_data(env, addr, data) stw_raw(addr, data)
313 #define cpu_stl_data(env, addr, data) stl_raw(addr, data)
314 #endif /* defined(CONFIG_USER_ONLY) */
316 /* page related stuff */
318 #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
319 #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
320 #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
322 /* ??? These should be the larger of uintptr_t and target_ulong. */
323 extern uintptr_t qemu_real_host_page_size
;
324 extern uintptr_t qemu_host_page_size
;
325 extern uintptr_t qemu_host_page_mask
;
327 #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
329 /* same as PROT_xxx */
330 #define PAGE_READ 0x0001
331 #define PAGE_WRITE 0x0002
332 #define PAGE_EXEC 0x0004
333 #define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
334 #define PAGE_VALID 0x0008
335 /* original state of the write flag (used when tracking self-modifying
337 #define PAGE_WRITE_ORG 0x0010
338 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
339 /* FIXME: Code that sets/uses this is broken and needs to go away. */
340 #define PAGE_RESERVED 0x0020
343 #if defined(CONFIG_USER_ONLY)
344 void page_dump(FILE *f
);
346 typedef int (*walk_memory_regions_fn
)(void *, abi_ulong
,
347 abi_ulong
, unsigned long);
348 int walk_memory_regions(void *, walk_memory_regions_fn
);
350 int page_get_flags(target_ulong address
);
351 void page_set_flags(target_ulong start
, target_ulong end
, int flags
);
352 int page_check_range(target_ulong start
, target_ulong len
, int flags
);
355 CPUArchState
*cpu_copy(CPUArchState
*env
);
356 CPUArchState
*qemu_get_cpu(int cpu
);
358 #define CPU_DUMP_CODE 0x00010000
359 #define CPU_DUMP_FPU 0x00020000 /* dump FPU register state, not just integer */
360 /* dump info about TCG QEMU's condition code optimization state */
361 #define CPU_DUMP_CCOP 0x00040000
363 void cpu_dump_state(CPUArchState
*env
, FILE *f
, fprintf_function cpu_fprintf
,
365 void cpu_dump_statistics(CPUArchState
*env
, FILE *f
, fprintf_function cpu_fprintf
,
368 void QEMU_NORETURN
cpu_abort(CPUArchState
*env
, const char *fmt
, ...)
370 extern CPUArchState
*first_cpu
;
371 DECLARE_TLS(CPUArchState
*,cpu_single_env
);
372 #define cpu_single_env tls_var(cpu_single_env)
374 /* Flags for use in ENV->INTERRUPT_PENDING.
376 The numbers assigned here are non-sequential in order to preserve
377 binary compatibility with the vmstate dump. Bit 0 (0x0001) was
378 previously used for CPU_INTERRUPT_EXIT, and is cleared when loading
381 /* External hardware interrupt pending. This is typically used for
382 interrupts from devices. */
383 #define CPU_INTERRUPT_HARD 0x0002
385 /* Exit the current TB. This is typically used when some system-level device
386 makes some change to the memory mapping. E.g. the a20 line change. */
387 #define CPU_INTERRUPT_EXITTB 0x0004
390 #define CPU_INTERRUPT_HALT 0x0020
392 /* Debug event pending. */
393 #define CPU_INTERRUPT_DEBUG 0x0080
395 /* Several target-specific external hardware interrupts. Each target/cpu.h
396 should define proper names based on these defines. */
397 #define CPU_INTERRUPT_TGT_EXT_0 0x0008
398 #define CPU_INTERRUPT_TGT_EXT_1 0x0010
399 #define CPU_INTERRUPT_TGT_EXT_2 0x0040
400 #define CPU_INTERRUPT_TGT_EXT_3 0x0200
401 #define CPU_INTERRUPT_TGT_EXT_4 0x1000
403 /* Several target-specific internal interrupts. These differ from the
404 preceding target-specific interrupts in that they are intended to
405 originate from within the cpu itself, typically in response to some
406 instruction being executed. These, therefore, are not masked while
407 single-stepping within the debugger. */
408 #define CPU_INTERRUPT_TGT_INT_0 0x0100
409 #define CPU_INTERRUPT_TGT_INT_1 0x0400
