4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
10 #include "qemu/osdep.h"
11 #include "qemu/datadir.h"
12 #include "qemu/error-report.h"
13 #include "qapi/error.h"
15 #include "hw/arm/boot.h"
16 #include "hw/arm/linux-boot-if.h"
17 #include "sysemu/kvm.h"
18 #include "sysemu/sysemu.h"
19 #include "sysemu/numa.h"
20 #include "hw/boards.h"
21 #include "sysemu/reset.h"
22 #include "hw/loader.h"
24 #include "sysemu/device_tree.h"
25 #include "qemu/config-file.h"
26 #include "qemu/option.h"
27 #include "qemu/units.h"
29 /* Kernel boot protocol is specified in the kernel docs
30 * Documentation/arm/Booting and Documentation/arm64/booting.txt
31 * They have different preferred image load offsets from system RAM base.
33 #define KERNEL_ARGS_ADDR 0x100
34 #define KERNEL_NOLOAD_ADDR 0x02000000
35 #define KERNEL_LOAD_ADDR 0x00010000
36 #define KERNEL64_LOAD_ADDR 0x00080000
38 #define ARM64_TEXT_OFFSET_OFFSET 8
39 #define ARM64_MAGIC_OFFSET 56
41 #define BOOTLOADER_MAX_SIZE (4 * KiB)
43 AddressSpace
*arm_boot_address_space(ARMCPU
*cpu
,
44 const struct arm_boot_info
*info
)
46 /* Return the address space to use for bootloader reads and writes.
47 * We prefer the secure address space if the CPU has it and we're
48 * going to boot the guest into it.
51 CPUState
*cs
= CPU(cpu
);
53 if (arm_feature(&cpu
->env
, ARM_FEATURE_EL3
) && info
->secure_boot
) {
59 return cpu_get_address_space(cs
, asidx
);
63 FIXUP_NONE
= 0, /* do nothing */
64 FIXUP_TERMINATOR
, /* end of insns */
65 FIXUP_BOARDID
, /* overwrite with board ID number */
66 FIXUP_BOARD_SETUP
, /* overwrite with board specific setup code address */
67 FIXUP_ARGPTR_LO
, /* overwrite with pointer to kernel args */
68 FIXUP_ARGPTR_HI
, /* overwrite with pointer to kernel args (high half) */
69 FIXUP_ENTRYPOINT_LO
, /* overwrite with kernel entry point */
70 FIXUP_ENTRYPOINT_HI
, /* overwrite with kernel entry point (high half) */
71 FIXUP_GIC_CPU_IF
, /* overwrite with GIC CPU interface address */
72 FIXUP_BOOTREG
, /* overwrite with boot register address */
73 FIXUP_DSB
, /* overwrite with correct DSB insn for cpu */
77 typedef struct ARMInsnFixup
{
82 static const ARMInsnFixup bootloader_aarch64
[] = {
83 { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
84 { 0xaa1f03e1 }, /* mov x1, xzr */
85 { 0xaa1f03e2 }, /* mov x2, xzr */
86 { 0xaa1f03e3 }, /* mov x3, xzr */
87 { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
88 { 0xd61f0080 }, /* br x4 ; Jump to the kernel entry point */
89 { 0, FIXUP_ARGPTR_LO
}, /* arg: .word @DTB Lower 32-bits */
90 { 0, FIXUP_ARGPTR_HI
}, /* .word @DTB Higher 32-bits */
91 { 0, FIXUP_ENTRYPOINT_LO
}, /* entry: .word @Kernel Entry Lower 32-bits */
92 { 0, FIXUP_ENTRYPOINT_HI
}, /* .word @Kernel Entry Higher 32-bits */
93 { 0, FIXUP_TERMINATOR
}
96 /* A very small bootloader: call the board-setup code (if needed),
97 * set r0-r2, then jump to the kernel.
98 * If we're not calling boot setup code then we don't copy across
99 * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
102 static const ARMInsnFixup bootloader
[] = {
103 { 0xe28fe004 }, /* add lr, pc, #4 */
104 { 0xe51ff004 }, /* ldr pc, [pc, #-4] */
105 { 0, FIXUP_BOARD_SETUP
},
106 #define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
107 { 0xe3a00000 }, /* mov r0, #0 */
108 { 0xe59f1004 }, /* ldr r1, [pc, #4] */
109 { 0xe59f2004 }, /* ldr r2, [pc, #4] */
110 { 0xe59ff004 }, /* ldr pc, [pc, #4] */
111 { 0, FIXUP_BOARDID
},
112 { 0, FIXUP_ARGPTR_LO
},
113 { 0, FIXUP_ENTRYPOINT_LO
},
114 { 0, FIXUP_TERMINATOR
}
117 /* Handling for secondary CPU boot in a multicore system.
118 * Unlike the uniprocessor/primary CPU boot, this is platform
119 * dependent. The default code here is based on the secondary
120 * CPU boot protocol used on realview/vexpress boards, with
121 * some parameterisation to increase its flexibility.
122 * QEMU platform models for which this code is not appropriate
123 * should override write_secondary_boot and secondary_cpu_reset_hook
126 * This code enables the interrupt controllers for the secondary
127 * CPUs and then puts all the secondary CPUs into a loop waiting
128 * for an interprocessor interrupt and polling a configurable
129 * location for the kernel secondary CPU entry point.
131 #define DSB_INSN 0xf57ff04f
132 #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
134 static const ARMInsnFixup smpboot
[] = {
135 { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
136 { 0xe59f0028 }, /* ldr r0, bootreg_addr */
137 { 0xe3a01001 }, /* mov r1, #1 */
138 { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
139 { 0xe3a010ff }, /* mov r1, #0xff */
140 { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
141 { 0, FIXUP_DSB
}, /* dsb */
142 { 0xe320f003 }, /* wfi */
143 { 0xe5901000 }, /* ldr r1, [r0] */
144 { 0xe1110001 }, /* tst r1, r1 */
145 { 0x0afffffb }, /* beq <wfi> */
146 { 0xe12fff11 }, /* bx r1 */
147 { 0, FIXUP_GIC_CPU_IF
}, /* gic_cpu_if: .word 0x.... */
148 { 0, FIXUP_BOOTREG
}, /* bootreg_addr: .word 0x.... */
149 { 0, FIXUP_TERMINATOR
}
152 static void write_bootloader(const char *name
, hwaddr addr
,
153 const ARMInsnFixup
*insns
, uint32_t *fixupcontext
,
156 /* Fix up the specified bootloader fragment and write it into
157 * guest memory using rom_add_blob_fixed(). fixupcontext is
158 * an array giving the values to write in for the fixup types
159 * which write a value into the code array.
