s390x: helper functions for system emulation
[qemu.git] / target-i386 / exec.h
blobee36a7181a1439332adafc28ab98b6e878600795
1 /*
2 * i386 execution defines
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #include "dyngen-exec.h"
22 /* XXX: factorize this mess */
23 #ifdef TARGET_X86_64
24 #define TARGET_LONG_BITS 64
25 #else
26 #define TARGET_LONG_BITS 32
27 #endif
29 #include "cpu-defs.h"
31 register struct CPUX86State *env asm(AREG0);
33 #include "qemu-common.h"
34 #include "qemu-log.h"
36 #undef EAX
37 #define EAX (env->regs[R_EAX])
38 #undef ECX
39 #define ECX (env->regs[R_ECX])
40 #undef EDX
41 #define EDX (env->regs[R_EDX])
42 #undef EBX
43 #define EBX (env->regs[R_EBX])
44 #undef ESP
45 #define ESP (env->regs[R_ESP])
46 #undef EBP
47 #define EBP (env->regs[R_EBP])
48 #undef ESI
49 #define ESI (env->regs[R_ESI])
50 #undef EDI
51 #define EDI (env->regs[R_EDI])
52 #undef EIP
53 #define EIP (env->eip)
54 #define DF (env->df)
56 #define CC_SRC (env->cc_src)
57 #define CC_DST (env->cc_dst)
58 #define CC_OP (env->cc_op)
60 /* float macros */
61 #define FT0 (env->ft0)
62 #define ST0 (env->fpregs[env->fpstt].d)
63 #define ST(n) (env->fpregs[(env->fpstt + (n)) & 7].d)
64 #define ST1 ST(1)
66 #include "cpu.h"
67 #include "exec-all.h"
69 /* op_helper.c */
70 void do_interrupt(int intno, int is_int, int error_code,
71 target_ulong next_eip, int is_hw);
72 void do_interrupt_user(int intno, int is_int, int error_code,
73 target_ulong next_eip);
74 void QEMU_NORETURN raise_exception_err(int exception_index, int error_code);
75 void QEMU_NORETURN raise_exception(int exception_index);
76 void QEMU_NORETURN raise_exception_env(int exception_index, CPUState *nenv);
77 void do_smm_enter(void);
79 /* n must be a constant to be efficient */
80 static inline target_long lshift(target_long x, int n)
82 if (n >= 0)
83 return x << n;
84 else
85 return x >> (-n);
88 #include "helper.h"
90 static inline void svm_check_intercept(uint32_t type)
92 helper_svm_check_intercept_param(type, 0);
95 #if !defined(CONFIG_USER_ONLY)
97 #include "softmmu_exec.h"
99 #endif /* !defined(CONFIG_USER_ONLY) */
101 #ifdef USE_X86LDOUBLE
102 /* use long double functions */
103 #define floatx_to_int32 floatx80_to_int32
104 #define floatx_to_int64 floatx80_to_int64
105 #define floatx_to_int32_round_to_zero floatx80_to_int32_round_to_zero
106 #define floatx_to_int64_round_to_zero floatx80_to_int64_round_to_zero
107 #define int32_to_floatx int32_to_floatx80
108 #define int64_to_floatx int64_to_floatx80
109 #define float32_to_floatx float32_to_floatx80
110 #define float64_to_floatx float64_to_floatx80
111 #define floatx_to_float32 floatx80_to_float32
112 #define floatx_to_float64 floatx80_to_float64
113 #define floatx_add floatx80_add
114 #define floatx_div floatx80_div
115 #define floatx_mul floatx80_mul
116 #define floatx_sub floatx80_sub
117 #define floatx_sqrt floatx80_sqrt
118 #define floatx_abs floatx80_abs
119 #define floatx_chs floatx80_chs
120 #define floatx_scalbn floatx80_scalbn
121 #define floatx_round_to_int floatx80_round_to_int
122 #define floatx_compare floatx80_compare
123 #define floatx_compare_quiet floatx80_compare_quiet
124 #define floatx_is_any_nan floatx80_is_any_nan
125 #define floatx_is_neg floatx80_is_neg
126 #define floatx_is_zero floatx80_is_zero
127 #define floatx_zero floatx80_zero
128 #define floatx_one floatx80_one
129 #define floatx_ln2 floatx80_ln2
130 #define floatx_pi floatx80_pi
131 #else
132 #define floatx_to_int32 float64_to_int32
133 #define floatx_to_int64 float64_to_int64
134 #define floatx_to_int32_round_to_zero float64_to_int32_round_to_zero
135 #define floatx_to_int64_round_to_zero float64_to_int64_round_to_zero
136 #define int32_to_floatx int32_to_float64
137 #define int64_to_floatx int64_to_float64
138 #define float32_to_floatx float32_to_float64
139 #define float64_to_floatx(x, e) (x)
140 #define floatx_to_float32 float64_to_float32
141 #define floatx_to_float64(x, e) (x)
142 #define floatx_add float64_add
143 #define floatx_div float64_div
144 #define floatx_mul float64_mul
145 #define floatx_sub float64_sub
146 #define floatx_sqrt float64_sqrt
147 #define floatx_abs float64_abs
148 #define floatx_chs float64_chs
149 #define floatx_scalbn float64_scalbn
150 #define floatx_round_to_int float64_round_to_int
151 #define floatx_compare float64_compare
152 #define floatx_compare_quiet float64_compare_quiet