410 #define CPU_INTERRUPT_TGT_INT_2 0x0800
411 #define CPU_INTERRUPT_TGT_INT_3 0x2000
413 /* First unused bit: 0x4000. */
415 /* The set of all bits that should be masked when single-stepping. */
416 #define CPU_INTERRUPT_SSTEP_MASK \
417 (CPU_INTERRUPT_HARD \
418 | CPU_INTERRUPT_TGT_EXT_0 \
419 | CPU_INTERRUPT_TGT_EXT_1 \
420 | CPU_INTERRUPT_TGT_EXT_2 \
421 | CPU_INTERRUPT_TGT_EXT_3 \
422 | CPU_INTERRUPT_TGT_EXT_4)
424 #ifndef CONFIG_USER_ONLY
425 typedef void (*CPUInterruptHandler
)(CPUArchState
*, int);
427 extern CPUInterruptHandler cpu_interrupt_handler
;
429 static inline void cpu_interrupt(CPUArchState
*s
, int mask
)
431 cpu_interrupt_handler(s
, mask
);
433 #else /* USER_ONLY */
434 void cpu_interrupt(CPUArchState
*env
, int mask
);
435 #endif /* USER_ONLY */
437 void cpu_reset_interrupt(CPUArchState
*env
, int mask
);
439 void cpu_exit(CPUArchState
*s
);
441 bool qemu_cpu_has_work(CPUArchState
*env
);
443 /* Breakpoint/watchpoint flags */
444 #define BP_MEM_READ 0x01
445 #define BP_MEM_WRITE 0x02
446 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE)
447 #define BP_STOP_BEFORE_ACCESS 0x04
448 #define BP_WATCHPOINT_HIT 0x08
452 int cpu_breakpoint_insert(CPUArchState
*env
, target_ulong pc
, int flags
,
453 CPUBreakpoint
**breakpoint
);
454 int cpu_breakpoint_remove(CPUArchState
*env
, target_ulong pc
, int flags
);
455 void cpu_breakpoint_remove_by_ref(CPUArchState
*env
, CPUBreakpoint
*breakpoint
);
456 void cpu_breakpoint_remove_all(CPUArchState
*env
, int mask
);
457 int cpu_watchpoint_insert(CPUArchState
*env
, target_ulong addr
, target_ulong len
,
458 int flags
, CPUWatchpoint
**watchpoint
);
459 int cpu_watchpoint_remove(CPUArchState
*env
, target_ulong addr
,
460 target_ulong len
, int flags
);
461 void cpu_watchpoint_remove_by_ref(CPUArchState
*env
, CPUWatchpoint
*watchpoint
);
462 void cpu_watchpoint_remove_all(CPUArchState
*env
, int mask
);
464 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
465 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
466 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */
468 void cpu_single_step(CPUArchState
*env
, int enabled
);
469 int cpu_is_stopped(CPUArchState
*env
);
470 void run_on_cpu(CPUArchState
*env
, void (*func
)(void *data
), void *data
);
472 #if !defined(CONFIG_USER_ONLY)
474 /* Return the physical page corresponding to a virtual one. Use it
475 only for debugging because no protection checks are done. Return -1
477 target_phys_addr_t
cpu_get_phys_page_debug(CPUArchState
*env
, target_ulong addr
);
481 extern int phys_ram_fd
;
482 extern ram_addr_t ram_size
;
484 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
485 #define RAM_PREALLOC_MASK (1 << 0)
487 typedef struct RAMBlock
{
488 struct MemoryRegion
*mr
;
494 QLIST_ENTRY(RAMBlock
) next
;
495 #if defined(__linux__) && !defined(TARGET_S390X)
500 typedef struct RAMList
{
502 QLIST_HEAD(, RAMBlock
) blocks
;
504 extern RAMList ram_list
;
506 extern const char *mem_path
;
507 extern int mem_prealloc
;
509 /* Flags stored in the low bits of the TLB virtual address. These are
510 defined so that fast path ram access is all zeros. */
511 /* Zero if TLB entry is valid. */
512 #define TLB_INVALID_MASK (1 << 3)
513 /* Set if TLB entry references a clean RAM page. The iotlb entry will
514 contain the page physical address. */
515 #define TLB_NOTDIRTY (1 << 4)
516 /* Set if TLB entry is an IO callback. */
517 #define TLB_MMIO (1 << 5)
519 void dump_exec_info(FILE *f
, fprintf_function cpu_fprintf
);
520 ram_addr_t
last_ram_offset(void);
521 #endif /* !CONFIG_USER_ONLY */
523 int cpu_memory_rw_debug(CPUArchState
*env
, target_ulong addr
,
524 uint8_t *buf
, int len
, int is_write
);
526 #endif /* CPU_ALL_H */