165 while (insns
[len
].fixup
!= FIXUP_TERMINATOR
) {
169 code
= g_new0(uint32_t, len
);
171 for (i
= 0; i
< len
; i
++) {
172 uint32_t insn
= insns
[i
].insn
;
173 FixupType fixup
= insns
[i
].fixup
;
179 case FIXUP_BOARD_SETUP
:
180 case FIXUP_ARGPTR_LO
:
181 case FIXUP_ARGPTR_HI
:
182 case FIXUP_ENTRYPOINT_LO
:
183 case FIXUP_ENTRYPOINT_HI
:
184 case FIXUP_GIC_CPU_IF
:
187 insn
= fixupcontext
[fixup
];
192 code
[i
] = tswap32(insn
);
195 assert((len
* sizeof(uint32_t)) < BOOTLOADER_MAX_SIZE
);
197 rom_add_blob_fixed_as(name
, code
, len
* sizeof(uint32_t), addr
, as
);
202 static void default_write_secondary(ARMCPU
*cpu
,
203 const struct arm_boot_info
*info
)
205 uint32_t fixupcontext
[FIXUP_MAX
];
206 AddressSpace
*as
= arm_boot_address_space(cpu
, info
);
208 fixupcontext
[FIXUP_GIC_CPU_IF
] = info
->gic_cpu_if_addr
;
209 fixupcontext
[FIXUP_BOOTREG
] = info
->smp_bootreg_addr
;
210 if (arm_feature(&cpu
->env
, ARM_FEATURE_V7
)) {
211 fixupcontext
[FIXUP_DSB
] = DSB_INSN
;
213 fixupcontext
[FIXUP_DSB
] = CP15_DSB_INSN
;
216 write_bootloader("smpboot", info
->smp_loader_start
,
217 smpboot
, fixupcontext
, as
);
220 void arm_write_secure_board_setup_dummy_smc(ARMCPU
*cpu
,
221 const struct arm_boot_info
*info
,
224 AddressSpace
*as
= arm_boot_address_space(cpu
, info
);
226 uint32_t mvbar_blob
[] = {
227 /* mvbar_addr: secure monitor vectors
228 * Default unimplemented and unused vectors to spin. Makes it
229 * easier to debug (as opposed to the CPU running away).
231 0xeafffffe, /* (spin) */
232 0xeafffffe, /* (spin) */
233 0xe1b0f00e, /* movs pc, lr ;SMC exception return */
234 0xeafffffe, /* (spin) */
235 0xeafffffe, /* (spin) */
236 0xeafffffe, /* (spin) */
237 0xeafffffe, /* (spin) */
238 0xeafffffe, /* (spin) */
240 uint32_t board_setup_blob
[] = {
241 /* board setup addr */
242 0xee110f51, /* mrc p15, 0, r0, c1, c1, 2 ;read NSACR */
243 0xe3800b03, /* orr r0, #0xc00 ;set CP11, CP10 */
244 0xee010f51, /* mcr p15, 0, r0, c1, c1, 2 ;write NSACR */
245 0xe3a00e00 + (mvbar_addr
>> 4), /* mov r0, #mvbar_addr */
246 0xee0c0f30, /* mcr p15, 0, r0, c12, c0, 1 ;set MVBAR */
247 0xee110f11, /* mrc p15, 0, r0, c1 , c1, 0 ;read SCR */
248 0xe3800031, /* orr r0, #0x31 ;enable AW, FW, NS */
249 0xee010f11, /* mcr p15, 0, r0, c1, c1, 0 ;write SCR */
250 0xe1a0100e, /* mov r1, lr ;save LR across SMC */
251 0xe1600070, /* smc #0 ;call monitor to flush SCR */
252 0xe1a0f001, /* mov pc, r1 ;return */
255 /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */
256 assert((mvbar_addr
& 0x1f) == 0 && (mvbar_addr
>> 4) < 0x100);
258 /* check that these blobs don't overlap */
259 assert((mvbar_addr
+ sizeof(mvbar_blob
) <= info
->board_setup_addr
)
260 || (info
->board_setup_addr
+ sizeof(board_setup_blob
) <= mvbar_addr
));
262 for (n
= 0; n
< ARRAY_SIZE(mvbar_blob
); n
++) {
263 mvbar_blob
[n
] = tswap32(mvbar_blob
[n
]);
265 rom_add_blob_fixed_as("board-setup-mvbar", mvbar_blob
, sizeof(mvbar_blob
),
268 for (n
= 0; n
< ARRAY_SIZE(board_setup_blob
); n
++) {
269 board_setup_blob
[n
] = tswap32(board_setup_blob
[n
]);
271 rom_add_blob_fixed_as("board-setup", board_setup_blob
,
272 sizeof(board_setup_blob
), info
->board_setup_addr
, as
);
275 static void default_reset_secondary(ARMCPU
*cpu
,
276 const struct arm_boot_info
*info
)
278 AddressSpace
*as
= arm_boot_address_space(cpu
, info
);
279 CPUState
*cs
= CPU(cpu
);
281 address_space_stl_notdirty(as
, info
->smp_bootreg_addr
,
282 0, MEMTXATTRS_UNSPECIFIED
, NULL
);
283 cpu_set_pc(cs
, info
->smp_loader_start
);
286 static inline bool have_dtb(const struct arm_boot_info
*info
)
288 return info
->dtb_filename
|| info
->get_dtb
;
291 #define WRITE_WORD(p, value) do { \
292 address_space_stl_notdirty(as, p, value, \
293 MEMTXATTRS_UNSPECIFIED, NULL); \
297 static void set_kernel_args(const struct arm_boot_info
*info
, AddressSpace
*as
)
299 int initrd_size
= info
->initrd_size
;
300 hwaddr base
= info
->loader_start
;
303 p
= base
+ KERNEL_ARGS_ADDR
;
306 WRITE_WORD(p
, 0x54410001);
308 WRITE_WORD(p
, 0x1000);
311 /* TODO: handle multiple chips on one ATAG list */
