ds1225y: use trace framework
[qemu.git] / target-sparc / op_helper.c
blobb99223eddb425e1d79acd0c33eb12734a069f297
1 #include "exec.h"
2 #include "host-utils.h"
3 #include "helper.h"
4 #include "sysemu.h"
6 //#define DEBUG_MMU
7 //#define DEBUG_MXCC
8 //#define DEBUG_UNALIGNED
9 //#define DEBUG_UNASSIGNED
10 //#define DEBUG_ASI
11 //#define DEBUG_PCALL
12 //#define DEBUG_PSTATE
13 //#define DEBUG_CACHE_CONTROL
15 #ifdef DEBUG_MMU
16 #define DPRINTF_MMU(fmt, ...) \
17 do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
18 #else
19 #define DPRINTF_MMU(fmt, ...) do {} while (0)
20 #endif
22 #ifdef DEBUG_MXCC
23 #define DPRINTF_MXCC(fmt, ...) \
24 do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
25 #else
26 #define DPRINTF_MXCC(fmt, ...) do {} while (0)
27 #endif
29 #ifdef DEBUG_ASI
30 #define DPRINTF_ASI(fmt, ...) \
31 do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
32 #endif
34 #ifdef DEBUG_PSTATE
35 #define DPRINTF_PSTATE(fmt, ...) \
36 do { printf("PSTATE: " fmt , ## __VA_ARGS__); } while (0)
37 #else
38 #define DPRINTF_PSTATE(fmt, ...) do {} while (0)
39 #endif
41 #ifdef DEBUG_CACHE_CONTROL
42 #define DPRINTF_CACHE_CONTROL(fmt, ...) \
43 do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0)
44 #else
45 #define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0)
46 #endif
48 #ifdef TARGET_SPARC64
49 #ifndef TARGET_ABI32
50 #define AM_CHECK(env1) ((env1)->pstate & PS_AM)
51 #else
52 #define AM_CHECK(env1) (1)
53 #endif
54 #endif
56 #define DT0 (env->dt0)
57 #define DT1 (env->dt1)
58 #define QT0 (env->qt0)
59 #define QT1 (env->qt1)
61 /* Leon3 cache control */
63 /* Cache control: emulate the behavior of cache control registers but without
64 any effect on the emulated */
66 #define CACHE_STATE_MASK 0x3
67 #define CACHE_DISABLED 0x0
68 #define CACHE_FROZEN 0x1
69 #define CACHE_ENABLED 0x3
71 /* Cache Control register fields */
73 #define CACHE_CTRL_IF (1 << 4) /* Instruction Cache Freeze on Interrupt */
74 #define CACHE_CTRL_DF (1 << 5) /* Data Cache Freeze on Interrupt */
75 #define CACHE_CTRL_DP (1 << 14) /* Data cache flush pending */
76 #define CACHE_CTRL_IP (1 << 15) /* Instruction cache flush pending */
77 #define CACHE_CTRL_IB (1 << 16) /* Instruction burst fetch */
78 #define CACHE_CTRL_FI (1 << 21) /* Flush Instruction cache (Write only) */
79 #define CACHE_CTRL_FD (1 << 22) /* Flush Data cache (Write only) */
80 #define CACHE_CTRL_DS (1 << 23) /* Data cache snoop enable */
82 #if defined(CONFIG_USER_ONLY) && defined(TARGET_SPARC64)
83 static void do_unassigned_access(target_ulong addr, int is_write, int is_exec,
84 int is_asi, int size);
85 #endif
87 #if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
88 // Calculates TSB pointer value for fault page size 8k or 64k
89 static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register,
90 uint64_t tag_access_register,
91 int page_size)
93 uint64_t tsb_base = tsb_register & ~0x1fffULL;
94 int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
95 int tsb_size = tsb_register & 0xf;
97 // discard lower 13 bits which hold tag access context
98 uint64_t tag_access_va = tag_access_register & ~0x1fffULL;
100 // now reorder bits
101 uint64_t tsb_base_mask = ~0x1fffULL;
102 uint64_t va = tag_access_va;
104 // move va bits to correct position
105 if (page_size == 8*1024) {
106 va >>= 9;
107 } else if (page_size == 64*1024) {
108 va >>= 12;
111 if (tsb_size) {
112 tsb_base_mask <<= tsb_size;
115 // calculate tsb_base mask and adjust va if split is in use
116 if (tsb_split) {
117 if (page_size == 8*1024) {
118 va &= ~(1ULL << (13 + tsb_size));
119 } else if (page_size == 64*1024) {
120 va |= (1ULL << (13 + tsb_size));
122 tsb_base_mask <<= 1;
125 return ((tsb_base & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
128 // Calculates tag target register value by reordering bits
129 // in tag access register
130 static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
132 return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
135 static void replace_tlb_entry(SparcTLBEntry *tlb,
136 uint64_t tlb_tag, uint64_t tlb_tte,
137 CPUState *env1)
139 target_ulong mask, size, va, offset;
141 // flush page range if translation is valid
142 if (TTE_IS_VALID(tlb->tte)) {
144 mask = 0xffffffffffffe000ULL;
145 mask <<= 3 * ((tlb->tte >> 61) & 3);
146 size = ~mask + 1;
148 va = tlb->tag & mask;
150 for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
151 tlb_flush_page(env1, va + offset);
155 tlb->tag = tlb_tag;
156 tlb->tte = tlb_tte;
159 static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
160 const char* strmmu, CPUState *env1)
162 unsigned int i;
163 target_ulong mask;
164 uint64_t context;
166 int is_demap_context = (demap_addr >> 6) & 1;
168 // demap context
169 switch ((demap_addr >> 4) & 3) {
170 case 0: // primary
171 context = env1->dmmu.mmu_primary_context;
172 break;
173 case 1: // secondary
174 context = env1->dmmu.mmu_secondary_context;
175 break;
176 case 2: // nucleus
177 context = 0;
178 break;
179 case 3: // reserved
180 default:
181 return;
184 for (i = 0; i < 64; i++) {
185 if (TTE_IS_VALID(tlb[i].tte)) {
187 if (is_demap_context) {
188 // will remove non-global entries matching context value
189 if (TTE_IS_GLOBAL(tlb[i].tte) ||
190 !tlb_compare_context(&tlb[i], context)) {
191 continue;
193 } else {
194 // demap page
195 // will remove any entry matching VA
196 mask = 0xffffffffffffe000ULL;
197 mask <<= 3 * ((tlb[i].tte >> 61) & 3);
199 if (!compare_masked(demap_addr, tlb[i].tag, mask)) {
200 continue;
203 // entry should be global or matching context value
204 if (!TTE_IS_GLOBAL(tlb[i].tte) &&
205 !tlb_compare_context(&tlb[i], context)) {
206 continue;
210 replace_tlb_entry(&tlb[i], 0, 0, env1);
211 #ifdef DEBUG_MMU
212 DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
213 dump_mmu(stdout, fprintf, env1);
214 #endif
219 static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
220 uint64_t tlb_tag, uint64_t tlb_tte,
221 const char* strmmu, CPUState *env1)
223 unsigned int i, replace_used;
225 // Try replacing invalid entry
226 for (i = 0; i < 64; i++) {
227 if (!TTE_IS_VALID(tlb[i].tte)) {
228 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
229 #ifdef DEBUG_MMU
230 DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
231 dump_mmu(stdout, fprintf, env1);
232 #endif
233 return;
237 // All entries are valid, try replacing unlocked entry
239 for (replace_used = 0; replace_used < 2; ++replace_used) {
241 // Used entries are not replaced on first pass
243 for (i = 0; i < 64; i++) {
244 if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
246 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
247 #ifdef DEBUG_MMU
248 DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
249 strmmu, (replace_used?"used":"unused"), i);
250 dump_mmu(stdout, fprintf, env1);
251 #endif
252 return;
256 // Now reset used bit and search for unused entries again
258 for (i = 0; i < 64; i++) {
259 TTE_SET_UNUSED(tlb[i].tte);
263 #ifdef DEBUG_MMU
264 DPRINTF_MMU("%s lru replacement failed: no entries available\n", strmmu);
265 #endif
266 // error state?
