hw/arm/boot: Don't write secondary boot stub if using PSCI
[qemu.git] / hw / arm / boot.c
blob184628ce5645837a190dfb7ca47eaac62f341b53
1 /*
2 * ARM kernel loader.
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
8 */
10 #include "qemu/osdep.h"
11 #include "qemu/datadir.h"
12 #include "qemu/error-report.h"
13 #include "qapi/error.h"
14 #include <libfdt.h>
15 #include "hw/arm/boot.h"
16 #include "hw/arm/linux-boot-if.h"
17 #include "sysemu/kvm.h"
18 #include "sysemu/sysemu.h"
19 #include "sysemu/numa.h"
20 #include "hw/boards.h"
21 #include "sysemu/reset.h"
22 #include "hw/loader.h"
23 #include "elf.h"
24 #include "sysemu/device_tree.h"
25 #include "qemu/config-file.h"
26 #include "qemu/option.h"
27 #include "qemu/units.h"
29 /* Kernel boot protocol is specified in the kernel docs
30 * Documentation/arm/Booting and Documentation/arm64/booting.txt
31 * They have different preferred image load offsets from system RAM base.
33 #define KERNEL_ARGS_ADDR 0x100
34 #define KERNEL_NOLOAD_ADDR 0x02000000
35 #define KERNEL_LOAD_ADDR 0x00010000
36 #define KERNEL64_LOAD_ADDR 0x00080000
38 #define ARM64_TEXT_OFFSET_OFFSET 8
39 #define ARM64_MAGIC_OFFSET 56
41 #define BOOTLOADER_MAX_SIZE (4 * KiB)
43 AddressSpace *arm_boot_address_space(ARMCPU *cpu,
44 const struct arm_boot_info *info)
46 /* Return the address space to use for bootloader reads and writes.
47 * We prefer the secure address space if the CPU has it and we're
48 * going to boot the guest into it.
50 int asidx;
51 CPUState *cs = CPU(cpu);
53 if (arm_feature(&cpu->env, ARM_FEATURE_EL3) && info->secure_boot) {
54 asidx = ARMASIdx_S;
55 } else {
56 asidx = ARMASIdx_NS;
59 return cpu_get_address_space(cs, asidx);
62 typedef enum {
63 FIXUP_NONE = 0, /* do nothing */
64 FIXUP_TERMINATOR, /* end of insns */
65 FIXUP_BOARDID, /* overwrite with board ID number */
66 FIXUP_BOARD_SETUP, /* overwrite with board specific setup code address */
67 FIXUP_ARGPTR_LO, /* overwrite with pointer to kernel args */
68 FIXUP_ARGPTR_HI, /* overwrite with pointer to kernel args (high half) */
69 FIXUP_ENTRYPOINT_LO, /* overwrite with kernel entry point */
70 FIXUP_ENTRYPOINT_HI, /* overwrite with kernel entry point (high half) */
71 FIXUP_GIC_CPU_IF, /* overwrite with GIC CPU interface address */
72 FIXUP_BOOTREG, /* overwrite with boot register address */
73 FIXUP_DSB, /* overwrite with correct DSB insn for cpu */
74 FIXUP_MAX,
75 } FixupType;
77 typedef struct ARMInsnFixup {
78 uint32_t insn;
79 FixupType fixup;
80 } ARMInsnFixup;
82 static const ARMInsnFixup bootloader_aarch64[] = {
83 { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
84 { 0xaa1f03e1 }, /* mov x1, xzr */
85 { 0xaa1f03e2 }, /* mov x2, xzr */
86 { 0xaa1f03e3 }, /* mov x3, xzr */
87 { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
88 { 0xd61f0080 }, /* br x4 ; Jump to the kernel entry point */
89 { 0, FIXUP_ARGPTR_LO }, /* arg: .word @DTB Lower 32-bits */
90 { 0, FIXUP_ARGPTR_HI}, /* .word @DTB Higher 32-bits */
91 { 0, FIXUP_ENTRYPOINT_LO }, /* entry: .word @Kernel Entry Lower 32-bits */
92 { 0, FIXUP_ENTRYPOINT_HI }, /* .word @Kernel Entry Higher 32-bits */
93 { 0, FIXUP_TERMINATOR }
96 /* A very small bootloader: call the board-setup code (if needed),
97 * set r0-r2, then jump to the kernel.
98 * If we're not calling boot setup code then we don't copy across
99 * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
102 static const ARMInsnFixup bootloader[] = {
103 { 0xe28fe004 }, /* add lr, pc, #4 */
104 { 0xe51ff004 }, /* ldr pc, [pc, #-4] */
105 { 0, FIXUP_BOARD_SETUP },
106 #define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
107 { 0xe3a00000 }, /* mov r0, #0 */
108 { 0xe59f1004 }, /* ldr r1, [pc, #4] */
109 { 0xe59f2004 }, /* ldr r2, [pc, #4] */
110 { 0xe59ff004 }, /* ldr pc, [pc, #4] */
111 { 0, FIXUP_BOARDID },
112 { 0, FIXUP_ARGPTR_LO },
113 { 0, FIXUP_ENTRYPOINT_LO },
114 { 0, FIXUP_TERMINATOR }
117 /* Handling for secondary CPU boot in a multicore system.
118 * Unlike the uniprocessor/primary CPU boot, this is platform
119 * dependent. The default code here is based on the secondary
120 * CPU boot protocol used on realview/vexpress boards, with
121 * some parameterisation to increase its flexibility.
122 * QEMU platform models for which this code is not appropriate
123 * should override write_secondary_boot and secondary_cpu_reset_hook
124 * instead.
126 * This code enables the interrupt controllers for the secondary
127 * CPUs and then puts all the secondary CPUs into a loop waiting
128 * for an interprocessor interrupt and polling a configurable
129 * location for the kernel secondary CPU entry point.