313 WRITE_WORD(p
, 0x54410002);
314 WRITE_WORD(p
, info
->ram_size
);
315 WRITE_WORD(p
, info
->loader_start
);
319 WRITE_WORD(p
, 0x54420005);
320 WRITE_WORD(p
, info
->initrd_start
);
321 WRITE_WORD(p
, initrd_size
);
323 if (info
->kernel_cmdline
&& *info
->kernel_cmdline
) {
327 cmdline_size
= strlen(info
->kernel_cmdline
);
328 address_space_write(as
, p
+ 8, MEMTXATTRS_UNSPECIFIED
,
329 info
->kernel_cmdline
, cmdline_size
+ 1);
330 cmdline_size
= (cmdline_size
>> 2) + 1;
331 WRITE_WORD(p
, cmdline_size
+ 2);
332 WRITE_WORD(p
, 0x54410009);
333 p
+= cmdline_size
* 4;
335 if (info
->atag_board
) {
338 uint8_t atag_board_buf
[0x1000];
340 atag_board_len
= (info
->atag_board(info
, atag_board_buf
) + 3) & ~3;
341 WRITE_WORD(p
, (atag_board_len
+ 8) >> 2);
342 WRITE_WORD(p
, 0x414f4d50);
343 address_space_write(as
, p
, MEMTXATTRS_UNSPECIFIED
,
344 atag_board_buf
, atag_board_len
);
352 static void set_kernel_args_old(const struct arm_boot_info
*info
,
357 int initrd_size
= info
->initrd_size
;
358 hwaddr base
= info
->loader_start
;
360 /* see linux/include/asm-arm/setup.h */
361 p
= base
+ KERNEL_ARGS_ADDR
;
365 WRITE_WORD(p
, info
->ram_size
/ 4096);
368 #define FLAG_READONLY 1
369 #define FLAG_RDLOAD 4
370 #define FLAG_RDPROMPT 8
372 WRITE_WORD(p
, FLAG_READONLY
| FLAG_RDLOAD
| FLAG_RDPROMPT
);
374 WRITE_WORD(p
, (31 << 8) | 0); /* /dev/mtdblock0 */
383 /* memc_control_reg */
385 /* unsigned char sounddefault */
386 /* unsigned char adfsdrives */
387 /* unsigned char bytes_per_char_h */
388 /* unsigned char bytes_per_char_v */
390 /* pages_in_bank[4] */
399 WRITE_WORD(p
, info
->initrd_start
);
404 WRITE_WORD(p
, initrd_size
);
409 /* system_serial_low */
411 /* system_serial_high */
415 /* zero unused fields */
416 while (p
< base
+ KERNEL_ARGS_ADDR
+ 256 + 1024) {
419 s
= info
->kernel_cmdline
;
421 address_space_write(as
, p
, MEMTXATTRS_UNSPECIFIED
, s
, strlen(s
) + 1);
427 static int fdt_add_memory_node(void *fdt
, uint32_t acells
, hwaddr mem_base
,
428 uint32_t scells
, hwaddr mem_len
,
434 nodename
= g_strdup_printf("/memory@%" PRIx64
, mem_base
);
435 qemu_fdt_add_subnode(fdt
, nodename
);
436 qemu_fdt_setprop_string(fdt
, nodename
, "device_type", "memory");
437 ret
= qemu_fdt_setprop_sized_cells(fdt
, nodename
, "reg", acells
, mem_base
,
443 /* only set the NUMA ID if it is specified */
444 if (numa_node_id
>= 0) {
445 ret
= qemu_fdt_setprop_cell(fdt
, nodename
,
446 "numa-node-id", numa_node_id
);
453 static void fdt_add_psci_node(void *fdt
)
455 uint32_t cpu_suspend_fn
;
459 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(0));
460 const char *psci_method
;
461 int64_t psci_conduit
;
464 psci_conduit
= object_property_get_int(OBJECT(armcpu
),
467 switch (psci_conduit
) {
468 case QEMU_PSCI_CONDUIT_DISABLED
:
470 case QEMU_PSCI_CONDUIT_HVC
:
473 case QEMU_PSCI_CONDUIT_SMC
:
477 g_assert_not_reached();
481 * If /psci node is present in provided DTB, assume that no fixup
482 * is necessary and all PSCI configuration should be taken as-is
484 rc
= fdt_path_offset(fdt
, "/psci");
489 qemu_fdt_add_subnode(fdt
, "/psci");
490 if (armcpu
->psci_version
== 2) {
491 const char comp
[] = "arm,psci-0.2\0arm,psci";
492 qemu_fdt_setprop(fdt
, "/psci", "compatible", comp
, sizeof(comp
));
494 cpu_off_fn
= QEMU_PSCI_0_2_FN_CPU_OFF
;
495 if (arm_feature(&armcpu
->env
, ARM_FEATURE_AARCH64
)) {
496 cpu_suspend_fn
= QEMU_PSCI_0_2_FN64_CPU_SUSPEND
;
497 cpu_on_fn
= QEMU_PSCI_0_2_FN64_CPU_ON
;
498 migrate_fn
= QEMU_PSCI_0_2_FN64_MIGRATE
;
500 cpu_suspend_fn
= QEMU_PSCI_0_2_FN_CPU_SUSPEND
;
501 cpu_on_fn
= QEMU_PSCI_0_2_FN_CPU_ON
;
502 migrate_fn
= QEMU_PSCI_0_2_FN_MIGRATE
;
505 qemu_fdt_setprop_string(fdt
, "/psci", "compatible", "arm,psci");
507 cpu_suspend_fn
= QEMU_PSCI_0_1_FN_CPU_SUSPEND
;
508 cpu_off_fn
= QEMU_PSCI_0_1_FN_CPU_OFF
;
509 cpu_on_fn
= QEMU_PSCI_0_1_FN_CPU_ON
;
510 migrate_fn
= QEMU_PSCI_0_1_FN_MIGRATE
;
513 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
514 * to the instruction that should be used to invoke PSCI functions.
