Out off array access in usb-net
[qemu.git] / hw / omap_dss.c
blob044f2d24285634871c8d8a7a850457af0559853d
1 /*
2 * OMAP2 Display Subsystem.
4 * Copyright (C) 2008 Nokia Corporation
5 * Written by Andrzej Zaborowski <andrew@openedhand.com>
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2 or
10 * (at your option) version 3 of the License.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, see <http://www.gnu.org/licenses/>.
20 #include "hw.h"
21 #include "console.h"
22 #include "omap.h"
24 struct omap_dss_s {
25 qemu_irq irq;
26 qemu_irq drq;
27 DisplayState *state;
29 int autoidle;
30 int control;
31 int enable;
33 struct omap_dss_panel_s {
34 int enable;
35 int nx;
36 int ny;
38 int x;
39 int y;
40 } dig, lcd;
42 struct {
43 uint32_t idlemode;
44 uint32_t irqst;
45 uint32_t irqen;
46 uint32_t control;
47 uint32_t config;
48 uint32_t capable;
49 uint32_t timing[4];
50 int line;
51 uint32_t bg[2];
52 uint32_t trans[2];
54 struct omap_dss_plane_s {
55 int enable;
56 int bpp;
57 int posx;
58 int posy;
59 int nx;
60 int ny;
62 target_phys_addr_t addr[3];
64 uint32_t attr;
65 uint32_t tresh;
66 int rowinc;
67 int colinc;
68 int wininc;
69 } l[3];
71 int invalidate;
72 uint16_t palette[256];
73 } dispc;
75 struct {
76 int idlemode;
77 uint32_t control;
78 int enable;
79 int pixels;
80 int busy;
81 int skiplines;
82 uint16_t rxbuf;
83 uint32_t config[2];
84 uint32_t time[4];
85 uint32_t data[6];
86 uint16_t vsync;
87 uint16_t hsync;
88 struct rfbi_chip_s *chip[2];
89 } rfbi;
92 static void omap_dispc_interrupt_update(struct omap_dss_s *s)
94 qemu_set_irq(s->irq, s->dispc.irqst & s->dispc.irqen);
97 static void omap_rfbi_reset(struct omap_dss_s *s)
99 s->rfbi.idlemode = 0;
100 s->rfbi.control = 2;
101 s->rfbi.enable = 0;
102 s->rfbi.pixels = 0;
103 s->rfbi.skiplines = 0;
104 s->rfbi.busy = 0;
105 s->rfbi.config[0] = 0x00310000;
106 s->rfbi.config[1] = 0x00310000;
107 s->rfbi.time[0] = 0;
108 s->rfbi.time[1] = 0;
109 s->rfbi.time[2] = 0;
110 s->rfbi.time[3] = 0;
111 s->rfbi.data[0] = 0;
112 s->rfbi.data[1] = 0;
113 s->rfbi.data[2] = 0;
114 s->rfbi.data[3] = 0;
115 s->rfbi.data[4] = 0;
116 s->rfbi.data[5] = 0;
117 s->rfbi.vsync = 0;
118 s->rfbi.hsync = 0;
121 void omap_dss_reset(struct omap_dss_s *s)
123 s->autoidle = 0;
124 s->control = 0;
125 s->enable = 0;
127 s->dig.enable = 0;
128 s->dig.nx = 1;
129 s->dig.ny = 1;
131 s->lcd.enable = 0;
132 s->lcd.nx = 1;
133 s->lcd.ny = 1;
135 s->dispc.idlemode = 0;
136 s->dispc.irqst = 0;
137 s->dispc.irqen = 0;
138 s->dispc.control = 0;
139 s->dispc.config = 0;
140 s->dispc.capable = 0x161;
141 s->dispc.timing[0] = 0;
142 s->dispc.timing[1] = 0;
143 s->dispc.timing[2] = 0;
144 s->dispc.timing[3] = 0;
145 s->dispc.line = 0;
146 s->dispc.bg[0] = 0;
147 s->dispc.bg[1] = 0;
148 s->dispc.trans[0] = 0;
149 s->dispc.trans[1] = 0;
151 s->dispc.l[0].enable = 0;
152 s->dispc.l[0].bpp = 0;
153 s->dispc.l[0].addr[0] = 0;
154 s->dispc.l[0].addr[1] = 0;
155 s->dispc.l[0].addr[2] = 0;
156 s->dispc.l[0].posx = 0;
157 s->dispc.l[0].posy = 0;
158 s->dispc.l[0].nx = 1;
159 s->dispc.l[0].ny = 1;
160 s->dispc.l[0].attr = 0;
161 s->dispc.l[0].tresh = 0;
162 s->dispc.l[0].rowinc = 1;
163 s->dispc.l[0].colinc = 1;
164 s->dispc.l[0].wininc = 0;
166 omap_rfbi_reset(s);
167 omap_dispc_interrupt_update(s);
170 static uint32_t omap_diss_read(void *opaque, target_phys_addr_t addr)
172 struct omap_dss_s *s = (struct omap_dss_s *) opaque;
174 switch (addr) {
175 case 0x00: /* DSS_REVISIONNUMBER */
176 return 0x20;