269 #endif
271 static inline target_ulong address_mask(CPUState *env1, target_ulong addr)
273 #ifdef TARGET_SPARC64
274 if (AM_CHECK(env1))
275 addr &= 0xffffffffULL;
276 #endif
277 return addr;
280 /* returns true if access using this ASI is to have address translated by MMU
281 otherwise access is to raw physical address */
282 static inline int is_translating_asi(int asi)
284 #ifdef TARGET_SPARC64
285 /* Ultrasparc IIi translating asi
286 - note this list is defined by cpu implementation
288 switch (asi) {
289 case 0x04 ... 0x11:
290 case 0x18 ... 0x19:
291 case 0x24 ... 0x2C:
292 case 0x70 ... 0x73:
293 case 0x78 ... 0x79:
294 case 0x80 ... 0xFF:
295 return 1;
297 default:
298 return 0;
300 #else
301 /* TODO: check sparc32 bits */
302 return 0;
303 #endif
306 static inline target_ulong asi_address_mask(CPUState *env1,
307 int asi, target_ulong addr)
309 if (is_translating_asi(asi)) {
310 return address_mask(env, addr);
311 } else {
312 return addr;
316 static void raise_exception(int tt)
318 env->exception_index = tt;
319 cpu_loop_exit(env);
322 void HELPER(raise_exception)(int tt)
324 raise_exception(tt);
327 void helper_shutdown(void)
329 #if !defined(CONFIG_USER_ONLY)
330 qemu_system_shutdown_request();
331 #endif
334 void helper_check_align(target_ulong addr, uint32_t align)
336 if (addr & align) {
337 #ifdef DEBUG_UNALIGNED
338 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
339 "\n", addr, env->pc);
340 #endif
341 raise_exception(TT_UNALIGNED);
345 #define F_HELPER(name, p) void helper_f##name##p(void)
347 #define F_BINOP(name) \
348 float32 helper_f ## name ## s (float32 src1, float32 src2) \
350 return float32_ ## name (src1, src2, &env->fp_status); \
352 F_HELPER(name, d) \
354 DT0 = float64_ ## name (DT0, DT1, &env->fp_status); \
356 F_HELPER(name, q) \
358 QT0 = float128_ ## name (QT0, QT1, &env->fp_status); \
361 F_BINOP(add);
362 F_BINOP(sub);
363 F_BINOP(mul);
364 F_BINOP(div);
365 #undef F_BINOP
367 void helper_fsmuld(float32 src1, float32 src2)
369 DT0 = float64_mul(float32_to_float64(src1, &env->fp_status),
370 float32_to_float64(src2, &env->fp_status),
371 &env->fp_status);
374 void helper_fdmulq(void)
376 QT0 = float128_mul(float64_to_float128(DT0, &env->fp_status),
377 float64_to_float128(DT1, &env->fp_status),
378 &env->fp_status);
381 float32 helper_fnegs(float32 src)
383 return float32_chs(src);
386 #ifdef TARGET_SPARC64
387 F_HELPER(neg, d)
389 DT0 = float64_chs(DT1);
392 F_HELPER(neg, q)
394 QT0 = float128_chs(QT1);
396 #endif
398 /* Integer to float conversion. */
399 float32 helper_fitos(int32_t src)
401 return int32_to_float32(src, &env->fp_status);
404 void helper_fitod(int32_t src)
406 DT0 = int32_to_float64(src, &env->fp_status);
409 void helper_fitoq(int32_t src)
411 QT0 = int32_to_float128(src, &env->fp_status);
414 #ifdef TARGET_SPARC64
415 float32 helper_fxtos(void)
417 return int64_to_float32(*((int64_t *)&DT1), &env->fp_status);
420 F_HELPER(xto, d)
422 DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status);
425 F_HELPER(xto, q)
427 QT0 = int64_to_float128(*((int64_t *)&DT1), &env->fp_status);
429 #endif
430 #undef F_HELPER
432 /* floating point conversion */
433 float32 helper_fdtos(void)
435 return float64_to_float32(DT1, &env->fp_status);
438 void helper_fstod(float32 src)
440 DT0 = float32_to_float64(src, &env->fp_status);
443 float32 helper_fqtos(void)
445 return float128_to_float32(QT1, &env->fp_status);
448 void helper_fstoq(float32 src)
450 QT0 = float32_to_float128(src, &env->fp_status);
453 void helper_fqtod(void)
455 DT0 = float128_to_float64(QT1, &env->fp_status);
458 void helper_fdtoq(void)
460 QT0 = float64_to_float128(DT1, &env->fp_status);
463 /* Float to integer conversion. */
464 int32_t helper_fstoi(float32 src)
466 return float32_to_int32_round_to_zero(src, &env->fp_status);
469 int32_t helper_fdtoi(void)
471 return float64_to_int32_round_to_zero(DT1, &env->fp_status);
474 int32_t helper_fqtoi(void)
476 return float128_to_int32_round_to_zero(QT1, &env->fp_status);
479 #ifdef TARGET_SPARC64
480 void helper_fstox(float32 src)
482 *((int64_t *)&DT0) = float32_to_int64_round_to_zero(src, &env->fp_status);
485 void helper_fdtox(void)
487 *((int64_t *)&DT0) = float64_to_int64_round_to_zero(DT1, &env->fp_status);
490 void helper_fqtox(void)
492 *((int64_t *)&DT0) = float128_to_int64_round_to_zero(QT1, &env->fp_status);
495 void helper_faligndata(void)
497 uint64_t tmp;
499 tmp = (*((uint64_t *)&DT0)) << ((env->gsr & 7) * 8);
500 /* on many architectures a shift of 64 does nothing */
501 if ((env->gsr & 7) != 0) {
502 tmp |= (*((uint64_t *)&DT1)) >> (64 - (env->gsr & 7) * 8);
504 *((uint64_t *)&DT0) = tmp;
507 #ifdef HOST_WORDS_BIGENDIAN
508 #define VIS_B64(n) b[7 - (n)]
509 #define VIS_W64(n) w[3 - (n)]
510 #define VIS_SW64(n) sw[3 - (n)]
511 #define VIS_L64(n) l[1 - (n)]
512 #define VIS_B32(n) b[3 - (n)]
513 #define VIS_W32(n) w[1 - (n)]
514 #else
515 #define VIS_B64(n) b[n]
516 #define VIS_W64(n) w[n]
517 #define VIS_SW64(n) sw[n]
518 #define VIS_L64(n) l[n]
519 #define VIS_B32(n) b[n]
520 #define VIS_W32(n) w[n]
521 #endif
523 typedef union {
524 uint8_t b[8];
525 uint16_t w[4];
526 int16_t sw[4];
527 uint32_t l[2];
528 uint64_t ll;
529 float64 d;
530 } vis64;
532 typedef union {
533 uint8_t b[4];
534 uint16_t w[2];
535 uint32_t l;
536 float32 f;
537 } vis32;
539 void helper_fpmerge(void)
541 vis64 s, d;
543 s.d = DT0;
544 d.d = DT1;
546 // Reverse calculation order to handle overlap
547 d.VIS_B64(7) = s.VIS_B64(3);
548 d.VIS_B64(6) = d.VIS_B64(3);
549 d.VIS_B64(5) = s.VIS_B64(2);
550 d.VIS_B64(4) = d.VIS_B64(2);
551 d.VIS_B64(3) = s.VIS_B64(1);
552 d.VIS_B64(2) = d.VIS_B64(1);
553 d.VIS_B64(1) = s.VIS_B64(0);
554 //d.VIS_B64(0) = d.VIS_B64(0);
556 DT0 = d.d;
559 void helper_fmul8x16(void)
561 vis64 s, d;
562 uint32_t tmp;
564 s.d = DT0;
565 d.d = DT1;
567 #define PMUL(r) \
568 tmp = (int32_t)d.VIS_SW64(r) * (int32_t)s.VIS_B64(r); \
569 if ((tmp & 0xff) > 0x7f) \
570 tmp += 0x100; \
571 d.VIS_W64(r) = tmp >> 8;
573 PMUL(0);
574 PMUL(1);
575 PMUL(2);
576 PMUL(3);
577 #undef PMUL
579 DT0 = d.d;
582 void helper_fmul8x16al(void)
584 vis64 s, d;
585 uint32_t tmp;
587 s.d = DT0;
588 d.d = DT1;
590 #define PMUL(r) \
591 tmp = (int32_t)d.VIS_SW64(1) * (int32_t)s.VIS_B64(r); \
592 if ((tmp & 0xff) > 0x7f) \
593 tmp += 0x100; \
594 d.VIS_W64(r) = tmp >> 8;
596 PMUL(0);
597 PMUL(1);
598 PMUL(2);
599 PMUL(3);
600 #undef PMUL
602 DT0 = d.d;
605 void helper_fmul8x16au(void)
607 vis64 s, d;
608 uint32_t tmp;
610 s.d = DT0;
611 d.d = DT1;
613 #define PMUL(r) \
614 tmp = (int32_t)d.VIS_SW64(0) * (int32_t)s.VIS_B64(r); \
615 if ((tmp & 0xff) > 0x7f) \
616 tmp += 0x100; \
617 d.VIS_W64(r) = tmp >> 8;
619 PMUL(0);
620 PMUL(1);
621 PMUL(2);
622 PMUL(3);
623 #undef PMUL
625 DT0 = d.d;
628 void helper_fmul8sux16(void)
630 vis64 s, d;
631 uint32_t tmp;
633 s.d = DT0;
634 d.d = DT1;
636 #define PMUL(r) \
637 tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
638 if ((tmp & 0xff) > 0x7f) \
639 tmp += 0x100; \
640 d.VIS_W64(r) = tmp >> 8;
642 PMUL(0);
643 PMUL(1);
644 PMUL(2);
645 PMUL(3);
646 #undef PMUL
648 DT0 = d.d;
651 void helper_fmul8ulx16(void)
653 vis64 s, d;
654 uint32_t tmp;
656 s.d = DT0;
657 d.d = DT1;
659 #define PMUL(r) \
660 tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
661 if ((tmp & 0xff) > 0x7f) \
662 tmp += 0x100; \
663 d.VIS_W64(r) = tmp >> 8;
665 PMUL(0);
666 PMUL(1);
667 PMUL(2);
668 PMUL(3);
669 #undef PMUL
671 DT0 = d.d;
674 void helper_fmuld8sux16(void)
676 vis64 s, d;
677 uint32_t tmp;
679 s.d = DT0;
680 d.d = DT1;
682 #define PMUL(r) \
683 tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
684 if ((tmp & 0xff) > 0x7f) \
685 tmp += 0x100; \
686 d.VIS_L64(r) = tmp;
688 // Reverse calculation order to handle overlap