131 #define DSB_INSN 0xf57ff04f
132 #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
134 static const ARMInsnFixup smpboot[] = {
135 { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
136 { 0xe59f0028 }, /* ldr r0, bootreg_addr */
137 { 0xe3a01001 }, /* mov r1, #1 */
138 { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
139 { 0xe3a010ff }, /* mov r1, #0xff */
140 { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
141 { 0, FIXUP_DSB }, /* dsb */
142 { 0xe320f003 }, /* wfi */
143 { 0xe5901000 }, /* ldr r1, [r0] */
144 { 0xe1110001 }, /* tst r1, r1 */
145 { 0x0afffffb }, /* beq <wfi> */
146 { 0xe12fff11 }, /* bx r1 */
147 { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
148 { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
149 { 0, FIXUP_TERMINATOR }
152 static void write_bootloader(const char *name, hwaddr addr,
153 const ARMInsnFixup *insns, uint32_t *fixupcontext,
154 AddressSpace *as)
156 /* Fix up the specified bootloader fragment and write it into
157 * guest memory using rom_add_blob_fixed(). fixupcontext is
158 * an array giving the values to write in for the fixup types
159 * which write a value into the code array.
161 int i, len;
162 uint32_t *code;
164 len = 0;
165 while (insns[len].fixup != FIXUP_TERMINATOR) {
166 len++;
169 code = g_new0(uint32_t, len);
171 for (i = 0; i < len; i++) {
172 uint32_t insn = insns[i].insn;
173 FixupType fixup = insns[i].fixup;
175 switch (fixup) {
176 case FIXUP_NONE:
177 break;
178 case FIXUP_BOARDID:
179 case FIXUP_BOARD_SETUP:
180 case FIXUP_ARGPTR_LO:
181 case FIXUP_ARGPTR_HI:
182 case FIXUP_ENTRYPOINT_LO:
183 case FIXUP_ENTRYPOINT_HI:
184 case FIXUP_GIC_CPU_IF:
185 case FIXUP_BOOTREG:
186 case FIXUP_DSB:
187 insn = fixupcontext[fixup];
188 break;
189 default:
190 abort();
192 code[i] = tswap32(insn);
195 assert((len * sizeof(uint32_t)) < BOOTLOADER_MAX_SIZE);
197 rom_add_blob_fixed_as(name, code, len * sizeof(uint32_t), addr, as);
199 g_free(code);
202 static void default_write_secondary(ARMCPU *cpu,
203 const struct arm_boot_info *info)
205 uint32_t fixupcontext[FIXUP_MAX];
206 AddressSpace *as = arm_boot_address_space(cpu, info);
208 fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
209 fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
210 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
211 fixupcontext[FIXUP_DSB] = DSB_INSN;
212 } else {
213 fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
216 write_bootloader("smpboot", info->smp_loader_start,
217 smpboot, fixupcontext, as);
220 void arm_write_secure_board_setup_dummy_smc(ARMCPU *cpu,
221 const struct arm_boot_info *info,
222 hwaddr mvbar_addr)
224 AddressSpace *as = arm_boot_address_space(cpu, info);
225 int n;
226 uint32_t mvbar_blob[] = {
227 /* mvbar_addr: secure monitor vectors
228 * Default unimplemented and unused vectors to spin. Makes it
229 * easier to debug (as opposed to the CPU running away).
231 0xeafffffe, /* (spin) */
232 0xeafffffe, /* (spin) */
233 0xe1b0f00e, /* movs pc, lr ;SMC exception return */
234 0xeafffffe, /* (spin) */
235 0xeafffffe, /* (spin) */
236 0xeafffffe, /* (spin) */
237 0xeafffffe, /* (spin) */
238 0xeafffffe, /* (spin) */
240 uint32_t board_setup_blob[] = {
241 /* board setup addr */
242 0xee110f51, /* mrc p15, 0, r0, c1, c1, 2 ;read NSACR */
243 0xe3800b03, /* orr r0, #0xc00 ;set CP11, CP10 */
244 0xee010f51, /* mcr p15, 0, r0, c1, c1, 2 ;write NSACR */
245 0xe3a00e00 + (mvbar_addr >> 4), /* mov r0, #mvbar_addr */
246 0xee0c0f30, /* mcr p15, 0, r0, c12, c0, 1 ;set MVBAR */
247 0xee110f11, /* mrc p15, 0, r0, c1 , c1, 0 ;read SCR */
248 0xe3800031, /* orr r0, #0x31 ;enable AW, FW, NS */
249 0xee010f11, /* mcr p15, 0, r0, c1, c1, 0 ;write SCR */
250 0xe1a0100e, /* mov r1, lr ;save LR across SMC */
251 0xe1600070, /* smc #0 ;call monitor to flush SCR */
252 0xe1a0f001, /* mov pc, r1 ;return */
255 /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */
256 assert((mvbar_addr & 0x1f) == 0 && (mvbar_addr >> 4) < 0x100);
258 /* check that these blobs don't overlap */
259 assert((mvbar_addr + sizeof(mvbar_blob) <= info->board_setup_addr)
260 || (info->board_setup_addr + sizeof(board_setup_blob) <= mvbar_addr));
262 for (n = 0; n < ARRAY_SIZE(mvbar_blob); n++) {
263 mvbar_blob[n] = tswap32(mvbar_blob[n]);
265 rom_add_blob_fixed_as("board-setup-mvbar", mvbar_blob, sizeof(mvbar_blob),
266 mvbar_addr, as);
268 for (n = 0; n < ARRAY_SIZE(board_setup_blob); n++) {
269 board_setup_blob[n] = tswap32(board_setup_blob[n]);
271 rom_add_blob_fixed_as("board-setup", board_setup_blob,
272 sizeof(board_setup_blob), info->board_setup_addr, as);
275 static void default_reset_secondary(ARMCPU *cpu,
276 const struct arm_boot_info *info)
278 AddressSpace *as = arm_boot_address_space(cpu, info);
279 CPUState *cs = CPU(cpu);
281 address_space_stl_notdirty(as, info->smp_bootreg_addr,
282 0, MEMTXATTRS_UNSPECIFIED, NULL);
283 cpu_set_pc(cs, info->smp_loader_start);
286 static inline bool have_dtb(const struct arm_boot_info *info)
288 return info->dtb_filename || info->get_dtb;
291 #define WRITE_WORD(p, value) do { \
292 address_space_stl_notdirty(as, p, value, \
293 MEMTXATTRS_UNSPECIFIED, NULL); \
294 p += 4; \
295 } while (0)
297 static void set_kernel_args(const struct arm_boot_info *info, AddressSpace *as)
299 int initrd_size = info->initrd_size;
300 hwaddr base = info->loader_start;
301 hwaddr p;
303 p = base + KERNEL_ARGS_ADDR;
304 /* ATAG_CORE */
305 WRITE_WORD(p, 5);
306 WRITE_WORD(p, 0x54410001);
307 WRITE_WORD(p, 1);
308 WRITE_WORD(p, 0x1000);
309 WRITE_WORD(p, 0);
310 /* ATAG_MEM */
311 /* TODO: handle multiple chips on one ATAG list */