178 case 0x10: /* DSS_SYSCONFIG */
179 return s->autoidle;
181 case 0x14: /* DSS_SYSSTATUS */
182 return 1; /* RESETDONE */
184 case 0x40: /* DSS_CONTROL */
185 return s->control;
187 case 0x50: /* DSS_PSA_LCD_REG_1 */
188 case 0x54: /* DSS_PSA_LCD_REG_2 */
189 case 0x58: /* DSS_PSA_VIDEO_REG */
190 /* TODO: fake some values when appropriate s->control bits are set */
191 return 0;
193 case 0x5c: /* DSS_STATUS */
194 return 1 + (s->control & 1);
196 default:
197 break;
199 OMAP_BAD_REG(addr);
200 return 0;
203 static void omap_diss_write(void *opaque, target_phys_addr_t addr,
204 uint32_t value)
206 struct omap_dss_s *s = (struct omap_dss_s *) opaque;
208 switch (addr) {
209 case 0x00: /* DSS_REVISIONNUMBER */
210 case 0x14: /* DSS_SYSSTATUS */
211 case 0x50: /* DSS_PSA_LCD_REG_1 */
212 case 0x54: /* DSS_PSA_LCD_REG_2 */
213 case 0x58: /* DSS_PSA_VIDEO_REG */
214 case 0x5c: /* DSS_STATUS */
215 OMAP_RO_REG(addr);
216 break;
218 case 0x10: /* DSS_SYSCONFIG */
219 if (value & 2) /* SOFTRESET */
220 omap_dss_reset(s);
221 s->autoidle = value & 1;
222 break;
224 case 0x40: /* DSS_CONTROL */
225 s->control = value & 0x3dd;
226 break;
228 default:
229 OMAP_BAD_REG(addr);
233 static CPUReadMemoryFunc * const omap_diss1_readfn[] = {
234 omap_badwidth_read32,
235 omap_badwidth_read32,
236 omap_diss_read,
239 static CPUWriteMemoryFunc * const omap_diss1_writefn[] = {
240 omap_badwidth_write32,
241 omap_badwidth_write32,
242 omap_diss_write,
245 static uint32_t omap_disc_read(void *opaque, target_phys_addr_t addr)
247 struct omap_dss_s *s = (struct omap_dss_s *) opaque;
249 switch (addr) {
250 case 0x000: /* DISPC_REVISION */
251 return 0x20;
253 case 0x010: /* DISPC_SYSCONFIG */
254 return s->dispc.idlemode;
256 case 0x014: /* DISPC_SYSSTATUS */
257 return 1; /* RESETDONE */
259 case 0x018: /* DISPC_IRQSTATUS */
260 return s->dispc.irqst;
262 case 0x01c: /* DISPC_IRQENABLE */
263 return s->dispc.irqen;
265 case 0x040: /* DISPC_CONTROL */
266 return s->dispc.control;
268 case 0x044: /* DISPC_CONFIG */
269 return s->dispc.config;
271 case 0x048: /* DISPC_CAPABLE */
272 return s->dispc.capable;
274 case 0x04c: /* DISPC_DEFAULT_COLOR0 */
275 return s->dispc.bg[0];
276 case 0x050: /* DISPC_DEFAULT_COLOR1 */
277 return s->dispc.bg[1];
278 case 0x054: /* DISPC_TRANS_COLOR0 */
279 return s->dispc.trans[0];
280 case 0x058: /* DISPC_TRANS_COLOR1 */
281 return s->dispc.trans[1];
283 case 0x05c: /* DISPC_LINE_STATUS */
284 return 0x7ff;
285 case 0x060: /* DISPC_LINE_NUMBER */
286 return s->dispc.line;
288 case 0x064: /* DISPC_TIMING_H */
289 return s->dispc.timing[0];
290 case 0x068: /* DISPC_TIMING_V */
291 return s->dispc.timing[1];
292 case 0x06c: /* DISPC_POL_FREQ */
293 return s->dispc.timing[2];
294 case 0x070: /* DISPC_DIVISOR */
295 return s->dispc.timing[3];
297 case 0x078: /* DISPC_SIZE_DIG */
298 return ((s->dig.ny - 1) << 16) | (s->dig.nx - 1);
299 case 0x07c: /* DISPC_SIZE_LCD */
300 return ((s->lcd.ny - 1) << 16) | (s->lcd.nx - 1);
302 case 0x080: /* DISPC_GFX_BA0 */
303 return s->dispc.l[0].addr[0];
304 case 0x084: /* DISPC_GFX_BA1 */
305 return s->dispc.l[0].addr[1];
306 case 0x088: /* DISPC_GFX_POSITION */
307 return (s->dispc.l[0].posy << 16) | s->dispc.l[0].posx;
308 case 0x08c: /* DISPC_GFX_SIZE */
309 return ((s->dispc.l[0].ny - 1) << 16) | (s->dispc.l[0].nx - 1);
310 case 0x0a0: /* DISPC_GFX_ATTRIBUTES */
311 return s->dispc.l[0].attr;
312 case 0x0a4: /* DISPC_GFX_FIFO_TRESHOLD */
313 return s->dispc.l[0].tresh;