689 PMUL(1);
690 PMUL(0);
691 #undef PMUL
693 DT0 = d.d;
696 void helper_fmuld8ulx16(void)
698 vis64 s, d;
699 uint32_t tmp;
701 s.d = DT0;
702 d.d = DT1;
704 #define PMUL(r) \
705 tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
706 if ((tmp & 0xff) > 0x7f) \
707 tmp += 0x100; \
708 d.VIS_L64(r) = tmp;
710 // Reverse calculation order to handle overlap
711 PMUL(1);
712 PMUL(0);
713 #undef PMUL
715 DT0 = d.d;
718 void helper_fexpand(void)
720 vis32 s;
721 vis64 d;
723 s.l = (uint32_t)(*(uint64_t *)&DT0 & 0xffffffff);
724 d.d = DT1;
725 d.VIS_W64(0) = s.VIS_B32(0) << 4;
726 d.VIS_W64(1) = s.VIS_B32(1) << 4;
727 d.VIS_W64(2) = s.VIS_B32(2) << 4;
728 d.VIS_W64(3) = s.VIS_B32(3) << 4;
730 DT0 = d.d;
733 #define VIS_HELPER(name, F) \
734 void name##16(void) \
736 vis64 s, d; \
738 s.d = DT0; \
739 d.d = DT1; \
741 d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0)); \
742 d.VIS_W64(1) = F(d.VIS_W64(1), s.VIS_W64(1)); \
743 d.VIS_W64(2) = F(d.VIS_W64(2), s.VIS_W64(2)); \
744 d.VIS_W64(3) = F(d.VIS_W64(3), s.VIS_W64(3)); \
746 DT0 = d.d; \
749 uint32_t name##16s(uint32_t src1, uint32_t src2) \
751 vis32 s, d; \
753 s.l = src1; \
754 d.l = src2; \
756 d.VIS_W32(0) = F(d.VIS_W32(0), s.VIS_W32(0)); \
757 d.VIS_W32(1) = F(d.VIS_W32(1), s.VIS_W32(1)); \
759 return d.l; \
762 void name##32(void) \
764 vis64 s, d; \
766 s.d = DT0; \
767 d.d = DT1; \
769 d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0)); \
770 d.VIS_L64(1) = F(d.VIS_L64(1), s.VIS_L64(1)); \
772 DT0 = d.d; \
775 uint32_t name##32s(uint32_t src1, uint32_t src2) \
777 vis32 s, d; \
779 s.l = src1; \
780 d.l = src2; \
782 d.l = F(d.l, s.l); \
784 return d.l; \
787 #define FADD(a, b) ((a) + (b))
788 #define FSUB(a, b) ((a) - (b))
789 VIS_HELPER(helper_fpadd, FADD)
790 VIS_HELPER(helper_fpsub, FSUB)
792 #define VIS_CMPHELPER(name, F) \
793 uint64_t name##16(void) \
795 vis64 s, d; \
797 s.d = DT0; \
798 d.d = DT1; \
800 d.VIS_W64(0) = F(s.VIS_W64(0), d.VIS_W64(0)) ? 1 : 0; \
801 d.VIS_W64(0) |= F(s.VIS_W64(1), d.VIS_W64(1)) ? 2 : 0; \
802 d.VIS_W64(0) |= F(s.VIS_W64(2), d.VIS_W64(2)) ? 4 : 0; \
803 d.VIS_W64(0) |= F(s.VIS_W64(3), d.VIS_W64(3)) ? 8 : 0; \
804 d.VIS_W64(1) = d.VIS_W64(2) = d.VIS_W64(3) = 0; \
806 return d.ll; \
809 uint64_t name##32(void) \
811 vis64 s, d; \
813 s.d = DT0; \
814 d.d = DT1; \
816 d.VIS_L64(0) = F(s.VIS_L64(0), d.VIS_L64(0)) ? 1 : 0; \
817 d.VIS_L64(0) |= F(s.VIS_L64(1), d.VIS_L64(1)) ? 2 : 0; \
818 d.VIS_L64(1) = 0; \
820 return d.ll; \
823 #define FCMPGT(a, b) ((a) > (b))
824 #define FCMPEQ(a, b) ((a) == (b))
825 #define FCMPLE(a, b) ((a) <= (b))
826 #define FCMPNE(a, b) ((a) != (b))
828 VIS_CMPHELPER(helper_fcmpgt, FCMPGT)
829 VIS_CMPHELPER(helper_fcmpeq, FCMPEQ)
830 VIS_CMPHELPER(helper_fcmple, FCMPLE)
831 VIS_CMPHELPER(helper_fcmpne, FCMPNE)
832 #endif
834 void helper_check_ieee_exceptions(void)
836 target_ulong status;
838 status = get_float_exception_flags(&env->fp_status);
839 if (status) {
840 /* Copy IEEE 754 flags into FSR */
841 if (status & float_flag_invalid)
842 env->fsr |= FSR_NVC;
843 if (status & float_flag_overflow)
844 env->fsr |= FSR_OFC;
845 if (status & float_flag_underflow)
846 env->fsr |= FSR_UFC;
847 if (status & float_flag_divbyzero)
848 env->fsr |= FSR_DZC;
849 if (status & float_flag_inexact)
850 env->fsr |= FSR_NXC;
852 if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23)) {
853 /* Unmasked exception, generate a trap */
854 env->fsr |= FSR_FTT_IEEE_EXCP;
855 raise_exception(TT_FP_EXCP);
856 } else {
857 /* Accumulate exceptions */
858 env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
863 void helper_clear_float_exceptions(void)
865 set_float_exception_flags(0, &env->fp_status);
868 float32 helper_fabss(float32 src)
870 return float32_abs(src);
873 #ifdef TARGET_SPARC64
874 void helper_fabsd(void)
876 DT0 = float64_abs(DT1);
879 void helper_fabsq(void)
881 QT0 = float128_abs(QT1);
883 #endif
885 float32 helper_fsqrts(float32 src)
887 return float32_sqrt(src, &env->fp_status);
890 void helper_fsqrtd(void)
892 DT0 = float64_sqrt(DT1, &env->fp_status);
895 void helper_fsqrtq(void)
897 QT0 = float128_sqrt(QT1, &env->fp_status);
900 #define GEN_FCMP(name, size, reg1, reg2, FS, E) \
901 void glue(helper_, name) (void) \
903 env->fsr &= FSR_FTT_NMASK; \
904 if (E && (glue(size, _is_any_nan)(reg1) || \
905 glue(size, _is_any_nan)(reg2)) && \
906 (env->fsr & FSR_NVM)) { \
907 env->fsr |= FSR_NVC; \
908 env->fsr |= FSR_FTT_IEEE_EXCP; \
909 raise_exception(TT_FP_EXCP); \
911 switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) { \
912 case float_relation_unordered: \
913 if ((env->fsr & FSR_NVM)) { \
914 env->fsr |= FSR_NVC; \
915 env->fsr |= FSR_FTT_IEEE_EXCP; \
916 raise_exception(TT_FP_EXCP); \
917 } else { \
918 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
919 env->fsr |= (FSR_FCC1 | FSR_FCC0) << FS; \
920 env->fsr |= FSR_NVA; \
922 break; \
923 case float_relation_less: \
924 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
925 env->fsr |= FSR_FCC0 << FS; \
926 break; \
927 case float_relation_greater: \
928 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
929 env->fsr |= FSR_FCC1 << FS; \
930 break; \
931 default: \
932 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
933 break; \
936 #define GEN_FCMPS(name, size, FS, E) \
937 void glue(helper_, name)(float32 src1, float32 src2) \
939 env->fsr &= FSR_FTT_NMASK; \
940 if (E && (glue(size, _is_any_nan)(src1) || \
941 glue(size, _is_any_nan)(src2)) && \
942 (env->fsr & FSR_NVM)) { \
943 env->fsr |= FSR_NVC; \
944 env->fsr |= FSR_FTT_IEEE_EXCP; \
945 raise_exception(TT_FP_EXCP); \
947 switch (glue(size, _compare) (src1, src2, &env->fp_status)) { \
948 case float_relation_unordered: \
949 if ((env->fsr & FSR_NVM)) { \
950 env->fsr |= FSR_NVC; \
951 env->fsr |= FSR_FTT_IEEE_EXCP; \
952 raise_exception(TT_FP_EXCP); \
953 } else { \
954 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
955 env->fsr |= (FSR_FCC1 | FSR_FCC0) << FS; \
956 env->fsr |= FSR_NVA; \
958 break; \
959 case float_relation_less: \
960 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
961 env->fsr |= FSR_FCC0 << FS; \
962 break; \
963 case float_relation_greater: \
964 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
965 env->fsr |= FSR_FCC1 << FS; \
966 break; \
967 default: \
968 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
969 break; \
973 GEN_FCMPS(fcmps, float32, 0, 0);
974 GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);
976 GEN_FCMPS(fcmpes, float32, 0, 1);
977 GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);
979 GEN_FCMP(fcmpq, float128, QT0, QT1, 0, 0);
980 GEN_FCMP(fcmpeq, float128, QT0, QT1, 0, 1);
982 static uint32_t compute_all_flags(void)
984 return env->psr & PSR_ICC;
987 static uint32_t compute_C_flags(void)
989 return env->psr & PSR_CARRY;
992 static inline uint32_t get_NZ_icc(int32_t dst)
994 uint32_t ret = 0;
996 if (dst == 0) {
997 ret = PSR_ZERO;
998 } else if (dst < 0) {
999 ret = PSR_NEG;
1001 return ret;
1004 #ifdef TARGET_SPARC64
1005 static uint32_t compute_all_flags_xcc(void)
1007 return env->xcc & PSR_ICC;
1010 static uint32_t compute_C_flags_xcc(void)
1012 return env->xcc & PSR_CARRY;
1015 static inline uint32_t get_NZ_xcc(target_long dst)
1017 uint32_t ret = 0;
1019 if (!dst) {
1020 ret = PSR_ZERO;
1021 } else if (dst < 0) {
1022 ret = PSR_NEG;
1024 return ret;
1026 #endif
1028 static inline uint32_t get_V_div_icc(target_ulong src2)
1030 uint32_t ret = 0;
1032 if (src2 != 0) {
1033 ret = PSR_OVF;
1035 return ret;
1038 static uint32_t compute_all_div(void)
1040 uint32_t ret;
1042 ret = get_NZ_icc(CC_DST);
1043 ret |= get_V_div_icc(CC_SRC2);
1044 return ret;
1047 static uint32_t compute_C_div(void)
1049 return 0;
1052 static inline uint32_t get_C_add_icc(uint32_t dst, uint32_t src1)