312 WRITE_WORD(p, 4);
313 WRITE_WORD(p, 0x54410002);
314 WRITE_WORD(p, info->ram_size);
315 WRITE_WORD(p, info->loader_start);
316 if (initrd_size) {
317 /* ATAG_INITRD2 */
318 WRITE_WORD(p, 4);
319 WRITE_WORD(p, 0x54420005);
320 WRITE_WORD(p, info->initrd_start);
321 WRITE_WORD(p, initrd_size);
323 if (info->kernel_cmdline && *info->kernel_cmdline) {
324 /* ATAG_CMDLINE */
325 int cmdline_size;
327 cmdline_size = strlen(info->kernel_cmdline);
328 address_space_write(as, p + 8, MEMTXATTRS_UNSPECIFIED,
329 info->kernel_cmdline, cmdline_size + 1);
330 cmdline_size = (cmdline_size >> 2) + 1;
331 WRITE_WORD(p, cmdline_size + 2);
332 WRITE_WORD(p, 0x54410009);
333 p += cmdline_size * 4;
335 if (info->atag_board) {
336 /* ATAG_BOARD */
337 int atag_board_len;
338 uint8_t atag_board_buf[0x1000];
340 atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
341 WRITE_WORD(p, (atag_board_len + 8) >> 2);
342 WRITE_WORD(p, 0x414f4d50);
343 address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
344 atag_board_buf, atag_board_len);
345 p += atag_board_len;
347 /* ATAG_END */
348 WRITE_WORD(p, 0);
349 WRITE_WORD(p, 0);
352 static void set_kernel_args_old(const struct arm_boot_info *info,
353 AddressSpace *as)
355 hwaddr p;
356 const char *s;
357 int initrd_size = info->initrd_size;
358 hwaddr base = info->loader_start;
360 /* see linux/include/asm-arm/setup.h */
361 p = base + KERNEL_ARGS_ADDR;
362 /* page_size */
363 WRITE_WORD(p, 4096);
364 /* nr_pages */
365 WRITE_WORD(p, info->ram_size / 4096);
366 /* ramdisk_size */
367 WRITE_WORD(p, 0);
368 #define FLAG_READONLY 1
369 #define FLAG_RDLOAD 4
370 #define FLAG_RDPROMPT 8
371 /* flags */
372 WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
373 /* rootdev */
374 WRITE_WORD(p, (31 << 8) | 0); /* /dev/mtdblock0 */
375 /* video_num_cols */
376 WRITE_WORD(p, 0);
377 /* video_num_rows */
378 WRITE_WORD(p, 0);
379 /* video_x */
380 WRITE_WORD(p, 0);
381 /* video_y */
382 WRITE_WORD(p, 0);
383 /* memc_control_reg */
384 WRITE_WORD(p, 0);
385 /* unsigned char sounddefault */
386 /* unsigned char adfsdrives */
387 /* unsigned char bytes_per_char_h */
388 /* unsigned char bytes_per_char_v */
389 WRITE_WORD(p, 0);
390 /* pages_in_bank[4] */
391 WRITE_WORD(p, 0);
392 WRITE_WORD(p, 0);
393 WRITE_WORD(p, 0);
394 WRITE_WORD(p, 0);
395 /* pages_in_vram */
396 WRITE_WORD(p, 0);
397 /* initrd_start */
398 if (initrd_size) {
399 WRITE_WORD(p, info->initrd_start);
400 } else {
401 WRITE_WORD(p, 0);
403 /* initrd_size */
404 WRITE_WORD(p, initrd_size);
405 /* rd_start */
406 WRITE_WORD(p, 0);
407 /* system_rev */
408 WRITE_WORD(p, 0);
409 /* system_serial_low */
410 WRITE_WORD(p, 0);
411 /* system_serial_high */
412 WRITE_WORD(p, 0);
413 /* mem_fclk_21285 */
414 WRITE_WORD(p, 0);
415 /* zero unused fields */
416 while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
417 WRITE_WORD(p, 0);
419 s = info->kernel_cmdline;
420 if (s) {
421 address_space_write(as, p, MEMTXATTRS_UNSPECIFIED, s, strlen(s) + 1);
422 } else {
423 WRITE_WORD(p, 0);
427 static int fdt_add_memory_node(void *fdt, uint32_t acells, hwaddr mem_base,
428 uint32_t scells, hwaddr mem_len,
429 int numa_node_id)
431 char *nodename;
432 int ret;
434 nodename = g_strdup_printf("/memory@%" PRIx64, mem_base);
435 qemu_fdt_add_subnode(fdt, nodename);
436 qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
437 ret = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg", acells, mem_base,
438 scells, mem_len);
439 if (ret < 0) {
440 goto out;
443 /* only set the NUMA ID if it is specified */
444 if (numa_node_id >= 0) {
445 ret = qemu_fdt_setprop_cell(fdt, nodename,
446 "numa-node-id", numa_node_id);
448 out:
449 g_free(nodename);
450 return ret;
453 static void fdt_add_psci_node(void *fdt)
455 uint32_t cpu_suspend_fn;
456 uint32_t cpu_off_fn;
457 uint32_t cpu_on_fn;
458 uint32_t migrate_fn;
459 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
460 const char *psci_method;
461 int64_t psci_conduit;
462 int rc;
464 psci_conduit = object_property_get_int(OBJECT(armcpu),
465 "psci-conduit",
466 &error_abort);
467 switch (psci_conduit) {
468 case QEMU_PSCI_CONDUIT_DISABLED:
469 return;
470 case QEMU_PSCI_CONDUIT_HVC:
471 psci_method = "hvc";
472 break;
473 case QEMU_PSCI_CONDUIT_SMC:
474 psci_method = "smc";
475 break;
476 default:
477 g_assert_not_reached();
481 * If /psci node is present in provided DTB, assume that no fixup
482 * is necessary and all PSCI configuration should be taken as-is
484 rc = fdt_path_offset(fdt, "/psci");
485 if (rc >= 0) {
486 return;
489 qemu_fdt_add_subnode(fdt, "/psci");
490 if (armcpu->psci_version == 2) {
491 const char comp[] = "arm,psci-0.2\0arm,psci";
492 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
494 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
495 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
496 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
497 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
498 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
499 } else {
500 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
501 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
502 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
504 } else {
505 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
507 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
508 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
509 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
510 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
513 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
514 * to the instruction that should be used to invoke PSCI functions.