515 * However, the device tree binding uses 'method' instead, so that is
516 * what we should use here.
518 qemu_fdt_setprop_string(fdt
, "/psci", "method", psci_method
);
520 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_suspend", cpu_suspend_fn
);
521 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_off", cpu_off_fn
);
522 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_on", cpu_on_fn
);
523 qemu_fdt_setprop_cell(fdt
, "/psci", "migrate", migrate_fn
);
526 int arm_load_dtb(hwaddr addr
, const struct arm_boot_info
*binfo
,
527 hwaddr addr_limit
, AddressSpace
*as
, MachineState
*ms
)
531 uint32_t acells
, scells
;
533 hwaddr mem_base
, mem_len
;
537 if (binfo
->dtb_filename
) {
539 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, binfo
->dtb_filename
);
541 fprintf(stderr
, "Couldn't open dtb file %s\n", binfo
->dtb_filename
);
545 fdt
= load_device_tree(filename
, &size
);
547 fprintf(stderr
, "Couldn't open dtb file %s\n", filename
);
553 fdt
= binfo
->get_dtb(binfo
, &size
);
555 fprintf(stderr
, "Board was unable to create a dtb blob\n");
560 if (addr_limit
> addr
&& size
> (addr_limit
- addr
)) {
561 /* Installing the device tree blob at addr would exceed addr_limit.
562 * Whether this constitutes failure is up to the caller to decide,
563 * so just return 0 as size, i.e., no error.
569 acells
= qemu_fdt_getprop_cell(fdt
, "/", "#address-cells",
571 scells
= qemu_fdt_getprop_cell(fdt
, "/", "#size-cells",
573 if (acells
== 0 || scells
== 0) {
574 fprintf(stderr
, "dtb file invalid (#address-cells or #size-cells 0)\n");
578 if (scells
< 2 && binfo
->ram_size
>= 4 * GiB
) {
579 /* This is user error so deserves a friendlier error message
580 * than the failure of setprop_sized_cells would provide
582 fprintf(stderr
, "qemu: dtb file not compatible with "
587 /* nop all root nodes matching /memory or /memory@unit-address */
588 node_path
= qemu_fdt_node_unit_path(fdt
, "memory", &err
);
590 error_report_err(err
);
593 while (node_path
[n
]) {
594 if (g_str_has_prefix(node_path
[n
], "/memory")) {
595 qemu_fdt_nop_node(fdt
, node_path
[n
]);
599 g_strfreev(node_path
);
602 * We drop all the memory nodes which correspond to empty NUMA nodes
603 * from the device tree, because the Linux NUMA binding document
604 * states they should not be generated. Linux will get the NUMA node
605 * IDs of the empty NUMA nodes from the distance map if they are needed.
606 * This means QEMU users may be obliged to provide command lines which
607 * configure distance maps when the empty NUMA node IDs are needed and
608 * Linux's default distance map isn't sufficient.
610 if (ms
->numa_state
!= NULL
&& ms
->numa_state
->num_nodes
> 0) {
611 mem_base
= binfo
->loader_start
;
612 for (i
= 0; i
< ms
->numa_state
->num_nodes
; i
++) {
613 mem_len
= ms
->numa_state
->nodes
[i
].node_mem
;
618 rc
= fdt_add_memory_node(fdt
, acells
, mem_base
,
621 fprintf(stderr
, "couldn't add /memory@%"PRIx64
" node\n",
629 rc
= fdt_add_memory_node(fdt
, acells
, binfo
->loader_start
,
630 scells
, binfo
->ram_size
, -1);
632 fprintf(stderr
, "couldn't add /memory@%"PRIx64
" node\n",
633 binfo
->loader_start
);
638 rc
= fdt_path_offset(fdt
, "/chosen");
640 qemu_fdt_add_subnode(fdt
, "/chosen");
643 if (ms
->kernel_cmdline
&& *ms
->kernel_cmdline
) {
644 rc
= qemu_fdt_setprop_string(fdt
, "/chosen", "bootargs",
647 fprintf(stderr
, "couldn't set /chosen/bootargs\n");
652 if (binfo
->initrd_size
) {
653 rc
= qemu_fdt_setprop_cell(fdt
, "/chosen", "linux,initrd-start",
654 binfo
->initrd_start
);
656 fprintf(stderr
, "couldn't set /chosen/linux,initrd-start\n");
660 rc
= qemu_fdt_setprop_cell(fdt
, "/chosen", "linux,initrd-end",
661 binfo
->initrd_start
+ binfo
->initrd_size
);
663 fprintf(stderr
, "couldn't set /chosen/linux,initrd-end\n");
668 fdt_add_psci_node(fdt
);
670 if (binfo
->modify_dtb
) {
671 binfo
->modify_dtb(binfo
, fdt
);
674 qemu_fdt_dumpdtb(fdt
, size
);
676 /* Put the DTB into the memory map as a ROM image: this will ensure
677 * the DTB is copied again upon reset, even if addr points into RAM.
679 rom_add_blob_fixed_as("dtb", fdt
, size
, addr
, as
);
690 static void do_cpu_reset(void *opaque
)
692 ARMCPU
*cpu
= opaque
;
693 CPUState
*cs
= CPU(cpu
);
694 CPUARMState
*env
= &cpu
->env
;
695 const struct arm_boot_info
*info
= env
->boot_info
;
699 if (!info
->is_linux
) {
701 /* Jump to the entry point. */
702 uint64_t entry
= info
->entry
;
704 switch (info
->endianness
) {
705 case ARM_ENDIANNESS_LE
:
706 env
->cp15
.sctlr_el
[1] &= ~SCTLR_E0E
;
707 for (i
= 1; i
< 4; ++i
) {
708 env
->cp15
.sctlr_el
[i
] &= ~SCTLR_EE
;
710 env
->uncached_cpsr
&= ~CPSR_E
;
712 case ARM_ENDIANNESS_BE8
:
713 env
->cp15
.sctlr_el
[1] |= SCTLR_E0E
;
714 for (i
= 1; i
< 4; ++i
) {
715 env
->cp15
.sctlr_el
[i
] |= SCTLR_EE
;
717 env
->uncached_cpsr
|= CPSR_E
;
719 case ARM_ENDIANNESS_BE32
:
720 env
->cp15
.sctlr_el
[1] |= SCTLR_B
;
722 case ARM_ENDIANNESS_UNKNOWN
:
723 break; /* Board's decision */
725 g_assert_not_reached();
728 cpu_set_pc(cs
, entry
);
730 /* If we are booting Linux then we need to check whether we are
731 * booting into secure or non-secure state and adjust the state
732 * accordingly. Out of reset, ARM is defined to be in secure state
733 * (SCR.NS = 0), we change that here if non-secure boot has been
736 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
737 /* AArch64 is defined to come out of reset into EL3 if enabled.