314 case 0x0a8: /* DISPC_GFX_FIFO_SIZE_STATUS */
315 return 256;
316 case 0x0ac: /* DISPC_GFX_ROW_INC */
317 return s->dispc.l[0].rowinc;
318 case 0x0b0: /* DISPC_GFX_PIXEL_INC */
319 return s->dispc.l[0].colinc;
320 case 0x0b4: /* DISPC_GFX_WINDOW_SKIP */
321 return s->dispc.l[0].wininc;
322 case 0x0b8: /* DISPC_GFX_TABLE_BA */
323 return s->dispc.l[0].addr[2];
325 case 0x0bc: /* DISPC_VID1_BA0 */
326 case 0x0c0: /* DISPC_VID1_BA1 */
327 case 0x0c4: /* DISPC_VID1_POSITION */
328 case 0x0c8: /* DISPC_VID1_SIZE */
329 case 0x0cc: /* DISPC_VID1_ATTRIBUTES */
330 case 0x0d0: /* DISPC_VID1_FIFO_TRESHOLD */
331 case 0x0d4: /* DISPC_VID1_FIFO_SIZE_STATUS */
332 case 0x0d8: /* DISPC_VID1_ROW_INC */
333 case 0x0dc: /* DISPC_VID1_PIXEL_INC */
334 case 0x0e0: /* DISPC_VID1_FIR */
335 case 0x0e4: /* DISPC_VID1_PICTURE_SIZE */
336 case 0x0e8: /* DISPC_VID1_ACCU0 */
337 case 0x0ec: /* DISPC_VID1_ACCU1 */
338 case 0x0f0 ... 0x140: /* DISPC_VID1_FIR_COEF, DISPC_VID1_CONV_COEF */
339 case 0x14c: /* DISPC_VID2_BA0 */
340 case 0x150: /* DISPC_VID2_BA1 */
341 case 0x154: /* DISPC_VID2_POSITION */
342 case 0x158: /* DISPC_VID2_SIZE */
343 case 0x15c: /* DISPC_VID2_ATTRIBUTES */
344 case 0x160: /* DISPC_VID2_FIFO_TRESHOLD */
345 case 0x164: /* DISPC_VID2_FIFO_SIZE_STATUS */
346 case 0x168: /* DISPC_VID2_ROW_INC */
347 case 0x16c: /* DISPC_VID2_PIXEL_INC */
348 case 0x170: /* DISPC_VID2_FIR */
349 case 0x174: /* DISPC_VID2_PICTURE_SIZE */
350 case 0x178: /* DISPC_VID2_ACCU0 */
351 case 0x17c: /* DISPC_VID2_ACCU1 */
352 case 0x180 ... 0x1d0: /* DISPC_VID2_FIR_COEF, DISPC_VID2_CONV_COEF */
353 case 0x1d4: /* DISPC_DATA_CYCLE1 */
354 case 0x1d8: /* DISPC_DATA_CYCLE2 */
355 case 0x1dc: /* DISPC_DATA_CYCLE3 */
356 return 0;
358 default:
359 break;
361 OMAP_BAD_REG(addr);
362 return 0;
365 static void omap_disc_write(void *opaque, target_phys_addr_t addr,
366 uint32_t value)
368 struct omap_dss_s *s = (struct omap_dss_s *) opaque;
370 switch (addr) {
371 case 0x010: /* DISPC_SYSCONFIG */
372 if (value & 2) /* SOFTRESET */
373 omap_dss_reset(s);
374 s->dispc.idlemode = value & 0x301b;
375 break;
377 case 0x018: /* DISPC_IRQSTATUS */
378 s->dispc.irqst &= ~value;
379 omap_dispc_interrupt_update(s);
380 break;
382 case 0x01c: /* DISPC_IRQENABLE */
383 s->dispc.irqen = value & 0xffff;
384 omap_dispc_interrupt_update(s);
385 break;
387 case 0x040: /* DISPC_CONTROL */
388 s->dispc.control = value & 0x07ff9fff;
389 s->dig.enable = (value >> 1) & 1;
390 s->lcd.enable = (value >> 0) & 1;
391 if (value & (1 << 12)) /* OVERLAY_OPTIMIZATION */
392 if (~((s->dispc.l[1].attr | s->dispc.l[2].attr) & 1))
393 fprintf(stderr, "%s: Overlay Optimization when no overlay "
394 "region effectively exists leads to "
395 "unpredictable behaviour!\n", __FUNCTION__);
396 if (value & (1 << 6)) { /* GODIGITAL */
397 /* XXX: Shadowed fields are:
398 * s->dispc.config
399 * s->dispc.capable
400 * s->dispc.bg[0]
401 * s->dispc.bg[1]
402 * s->dispc.trans[0]
403 * s->dispc.trans[1]
404 * s->dispc.line
405 * s->dispc.timing[0]
406 * s->dispc.timing[1]
407 * s->dispc.timing[2]
408 * s->dispc.timing[3]
409 * s->lcd.nx
410 * s->lcd.ny
411 * s->dig.nx
412 * s->dig.ny
413 * s->dispc.l[0].addr[0]
414 * s->dispc.l[0].addr[1]
415 * s->dispc.l[0].addr[2]
416 * s->dispc.l[0].posx
417 * s->dispc.l[0].posy
418 * s->dispc.l[0].nx
419 * s->dispc.l[0].ny
420 * s->dispc.l[0].tresh
421 * s->dispc.l[0].rowinc
422 * s->dispc.l[0].colinc
423 * s->dispc.l[0].wininc
424 * All they need to be loaded here from their shadow registers.