515 * However, the device tree binding uses 'method' instead, so that is
516 * what we should use here.
518 qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method);
520 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
521 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
522 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
523 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
526 int arm_load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
527 hwaddr addr_limit, AddressSpace *as, MachineState *ms)
529 void *fdt = NULL;
530 int size, rc, n = 0;
531 uint32_t acells, scells;
532 unsigned int i;
533 hwaddr mem_base, mem_len;
534 char **node_path;
535 Error *err = NULL;
537 if (binfo->dtb_filename) {
538 char *filename;
539 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
540 if (!filename) {
541 fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
542 goto fail;
545 fdt = load_device_tree(filename, &size);
546 if (!fdt) {
547 fprintf(stderr, "Couldn't open dtb file %s\n", filename);
548 g_free(filename);
549 goto fail;
551 g_free(filename);
552 } else {
553 fdt = binfo->get_dtb(binfo, &size);
554 if (!fdt) {
555 fprintf(stderr, "Board was unable to create a dtb blob\n");
556 goto fail;
560 if (addr_limit > addr && size > (addr_limit - addr)) {
561 /* Installing the device tree blob at addr would exceed addr_limit.
562 * Whether this constitutes failure is up to the caller to decide,
563 * so just return 0 as size, i.e., no error.
565 g_free(fdt);
566 return 0;
569 acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells",
570 NULL, &error_fatal);
571 scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells",
572 NULL, &error_fatal);
573 if (acells == 0 || scells == 0) {
574 fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
575 goto fail;
578 if (scells < 2 && binfo->ram_size >= 4 * GiB) {
579 /* This is user error so deserves a friendlier error message
580 * than the failure of setprop_sized_cells would provide
582 fprintf(stderr, "qemu: dtb file not compatible with "
583 "RAM size > 4GB\n");
584 goto fail;
587 /* nop all root nodes matching /memory or /memory@unit-address */
588 node_path = qemu_fdt_node_unit_path(fdt, "memory", &err);
589 if (err) {
590 error_report_err(err);
591 goto fail;
593 while (node_path[n]) {
594 if (g_str_has_prefix(node_path[n], "/memory")) {
595 qemu_fdt_nop_node(fdt, node_path[n]);
597 n++;
599 g_strfreev(node_path);
602 * We drop all the memory nodes which correspond to empty NUMA nodes
603 * from the device tree, because the Linux NUMA binding document
604 * states they should not be generated. Linux will get the NUMA node
605 * IDs of the empty NUMA nodes from the distance map if they are needed.
606 * This means QEMU users may be obliged to provide command lines which
607 * configure distance maps when the empty NUMA node IDs are needed and
608 * Linux's default distance map isn't sufficient.
610 if (ms->numa_state != NULL && ms->numa_state->num_nodes > 0) {
611 mem_base = binfo->loader_start;
612 for (i = 0; i < ms->numa_state->num_nodes; i++) {
613 mem_len = ms->numa_state->nodes[i].node_mem;
614 if (!mem_len) {
615 continue;
618 rc = fdt_add_memory_node(fdt, acells, mem_base,
619 scells, mem_len, i);
620 if (rc < 0) {
621 fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
622 mem_base);
623 goto fail;
626 mem_base += mem_len;
628 } else {
629 rc = fdt_add_memory_node(fdt, acells, binfo->loader_start,
630 scells, binfo->ram_size, -1);
631 if (rc < 0) {
632 fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
633 binfo->loader_start);
634 goto fail;
638 rc = fdt_path_offset(fdt, "/chosen");
639 if (rc < 0) {
640 qemu_fdt_add_subnode(fdt, "/chosen");
643 if (ms->kernel_cmdline && *ms->kernel_cmdline) {
644 rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
645 ms->kernel_cmdline);
646 if (rc < 0) {
647 fprintf(stderr, "couldn't set /chosen/bootargs\n");
648 goto fail;
652 if (binfo->initrd_size) {
653 rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
654 binfo->initrd_start);
655 if (rc < 0) {
656 fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
657 goto fail;
660 rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
661 binfo->initrd_start + binfo->initrd_size);
662 if (rc < 0) {
663 fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
664 goto fail;
668 fdt_add_psci_node(fdt);
670 if (binfo->modify_dtb) {
671 binfo->modify_dtb(binfo, fdt);
674 qemu_fdt_dumpdtb(fdt, size);
676 /* Put the DTB into the memory map as a ROM image: this will ensure
677 * the DTB is copied again upon reset, even if addr points into RAM.