738 * If we are booting Linux then we need to adjust our EL as
739 * Linux expects us to be in EL2 or EL1. AArch32 resets into
740 * SVC, which Linux expects, so no privilege/exception level to
744 env
->cp15
.scr_el3
|= SCR_RW
;
745 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
746 env
->cp15
.hcr_el2
|= HCR_RW
;
747 env
->pstate
= PSTATE_MODE_EL2h
;
749 env
->pstate
= PSTATE_MODE_EL1h
;
751 if (cpu_isar_feature(aa64_pauth
, cpu
)) {
752 env
->cp15
.scr_el3
|= SCR_API
| SCR_APK
;
754 if (cpu_isar_feature(aa64_mte
, cpu
)) {
755 env
->cp15
.scr_el3
|= SCR_ATA
;
757 if (cpu_isar_feature(aa64_sve
, cpu
)) {
758 env
->cp15
.cptr_el
[3] |= CPTR_EZ
;
760 /* AArch64 kernels never boot in secure mode */
761 assert(!info
->secure_boot
);
762 /* This hook is only supported for AArch32 currently:
763 * bootloader_aarch64[] will not call the hook, and
764 * the code above has already dropped us into EL2 or EL1.
766 assert(!info
->secure_board_setup
);
769 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
770 /* If we have EL2 then Linux expects the HVC insn to work */
771 env
->cp15
.scr_el3
|= SCR_HCE
;
774 /* Set to non-secure if not a secure boot */
775 if (!info
->secure_boot
&&
776 (cs
!= first_cpu
|| !info
->secure_board_setup
)) {
777 /* Linux expects non-secure state */
778 env
->cp15
.scr_el3
|= SCR_NS
;
779 /* Set NSACR.{CP11,CP10} so NS can access the FPU */
780 env
->cp15
.nsacr
|= 3 << 10;
784 if (!env
->aarch64
&& !info
->secure_boot
&&
785 arm_feature(env
, ARM_FEATURE_EL2
)) {
787 * This is an AArch32 boot not to Secure state, and
788 * we have Hyp mode available, so boot the kernel into
789 * Hyp mode. This is not how the CPU comes out of reset,
790 * so we need to manually put it there.
792 cpsr_write(env
, ARM_CPU_MODE_HYP
, CPSR_M
, CPSRWriteRaw
);
795 if (cs
== first_cpu
) {
796 AddressSpace
*as
= arm_boot_address_space(cpu
, info
);
798 cpu_set_pc(cs
, info
->loader_start
);
800 if (!have_dtb(info
)) {
802 set_kernel_args_old(info
, as
);
804 set_kernel_args(info
, as
);
807 } else if (info
->secondary_cpu_reset_hook
) {
808 info
->secondary_cpu_reset_hook(cpu
, info
);
811 arm_rebuild_hflags(env
);
816 * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified
818 * @fw_cfg: The firmware config instance to store the data in.
819 * @size_key: The firmware config key to store the size of the loaded
820 * data under, with fw_cfg_add_i32().
821 * @data_key: The firmware config key to store the loaded data under,
822 * with fw_cfg_add_bytes().
823 * @image_name: The name of the image file to load. If it is NULL, the
824 * function returns without doing anything.
825 * @try_decompress: Whether the image should be decompressed (gunzipped) before
826 * adding it to fw_cfg. If decompression fails, the image is
829 * In case of failure, the function prints an error message to stderr and the
830 * process exits with status 1.
832 static void load_image_to_fw_cfg(FWCfgState
*fw_cfg
, uint16_t size_key
,
833 uint16_t data_key
, const char *image_name
,
839 if (image_name
== NULL
) {
843 if (try_decompress
) {
844 size
= load_image_gzipped_buffer(image_name
,
845 LOAD_IMAGE_MAX_GUNZIP_BYTES
, &data
);
848 if (size
== (size_t)-1) {
852 if (!g_file_get_contents(image_name
, &contents
, &length
, NULL
)) {
853 error_report("failed to load \"%s\"", image_name
);
857 data
= (uint8_t *)contents
;
860 fw_cfg_add_i32(fw_cfg
, size_key
, size
);
861 fw_cfg_add_bytes(fw_cfg
, data_key
, data
, size
);
864 static int do_arm_linux_init(Object
*obj
, void *opaque
)
866 if (object_dynamic_cast(obj
, TYPE_ARM_LINUX_BOOT_IF
)) {
867 ARMLinuxBootIf
*albif
= ARM_LINUX_BOOT_IF(obj
);
868 ARMLinuxBootIfClass
*albifc
= ARM_LINUX_BOOT_IF_GET_CLASS(obj
);
869 struct arm_boot_info
*info
= opaque
;
871 if (albifc
->arm_linux_init
) {
872 albifc
->arm_linux_init(albif
, info
->secure_boot
);
878 static int64_t arm_load_elf(struct arm_boot_info
*info
, uint64_t *pentry
,
879 uint64_t *lowaddr
, uint64_t *highaddr
,
880 int elf_machine
, AddressSpace
*as
)
893 load_elf_hdr(info
->kernel_filename
, &elf_header
, &elf_is64
, &err
);
900 big_endian
= elf_header
.h64
.e_ident
[EI_DATA
] == ELFDATA2MSB
;
901 info
->endianness
= big_endian
? ARM_ENDIANNESS_BE8
904 big_endian
= elf_header
.h32
.e_ident
[EI_DATA
] == ELFDATA2MSB
;
906 if (bswap32(elf_header
.h32
.e_flags
) & EF_ARM_BE8
) {
907 info
->endianness
= ARM_ENDIANNESS_BE8
;
909 info
->endianness
= ARM_ENDIANNESS_BE32
;
910 /* In BE32, the CPU has a different view of the per-byte
911 * address map than the rest of the system. BE32 ELF files
912 * are organised such that they can be programmed through
913 * the CPU's per-word byte-reversed view of the world. QEMU
914 * however loads ELF files independently of the CPU. So
915 * tell the ELF loader to byte reverse the data for us.