427 if (value & (1 << 5)) { /* GOLCD */
428 /* XXX: Likewise for LCD here. */
430 s->dispc.invalidate = 1;
431 break;
433 case 0x044: /* DISPC_CONFIG */
434 s->dispc.config = value & 0x3fff;
435 /* XXX:
436 * bits 2:1 (LOADMODE) reset to 0 after set to 1 and palette loaded
437 * bits 2:1 (LOADMODE) reset to 2 after set to 3 and palette loaded
439 s->dispc.invalidate = 1;
440 break;
442 case 0x048: /* DISPC_CAPABLE */
443 s->dispc.capable = value & 0x3ff;
444 break;
446 case 0x04c: /* DISPC_DEFAULT_COLOR0 */
447 s->dispc.bg[0] = value & 0xffffff;
448 s->dispc.invalidate = 1;
449 break;
450 case 0x050: /* DISPC_DEFAULT_COLOR1 */
451 s->dispc.bg[1] = value & 0xffffff;
452 s->dispc.invalidate = 1;
453 break;
454 case 0x054: /* DISPC_TRANS_COLOR0 */
455 s->dispc.trans[0] = value & 0xffffff;
456 s->dispc.invalidate = 1;
457 break;
458 case 0x058: /* DISPC_TRANS_COLOR1 */
459 s->dispc.trans[1] = value & 0xffffff;
460 s->dispc.invalidate = 1;
461 break;
463 case 0x060: /* DISPC_LINE_NUMBER */
464 s->dispc.line = value & 0x7ff;
465 break;
467 case 0x064: /* DISPC_TIMING_H */
468 s->dispc.timing[0] = value & 0x0ff0ff3f;
469 break;
470 case 0x068: /* DISPC_TIMING_V */
471 s->dispc.timing[1] = value & 0x0ff0ff3f;
472 break;
473 case 0x06c: /* DISPC_POL_FREQ */
474 s->dispc.timing[2] = value & 0x0003ffff;
475 break;
476 case 0x070: /* DISPC_DIVISOR */
477 s->dispc.timing[3] = value & 0x00ff00ff;
478 break;
480 case 0x078: /* DISPC_SIZE_DIG */
481 s->dig.nx = ((value >> 0) & 0x7ff) + 1; /* PPL */
482 s->dig.ny = ((value >> 16) & 0x7ff) + 1; /* LPP */
483 s->dispc.invalidate = 1;
484 break;
485 case 0x07c: /* DISPC_SIZE_LCD */
486 s->lcd.nx = ((value >> 0) & 0x7ff) + 1; /* PPL */
487 s->lcd.ny = ((value >> 16) & 0x7ff) + 1; /* LPP */
488 s->dispc.invalidate = 1;
489 break;
490 case 0x080: /* DISPC_GFX_BA0 */
491 s->dispc.l[0].addr[0] = (target_phys_addr_t) value;
492 s->dispc.invalidate = 1;
493 break;
494 case 0x084: /* DISPC_GFX_BA1 */
495 s->dispc.l[0].addr[1] = (target_phys_addr_t) value;
496 s->dispc.invalidate = 1;
497 break;
498 case 0x088: /* DISPC_GFX_POSITION */
499 s->dispc.l[0].posx = ((value >> 0) & 0x7ff); /* GFXPOSX */
500 s->dispc.l[0].posy = ((value >> 16) & 0x7ff); /* GFXPOSY */
501 s->dispc.invalidate = 1;
502 break;
503 case 0x08c: /* DISPC_GFX_SIZE */
504 s->dispc.l[0].nx = ((value >> 0) & 0x7ff) + 1; /* GFXSIZEX */
505 s->dispc.l[0].ny = ((value >> 16) & 0x7ff) + 1; /* GFXSIZEY */
506 s->dispc.invalidate = 1;
507 break;
508 case 0x0a0: /* DISPC_GFX_ATTRIBUTES */
509 s->dispc.l[0].attr = value & 0x7ff;
510 if (value & (3 << 9))
511 fprintf(stderr, "%s: Big-endian pixel format not supported\n",
512 __FUNCTION__);
513 s->dispc.l[0].enable = value & 1;
514 s->dispc.l[0].bpp = (value >> 1) & 0xf;
515 s->dispc.invalidate = 1;
516 break;
517 case 0x0a4: /* DISPC_GFX_FIFO_TRESHOLD */
518 s->dispc.l[0].tresh = value & 0x01ff01ff;
519 break;
520 case 0x0ac: /* DISPC_GFX_ROW_INC */
521 s->dispc.l[0].rowinc = value;
522 s->dispc.invalidate = 1;
523 break;
524 case 0x0b0: /* DISPC_GFX_PIXEL_INC */
525 s->dispc.l[0].colinc = value;
526 s->dispc.invalidate = 1;
527 break;
528 case 0x0b4: /* DISPC_GFX_WINDOW_SKIP */
529 s->dispc.l[0].wininc = value;
530 break;
531 case 0x0b8: /* DISPC_GFX_TABLE_BA */
532 s->dispc.l[0].addr[2] = (target_phys_addr_t) value;
533 s->dispc.invalidate = 1;
534 break;
536 case 0x0bc: /* DISPC_VID1_BA0 */
537 case 0x0c0: /* DISPC_VID1_BA1 */
538 case 0x0c4: /* DISPC_VID1_POSITION */
539 case 0x0c8: /* DISPC_VID1_SIZE */
540 case 0x0cc: /* DISPC_VID1_ATTRIBUTES */
541 case 0x0d0: /* DISPC_VID1_FIFO_TRESHOLD */
542 case 0x0d8: /* DISPC_VID1_ROW_INC */
543 case 0x0dc: /* DISPC_VID1_PIXEL_INC */
544 case 0x0e0: /* DISPC_VID1_FIR */
545 case 0x0e4: /* DISPC_VID1_PICTURE_SIZE */
546 case 0x0e8: /* DISPC_VID1_ACCU0 */