1054 uint32_t ret = 0;
1056 if (dst < src1) {
1057 ret = PSR_CARRY;
1059 return ret;
1062 static inline uint32_t get_C_addx_icc(uint32_t dst, uint32_t src1,
1063 uint32_t src2)
1065 uint32_t ret = 0;
1067 if (((src1 & src2) | (~dst & (src1 | src2))) & (1U << 31)) {
1068 ret = PSR_CARRY;
1070 return ret;
1073 static inline uint32_t get_V_add_icc(uint32_t dst, uint32_t src1,
1074 uint32_t src2)
1076 uint32_t ret = 0;
1078 if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1U << 31)) {
1079 ret = PSR_OVF;
1081 return ret;
1084 #ifdef TARGET_SPARC64
1085 static inline uint32_t get_C_add_xcc(target_ulong dst, target_ulong src1)
1087 uint32_t ret = 0;
1089 if (dst < src1) {
1090 ret = PSR_CARRY;
1092 return ret;
1095 static inline uint32_t get_C_addx_xcc(target_ulong dst, target_ulong src1,
1096 target_ulong src2)
1098 uint32_t ret = 0;
1100 if (((src1 & src2) | (~dst & (src1 | src2))) & (1ULL << 63)) {
1101 ret = PSR_CARRY;
1103 return ret;
1106 static inline uint32_t get_V_add_xcc(target_ulong dst, target_ulong src1,
1107 target_ulong src2)
1109 uint32_t ret = 0;
1111 if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1ULL << 63)) {
1112 ret = PSR_OVF;
1114 return ret;
1117 static uint32_t compute_all_add_xcc(void)
1119 uint32_t ret;
1121 ret = get_NZ_xcc(CC_DST);
1122 ret |= get_C_add_xcc(CC_DST, CC_SRC);
1123 ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2);
1124 return ret;
1127 static uint32_t compute_C_add_xcc(void)
1129 return get_C_add_xcc(CC_DST, CC_SRC);
1131 #endif
1133 static uint32_t compute_all_add(void)
1135 uint32_t ret;
1137 ret = get_NZ_icc(CC_DST);
1138 ret |= get_C_add_icc(CC_DST, CC_SRC);
1139 ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
1140 return ret;
1143 static uint32_t compute_C_add(void)
1145 return get_C_add_icc(CC_DST, CC_SRC);
1148 #ifdef TARGET_SPARC64
1149 static uint32_t compute_all_addx_xcc(void)
1151 uint32_t ret;
1153 ret = get_NZ_xcc(CC_DST);
1154 ret |= get_C_addx_xcc(CC_DST, CC_SRC, CC_SRC2);
1155 ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2);
1156 return ret;
1159 static uint32_t compute_C_addx_xcc(void)
1161 uint32_t ret;
1163 ret = get_C_addx_xcc(CC_DST, CC_SRC, CC_SRC2);
1164 return ret;
1166 #endif
1168 static uint32_t compute_all_addx(void)
1170 uint32_t ret;
1172 ret = get_NZ_icc(CC_DST);
1173 ret |= get_C_addx_icc(CC_DST, CC_SRC, CC_SRC2);
1174 ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
1175 return ret;
1178 static uint32_t compute_C_addx(void)
1180 uint32_t ret;
1182 ret = get_C_addx_icc(CC_DST, CC_SRC, CC_SRC2);
1183 return ret;
1186 static inline uint32_t get_V_tag_icc(target_ulong src1, target_ulong src2)
1188 uint32_t ret = 0;
1190 if ((src1 | src2) & 0x3) {
1191 ret = PSR_OVF;
1193 return ret;
1196 static uint32_t compute_all_tadd(void)
1198 uint32_t ret;
1200 ret = get_NZ_icc(CC_DST);
1201 ret |= get_C_add_icc(CC_DST, CC_SRC);
1202 ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
1203 ret |= get_V_tag_icc(CC_SRC, CC_SRC2);
1204 return ret;
1207 static uint32_t compute_all_taddtv(void)
1209 uint32_t ret;
1211 ret = get_NZ_icc(CC_DST);
1212 ret |= get_C_add_icc(CC_DST, CC_SRC);
1213 return ret;
1216 static inline uint32_t get_C_sub_icc(uint32_t src1, uint32_t src2)
1218 uint32_t ret = 0;
1220 if (src1 < src2) {
1221 ret = PSR_CARRY;
1223 return ret;
1226 static inline uint32_t get_C_subx_icc(uint32_t dst, uint32_t src1,
1227 uint32_t src2)
1229 uint32_t ret = 0;
1231 if (((~src1 & src2) | (dst & (~src1 | src2))) & (1U << 31)) {
1232 ret = PSR_CARRY;
1234 return ret;
1237 static inline uint32_t get_V_sub_icc(uint32_t dst, uint32_t src1,
1238 uint32_t src2)
1240 uint32_t ret = 0;
1242 if (((src1 ^ src2) & (src1 ^ dst)) & (1U << 31)) {
1243 ret = PSR_OVF;
1245 return ret;
1249 #ifdef TARGET_SPARC64
1250 static inline uint32_t get_C_sub_xcc(target_ulong src1, target_ulong src2)
1252 uint32_t ret = 0;
1254 if (src1 < src2) {
1255 ret = PSR_CARRY;
1257 return ret;
1260 static inline uint32_t get_C_subx_xcc(target_ulong dst, target_ulong src1,
1261 target_ulong src2)
1263 uint32_t ret = 0;
1265 if (((~src1 & src2) | (dst & (~src1 | src2))) & (1ULL << 63)) {
1266 ret = PSR_CARRY;
1268 return ret;
1271 static inline uint32_t get_V_sub_xcc(target_ulong dst, target_ulong src1,
1272 target_ulong src2)
1274 uint32_t ret = 0;
1276 if (((src1 ^ src2) & (src1 ^ dst)) & (1ULL << 63)) {
1277 ret = PSR_OVF;
1279 return ret;
1282 static uint32_t compute_all_sub_xcc(void)
1284 uint32_t ret;
1286 ret = get_NZ_xcc(CC_DST);
1287 ret |= get_C_sub_xcc(CC_SRC, CC_SRC2);
1288 ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2);
1289 return ret;
1292 static uint32_t compute_C_sub_xcc(void)
1294 return get_C_sub_xcc(CC_SRC, CC_SRC2);
1296 #endif
1298 static uint32_t compute_all_sub(void)
1300 uint32_t ret;
1302 ret = get_NZ_icc(CC_DST);
1303 ret |= get_C_sub_icc(CC_SRC, CC_SRC2);
1304 ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1305 return ret;
1308 static uint32_t compute_C_sub(void)
1310 return get_C_sub_icc(CC_SRC, CC_SRC2);
1313 #ifdef TARGET_SPARC64
1314 static uint32_t compute_all_subx_xcc(void)
1316 uint32_t ret;
1318 ret = get_NZ_xcc(CC_DST);
1319 ret |= get_C_subx_xcc(CC_DST, CC_SRC, CC_SRC2);
1320 ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2);
1321 return ret;
1324 static uint32_t compute_C_subx_xcc(void)
1326 uint32_t ret;
1328 ret = get_C_subx_xcc(CC_DST, CC_SRC, CC_SRC2);
1329 return ret;
1331 #endif
1333 static uint32_t compute_all_subx(void)
1335 uint32_t ret;
1337 ret = get_NZ_icc(CC_DST);
1338 ret |= get_C_subx_icc(CC_DST, CC_SRC, CC_SRC2);
1339 ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1340 return ret;
1343 static uint32_t compute_C_subx(void)
1345 uint32_t ret;
1347 ret = get_C_subx_icc(CC_DST, CC_SRC, CC_SRC2);
1348 return ret;
1351 static uint32_t compute_all_tsub(void)
1353 uint32_t ret;
1355 ret = get_NZ_icc(CC_DST);
1356 ret |= get_C_sub_icc(CC_SRC, CC_SRC2);
1357 ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1358 ret |= get_V_tag_icc(CC_SRC, CC_SRC2);
1359 return ret;
1362 static uint32_t compute_all_tsubtv(void)
1364 uint32_t ret;
1366 ret = get_NZ_icc(CC_DST);
1367 ret |= get_C_sub_icc(CC_SRC, CC_SRC2);
1368 return ret;
1371 static uint32_t compute_all_logic(void)
1373 return get_NZ_icc(CC_DST);
1376 static uint32_t compute_C_logic(void)
1378 return 0;
1381 #ifdef TARGET_SPARC64
1382 static uint32_t compute_all_logic_xcc(void)
1384 return get_NZ_xcc(CC_DST);
1386 #endif
1388 typedef struct CCTable {
1389 uint32_t (*compute_all)(void); /* return all the flags */
1390 uint32_t (*compute_c)(void); /* return the C flag */
1391 } CCTable;
1393 static const CCTable icc_table[CC_OP_NB] = {
1394 /* CC_OP_DYNAMIC should never happen */
1395 [CC_OP_FLAGS] = { compute_all_flags, compute_C_flags },
1396 [CC_OP_DIV] = { compute_all_div, compute_C_div },
1397 [CC_OP_ADD] = { compute_all_add, compute_C_add },
1398 [CC_OP_ADDX] = { compute_all_addx, compute_C_addx },
1399 [CC_OP_TADD] = { compute_all_tadd, compute_C_add },
1400 [CC_OP_TADDTV] = { compute_all_taddtv, compute_C_add },
1401 [CC_OP_SUB] = { compute_all_sub, compute_C_sub },
1402 [CC_OP_SUBX] = { compute_all_subx, compute_C_subx },
1403 [CC_OP_TSUB] = { compute_all_tsub, compute_C_sub },
1404 [CC_OP_TSUBTV] = { compute_all_tsubtv, compute_C_sub },
1405 [CC_OP_LOGIC] = { compute_all_logic, compute_C_logic },
1408 #ifdef TARGET_SPARC64
1409 static const CCTable xcc_table[CC_OP_NB] = {
1410 /* CC_OP_DYNAMIC should never happen */
1411 [CC_OP_FLAGS] = { compute_all_flags_xcc, compute_C_flags_xcc },
1412 [CC_OP_DIV] = { compute_all_logic_xcc, compute_C_logic },
1413 [CC_OP_ADD] = { compute_all_add_xcc, compute_C_add_xcc },
1414 [CC_OP_ADDX] = { compute_all_addx_xcc, compute_C_addx_xcc },