920 info
->endianness
= ARM_ENDIANNESS_LE
;
924 ret
= load_elf_as(info
->kernel_filename
, NULL
, NULL
, NULL
,
925 pentry
, lowaddr
, highaddr
, NULL
, big_endian
, elf_machine
,
928 /* The header loaded but the image didn't */
935 static uint64_t load_aarch64_image(const char *filename
, hwaddr mem_base
,
936 hwaddr
*entry
, AddressSpace
*as
)
938 hwaddr kernel_load_offset
= KERNEL64_LOAD_ADDR
;
939 uint64_t kernel_size
= 0;
943 /* On aarch64, it's the bootloader's job to uncompress the kernel. */
944 size
= load_image_gzipped_buffer(filename
, LOAD_IMAGE_MAX_GUNZIP_BYTES
,
950 /* Load as raw file otherwise */
951 if (!g_file_get_contents(filename
, (char **)&buffer
, &len
, NULL
)) {
957 /* check the arm64 magic header value -- very old kernels may not have it */
958 if (size
> ARM64_MAGIC_OFFSET
+ 4 &&
959 memcmp(buffer
+ ARM64_MAGIC_OFFSET
, "ARM\x64", 4) == 0) {
962 /* The arm64 Image header has text_offset and image_size fields at 8 and
963 * 16 bytes into the Image header, respectively. The text_offset field
964 * is only valid if the image_size is non-zero.
966 memcpy(&hdrvals
, buffer
+ ARM64_TEXT_OFFSET_OFFSET
, sizeof(hdrvals
));
968 kernel_size
= le64_to_cpu(hdrvals
[1]);
970 if (kernel_size
!= 0) {
971 kernel_load_offset
= le64_to_cpu(hdrvals
[0]);
974 * We write our startup "bootloader" at the very bottom of RAM,
975 * so that bit can't be used for the image. Luckily the Image
976 * format specification is that the image requests only an offset
977 * from a 2MB boundary, not an absolute load address. So if the
978 * image requests an offset that might mean it overlaps with the
979 * bootloader, we can just load it starting at 2MB+offset rather
982 if (kernel_load_offset
< BOOTLOADER_MAX_SIZE
) {
983 kernel_load_offset
+= 2 * MiB
;
989 * Kernels before v3.17 don't populate the image_size field, and
990 * raw images have no header. For those our best guess at the size
991 * is the size of the Image file itself.
993 if (kernel_size
== 0) {
997 *entry
= mem_base
+ kernel_load_offset
;
998 rom_add_blob_fixed_as(filename
, buffer
, size
, *entry
, as
);
1005 static void arm_setup_direct_kernel_boot(ARMCPU
*cpu
,
1006 struct arm_boot_info
*info
)
1008 /* Set up for a direct boot of a kernel image file. */
1010 AddressSpace
*as
= arm_boot_address_space(cpu
, info
);
1015 /* Addresses of first byte used and first byte not used by the image */
1016 uint64_t image_low_addr
= 0, image_high_addr
= 0;
1019 static const ARMInsnFixup
*primary_loader
;
1020 uint64_t ram_end
= info
->loader_start
+ info
->ram_size
;
1022 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
1023 primary_loader
= bootloader_aarch64
;
1024 elf_machine
= EM_AARCH64
;
1026 primary_loader
= bootloader
;
1027 if (!info
->write_board_setup
) {
1028 primary_loader
+= BOOTLOADER_NO_BOARD_SETUP_OFFSET
;
1030 elf_machine
= EM_ARM
;
1033 if (info
->nb_cpus
== 0)
1036 /* Assume that raw images are linux kernels, and ELF images are not. */
1037 kernel_size
= arm_load_elf(info
, &elf_entry
, &image_low_addr
,
1038 &image_high_addr
, elf_machine
, as
);
1039 if (kernel_size
> 0 && have_dtb(info
)) {
1041 * If there is still some room left at the base of RAM, try and put
1042 * the DTB there like we do for images loaded with -bios or -pflash.
1044 if (image_low_addr
> info
->loader_start
1045 || image_high_addr
< info
->loader_start
) {
1047 * Set image_low_addr as address limit for arm_load_dtb if it may be
1048 * pointing into RAM, otherwise pass '0' (no limit)
1050 if (image_low_addr
< info
->loader_start
) {
1053 info
->dtb_start
= info
->loader_start
;
1054 info
->dtb_limit
= image_low_addr
;
1058 if (kernel_size
< 0) {
1059 uint64_t loadaddr
= info
->loader_start
+ KERNEL_NOLOAD_ADDR
;
1060 kernel_size
= load_uimage_as(info
->kernel_filename
, &entry
, &loadaddr
,
1061 &is_linux
, NULL
, NULL
, as
);
1062 if (kernel_size
>= 0) {
1063 image_low_addr
= loadaddr
;
1064 image_high_addr
= image_low_addr
+ kernel_size
;
1067 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
) && kernel_size
< 0) {
1068 kernel_size
= load_aarch64_image(info
->kernel_filename
,
1069 info
->loader_start
, &entry
, as
);
1071 if (kernel_size
>= 0) {
1072 image_low_addr
= entry
;
1073 image_high_addr
= image_low_addr
+ kernel_size
;
1075 } else if (kernel_size
< 0) {
1077 entry
= info
->loader_start
+ KERNEL_LOAD_ADDR
;
1078 kernel_size
= load_image_targphys_as(info
->kernel_filename
, entry
,
1079 ram_end
- KERNEL_LOAD_ADDR
, as
);
1081 if (kernel_size
>= 0) {
1082 image_low_addr
= entry
;
1083 image_high_addr
= image_low_addr
+ kernel_size
;
1086 if (kernel_size
< 0) {
1087 error_report("could not load kernel '%s'", info
->kernel_filename
);
1091 if (kernel_size
> info
->ram_size
) {
1092 error_report("kernel '%s' is too large to fit in RAM "
1093 "(kernel size %d, RAM size %" PRId64
")",
1094 info
->kernel_filename
, kernel_size
, info
->ram_size
);
1098 info
->entry
= entry
;
1101 * We want to put the initrd far enough into RAM that when the
1102 * kernel is uncompressed it will not clobber the initrd. However
1103 * on boards without much RAM we must ensure that we still leave
1104 * enough room for a decent sized initrd, and on boards with large
1105 * amounts of RAM we must avoid the initrd being so far up in RAM
1106 * that it is outside lowmem and inaccessible to the kernel.