547 case 0x0ec: /* DISPC_VID1_ACCU1 */
548 case 0x0f0 ... 0x140: /* DISPC_VID1_FIR_COEF, DISPC_VID1_CONV_COEF */
549 case 0x14c: /* DISPC_VID2_BA0 */
550 case 0x150: /* DISPC_VID2_BA1 */
551 case 0x154: /* DISPC_VID2_POSITION */
552 case 0x158: /* DISPC_VID2_SIZE */
553 case 0x15c: /* DISPC_VID2_ATTRIBUTES */
554 case 0x160: /* DISPC_VID2_FIFO_TRESHOLD */
555 case 0x168: /* DISPC_VID2_ROW_INC */
556 case 0x16c: /* DISPC_VID2_PIXEL_INC */
557 case 0x170: /* DISPC_VID2_FIR */
558 case 0x174: /* DISPC_VID2_PICTURE_SIZE */
559 case 0x178: /* DISPC_VID2_ACCU0 */
560 case 0x17c: /* DISPC_VID2_ACCU1 */
561 case 0x180 ... 0x1d0: /* DISPC_VID2_FIR_COEF, DISPC_VID2_CONV_COEF */
562 case 0x1d4: /* DISPC_DATA_CYCLE1 */
563 case 0x1d8: /* DISPC_DATA_CYCLE2 */
564 case 0x1dc: /* DISPC_DATA_CYCLE3 */
565 break;
567 default:
568 OMAP_BAD_REG(addr);
572 static CPUReadMemoryFunc * const omap_disc1_readfn[] = {
573 omap_badwidth_read32,
574 omap_badwidth_read32,
575 omap_disc_read,
578 static CPUWriteMemoryFunc * const omap_disc1_writefn[] = {
579 omap_badwidth_write32,
580 omap_badwidth_write32,
581 omap_disc_write,
584 static void omap_rfbi_transfer_stop(struct omap_dss_s *s)
586 if (!s->rfbi.busy)
587 return;
589 /* TODO: in non-Bypass mode we probably need to just deassert the DRQ. */
591 s->rfbi.busy = 0;
594 static void omap_rfbi_transfer_start(struct omap_dss_s *s)
596 void *data;
597 target_phys_addr_t len;
598 target_phys_addr_t data_addr;
599 int pitch;
600 static void *bounce_buffer;
601 static target_phys_addr_t bounce_len;
603 if (!s->rfbi.enable || s->rfbi.busy)
604 return;
606 if (s->rfbi.control & (1 << 1)) { /* BYPASS */
607 /* TODO: in non-Bypass mode we probably need to just assert the
608 * DRQ and wait for DMA to write the pixels. */
609 fprintf(stderr, "%s: Bypass mode unimplemented\n", __FUNCTION__);
610 return;
613 if (!(s->dispc.control & (1 << 11))) /* RFBIMODE */
614 return;
615 /* TODO: check that LCD output is enabled in DISPC. */
617 s->rfbi.busy = 1;
619 len = s->rfbi.pixels * 2;
621 data_addr = s->dispc.l[0].addr[0];
622 data = cpu_physical_memory_map(data_addr, &len, 0);
623 if (data && len != s->rfbi.pixels * 2) {
624 cpu_physical_memory_unmap(data, len, 0, 0);
625 data = NULL;
626 len = s->rfbi.pixels * 2;
628 if (!data) {
629 if (len > bounce_len) {
630 bounce_buffer = qemu_realloc(bounce_buffer, len);
632 data = bounce_buffer;
633 cpu_physical_memory_read(data_addr, data, len);
636 /* TODO bpp */
637 s->rfbi.pixels = 0;
639 /* TODO: negative values */
640 pitch = s->dispc.l[0].nx + (s->dispc.l[0].rowinc - 1) / 2;
642 if ((s->rfbi.control & (1 << 2)) && s->rfbi.chip[0])
643 s->rfbi.chip[0]->block(s->rfbi.chip[0]->opaque, 1, data, len, pitch);
644 if ((s->rfbi.control & (1 << 3)) && s->rfbi.chip[1])
645 s->rfbi.chip[1]->block(s->rfbi.chip[1]->opaque, 1, data, len, pitch);
647 if (data != bounce_buffer) {
648 cpu_physical_memory_unmap(data, len, 0, len);
651 omap_rfbi_transfer_stop(s);
653 /* TODO */
654 s->dispc.irqst |= 1; /* FRAMEDONE */
655 omap_dispc_interrupt_update(s);
658 static uint32_t omap_rfbi_read(void *opaque, target_phys_addr_t addr)
660 struct omap_dss_s *s = (struct omap_dss_s *) opaque;
662 switch (addr) {
663 case 0x00: /* RFBI_REVISION */
664 return 0x10;
666 case 0x10: /* RFBI_SYSCONFIG */
667 return s->rfbi.idlemode;
669 case 0x14: /* RFBI_SYSSTATUS */
670 return 1 | (s->rfbi.busy << 8); /* RESETDONE */
672 case 0x40: /* RFBI_CONTROL */
673 return s->rfbi.control;
675 case 0x44: /* RFBI_PIXELCNT */
676 return s->rfbi.pixels;
678 case 0x48: /* RFBI_LINE_NUMBER */
679 return s->rfbi.skiplines;
681 case 0x58: /* RFBI_READ */
682 case 0x5c: /* RFBI_STATUS */
683 return s->rfbi.rxbuf;
685 case 0x60: /* RFBI_CONFIG0 */
686 return s->rfbi.config[0];
687 case 0x64: /* RFBI_ONOFF_TIME0 */