679 rom_add_blob_fixed_as("dtb", fdt, size, addr, as);
681 g_free(fdt);
683 return size;
685 fail:
686 g_free(fdt);
687 return -1;
690 static void do_cpu_reset(void *opaque)
692 ARMCPU *cpu = opaque;
693 CPUState *cs = CPU(cpu);
694 CPUARMState *env = &cpu->env;
695 const struct arm_boot_info *info = env->boot_info;
697 cpu_reset(cs);
698 if (info) {
699 if (!info->is_linux) {
700 int i;
701 /* Jump to the entry point. */
702 uint64_t entry = info->entry;
704 switch (info->endianness) {
705 case ARM_ENDIANNESS_LE:
706 env->cp15.sctlr_el[1] &= ~SCTLR_E0E;
707 for (i = 1; i < 4; ++i) {
708 env->cp15.sctlr_el[i] &= ~SCTLR_EE;
710 env->uncached_cpsr &= ~CPSR_E;
711 break;
712 case ARM_ENDIANNESS_BE8:
713 env->cp15.sctlr_el[1] |= SCTLR_E0E;
714 for (i = 1; i < 4; ++i) {
715 env->cp15.sctlr_el[i] |= SCTLR_EE;
717 env->uncached_cpsr |= CPSR_E;
718 break;
719 case ARM_ENDIANNESS_BE32:
720 env->cp15.sctlr_el[1] |= SCTLR_B;
721 break;
722 case ARM_ENDIANNESS_UNKNOWN:
723 break; /* Board's decision */
724 default:
725 g_assert_not_reached();
728 cpu_set_pc(cs, entry);
729 } else {
730 /* If we are booting Linux then we need to check whether we are
731 * booting into secure or non-secure state and adjust the state
732 * accordingly. Out of reset, ARM is defined to be in secure state
733 * (SCR.NS = 0), we change that here if non-secure boot has been
734 * requested.
736 if (arm_feature(env, ARM_FEATURE_EL3)) {
737 /* AArch64 is defined to come out of reset into EL3 if enabled.
738 * If we are booting Linux then we need to adjust our EL as
739 * Linux expects us to be in EL2 or EL1. AArch32 resets into
740 * SVC, which Linux expects, so no privilege/exception level to
741 * adjust.
743 if (env->aarch64) {
744 env->cp15.scr_el3 |= SCR_RW;
745 if (arm_feature(env, ARM_FEATURE_EL2)) {
746 env->cp15.hcr_el2 |= HCR_RW;
747 env->pstate = PSTATE_MODE_EL2h;
748 } else {
749 env->pstate = PSTATE_MODE_EL1h;
751 if (cpu_isar_feature(aa64_pauth, cpu)) {
752 env->cp15.scr_el3 |= SCR_API | SCR_APK;
754 if (cpu_isar_feature(aa64_mte, cpu)) {
755 env->cp15.scr_el3 |= SCR_ATA;
757 if (cpu_isar_feature(aa64_sve, cpu)) {
758 env->cp15.cptr_el[3] |= CPTR_EZ;
760 /* AArch64 kernels never boot in secure mode */
761 assert(!info->secure_boot);
762 /* This hook is only supported for AArch32 currently:
763 * bootloader_aarch64[] will not call the hook, and
764 * the code above has already dropped us into EL2 or EL1.
766 assert(!info->secure_board_setup);
769 if (arm_feature(env, ARM_FEATURE_EL2)) {
770 /* If we have EL2 then Linux expects the HVC insn to work */
771 env->cp15.scr_el3 |= SCR_HCE;
774 /* Set to non-secure if not a secure boot */
775 if (!info->secure_boot &&
776 (cs != first_cpu || !info->secure_board_setup)) {
777 /* Linux expects non-secure state */
778 env->cp15.scr_el3 |= SCR_NS;
779 /* Set NSACR.{CP11,CP10} so NS can access the FPU */
780 env->cp15.nsacr |= 3 << 10;
784 if (!env->aarch64 && !info->secure_boot &&
785 arm_feature(env, ARM_FEATURE_EL2)) {
787 * This is an AArch32 boot not to Secure state, and
788 * we have Hyp mode available, so boot the kernel into
789 * Hyp mode. This is not how the CPU comes out of reset,
790 * so we need to manually put it there.
792 cpsr_write(env, ARM_CPU_MODE_HYP, CPSR_M, CPSRWriteRaw);
795 if (cs == first_cpu) {
796 AddressSpace *as = arm_boot_address_space(cpu, info);
798 cpu_set_pc(cs, info->loader_start);
800 if (!have_dtb(info)) {
801 if (old_param) {
802 set_kernel_args_old(info, as);
803 } else {
804 set_kernel_args(info, as);
807 } else if (info->secondary_cpu_reset_hook) {
808 info->secondary_cpu_reset_hook(cpu, info);
811 arm_rebuild_hflags(env);
816 * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified
817 * by key.
818 * @fw_cfg: The firmware config instance to store the data in.
819 * @size_key: The firmware config key to store the size of the loaded
820 * data under, with fw_cfg_add_i32().
821 * @data_key: The firmware config key to store the loaded data under,
822 * with fw_cfg_add_bytes().
823 * @image_name: The name of the image file to load. If it is NULL, the
824 * function returns without doing anything.
825 * @try_decompress: Whether the image should be decompressed (gunzipped) before
826 * adding it to fw_cfg. If decompression fails, the image is
827 * loaded as-is.
829 * In case of failure, the function prints an error message to stderr and the
830 * process exits with status 1.
832 static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key,
833 uint16_t data_key, const char *image_name,
834 bool try_decompress)
836 size_t size = -1;
837 uint8_t *data;
839 if (image_name == NULL) {
840 return;
843 if (try_decompress) {
844 size = load_image_gzipped_buffer(image_name,
845 LOAD_IMAGE_MAX_GUNZIP_BYTES, &data);
848 if (size == (size_t)-1) {
849 gchar *contents;
850 gsize length;
852 if (!g_file_get_contents(image_name, &contents, &length, NULL)) {
853 error_report("failed to load \"%s\"", image_name);
854 exit(1);
856 size = length;
857 data = (uint8_t *)contents;
860 fw_cfg_add_i32(fw_cfg, size_key, size);
861 fw_cfg_add_bytes(fw_cfg, data_key, data, size);
864 static int do_arm_linux_init(Object *obj, void *opaque)
866 if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) {
867 ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj);
868 ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj);
869 struct arm_boot_info *info = opaque;
871 if (albifc->arm_linux_init) {
872 albifc->arm_linux_init(albif, info->secure_boot);
875 return 0;
878 static int64_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry,
879 uint64_t *lowaddr, uint64_t *highaddr,
880 int elf_machine, AddressSpace *as)
882 bool elf_is64;
883 union {
884 Elf32_Ehdr h32;
885 Elf64_Ehdr h64;
886 } elf_header;
887 int data_swab = 0;
888 bool big_endian;
889 int64_t ret = -1;
890 Error *err = NULL;
893 load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err);
894 if (err) {
895 error_free(err);
896 return ret;
899 if (elf_is64) {
900 big_endian = elf_header.h64.e_ident[EI_DATA] == ELFDATA2MSB;
901 info->endianness = big_endian ? ARM_ENDIANNESS_BE8
902 : ARM_ENDIANNESS_LE;
903 } else {
904 big_endian = elf_header.h32.e_ident[EI_DATA] == ELFDATA2MSB;
905 if (big_endian) {
906 if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) {
907 info->endianness = ARM_ENDIANNESS_BE8;
908 } else {
909 info->endianness = ARM_ENDIANNESS_BE32;
910 /* In BE32, the CPU has a different view of the per-byte
911 * address map than the rest of the system. BE32 ELF files
912 * are organised such that they can be programmed through
913 * the CPU's per-word byte-reversed view of the world. QEMU
914 * however loads ELF files independently of the CPU. So
915 * tell the ELF loader to byte reverse the data for us.