1107 * So for boards with less than 256MB of RAM we put the initrd
1108 * halfway into RAM, and for boards with 256MB of RAM or more we put
1109 * the initrd at 128MB.
1110 * We also refuse to put the initrd somewhere that will definitely
1111 * overlay the kernel we just loaded, though for kernel formats which
1112 * don't tell us their exact size (eg self-decompressing 32-bit kernels)
1113 * we might still make a bad choice here.
1115 info
->initrd_start
= info
->loader_start
+
1116 MIN(info
->ram_size
/ 2, 128 * MiB
);
1117 if (image_high_addr
) {
1118 info
->initrd_start
= MAX(info
->initrd_start
, image_high_addr
);
1120 info
->initrd_start
= TARGET_PAGE_ALIGN(info
->initrd_start
);
1123 uint32_t fixupcontext
[FIXUP_MAX
];
1125 if (info
->initrd_filename
) {
1127 if (info
->initrd_start
>= ram_end
) {
1128 error_report("not enough space after kernel to load initrd");
1132 initrd_size
= load_ramdisk_as(info
->initrd_filename
,
1134 ram_end
- info
->initrd_start
, as
);
1135 if (initrd_size
< 0) {
1136 initrd_size
= load_image_targphys_as(info
->initrd_filename
,
1142 if (initrd_size
< 0) {
1143 error_report("could not load initrd '%s'",
1144 info
->initrd_filename
);
1147 if (info
->initrd_start
+ initrd_size
> ram_end
) {
1148 error_report("could not load initrd '%s': "
1149 "too big to fit into RAM after the kernel",
1150 info
->initrd_filename
);
1156 info
->initrd_size
= initrd_size
;
1158 fixupcontext
[FIXUP_BOARDID
] = info
->board_id
;
1159 fixupcontext
[FIXUP_BOARD_SETUP
] = info
->board_setup_addr
;
1162 * for device tree boot, we pass the DTB directly in r2. Otherwise
1163 * we point to the kernel args.
1165 if (have_dtb(info
)) {
1168 if (elf_machine
== EM_AARCH64
) {
1170 * Some AArch64 kernels on early bootup map the fdt region as
1172 * [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
1174 * Let's play safe and prealign it to 2MB to give us some space.
1179 * Some 32bit kernels will trash anything in the 4K page the
1180 * initrd ends in, so make sure the DTB isn't caught up in that.
1185 /* Place the DTB after the initrd in memory with alignment. */
1186 info
->dtb_start
= QEMU_ALIGN_UP(info
->initrd_start
+ initrd_size
,
1188 if (info
->dtb_start
>= ram_end
) {
1189 error_report("Not enough space for DTB after kernel/initrd");
1192 fixupcontext
[FIXUP_ARGPTR_LO
] = info
->dtb_start
;
1193 fixupcontext
[FIXUP_ARGPTR_HI
] = info
->dtb_start
>> 32;
1195 fixupcontext
[FIXUP_ARGPTR_LO
] =
1196 info
->loader_start
+ KERNEL_ARGS_ADDR
;
1197 fixupcontext
[FIXUP_ARGPTR_HI
] =
1198 (info
->loader_start
+ KERNEL_ARGS_ADDR
) >> 32;
1199 if (info
->ram_size
>= 4 * GiB
) {
1200 error_report("RAM size must be less than 4GB to boot"
1201 " Linux kernel using ATAGS (try passing a device tree"
1206 fixupcontext
[FIXUP_ENTRYPOINT_LO
] = entry
;
1207 fixupcontext
[FIXUP_ENTRYPOINT_HI
] = entry
>> 32;
1209 write_bootloader("bootloader", info
->loader_start
,
1210 primary_loader
, fixupcontext
, as
);
1212 if (info
->write_board_setup
) {
1213 info
->write_board_setup(cpu
, info
);
1217 * Notify devices which need to fake up firmware initialization
1218 * that we're doing a direct kernel boot.
1220 object_child_foreach_recursive(object_get_root(),
1221 do_arm_linux_init
, info
);
1223 info
->is_linux
= is_linux
;
1225 for (cs
= first_cpu
; cs
; cs
= CPU_NEXT(cs
)) {
1226 ARM_CPU(cs
)->env
.boot_info
= info
;
1230 static void arm_setup_firmware_boot(ARMCPU
*cpu
, struct arm_boot_info
*info
)
1232 /* Set up for booting firmware (which might load a kernel via fw_cfg) */
1234 if (have_dtb(info
)) {
1236 * If we have a device tree blob, but no kernel to supply it to (or
1237 * the kernel is supposed to be loaded by the bootloader), copy the
1238 * DTB to the base of RAM for the bootloader to pick up.
1240 info
->dtb_start
= info
->loader_start
;
1243 if (info
->kernel_filename
) {
1245 bool try_decompressing_kernel
;
1247 fw_cfg
= fw_cfg_find();
1250 error_report("This machine type does not support loading both "
1251 "a guest firmware/BIOS image and a guest kernel at "
1252 "the same time. You should change your QEMU command "
1253 "line to specify one or the other, but not both.");
1257 try_decompressing_kernel
= arm_feature(&cpu
->env
,
1258 ARM_FEATURE_AARCH64
);
1261 * Expose the kernel, the command line, and the initrd in fw_cfg.