688 return s->rfbi.time[0];
689 case 0x68: /* RFBI_CYCLE_TIME0 */
690 return s->rfbi.time[1];
691 case 0x6c: /* RFBI_DATA_CYCLE1_0 */
692 return s->rfbi.data[0];
693 case 0x70: /* RFBI_DATA_CYCLE2_0 */
694 return s->rfbi.data[1];
695 case 0x74: /* RFBI_DATA_CYCLE3_0 */
696 return s->rfbi.data[2];
698 case 0x78: /* RFBI_CONFIG1 */
699 return s->rfbi.config[1];
700 case 0x7c: /* RFBI_ONOFF_TIME1 */
701 return s->rfbi.time[2];
702 case 0x80: /* RFBI_CYCLE_TIME1 */
703 return s->rfbi.time[3];
704 case 0x84: /* RFBI_DATA_CYCLE1_1 */
705 return s->rfbi.data[3];
706 case 0x88: /* RFBI_DATA_CYCLE2_1 */
707 return s->rfbi.data[4];
708 case 0x8c: /* RFBI_DATA_CYCLE3_1 */
709 return s->rfbi.data[5];
711 case 0x90: /* RFBI_VSYNC_WIDTH */
712 return s->rfbi.vsync;
713 case 0x94: /* RFBI_HSYNC_WIDTH */
714 return s->rfbi.hsync;
716 OMAP_BAD_REG(addr);
717 return 0;
720 static void omap_rfbi_write(void *opaque, target_phys_addr_t addr,
721 uint32_t value)
723 struct omap_dss_s *s = (struct omap_dss_s *) opaque;
725 switch (addr) {
726 case 0x10: /* RFBI_SYSCONFIG */
727 if (value & 2) /* SOFTRESET */
728 omap_rfbi_reset(s);
729 s->rfbi.idlemode = value & 0x19;
730 break;
732 case 0x40: /* RFBI_CONTROL */
733 s->rfbi.control = value & 0xf;
734 s->rfbi.enable = value & 1;
735 if (value & (1 << 4) && /* ITE */
736 !(s->rfbi.config[0] & s->rfbi.config[1] & 0xc))
737 omap_rfbi_transfer_start(s);
738 break;
740 case 0x44: /* RFBI_PIXELCNT */
741 s->rfbi.pixels = value;
742 break;
744 case 0x48: /* RFBI_LINE_NUMBER */
745 s->rfbi.skiplines = value & 0x7ff;
746 break;
748 case 0x4c: /* RFBI_CMD */
749 if ((s->rfbi.control & (1 << 2)) && s->rfbi.chip[0])
750 s->rfbi.chip[0]->write(s->rfbi.chip[0]->opaque, 0, value & 0xffff);
751 if ((s->rfbi.control & (1 << 3)) && s->rfbi.chip[1])
752 s->rfbi.chip[1]->write(s->rfbi.chip[1]->opaque, 0, value & 0xffff);
753 break;
754 case 0x50: /* RFBI_PARAM */
755 if ((s->rfbi.control & (1 << 2)) && s->rfbi.chip[0])
756 s->rfbi.chip[0]->write(s->rfbi.chip[0]->opaque, 1, value & 0xffff);
757 if ((s->rfbi.control & (1 << 3)) && s->rfbi.chip[1])
758 s->rfbi.chip[1]->write(s->rfbi.chip[1]->opaque, 1, value & 0xffff);
759 break;
760 case 0x54: /* RFBI_DATA */
761 /* TODO: take into account the format set up in s->rfbi.config[?] and
762 * s->rfbi.data[?], but special-case the most usual scenario so that
763 * speed doesn't suffer. */
764 if ((s->rfbi.control & (1 << 2)) && s->rfbi.chip[0]) {
765 s->rfbi.chip[0]->write(s->rfbi.chip[0]->opaque, 1, value & 0xffff);
766 s->rfbi.chip[0]->write(s->rfbi.chip[0]->opaque, 1, value >> 16);
768 if ((s->rfbi.control & (1 << 3)) && s->rfbi.chip[1]) {
769 s->rfbi.chip[1]->write(s->rfbi.chip[1]->opaque, 1, value & 0xffff);
770 s->rfbi.chip[1]->write(s->rfbi.chip[1]->opaque, 1, value >> 16);
772 if (!-- s->rfbi.pixels)
773 omap_rfbi_transfer_stop(s);
774 break;
775 case 0x58: /* RFBI_READ */
776 if ((s->rfbi.control & (1 << 2)) && s->rfbi.chip[0])
777 s->rfbi.rxbuf = s->rfbi.chip[0]->read(s->rfbi.chip[0]->opaque, 1);
778 else if ((s->rfbi.control & (1 << 3)) && s->rfbi.chip[1])
779 s->rfbi.rxbuf = s->rfbi.chip[0]->read(s->rfbi.chip[0]->opaque, 1);
780 if (!-- s->rfbi.pixels)
781 omap_rfbi_transfer_stop(s);
782 break;
784 case 0x5c: /* RFBI_STATUS */
785 if ((s->rfbi.control & (1 << 2)) && s->rfbi.chip[0])
786 s->rfbi.rxbuf = s->rfbi.chip[0]->read(s->rfbi.chip[0]->opaque, 0);
787 else if ((s->rfbi.control & (1 << 3)) && s->rfbi.chip[1])
788 s->rfbi.rxbuf = s->rfbi.chip[0]->read(s->rfbi.chip[0]->opaque, 0);
789 if (!-- s->rfbi.pixels)
790 omap_rfbi_transfer_stop(s);
791 break;
793 case 0x60: /* RFBI_CONFIG0 */
794 s->rfbi.config[0] = value & 0x003f1fff;
795 break;
797 case 0x64: /* RFBI_ONOFF_TIME0 */
798 s->rfbi.time[0] = value & 0x3fffffff;
799 break;