1415 [CC_OP_TADD] = { compute_all_add_xcc, compute_C_add_xcc },
1416 [CC_OP_TADDTV] = { compute_all_add_xcc, compute_C_add_xcc },
1417 [CC_OP_SUB] = { compute_all_sub_xcc, compute_C_sub_xcc },
1418 [CC_OP_SUBX] = { compute_all_subx_xcc, compute_C_subx_xcc },
1419 [CC_OP_TSUB] = { compute_all_sub_xcc, compute_C_sub_xcc },
1420 [CC_OP_TSUBTV] = { compute_all_sub_xcc, compute_C_sub_xcc },
1421 [CC_OP_LOGIC] = { compute_all_logic_xcc, compute_C_logic },
1423 #endif
1425 void helper_compute_psr(void)
1427 uint32_t new_psr;
1429 new_psr = icc_table[CC_OP].compute_all();
1430 env->psr = new_psr;
1431 #ifdef TARGET_SPARC64
1432 new_psr = xcc_table[CC_OP].compute_all();
1433 env->xcc = new_psr;
1434 #endif
1435 CC_OP = CC_OP_FLAGS;
1438 uint32_t helper_compute_C_icc(void)
1440 uint32_t ret;
1442 ret = icc_table[CC_OP].compute_c() >> PSR_CARRY_SHIFT;
1443 return ret;
1446 static inline void memcpy32(target_ulong *dst, const target_ulong *src)
1448 dst[0] = src[0];
1449 dst[1] = src[1];
1450 dst[2] = src[2];
1451 dst[3] = src[3];
1452 dst[4] = src[4];
1453 dst[5] = src[5];
1454 dst[6] = src[6];
1455 dst[7] = src[7];
1458 static void set_cwp(int new_cwp)
1460 /* put the modified wrap registers at their proper location */
1461 if (env->cwp == env->nwindows - 1) {
1462 memcpy32(env->regbase, env->regbase + env->nwindows * 16);
1464 env->cwp = new_cwp;
1466 /* put the wrap registers at their temporary location */
1467 if (new_cwp == env->nwindows - 1) {
1468 memcpy32(env->regbase + env->nwindows * 16, env->regbase);
1470 env->regwptr = env->regbase + (new_cwp * 16);
1473 void cpu_set_cwp(CPUState *env1, int new_cwp)
1475 CPUState *saved_env;
1477 saved_env = env;
1478 env = env1;
1479 set_cwp(new_cwp);
1480 env = saved_env;
1483 static target_ulong get_psr(void)
1485 helper_compute_psr();
1487 #if !defined (TARGET_SPARC64)
1488 return env->version | (env->psr & PSR_ICC) |
1489 (env->psref? PSR_EF : 0) |
1490 (env->psrpil << 8) |
1491 (env->psrs? PSR_S : 0) |
1492 (env->psrps? PSR_PS : 0) |
1493 (env->psret? PSR_ET : 0) | env->cwp;
1494 #else
1495 return env->psr & PSR_ICC;
1496 #endif
1499 target_ulong cpu_get_psr(CPUState *env1)
1501 CPUState *saved_env;
1502 target_ulong ret;
1504 saved_env = env;
1505 env = env1;
1506 ret = get_psr();
1507 env = saved_env;
1508 return ret;
1511 static void put_psr(target_ulong val)
1513 env->psr = val & PSR_ICC;
1514 #if !defined (TARGET_SPARC64)
1515 env->psref = (val & PSR_EF)? 1 : 0;
1516 env->psrpil = (val & PSR_PIL) >> 8;
1517 #endif
1518 #if ((!defined (TARGET_SPARC64)) && !defined(CONFIG_USER_ONLY))
1519 cpu_check_irqs(env);
1520 #endif
1521 #if !defined (TARGET_SPARC64)
1522 env->psrs = (val & PSR_S)? 1 : 0;
1523 env->psrps = (val & PSR_PS)? 1 : 0;
1524 env->psret = (val & PSR_ET)? 1 : 0;
1525 set_cwp(val & PSR_CWP);
1526 #endif
1527 env->cc_op = CC_OP_FLAGS;
1530 void cpu_put_psr(CPUState *env1, target_ulong val)
1532 CPUState *saved_env;
1534 saved_env = env;
1535 env = env1;
1536 put_psr(val);
1537 env = saved_env;
1540 static int cwp_inc(int cwp)
1542 if (unlikely(cwp >= env->nwindows)) {
1543 cwp -= env->nwindows;
1545 return cwp;
1548 int cpu_cwp_inc(CPUState *env1, int cwp)
1550 CPUState *saved_env;
1551 target_ulong ret;
1553 saved_env = env;
1554 env = env1;
1555 ret = cwp_inc(cwp);
1556 env = saved_env;
1557 return ret;
1560 static int cwp_dec(int cwp)
1562 if (unlikely(cwp < 0)) {
1563 cwp += env->nwindows;
1565 return cwp;
1568 int cpu_cwp_dec(CPUState *env1, int cwp)
1570 CPUState *saved_env;
1571 target_ulong ret;
1573 saved_env = env;
1574 env = env1;
1575 ret = cwp_dec(cwp);
1576 env = saved_env;
1577 return ret;
1580 #ifdef TARGET_SPARC64
1581 GEN_FCMPS(fcmps_fcc1, float32, 22, 0);
1582 GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);
1583 GEN_FCMP(fcmpq_fcc1, float128, QT0, QT1, 22, 0);
1585 GEN_FCMPS(fcmps_fcc2, float32, 24, 0);
1586 GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);
1587 GEN_FCMP(fcmpq_fcc2, float128, QT0, QT1, 24, 0);
1589 GEN_FCMPS(fcmps_fcc3, float32, 26, 0);
1590 GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);
1591 GEN_FCMP(fcmpq_fcc3, float128, QT0, QT1, 26, 0);
1593 GEN_FCMPS(fcmpes_fcc1, float32, 22, 1);
1594 GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);
1595 GEN_FCMP(fcmpeq_fcc1, float128, QT0, QT1, 22, 1);
1597 GEN_FCMPS(fcmpes_fcc2, float32, 24, 1);
1598 GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);
1599 GEN_FCMP(fcmpeq_fcc2, float128, QT0, QT1, 24, 1);
1601 GEN_FCMPS(fcmpes_fcc3, float32, 26, 1);
1602 GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
1603 GEN_FCMP(fcmpeq_fcc3, float128, QT0, QT1, 26, 1);
1604 #endif
1605 #undef GEN_FCMPS
1607 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
1608 defined(DEBUG_MXCC)
1609 static void dump_mxcc(CPUState *env)
1611 printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1612 "\n",
1613 env->mxccdata[0], env->mxccdata[1],
1614 env->mxccdata[2], env->mxccdata[3]);
1615 printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1616 "\n"
1617 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1618 "\n",
1619 env->mxccregs[0], env->mxccregs[1],
1620 env->mxccregs[2], env->mxccregs[3],
1621 env->mxccregs[4], env->mxccregs[5],
1622 env->mxccregs[6], env->mxccregs[7]);
1624 #endif
1626 #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
1627 && defined(DEBUG_ASI)
1628 static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
1629 uint64_t r1)
1631 switch (size)
1633 case 1:
1634 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
1635 addr, asi, r1 & 0xff);
1636 break;
1637 case 2:
1638 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
1639 addr, asi, r1 & 0xffff);
1640 break;
1641 case 4:
1642 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
1643 addr, asi, r1 & 0xffffffff);
1644 break;
1645 case 8:
1646 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
1647 addr, asi, r1);
1648 break;
1651 #endif
1653 #ifndef TARGET_SPARC64
1654 #ifndef CONFIG_USER_ONLY
1657 /* Leon3 cache control */
1659 static void leon3_cache_control_int(void)
1661 uint32_t state = 0;
1663 if (env->cache_control & CACHE_CTRL_IF) {
1664 /* Instruction cache state */
1665 state = env->cache_control & CACHE_STATE_MASK;
1666 if (state == CACHE_ENABLED) {
1667 state = CACHE_FROZEN;
1668 DPRINTF_CACHE_CONTROL("Instruction cache: freeze\n");
1671 env->cache_control &= ~CACHE_STATE_MASK;
1672 env->cache_control |= state;
1675 if (env->cache_control & CACHE_CTRL_DF) {
1676 /* Data cache state */
1677 state = (env->cache_control >> 2) & CACHE_STATE_MASK;
1678 if (state == CACHE_ENABLED) {
1679 state = CACHE_FROZEN;
1680 DPRINTF_CACHE_CONTROL("Data cache: freeze\n");
1683 env->cache_control &= ~(CACHE_STATE_MASK << 2);
1684 env->cache_control |= (state << 2);
1688 static void leon3_cache_control_st(target_ulong addr, uint64_t val, int size)
1690 DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64 ", size:%d\n",
1691 addr, val, size);
1693 if (size != 4) {
1694 DPRINTF_CACHE_CONTROL("32bits only\n");
1695 return;
1698 switch (addr) {
1699 case 0x00: /* Cache control */
1701 /* These values must always be read as zeros */
1702 val &= ~CACHE_CTRL_FD;
1703 val &= ~CACHE_CTRL_FI;
1704 val &= ~CACHE_CTRL_IB;
1705 val &= ~CACHE_CTRL_IP;
1706 val &= ~CACHE_CTRL_DP;
1708 env->cache_control = val;
1709 break;
1710 case 0x04: /* Instruction cache configuration */
1711 case 0x08: /* Data cache configuration */
1712 /* Read Only */
1713 break;
1714 default:
1715 DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr);
1716 break;
1720 static uint64_t leon3_cache_control_ld(target_ulong addr, int size)
1722 uint64_t ret = 0;
1724 if (size != 4) {
1725 DPRINTF_CACHE_CONTROL("32bits only\n");
1726 return 0;
1729 switch (addr) {
1730 case 0x00: /* Cache control */