917 data_swab = 2;
919 } else {
920 info->endianness = ARM_ENDIANNESS_LE;
924 ret = load_elf_as(info->kernel_filename, NULL, NULL, NULL,
925 pentry, lowaddr, highaddr, NULL, big_endian, elf_machine,
926 1, data_swab, as);
927 if (ret <= 0) {
928 /* The header loaded but the image didn't */
929 exit(1);
932 return ret;
935 static uint64_t load_aarch64_image(const char *filename, hwaddr mem_base,
936 hwaddr *entry, AddressSpace *as)
938 hwaddr kernel_load_offset = KERNEL64_LOAD_ADDR;
939 uint64_t kernel_size = 0;
940 uint8_t *buffer;
941 int size;
943 /* On aarch64, it's the bootloader's job to uncompress the kernel. */
944 size = load_image_gzipped_buffer(filename, LOAD_IMAGE_MAX_GUNZIP_BYTES,
945 &buffer);
947 if (size < 0) {
948 gsize len;
950 /* Load as raw file otherwise */
951 if (!g_file_get_contents(filename, (char **)&buffer, &len, NULL)) {
952 return -1;
954 size = len;
957 /* check the arm64 magic header value -- very old kernels may not have it */
958 if (size > ARM64_MAGIC_OFFSET + 4 &&
959 memcmp(buffer + ARM64_MAGIC_OFFSET, "ARM\x64", 4) == 0) {
960 uint64_t hdrvals[2];
962 /* The arm64 Image header has text_offset and image_size fields at 8 and
963 * 16 bytes into the Image header, respectively. The text_offset field
964 * is only valid if the image_size is non-zero.
966 memcpy(&hdrvals, buffer + ARM64_TEXT_OFFSET_OFFSET, sizeof(hdrvals));
968 kernel_size = le64_to_cpu(hdrvals[1]);
970 if (kernel_size != 0) {
971 kernel_load_offset = le64_to_cpu(hdrvals[0]);
974 * We write our startup "bootloader" at the very bottom of RAM,
975 * so that bit can't be used for the image. Luckily the Image
976 * format specification is that the image requests only an offset
977 * from a 2MB boundary, not an absolute load address. So if the
978 * image requests an offset that might mean it overlaps with the
979 * bootloader, we can just load it starting at 2MB+offset rather
980 * than 0MB + offset.
982 if (kernel_load_offset < BOOTLOADER_MAX_SIZE) {
983 kernel_load_offset += 2 * MiB;
989 * Kernels before v3.17 don't populate the image_size field, and
990 * raw images have no header. For those our best guess at the size
991 * is the size of the Image file itself.
993 if (kernel_size == 0) {
994 kernel_size = size;
997 *entry = mem_base + kernel_load_offset;
998 rom_add_blob_fixed_as(filename, buffer, size, *entry, as);
1000 g_free(buffer);
1002 return kernel_size;
1005 static void arm_setup_direct_kernel_boot(ARMCPU *cpu,
1006 struct arm_boot_info *info)
1008 /* Set up for a direct boot of a kernel image file. */
1009 CPUState *cs;
1010 AddressSpace *as = arm_boot_address_space(cpu, info);
1011 int kernel_size;
1012 int initrd_size;
1013 int is_linux = 0;
1014 uint64_t elf_entry;
1015 /* Addresses of first byte used and first byte not used by the image */
1016 uint64_t image_low_addr = 0, image_high_addr = 0;
1017 int elf_machine;
1018 hwaddr entry;
1019 static const ARMInsnFixup *primary_loader;
1020 uint64_t ram_end = info->loader_start + info->ram_size;
1022 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1023 primary_loader = bootloader_aarch64;
1024 elf_machine = EM_AARCH64;
1025 } else {
1026 primary_loader = bootloader;
1027 if (!info->write_board_setup) {
1028 primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET;
1030 elf_machine = EM_ARM;
1033 if (info->nb_cpus == 0)
1034 info->nb_cpus = 1;
1036 /* Assume that raw images are linux kernels, and ELF images are not. */
1037 kernel_size = arm_load_elf(info, &elf_entry, &image_low_addr,
1038 &image_high_addr, elf_machine, as);
1039 if (kernel_size > 0 && have_dtb(info)) {
1041 * If there is still some room left at the base of RAM, try and put
1042 * the DTB there like we do for images loaded with -bios or -pflash.