800 case 0x68: /* RFBI_CYCLE_TIME0 */
801 s->rfbi.time[1] = value & 0x0fffffff;
802 break;
803 case 0x6c: /* RFBI_DATA_CYCLE1_0 */
804 s->rfbi.data[0] = value & 0x0f1f0f1f;
805 break;
806 case 0x70: /* RFBI_DATA_CYCLE2_0 */
807 s->rfbi.data[1] = value & 0x0f1f0f1f;
808 break;
809 case 0x74: /* RFBI_DATA_CYCLE3_0 */
810 s->rfbi.data[2] = value & 0x0f1f0f1f;
811 break;
812 case 0x78: /* RFBI_CONFIG1 */
813 s->rfbi.config[1] = value & 0x003f1fff;
814 break;
816 case 0x7c: /* RFBI_ONOFF_TIME1 */
817 s->rfbi.time[2] = value & 0x3fffffff;
818 break;
819 case 0x80: /* RFBI_CYCLE_TIME1 */
820 s->rfbi.time[3] = value & 0x0fffffff;
821 break;
822 case 0x84: /* RFBI_DATA_CYCLE1_1 */
823 s->rfbi.data[3] = value & 0x0f1f0f1f;
824 break;
825 case 0x88: /* RFBI_DATA_CYCLE2_1 */
826 s->rfbi.data[4] = value & 0x0f1f0f1f;
827 break;
828 case 0x8c: /* RFBI_DATA_CYCLE3_1 */
829 s->rfbi.data[5] = value & 0x0f1f0f1f;
830 break;
832 case 0x90: /* RFBI_VSYNC_WIDTH */
833 s->rfbi.vsync = value & 0xffff;
834 break;
835 case 0x94: /* RFBI_HSYNC_WIDTH */
836 s->rfbi.hsync = value & 0xffff;
837 break;
839 default:
840 OMAP_BAD_REG(addr);
844 static CPUReadMemoryFunc * const omap_rfbi1_readfn[] = {
845 omap_badwidth_read32,
846 omap_badwidth_read32,
847 omap_rfbi_read,
850 static CPUWriteMemoryFunc * const omap_rfbi1_writefn[] = {
851 omap_badwidth_write32,
852 omap_badwidth_write32,
853 omap_rfbi_write,
856 static uint32_t omap_venc_read(void *opaque, target_phys_addr_t addr)
858 switch (addr) {
859 case 0x00: /* REV_ID */
860 case 0x04: /* STATUS */
861 case 0x08: /* F_CONTROL */
862 case 0x10: /* VIDOUT_CTRL */
863 case 0x14: /* SYNC_CTRL */
864 case 0x1c: /* LLEN */
865 case 0x20: /* FLENS */
866 case 0x24: /* HFLTR_CTRL */
867 case 0x28: /* CC_CARR_WSS_CARR */
868 case 0x2c: /* C_PHASE */
869 case 0x30: /* GAIN_U */
870 case 0x34: /* GAIN_V */
871 case 0x38: /* GAIN_Y */
872 case 0x3c: /* BLACK_LEVEL */
873 case 0x40: /* BLANK_LEVEL */
874 case 0x44: /* X_COLOR */
875 case 0x48: /* M_CONTROL */
876 case 0x4c: /* BSTAMP_WSS_DATA */
877 case 0x50: /* S_CARR */
878 case 0x54: /* LINE21 */
879 case 0x58: /* LN_SEL */
880 case 0x5c: /* L21__WC_CTL */
881 case 0x60: /* HTRIGGER_VTRIGGER */
882 case 0x64: /* SAVID__EAVID */
883 case 0x68: /* FLEN__FAL */
884 case 0x6c: /* LAL__PHASE_RESET */
885 case 0x70: /* HS_INT_START_STOP_X */
886 case 0x74: /* HS_EXT_START_STOP_X */
887 case 0x78: /* VS_INT_START_X */
888 case 0x7c: /* VS_INT_STOP_X__VS_INT_START_Y */
889 case 0x80: /* VS_INT_STOP_Y__VS_INT_START_X */
890 case 0x84: /* VS_EXT_STOP_X__VS_EXT_START_Y */
891 case 0x88: /* VS_EXT_STOP_Y */
892 case 0x90: /* AVID_START_STOP_X */
893 case 0x94: /* AVID_START_STOP_Y */
894 case 0xa0: /* FID_INT_START_X__FID_INT_START_Y */
895 case 0xa4: /* FID_INT_OFFSET_Y__FID_EXT_START_X */
896 case 0xa8: /* FID_EXT_START_Y__FID_EXT_OFFSET_Y */
897 case 0xb0: /* TVDETGP_INT_START_STOP_X */
898 case 0xb4: /* TVDETGP_INT_START_STOP_Y */
899 case 0xb8: /* GEN_CTRL */
900 case 0xc4: /* DAC_TST__DAC_A */
901 case 0xc8: /* DAC_B__DAC_C */
902 return 0;
904 default:
905 break;
907 OMAP_BAD_REG(addr);
908 return 0;
911 static void omap_venc_write(void *opaque, target_phys_addr_t addr,
912 uint32_t value)
914 switch (addr) {
915 case 0x08: /* F_CONTROL */
916 case 0x10: /* VIDOUT_CTRL */
917 case 0x14: /* SYNC_CTRL */
918 case 0x1c: /* LLEN */
919 case 0x20: /* FLENS */
920 case 0x24: /* HFLTR_CTRL */
921 case 0x28: /* CC_CARR_WSS_CARR */
922 case 0x2c: /* C_PHASE */
923 case 0x30: /* GAIN_U */
924 case 0x34: /* GAIN_V */
925 case 0x38: /* GAIN_Y */
926 case 0x3c: /* BLACK_LEVEL */
927 case 0x40: /* BLANK_LEVEL */
928 case 0x44: /* X_COLOR */
929 case 0x48: /* M_CONTROL */
930 case 0x4c: /* BSTAMP_WSS_DATA */
931 case 0x50: /* S_CARR */
932 case 0x54: /* LINE21 */