1731 ret = env->cache_control;
1732 break;
1734 /* Configuration registers are read and only always keep those
1735 predefined values */
1737 case 0x04: /* Instruction cache configuration */
1738 ret = 0x10220000;
1739 break;
1740 case 0x08: /* Data cache configuration */
1741 ret = 0x18220000;
1742 break;
1743 default:
1744 DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr);
1745 break;
1747 DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64 ", size:%d\n",
1748 addr, ret, size);
1749 return ret;
1752 void leon3_irq_manager(void *irq_manager, int intno)
1754 leon3_irq_ack(irq_manager, intno);
1755 leon3_cache_control_int();
1758 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
1760 uint64_t ret = 0;
1761 #if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
1762 uint32_t last_addr = addr;
1763 #endif
1765 helper_check_align(addr, size - 1);
1766 switch (asi) {
1767 case 2: /* SuperSparc MXCC registers and Leon3 cache control */
1768 switch (addr) {
1769 case 0x00: /* Leon3 Cache Control */
1770 case 0x08: /* Leon3 Instruction Cache config */
1771 case 0x0C: /* Leon3 Date Cache config */
1772 if (env->def->features & CPU_FEATURE_CACHE_CTRL) {
1773 ret = leon3_cache_control_ld(addr, size);
1775 break;
1776 case 0x01c00a00: /* MXCC control register */
1777 if (size == 8)
1778 ret = env->mxccregs[3];
1779 else
1780 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1781 size);
1782 break;
1783 case 0x01c00a04: /* MXCC control register */
1784 if (size == 4)
1785 ret = env->mxccregs[3];
1786 else
1787 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1788 size);
1789 break;
1790 case 0x01c00c00: /* Module reset register */
1791 if (size == 8) {
1792 ret = env->mxccregs[5];
1793 // should we do something here?
1794 } else
1795 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1796 size);
1797 break;
1798 case 0x01c00f00: /* MBus port address register */
1799 if (size == 8)
1800 ret = env->mxccregs[7];
1801 else
1802 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1803 size);
1804 break;
1805 default:
1806 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
1807 size);
1808 break;
1810 DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
1811 "addr = %08x -> ret = %" PRIx64 ","
1812 "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
1813 #ifdef DEBUG_MXCC
1814 dump_mxcc(env);
1815 #endif
1816 break;
1817 case 3: /* MMU probe */
1819 int mmulev;
1821 mmulev = (addr >> 8) & 15;
1822 if (mmulev > 4)
1823 ret = 0;
1824 else
1825 ret = mmu_probe(env, addr, mmulev);
1826 DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
1827 addr, mmulev, ret);
1829 break;
1830 case 4: /* read MMU regs */
1832 int reg = (addr >> 8) & 0x1f;
1834 ret = env->mmuregs[reg];
1835 if (reg == 3) /* Fault status cleared on read */
1836 env->mmuregs[3] = 0;
1837 else if (reg == 0x13) /* Fault status read */
1838 ret = env->mmuregs[3];
1839 else if (reg == 0x14) /* Fault address read */
1840 ret = env->mmuregs[4];
1841 DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
1843 break;
1844 case 5: // Turbosparc ITLB Diagnostic
1845 case 6: // Turbosparc DTLB Diagnostic
1846 case 7: // Turbosparc IOTLB Diagnostic
1847 break;
1848 case 9: /* Supervisor code access */
1849 switch(size) {
1850 case 1:
1851 ret = ldub_code(addr);
1852 break;
1853 case 2:
1854 ret = lduw_code(addr);
1855 break;
1856 default:
1857 case 4:
1858 ret = ldl_code(addr);
1859 break;
1860 case 8:
1861 ret = ldq_code(addr);
1862 break;
1864 break;
1865 case 0xa: /* User data access */
1866 switch(size) {
1867 case 1:
1868 ret = ldub_user(addr);
1869 break;
1870 case 2:
1871 ret = lduw_user(addr);
1872 break;
1873 default:
1874 case 4:
1875 ret = ldl_user(addr);
1876 break;
1877 case 8:
1878 ret = ldq_user(addr);
1879 break;
1881 break;
1882 case 0xb: /* Supervisor data access */
1883 switch(size) {
1884 case 1:
1885 ret = ldub_kernel(addr);
1886 break;
1887 case 2:
1888 ret = lduw_kernel(addr);
1889 break;
1890 default:
1891 case 4:
1892 ret = ldl_kernel(addr);
1893 break;
1894 case 8:
1895 ret = ldq_kernel(addr);
1896 break;
1898 break;
1899 case 0xc: /* I-cache tag */
1900 case 0xd: /* I-cache data */
1901 case 0xe: /* D-cache tag */
1902 case 0xf: /* D-cache data */
1903 break;
1904 case 0x20: /* MMU passthrough */
1905 switch(size) {
1906 case 1:
1907 ret = ldub_phys(addr);
1908 break;
1909 case 2:
1910 ret = lduw_phys(addr);
1911 break;
1912 default:
1913 case 4:
1914 ret = ldl_phys(addr);
1915 break;
1916 case 8:
1917 ret = ldq_phys(addr);
1918 break;
1920 break;
1921 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1922 switch(size) {
1923 case 1:
1924 ret = ldub_phys((target_phys_addr_t)addr
1925 | ((target_phys_addr_t)(asi & 0xf) << 32));
1926 break;
1927 case 2:
1928 ret = lduw_phys((target_phys_addr_t)addr
1929 | ((target_phys_addr_t)(asi & 0xf) << 32));
1930 break;
1931 default:
1932 case 4:
1933 ret = ldl_phys((target_phys_addr_t)addr
1934 | ((target_phys_addr_t)(asi & 0xf) << 32));
1935 break;
1936 case 8:
1937 ret = ldq_phys((target_phys_addr_t)addr
1938 | ((target_phys_addr_t)(asi & 0xf) << 32));
1939 break;
1941 break;
1942 case 0x30: // Turbosparc secondary cache diagnostic
1943 case 0x31: // Turbosparc RAM snoop
1944 case 0x32: // Turbosparc page table descriptor diagnostic
1945 case 0x39: /* data cache diagnostic register */
1946 ret = 0;
1947 break;
1948 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
1950 int reg = (addr >> 8) & 3;
1952 switch(reg) {
1953 case 0: /* Breakpoint Value (Addr) */
1954 ret = env->mmubpregs[reg];
1955 break;
1956 case 1: /* Breakpoint Mask */
1957 ret = env->mmubpregs[reg];
1958 break;
1959 case 2: /* Breakpoint Control */
1960 ret = env->mmubpregs[reg];
1961 break;
1962 case 3: /* Breakpoint Status */
1963 ret = env->mmubpregs[reg];
1964 env->mmubpregs[reg] = 0ULL;
1965 break;
1967 DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
1968 ret);
1970 break;
1971 case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
1972 ret = env->mmubpctrv;
1973 break;
1974 case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
1975 ret = env->mmubpctrc;
1976 break;
1977 case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
1978 ret = env->mmubpctrs;
1979 break;
1980 case 0x4c: /* SuperSPARC MMU Breakpoint Action */
1981 ret = env->mmubpaction;
1982 break;
1983 case 8: /* User code access, XXX */
1984 default:
1985 do_unassigned_access(addr, 0, 0, asi, size);
1986 ret = 0;
1987 break;
1989 if (sign) {
1990 switch(size) {
1991 case 1:
1992 ret = (int8_t) ret;
1993 break;
1994 case 2:
1995 ret = (int16_t) ret;
1996 break;
1997 case 4:
1998 ret = (int32_t) ret;
1999 break;
2000 default:
2001 break;
2004 #ifdef DEBUG_ASI
2005 dump_asi("read ", last_addr, asi, size, ret);
2006 #endif
2007 return ret;
2010 void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
2012 helper_check_align(addr, size - 1);
2013 switch(asi) {
2014 case 2: /* SuperSparc MXCC registers and Leon3 cache control */
2015 switch (addr) {
2016 case 0x00: /* Leon3 Cache Control */
2017 case 0x08: /* Leon3 Instruction Cache config */
2018 case 0x0C: /* Leon3 Date Cache config */
2019 if (env->def->features & CPU_FEATURE_CACHE_CTRL) {
2020 leon3_cache_control_st(addr, val, size);
2022 break;
2024 case 0x01c00000: /* MXCC stream data register 0 */
2025 if (size == 8)
2026 env->mxccdata[0] = val;
2027 else
2028 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2029 size);
2030 break;
2031 case 0x01c00008: /* MXCC stream data register 1 */
2032 if (size == 8)
2033 env->mxccdata[1] = val;
2034 else
2035 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2036 size);
2037 break;
2038 case 0x01c00010: /* MXCC stream data register 2 */
2039 if (size == 8)
2040 env->mxccdata[2] = val;
2041 else