1044 if (image_low_addr > info->loader_start
1045 || image_high_addr < info->loader_start) {
1047 * Set image_low_addr as address limit for arm_load_dtb if it may be
1048 * pointing into RAM, otherwise pass '0' (no limit)
1050 if (image_low_addr < info->loader_start) {
1051 image_low_addr = 0;
1053 info->dtb_start = info->loader_start;
1054 info->dtb_limit = image_low_addr;
1057 entry = elf_entry;
1058 if (kernel_size < 0) {
1059 uint64_t loadaddr = info->loader_start + KERNEL_NOLOAD_ADDR;
1060 kernel_size = load_uimage_as(info->kernel_filename, &entry, &loadaddr,
1061 &is_linux, NULL, NULL, as);
1062 if (kernel_size >= 0) {
1063 image_low_addr = loadaddr;
1064 image_high_addr = image_low_addr + kernel_size;
1067 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
1068 kernel_size = load_aarch64_image(info->kernel_filename,
1069 info->loader_start, &entry, as);
1070 is_linux = 1;
1071 if (kernel_size >= 0) {
1072 image_low_addr = entry;
1073 image_high_addr = image_low_addr + kernel_size;
1075 } else if (kernel_size < 0) {
1076 /* 32-bit ARM */
1077 entry = info->loader_start + KERNEL_LOAD_ADDR;
1078 kernel_size = load_image_targphys_as(info->kernel_filename, entry,
1079 ram_end - KERNEL_LOAD_ADDR, as);
1080 is_linux = 1;
1081 if (kernel_size >= 0) {
1082 image_low_addr = entry;
1083 image_high_addr = image_low_addr + kernel_size;
1086 if (kernel_size < 0) {
1087 error_report("could not load kernel '%s'", info->kernel_filename);
1088 exit(1);
1091 if (kernel_size > info->ram_size) {
1092 error_report("kernel '%s' is too large to fit in RAM "
1093 "(kernel size %d, RAM size %" PRId64 ")",
1094 info->kernel_filename, kernel_size, info->ram_size);
1095 exit(1);
1098 info->entry = entry;
1101 * We want to put the initrd far enough into RAM that when the
1102 * kernel is uncompressed it will not clobber the initrd. However
1103 * on boards without much RAM we must ensure that we still leave
1104 * enough room for a decent sized initrd, and on boards with large
1105 * amounts of RAM we must avoid the initrd being so far up in RAM
1106 * that it is outside lowmem and inaccessible to the kernel.
1107 * So for boards with less than 256MB of RAM we put the initrd
1108 * halfway into RAM, and for boards with 256MB of RAM or more we put
1109 * the initrd at 128MB.
1110 * We also refuse to put the initrd somewhere that will definitely
1111 * overlay the kernel we just loaded, though for kernel formats which
1112 * don't tell us their exact size (eg self-decompressing 32-bit kernels)
1113 * we might still make a bad choice here.
1115 info->initrd_start = info->loader_start +
1116 MIN(info->ram_size / 2, 128 * MiB);
1117 if (image_high_addr) {
1118 info->initrd_start = MAX(info->initrd_start, image_high_addr);
1120 info->initrd_start = TARGET_PAGE_ALIGN(info->initrd_start);
1122 if (is_linux) {
1123 uint32_t fixupcontext[FIXUP_MAX];
1125 if (info->initrd_filename) {
1127 if (info->initrd_start >= ram_end) {
1128 error_report("not enough space after kernel to load initrd");
1129 exit(1);
1132 initrd_size = load_ramdisk_as(info->initrd_filename,
1133 info->initrd_start,
1134 ram_end - info->initrd_start, as);
1135 if (initrd_size < 0) {
1136 initrd_size = load_image_targphys_as(info->initrd_filename,
1137 info->initrd_start,
1138 ram_end -
1139 info->initrd_start,
1140 as);
1142 if (initrd_size < 0) {
1143 error_report("could not load initrd '%s'",
1144 info->initrd_filename);
1145 exit(1);
1147 if (info->initrd_start + initrd_size > ram_end) {
1148 error_report("could not load initrd '%s': "
1149 "too big to fit into RAM after the kernel",
1150 info->initrd_filename);
1151 exit(1);
1153 } else {
1154 initrd_size = 0;
1156 info->initrd_size = initrd_size;
1158 fixupcontext[FIXUP_BOARDID] = info->board_id;
1159 fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr;
1162 * for device tree boot, we pass the DTB directly in r2. Otherwise
1163 * we point to the kernel args.
1165 if (have_dtb(info)) {
1166 hwaddr align;
1168 if (elf_machine == EM_AARCH64) {
1170 * Some AArch64 kernels on early bootup map the fdt region as
1172 * [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
1174 * Let's play safe and prealign it to 2MB to give us some space.
1176 align = 2 * MiB;
1177 } else {
1179 * Some 32bit kernels will trash anything in the 4K page the
1180 * initrd ends in, so make sure the DTB isn't caught up in that.
1182 align = 4 * KiB;
1185 /* Place the DTB after the initrd in memory with alignment. */
1186 info->dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size,
1187 align);
1188 if (info->dtb_start >= ram_end) {
1189 error_report("Not enough space for DTB after kernel/initrd");
1190 exit(1);
1192 fixupcontext[FIXUP_ARGPTR_LO] = info->dtb_start;
1193 fixupcontext[FIXUP_ARGPTR_HI] = info->dtb_start >> 32;
1194 } else {
1195 fixupcontext[FIXUP_ARGPTR_LO] =
1196 info->loader_start + KERNEL_ARGS_ADDR;
1197 fixupcontext[FIXUP_ARGPTR_HI] =
1198 (info->loader_start + KERNEL_ARGS_ADDR) >> 32;
1199 if (info->ram_size >= 4 * GiB) {
1200 error_report("RAM size must be less than 4GB to boot"
1201 " Linux kernel using ATAGS (try passing a device tree"
1202 " using -dtb)");
1203 exit(1);
1206 fixupcontext[FIXUP_ENTRYPOINT_LO] = entry;
1207 fixupcontext[FIXUP_ENTRYPOINT_HI] = entry >> 32;
1209 write_bootloader("bootloader", info->loader_start,
1210 primary_loader, fixupcontext, as);
1212 if (info->write_board_setup) {
1213 info->write_board_setup(cpu, info);
1217 * Notify devices which need to fake up firmware initialization
1218 * that we're doing a direct kernel boot.
1220 object_child_foreach_recursive(object_get_root(),
1221 do_arm_linux_init, info);
1223 info->is_linux = is_linux;
1225 for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1226 ARM_CPU(cs)->env.boot_info = info;
1230 static void arm_setup_firmware_boot(ARMCPU *cpu, struct arm_boot_info *info)
1232 /* Set up for booting firmware (which might load a kernel via fw_cfg) */
1234 if (have_dtb(info)) {
1236 * If we have a device tree blob, but no kernel to supply it to (or
1237 * the kernel is supposed to be loaded by the bootloader), copy the
1238 * DTB to the base of RAM for the bootloader to pick up.