933 case 0x58: /* LN_SEL */
934 case 0x5c: /* L21__WC_CTL */
935 case 0x60: /* HTRIGGER_VTRIGGER */
936 case 0x64: /* SAVID__EAVID */
937 case 0x68: /* FLEN__FAL */
938 case 0x6c: /* LAL__PHASE_RESET */
939 case 0x70: /* HS_INT_START_STOP_X */
940 case 0x74: /* HS_EXT_START_STOP_X */
941 case 0x78: /* VS_INT_START_X */
942 case 0x7c: /* VS_INT_STOP_X__VS_INT_START_Y */
943 case 0x80: /* VS_INT_STOP_Y__VS_INT_START_X */
944 case 0x84: /* VS_EXT_STOP_X__VS_EXT_START_Y */
945 case 0x88: /* VS_EXT_STOP_Y */
946 case 0x90: /* AVID_START_STOP_X */
947 case 0x94: /* AVID_START_STOP_Y */
948 case 0xa0: /* FID_INT_START_X__FID_INT_START_Y */
949 case 0xa4: /* FID_INT_OFFSET_Y__FID_EXT_START_X */
950 case 0xa8: /* FID_EXT_START_Y__FID_EXT_OFFSET_Y */
951 case 0xb0: /* TVDETGP_INT_START_STOP_X */
952 case 0xb4: /* TVDETGP_INT_START_STOP_Y */
953 case 0xb8: /* GEN_CTRL */
954 case 0xc4: /* DAC_TST__DAC_A */
955 case 0xc8: /* DAC_B__DAC_C */
956 break;
958 default:
959 OMAP_BAD_REG(addr);
963 static CPUReadMemoryFunc * const omap_venc1_readfn[] = {
964 omap_badwidth_read32,
965 omap_badwidth_read32,
966 omap_venc_read,
969 static CPUWriteMemoryFunc * const omap_venc1_writefn[] = {
970 omap_badwidth_write32,
971 omap_badwidth_write32,
972 omap_venc_write,
975 static uint32_t omap_im3_read(void *opaque, target_phys_addr_t addr)
977 switch (addr) {
978 case 0x0a8: /* SBIMERRLOGA */
979 case 0x0b0: /* SBIMERRLOG */
980 case 0x190: /* SBIMSTATE */
981 case 0x198: /* SBTMSTATE_L */
982 case 0x19c: /* SBTMSTATE_H */
983 case 0x1a8: /* SBIMCONFIG_L */
984 case 0x1ac: /* SBIMCONFIG_H */
985 case 0x1f8: /* SBID_L */
986 case 0x1fc: /* SBID_H */
987 return 0;
989 default:
990 break;
992 OMAP_BAD_REG(addr);
993 return 0;
996 static void omap_im3_write(void *opaque, target_phys_addr_t addr,
997 uint32_t value)
999 switch (addr) {
1000 case 0x0b0: /* SBIMERRLOG */
1001 case 0x190: /* SBIMSTATE */
1002 case 0x198: /* SBTMSTATE_L */
1003 case 0x19c: /* SBTMSTATE_H */
1004 case 0x1a8: /* SBIMCONFIG_L */
1005 case 0x1ac: /* SBIMCONFIG_H */
1006 break;
1008 default:
1009 OMAP_BAD_REG(addr);
1013 static CPUReadMemoryFunc * const omap_im3_readfn[] = {
1014 omap_badwidth_read32,
1015 omap_badwidth_read32,
1016 omap_im3_read,
1019 static CPUWriteMemoryFunc * const omap_im3_writefn[] = {
1020 omap_badwidth_write32,
1021 omap_badwidth_write32,
1022 omap_im3_write,
1025 struct omap_dss_s *omap_dss_init(struct omap_target_agent_s *ta,
1026 target_phys_addr_t l3_base,
1027 qemu_irq irq, qemu_irq drq,
1028 omap_clk fck1, omap_clk fck2, omap_clk ck54m,
1029 omap_clk ick1, omap_clk ick2)
1031 int iomemtype[5];
1032 struct omap_dss_s *s = (struct omap_dss_s *)
1033 qemu_mallocz(sizeof(struct omap_dss_s));
1035 s->irq = irq;
1036 s->drq = drq;
1037 omap_dss_reset(s);
1039 iomemtype[0] = l4_register_io_memory(omap_diss1_readfn,
1040 omap_diss1_writefn, s);
1041 iomemtype[1] = l4_register_io_memory(omap_disc1_readfn,
1042 omap_disc1_writefn, s);
1043 iomemtype[2] = l4_register_io_memory(omap_rfbi1_readfn,
1044 omap_rfbi1_writefn, s);
1045 iomemtype[3] = l4_register_io_memory(omap_venc1_readfn,
1046 omap_venc1_writefn, s);
1047 iomemtype[4] = cpu_register_io_memory(omap_im3_readfn,
1048 omap_im3_writefn, s);
1049 omap_l4_attach(ta, 0, iomemtype[0]);
1050 omap_l4_attach(ta, 1, iomemtype[1]);
1051 omap_l4_attach(ta, 2, iomemtype[2]);
1052 omap_l4_attach(ta, 3, iomemtype[3]);
1053 cpu_register_physical_memory(l3_base, 0x1000, iomemtype[4]);
1055 #if 0
1056 s->state = graphic_console_init(omap_update_display,
1057 omap_invalidate_display, omap_screen_dump, s);
1058 #endif
1060 return s;
1063 void omap_rfbi_attach(struct omap_dss_s *s, int cs, struct rfbi_chip_s *chip)
1065 if (cs < 0 || cs > 1)
1066 hw_error("%s: wrong CS %i\n", __FUNCTION__, cs);
1067 s->rfbi.chip[cs] = chip;