2042 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2043 size);
2044 break;
2045 case 0x01c00018: /* MXCC stream data register 3 */
2046 if (size == 8)
2047 env->mxccdata[3] = val;
2048 else
2049 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2050 size);
2051 break;
2052 case 0x01c00100: /* MXCC stream source */
2053 if (size == 8)
2054 env->mxccregs[0] = val;
2055 else
2056 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2057 size);
2058 env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
2060 env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
2062 env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
2063 16);
2064 env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
2065 24);
2066 break;
2067 case 0x01c00200: /* MXCC stream destination */
2068 if (size == 8)
2069 env->mxccregs[1] = val;
2070 else
2071 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2072 size);
2073 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 0,
2074 env->mxccdata[0]);
2075 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 8,
2076 env->mxccdata[1]);
2077 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16,
2078 env->mxccdata[2]);
2079 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24,
2080 env->mxccdata[3]);
2081 break;
2082 case 0x01c00a00: /* MXCC control register */
2083 if (size == 8)
2084 env->mxccregs[3] = val;
2085 else
2086 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2087 size);
2088 break;
2089 case 0x01c00a04: /* MXCC control register */
2090 if (size == 4)
2091 env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
2092 | val;
2093 else
2094 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2095 size);
2096 break;
2097 case 0x01c00e00: /* MXCC error register */
2098 // writing a 1 bit clears the error
2099 if (size == 8)
2100 env->mxccregs[6] &= ~val;
2101 else
2102 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2103 size);
2104 break;
2105 case 0x01c00f00: /* MBus port address register */
2106 if (size == 8)
2107 env->mxccregs[7] = val;
2108 else
2109 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2110 size);
2111 break;
2112 default:
2113 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
2114 size);
2115 break;
2117 DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
2118 asi, size, addr, val);
2119 #ifdef DEBUG_MXCC
2120 dump_mxcc(env);
2121 #endif
2122 break;
2123 case 3: /* MMU flush */
2125 int mmulev;
2127 mmulev = (addr >> 8) & 15;
2128 DPRINTF_MMU("mmu flush level %d\n", mmulev);
2129 switch (mmulev) {
2130 case 0: // flush page
2131 tlb_flush_page(env, addr & 0xfffff000);
2132 break;
2133 case 1: // flush segment (256k)
2134 case 2: // flush region (16M)
2135 case 3: // flush context (4G)
2136 case 4: // flush entire
2137 tlb_flush(env, 1);
2138 break;
2139 default:
2140 break;
2142 #ifdef DEBUG_MMU
2143 dump_mmu(stdout, fprintf, env);
2144 #endif
2146 break;
2147 case 4: /* write MMU regs */
2149 int reg = (addr >> 8) & 0x1f;
2150 uint32_t oldreg;
2152 oldreg = env->mmuregs[reg];
2153 switch(reg) {
2154 case 0: // Control Register
2155 env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
2156 (val & 0x00ffffff);
2157 // Mappings generated during no-fault mode or MMU
2158 // disabled mode are invalid in normal mode
2159 if ((oldreg & (MMU_E | MMU_NF | env->def->mmu_bm)) !=
2160 (env->mmuregs[reg] & (MMU_E | MMU_NF | env->def->mmu_bm)))
2161 tlb_flush(env, 1);
2162 break;
2163 case 1: // Context Table Pointer Register
2164 env->mmuregs[reg] = val & env->def->mmu_ctpr_mask;
2165 break;
2166 case 2: // Context Register
2167 env->mmuregs[reg] = val & env->def->mmu_cxr_mask;
2168 if (oldreg != env->mmuregs[reg]) {
2169 /* we flush when the MMU context changes because
2170 QEMU has no MMU context support */
2171 tlb_flush(env, 1);
2173 break;
2174 case 3: // Synchronous Fault Status Register with Clear
2175 case 4: // Synchronous Fault Address Register
2176 break;
2177 case 0x10: // TLB Replacement Control Register
2178 env->mmuregs[reg] = val & env->def->mmu_trcr_mask;
2179 break;
2180 case 0x13: // Synchronous Fault Status Register with Read and Clear
2181 env->mmuregs[3] = val & env->def->mmu_sfsr_mask;
2182 break;
2183 case 0x14: // Synchronous Fault Address Register
2184 env->mmuregs[4] = val;
2185 break;
2186 default:
2187 env->mmuregs[reg] = val;
2188 break;
2190 if (oldreg != env->mmuregs[reg]) {
2191 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
2192 reg, oldreg, env->mmuregs[reg]);
2194 #ifdef DEBUG_MMU
2195 dump_mmu(stdout, fprintf, env);
2196 #endif
2198 break;
2199 case 5: // Turbosparc ITLB Diagnostic
2200 case 6: // Turbosparc DTLB Diagnostic
2201 case 7: // Turbosparc IOTLB Diagnostic
2202 break;
2203 case 0xa: /* User data access */
2204 switch(size) {
2205 case 1:
2206 stb_user(addr, val);
2207 break;
2208 case 2:
2209 stw_user(addr, val);
2210 break;
2211 default:
2212 case 4:
2213 stl_user(addr, val);
2214 break;
2215 case 8:
2216 stq_user(addr, val);
2217 break;
2219 break;
2220 case 0xb: /* Supervisor data access */
2221 switch(size) {
2222 case 1:
2223 stb_kernel(addr, val);
2224 break;
2225 case 2:
2226 stw_kernel(addr, val);
2227 break;
2228 default:
2229 case 4:
2230 stl_kernel(addr, val);
2231 break;
2232 case 8:
2233 stq_kernel(addr, val);
2234 break;
2236 break;
2237 case 0xc: /* I-cache tag */
2238 case 0xd: /* I-cache data */
2239 case 0xe: /* D-cache tag */
2240 case 0xf: /* D-cache data */
2241 case 0x10: /* I/D-cache flush page */
2242 case 0x11: /* I/D-cache flush segment */
2243 case 0x12: /* I/D-cache flush region */
2244 case 0x13: /* I/D-cache flush context */
2245 case 0x14: /* I/D-cache flush user */
2246 break;
2247 case 0x17: /* Block copy, sta access */
2249 // val = src
2250 // addr = dst
2251 // copy 32 bytes
2252 unsigned int i;
2253 uint32_t src = val & ~3, dst = addr & ~3, temp;
2255 for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
2256 temp = ldl_kernel(src);
2257 stl_kernel(dst, temp);
2260 break;
2261 case 0x1f: /* Block fill, stda access */
2263 // addr = dst
2264 // fill 32 bytes with val
2265 unsigned int i;
2266 uint32_t dst = addr & 7;
2268 for (i = 0; i < 32; i += 8, dst += 8)
2269 stq_kernel(dst, val);
2271 break;
2272 case 0x20: /* MMU passthrough */
2274 switch(size) {
2275 case 1:
2276 stb_phys(addr, val);
2277 break;
2278 case 2:
2279 stw_phys(addr, val);
2280 break;
2281 case 4:
2282 default:
2283 stl_phys(addr, val);
2284 break;
2285 case 8:
2286 stq_phys(addr, val);
2287 break;
2290 break;
2291 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
2293 switch(size) {
2294 case 1:
2295 stb_phys((target_phys_addr_t)addr
2296 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
2297 break;
2298 case 2:
2299 stw_phys((target_phys_addr_t)addr
2300 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
2301 break;
2302 case 4:
2303 default:
2304 stl_phys((target_phys_addr_t)addr
2305 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
2306 break;
2307 case 8:
2308 stq_phys((target_phys_addr_t)addr
2309 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
2310 break;
2313 break;
2314 case 0x30: // store buffer tags or Turbosparc secondary cache diagnostic
2315 case 0x31: // store buffer data, Ross RT620 I-cache flush or
2316 // Turbosparc snoop RAM
2317 case 0x32: // store buffer control or Turbosparc page table
2318 // descriptor diagnostic
2319 case 0x36: /* I-cache flash clear */
2320 case 0x37: /* D-cache flash clear */
2321 break;
2322 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
2324 int reg = (addr >> 8) & 3;
2326 switch(reg) {
2327 case 0: /* Breakpoint Value (Addr) */
2328 env->mmubpregs[reg] = (val & 0xfffffffffULL);
2329 break;
2330 case 1: /* Breakpoint Mask */
2331 env->mmubpregs[reg] = (val & 0xfffffffffULL);
2332 break;