153 #define floatx_is_any_nan float64_is_any_nan
154 #define floatx_is_neg float64_is_neg
155 #define floatx_is_zero float64_is_zero
156 #define floatx_zero float64_zero
157 #define floatx_one float64_one
158 #define floatx_ln2 float64_ln2
159 #define floatx_pi float64_pi
160 #endif
162 #define RC_MASK 0xc00
163 #define RC_NEAR 0x000
164 #define RC_DOWN 0x400
165 #define RC_UP 0x800
166 #define RC_CHOP 0xc00
168 #define MAXTAN 9223372036854775808.0
170 #ifdef USE_X86LDOUBLE
172 /* only for x86 */
173 typedef CPU_LDoubleU CPU86_LDoubleU;
175 /* the following deal with x86 long double-precision numbers */
176 #define MAXEXPD 0x7fff
177 #define EXPBIAS 16383
178 #define EXPD(fp) (fp.l.upper & 0x7fff)
179 #define SIGND(fp) ((fp.l.upper) & 0x8000)
180 #define MANTD(fp) (fp.l.lower)
181 #define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
183 #else
185 typedef CPU_DoubleU CPU86_LDoubleU;
187 /* the following deal with IEEE double-precision numbers */
188 #define MAXEXPD 0x7ff
189 #define EXPBIAS 1023
190 #define EXPD(fp) (((fp.l.upper) >> 20) & 0x7FF)
191 #define SIGND(fp) ((fp.l.upper) & 0x80000000)
192 #ifdef __arm__
193 #define MANTD(fp) (fp.l.lower | ((uint64_t)(fp.l.upper & ((1 << 20) - 1)) << 32))
194 #else
195 #define MANTD(fp) (fp.ll & ((1LL << 52) - 1))
196 #endif
197 #define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7ff << 20)) | (EXPBIAS << 20)
198 #endif
200 static inline void fpush(void)
202 env->fpstt = (env->fpstt - 1) & 7;
203 env->fptags[env->fpstt] = 0; /* validate stack entry */
206 static inline void fpop(void)
208 env->fptags[env->fpstt] = 1; /* invvalidate stack entry */
209 env->fpstt = (env->fpstt + 1) & 7;
212 #ifndef USE_X86LDOUBLE
213 static inline CPU86_LDouble helper_fldt(target_ulong ptr)
215 CPU86_LDoubleU temp;
216 int upper, e;
217 uint64_t ll;
219 /* mantissa */
220 upper = lduw(ptr + 8);
221 /* XXX: handle overflow ? */
222 e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */
223 e |= (upper >> 4) & 0x800; /* sign */
224 ll = (ldq(ptr) >> 11) & ((1LL << 52) - 1);
225 #ifdef __arm__
226 temp.l.upper = (e << 20) | (ll >> 32);
227 temp.l.lower = ll;
228 #else
229 temp.ll = ll | ((uint64_t)e << 52);
230 #endif
231 return temp.d;
234 static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
236 CPU86_LDoubleU temp;
237 int e;
239 temp.d = f;
240 /* mantissa */
241 stq(ptr, (MANTD(temp) << 11) | (1LL << 63));
242 /* exponent + sign */
243 e = EXPD(temp) - EXPBIAS + 16383;
244 e |= SIGND(temp) >> 16;
245 stw(ptr + 8, e);
247 #else
249 /* we use memory access macros */
251 static inline CPU86_LDouble helper_fldt(target_ulong ptr)
253 CPU86_LDoubleU temp;
255 temp.l.lower = ldq(ptr);
256 temp.l.upper = lduw(ptr + 8);
257 return temp.d;
260 static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
262 CPU86_LDoubleU temp;
264 temp.d = f;
265 stq(ptr, temp.l.lower);
266 stw(ptr + 8, temp.l.upper);
269 #endif /* USE_X86LDOUBLE */
271 #define FPUS_IE (1 << 0)
272 #define FPUS_DE (1 << 1)
273 #define FPUS_ZE (1 << 2)
274 #define FPUS_OE (1 << 3)
275 #define FPUS_UE (1 << 4)
276 #define FPUS_PE (1 << 5)
277 #define FPUS_SF (1 << 6)
278 #define FPUS_SE (1 << 7)
279 #define FPUS_B (1 << 15)
281 #define FPUC_EM 0x3f
283 static inline uint32_t compute_eflags(void)
285 return env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
288 /* NOTE: CC_OP must be modified manually to CC_OP_EFLAGS */
289 static inline void load_eflags(int eflags, int update_mask)
291 CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
292 DF = 1 - (2 * ((eflags >> 10) & 1));
293 env->eflags = (env->eflags & ~update_mask) |
294 (eflags & update_mask) | 0x2;
297 static inline int cpu_has_work(CPUState *env)
299 return ((env->interrupt_request & CPU_INTERRUPT_HARD) &&
300 (env->eflags & IF_MASK)) ||
301 (env->interrupt_request & (CPU_INTERRUPT_NMI |
302 CPU_INTERRUPT_INIT |
303 CPU_INTERRUPT_SIPI |
304 CPU_INTERRUPT_MCE));
307 /* load efer and update the corresponding hflags. XXX: do consistency
308 checks with cpuid bits ? */
309 static inline void cpu_load_efer(CPUState *env, uint64_t val)
311 env->efer = val;
312 env->hflags &= ~(HF_LMA_MASK | HF_SVME_MASK);
313 if (env->efer & MSR_EFER_LMA)
314 env->hflags |= HF_LMA_MASK;
315 if (env->efer & MSR_EFER_SVME)
316 env->hflags |= HF_SVME_MASK;
319 static inline void cpu_pc_from_tb(CPUState *env, TranslationBlock *tb)
321 env->eip = tb->pc - tb->cs_base;