1240 info->dtb_start = info->loader_start;
1243 if (info->kernel_filename) {
1244 FWCfgState *fw_cfg;
1245 bool try_decompressing_kernel;
1247 fw_cfg = fw_cfg_find();
1249 if (!fw_cfg) {
1250 error_report("This machine type does not support loading both "
1251 "a guest firmware/BIOS image and a guest kernel at "
1252 "the same time. You should change your QEMU command "
1253 "line to specify one or the other, but not both.");
1254 exit(1);
1257 try_decompressing_kernel = arm_feature(&cpu->env,
1258 ARM_FEATURE_AARCH64);
1261 * Expose the kernel, the command line, and the initrd in fw_cfg.
1262 * We don't process them here at all, it's all left to the
1263 * firmware.
1265 load_image_to_fw_cfg(fw_cfg,
1266 FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
1267 info->kernel_filename,
1268 try_decompressing_kernel);
1269 load_image_to_fw_cfg(fw_cfg,
1270 FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
1271 info->initrd_filename, false);
1273 if (info->kernel_cmdline) {
1274 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
1275 strlen(info->kernel_cmdline) + 1);
1276 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
1277 info->kernel_cmdline);
1282 * We will start from address 0 (typically a boot ROM image) in the
1283 * same way as hardware. Leave env->boot_info NULL, so that
1284 * do_cpu_reset() knows it does not need to alter the PC on reset.
1288 void arm_load_kernel(ARMCPU *cpu, MachineState *ms, struct arm_boot_info *info)
1290 CPUState *cs;
1291 AddressSpace *as = arm_boot_address_space(cpu, info);
1292 int boot_el;
1293 CPUARMState *env = &cpu->env;
1296 * CPU objects (unlike devices) are not automatically reset on system
1297 * reset, so we must always register a handler to do so. If we're
1298 * actually loading a kernel, the handler is also responsible for
1299 * arranging that we start it correctly.
1301 for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1302 qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
1306 * The board code is not supposed to set secure_board_setup unless
1307 * running its code in secure mode is actually possible, and KVM
1308 * doesn't support secure.
1310 assert(!(info->secure_board_setup && kvm_enabled()));
1311 info->kernel_filename = ms->kernel_filename;
1312 info->kernel_cmdline = ms->kernel_cmdline;
1313 info->initrd_filename = ms->initrd_filename;
1314 info->dtb_filename = ms->dtb;
1315 info->dtb_limit = 0;
1317 /* Load the kernel. */
1318 if (!info->kernel_filename || info->firmware_loaded) {
1319 arm_setup_firmware_boot(cpu, info);
1320 } else {
1321 arm_setup_direct_kernel_boot(cpu, info);
1325 * Disable the PSCI conduit if it is set up to target the same
1326 * or a lower EL than the one we're going to start the guest code in.
1327 * This logic needs to agree with the code in do_cpu_reset() which
1328 * decides whether we're going to boot the guest in the highest
1329 * supported exception level or in a lower one.
1333 * If PSCI is enabled, then SMC calls all go to the PSCI handler and
1334 * are never emulated to trap into guest code. It therefore does not
1335 * make sense for the board to have a setup code fragment that runs
1336 * in Secure, because this will probably need to itself issue an SMC of some
1337 * kind as part of its operation.
1339 assert(info->psci_conduit == QEMU_PSCI_CONDUIT_DISABLED ||
1340 !info->secure_board_setup);
1342 /* Boot into highest supported EL ... */
1343 if (arm_feature(env, ARM_FEATURE_EL3)) {
1344 boot_el = 3;
1345 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
1346 boot_el = 2;
1347 } else {
1348 boot_el = 1;
1350 /* ...except that if we're booting Linux we adjust the EL we boot into */
1351 if (info->is_linux && !info->secure_boot) {
1352 boot_el = arm_feature(env, ARM_FEATURE_EL2) ? 2 : 1;
1355 if ((info->psci_conduit == QEMU_PSCI_CONDUIT_HVC && boot_el >= 2) ||
1356 (info->psci_conduit == QEMU_PSCI_CONDUIT_SMC && boot_el == 3)) {
1357 info->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1360 if (info->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1361 for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1362 Object *cpuobj = OBJECT(cs);
1364 object_property_set_int(cpuobj, "psci-conduit", info->psci_conduit,
1365 &error_abort);
1367 * Secondary CPUs start in PSCI powered-down state. Like the
1368 * code in do_cpu_reset(), we assume first_cpu is the primary
1369 * CPU.
1371 if (cs != first_cpu) {
1372 object_property_set_bool(cpuobj, "start-powered-off", true,
1373 &error_abort);
1378 if (info->psci_conduit == QEMU_PSCI_CONDUIT_DISABLED &&
1379 info->is_linux && info->nb_cpus > 1) {
1381 * We're booting Linux but not using PSCI, so for SMP we need
1382 * to write a custom secondary CPU boot loader stub, and arrange
1383 * for the secondary CPU reset to make the accompanying initialization.
1385 if (!info->secondary_cpu_reset_hook) {
1386 info->secondary_cpu_reset_hook = default_reset_secondary;
1388 if (!info->write_secondary_boot) {
1389 info->write_secondary_boot = default_write_secondary;
1391 info->write_secondary_boot(cpu, info);
1392 } else {
1394 * No secondary boot stub; don't use the reset hook that would
1395 * have set the CPU up to call it
1397 info->write_secondary_boot = NULL;
1398 info->secondary_cpu_reset_hook = NULL;
1402 * arm_load_dtb() may add a PSCI node so it must be called after we have
1403 * decided whether to enable PSCI and set the psci-conduit CPU properties.
1405 if (!info->skip_dtb_autoload && have_dtb(info)) {
1406 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1407 exit(1);
1412 static const TypeInfo arm_linux_boot_if_info = {
1413 .name = TYPE_ARM_LINUX_BOOT_IF,
1414 .parent = TYPE_INTERFACE,
1415 .class_size = sizeof(ARMLinuxBootIfClass),
1418 static void arm_linux_boot_register_types(void)
1420 type_register_static(&arm_linux_boot_if_info);
1423 type_init(arm_linux_boot_register_types)