1262 * We don't process them here at all, it's all left to the
1265 load_image_to_fw_cfg(fw_cfg
,
1266 FW_CFG_KERNEL_SIZE
, FW_CFG_KERNEL_DATA
,
1267 info
->kernel_filename
,
1268 try_decompressing_kernel
);
1269 load_image_to_fw_cfg(fw_cfg
,
1270 FW_CFG_INITRD_SIZE
, FW_CFG_INITRD_DATA
,
1271 info
->initrd_filename
, false);
1273 if (info
->kernel_cmdline
) {
1274 fw_cfg_add_i32(fw_cfg
, FW_CFG_CMDLINE_SIZE
,
1275 strlen(info
->kernel_cmdline
) + 1);
1276 fw_cfg_add_string(fw_cfg
, FW_CFG_CMDLINE_DATA
,
1277 info
->kernel_cmdline
);
1282 * We will start from address 0 (typically a boot ROM image) in the
1283 * same way as hardware. Leave env->boot_info NULL, so that
1284 * do_cpu_reset() knows it does not need to alter the PC on reset.
1288 void arm_load_kernel(ARMCPU
*cpu
, MachineState
*ms
, struct arm_boot_info
*info
)
1291 AddressSpace
*as
= arm_boot_address_space(cpu
, info
);
1293 CPUARMState
*env
= &cpu
->env
;
1296 * CPU objects (unlike devices) are not automatically reset on system
1297 * reset, so we must always register a handler to do so. If we're
1298 * actually loading a kernel, the handler is also responsible for
1299 * arranging that we start it correctly.
1301 for (cs
= first_cpu
; cs
; cs
= CPU_NEXT(cs
)) {
1302 qemu_register_reset(do_cpu_reset
, ARM_CPU(cs
));
1306 * The board code is not supposed to set secure_board_setup unless
1307 * running its code in secure mode is actually possible, and KVM
1308 * doesn't support secure.
1310 assert(!(info
->secure_board_setup
&& kvm_enabled()));
1311 info
->kernel_filename
= ms
->kernel_filename
;
1312 info
->kernel_cmdline
= ms
->kernel_cmdline
;
1313 info
->initrd_filename
= ms
->initrd_filename
;
1314 info
->dtb_filename
= ms
->dtb
;
1315 info
->dtb_limit
= 0;
1317 /* Load the kernel. */
1318 if (!info
->kernel_filename
|| info
->firmware_loaded
) {
1319 arm_setup_firmware_boot(cpu
, info
);
1321 arm_setup_direct_kernel_boot(cpu
, info
);
1325 * Disable the PSCI conduit if it is set up to target the same
1326 * or a lower EL than the one we're going to start the guest code in.
1327 * This logic needs to agree with the code in do_cpu_reset() which
1328 * decides whether we're going to boot the guest in the highest
1329 * supported exception level or in a lower one.
1333 * If PSCI is enabled, then SMC calls all go to the PSCI handler and
1334 * are never emulated to trap into guest code. It therefore does not
1335 * make sense for the board to have a setup code fragment that runs
1336 * in Secure, because this will probably need to itself issue an SMC of some
1337 * kind as part of its operation.
1339 assert(info
->psci_conduit
== QEMU_PSCI_CONDUIT_DISABLED
||
1340 !info
->secure_board_setup
);
1342 /* Boot into highest supported EL ... */
1343 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
1345 } else if (arm_feature(env
, ARM_FEATURE_EL2
)) {
1350 /* ...except that if we're booting Linux we adjust the EL we boot into */
1351 if (info
->is_linux
&& !info
->secure_boot
) {
1352 boot_el
= arm_feature(env
, ARM_FEATURE_EL2
) ? 2 : 1;
1355 if ((info
->psci_conduit
== QEMU_PSCI_CONDUIT_HVC
&& boot_el
>= 2) ||
1356 (info
->psci_conduit
== QEMU_PSCI_CONDUIT_SMC
&& boot_el
== 3)) {
1357 info
->psci_conduit
= QEMU_PSCI_CONDUIT_DISABLED
;
1360 if (info
->psci_conduit
!= QEMU_PSCI_CONDUIT_DISABLED
) {
1361 for (cs
= first_cpu
; cs
; cs
= CPU_NEXT(cs
)) {
1362 Object
*cpuobj
= OBJECT(cs
);
1364 object_property_set_int(cpuobj
, "psci-conduit", info
->psci_conduit
,
1367 * Secondary CPUs start in PSCI powered-down state. Like the
1368 * code in do_cpu_reset(), we assume first_cpu is the primary
1371 if (cs
!= first_cpu
) {
1372 object_property_set_bool(cpuobj
, "start-powered-off", true,
1378 if (info
->psci_conduit
== QEMU_PSCI_CONDUIT_DISABLED
&&
1379 info
->is_linux
&& info
->nb_cpus
> 1) {
1381 * We're booting Linux but not using PSCI, so for SMP we need
1382 * to write a custom secondary CPU boot loader stub, and arrange
1383 * for the secondary CPU reset to make the accompanying initialization.
1385 if (!info
->secondary_cpu_reset_hook
) {
1386 info
->secondary_cpu_reset_hook
= default_reset_secondary
;
1388 if (!info
->write_secondary_boot
) {
1389 info
->write_secondary_boot
= default_write_secondary
;
1391 info
->write_secondary_boot(cpu
, info
);
1394 * No secondary boot stub; don't use the reset hook that would
1395 * have set the CPU up to call it
1397 info
->write_secondary_boot
= NULL
;
1398 info
->secondary_cpu_reset_hook
= NULL
;
1402 * arm_load_dtb() may add a PSCI node so it must be called after we have
1403 * decided whether to enable PSCI and set the psci-conduit CPU properties.
1405 if (!info
->skip_dtb_autoload
&& have_dtb(info
)) {
1406 if (arm_load_dtb(info
->dtb_start
, info
, info
->dtb_limit
, as
, ms
) < 0) {
1412 static const TypeInfo arm_linux_boot_if_info
= {
1413 .name
= TYPE_ARM_LINUX_BOOT_IF
,
1414 .parent
= TYPE_INTERFACE
,
1415 .class_size
= sizeof(ARMLinuxBootIfClass
),
1418 static void arm_linux_boot_register_types(void)
1420 type_register_static(&arm_linux_boot_if_info
);
1423 type_init(arm_linux_boot_register_types
)