2333 case 2: /* Breakpoint Control */
2334 env->mmubpregs[reg] = (val & 0x7fULL);
2335 break;
2336 case 3: /* Breakpoint Status */
2337 env->mmubpregs[reg] = (val & 0xfULL);
2338 break;
2340 DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
2341 env->mmuregs[reg]);
2343 break;
2344 case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
2345 env->mmubpctrv = val & 0xffffffff;
2346 break;
2347 case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
2348 env->mmubpctrc = val & 0x3;
2349 break;
2350 case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
2351 env->mmubpctrs = val & 0x3;
2352 break;
2353 case 0x4c: /* SuperSPARC MMU Breakpoint Action */
2354 env->mmubpaction = val & 0x1fff;
2355 break;
2356 case 8: /* User code access, XXX */
2357 case 9: /* Supervisor code access, XXX */
2358 default:
2359 do_unassigned_access(addr, 1, 0, asi, size);
2360 break;
2362 #ifdef DEBUG_ASI
2363 dump_asi("write", addr, asi, size, val);
2364 #endif
2367 #endif /* CONFIG_USER_ONLY */
2368 #else /* TARGET_SPARC64 */
2370 #ifdef CONFIG_USER_ONLY
2371 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
2373 uint64_t ret = 0;
2374 #if defined(DEBUG_ASI)
2375 target_ulong last_addr = addr;
2376 #endif
2378 if (asi < 0x80)
2379 raise_exception(TT_PRIV_ACT);
2381 helper_check_align(addr, size - 1);
2382 addr = asi_address_mask(env, asi, addr);
2384 switch (asi) {
2385 case 0x82: // Primary no-fault
2386 case 0x8a: // Primary no-fault LE
2387 if (page_check_range(addr, size, PAGE_READ) == -1) {
2388 #ifdef DEBUG_ASI
2389 dump_asi("read ", last_addr, asi, size, ret);
2390 #endif
2391 return 0;
2393 // Fall through
2394 case 0x80: // Primary
2395 case 0x88: // Primary LE
2397 switch(size) {
2398 case 1:
2399 ret = ldub_raw(addr);
2400 break;
2401 case 2:
2402 ret = lduw_raw(addr);
2403 break;
2404 case 4:
2405 ret = ldl_raw(addr);
2406 break;
2407 default:
2408 case 8:
2409 ret = ldq_raw(addr);
2410 break;
2413 break;
2414 case 0x83: // Secondary no-fault
2415 case 0x8b: // Secondary no-fault LE
2416 if (page_check_range(addr, size, PAGE_READ) == -1) {
2417 #ifdef DEBUG_ASI
2418 dump_asi("read ", last_addr, asi, size, ret);
2419 #endif
2420 return 0;
2422 // Fall through
2423 case 0x81: // Secondary
2424 case 0x89: // Secondary LE
2425 // XXX
2426 break;
2427 default:
2428 break;
2431 /* Convert from little endian */
2432 switch (asi) {
2433 case 0x88: // Primary LE
2434 case 0x89: // Secondary LE
2435 case 0x8a: // Primary no-fault LE
2436 case 0x8b: // Secondary no-fault LE
2437 switch(size) {
2438 case 2:
2439 ret = bswap16(ret);
2440 break;
2441 case 4:
2442 ret = bswap32(ret);
2443 break;
2444 case 8:
2445 ret = bswap64(ret);
2446 break;
2447 default:
2448 break;
2450 default:
2451 break;
2454 /* Convert to signed number */
2455 if (sign) {
2456 switch(size) {
2457 case 1:
2458 ret = (int8_t) ret;
2459 break;
2460 case 2:
2461 ret = (int16_t) ret;
2462 break;
2463 case 4:
2464 ret = (int32_t) ret;
2465 break;
2466 default:
2467 break;
2470 #ifdef DEBUG_ASI
2471 dump_asi("read ", last_addr, asi, size, ret);
2472 #endif
2473 return ret;
2476 void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
2478 #ifdef DEBUG_ASI
2479 dump_asi("write", addr, asi, size, val);
2480 #endif
2481 if (asi < 0x80)
2482 raise_exception(TT_PRIV_ACT);
2484 helper_check_align(addr, size - 1);
2485 addr = asi_address_mask(env, asi, addr);
2487 /* Convert to little endian */
2488 switch (asi) {
2489 case 0x88: // Primary LE
2490 case 0x89: // Secondary LE
2491 switch(size) {
2492 case 2:
2493 val = bswap16(val);
2494 break;
2495 case 4:
2496 val = bswap32(val);
2497 break;
2498 case 8:
2499 val = bswap64(val);
2500 break;
2501 default:
2502 break;
2504 default:
2505 break;
2508 switch(asi) {
2509 case 0x80: // Primary
2510 case 0x88: // Primary LE
2512 switch(size) {
2513 case 1:
2514 stb_raw(addr, val);
2515 break;
2516 case 2:
2517 stw_raw(addr, val);
2518 break;
2519 case 4:
2520 stl_raw(addr, val);
2521 break;
2522 case 8:
2523 default:
2524 stq_raw(addr, val);
2525 break;
2528 break;
2529 case 0x81: // Secondary
2530 case 0x89: // Secondary LE
2531 // XXX
2532 return;
2534 case 0x82: // Primary no-fault, RO
2535 case 0x83: // Secondary no-fault, RO
2536 case 0x8a: // Primary no-fault LE, RO
2537 case 0x8b: // Secondary no-fault LE, RO
2538 default:
2539 do_unassigned_access(addr, 1, 0, 1, size);
2540 return;
2544 #else /* CONFIG_USER_ONLY */
2546 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
2548 uint64_t ret = 0;
2549 #if defined(DEBUG_ASI)
2550 target_ulong last_addr = addr;
2551 #endif
2553 asi &= 0xff;
2555 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2556 || (cpu_has_hypervisor(env)
2557 && asi >= 0x30 && asi < 0x80
2558 && !(env->hpstate & HS_PRIV)))
2559 raise_exception(TT_PRIV_ACT);
2561 helper_check_align(addr, size - 1);
2562 addr = asi_address_mask(env, asi, addr);
2564 switch (asi) {
2565 case 0x82: // Primary no-fault
2566 case 0x8a: // Primary no-fault LE
2567 case 0x83: // Secondary no-fault
2568 case 0x8b: // Secondary no-fault LE
2570 /* secondary space access has lowest asi bit equal to 1 */
2571 int access_mmu_idx = ( asi & 1 ) ? MMU_KERNEL_IDX
2572 : MMU_KERNEL_SECONDARY_IDX;
2574 if (cpu_get_phys_page_nofault(env, addr, access_mmu_idx) == -1ULL) {
2575 #ifdef DEBUG_ASI
2576 dump_asi("read ", last_addr, asi, size, ret);
2577 #endif
2578 return 0;
2581 // Fall through
2582 case 0x10: // As if user primary
2583 case 0x11: // As if user secondary
2584 case 0x18: // As if user primary LE
2585 case 0x19: // As if user secondary LE
2586 case 0x80: // Primary
2587 case 0x81: // Secondary
2588 case 0x88: // Primary LE
2589 case 0x89: // Secondary LE
2590 case 0xe2: // UA2007 Primary block init
2591 case 0xe3: // UA2007 Secondary block init
2592 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
2593 if (cpu_hypervisor_mode(env)) {
2594 switch(size) {
2595 case 1:
2596 ret = ldub_hypv(addr);
2597 break;
2598 case 2:
2599 ret = lduw_hypv(addr);
2600 break;
2601 case 4:
2602 ret = ldl_hypv(addr);
2603 break;
2604 default:
2605 case 8:
2606 ret = ldq_hypv(addr);
2607 break;
2609 } else {
2610 /* secondary space access has lowest asi bit equal to 1 */
2611 if (asi & 1) {
2612 switch(size) {
2613 case 1:
2614 ret = ldub_kernel_secondary(addr);
2615 break;
2616 case 2:
2617 ret = lduw_kernel_secondary(addr);
2618 break;
2619 case 4:
2620 ret = ldl_kernel_secondary(addr);
2621 break;
2622 default:
2623 case 8:
2624 ret = ldq_kernel_secondary(addr);
2625 break;
2627 } else {
2628 switch(size) {
2629 case 1:
2630 ret = ldub_kernel(addr);
2631 break;
2632 case 2:
2633 ret = lduw_kernel(addr);
2634 break;
2635 case 4:
2636 ret = ldl_kernel(addr);
2637 break;
2638 default:
2639 case 8:
2640 ret = ldq_kernel(addr);
2641 break;
2645 } else {
2646 /* secondary space access has lowest asi bit equal to 1 */
2647 if (asi & 1) {
2648 switch(size) {
2649 case 1:
2650 ret = ldub_user_secondary(addr);
2651 break;
2652 case 2:
2653 ret = lduw_user_secondary(addr);
2654 break;
2655 case 4:
2656 ret = ldl_user_secondary(addr);
2657 break;
2658 default:
2659 case 8:
2660 ret = ldq_user_secondary(addr);
2661 break;
2663 } else {
2664 switch(size) {
2665 case 1:
2666 ret = ldub_user(addr);
2667 break;
2668 case 2:
2669 ret = lduw_user(addr);
2670 break;
2671 case 4:
2672 ret = ldl_user(addr);
2673 break;
2674 default:
2675 case 8:
2676 ret = ldq_user(addr);
2677 break;
2681 break;
2682 case 0x14: // Bypass
2683 case 0x15: // Bypass, non-cacheable
2684 case 0x1c: // Bypass LE
2685 case 0x1d: // Bypass, non-cacheable LE
2687 switch(size) {
2688 case 1:
2689 ret = ldub_phys(addr);
2690 break;
2691 case 2:
2692 ret = lduw_phys(addr);
2693 break;
2694 case 4:
2695 ret = ldl_phys(addr);
2696 break;
2697 default:
2698 case 8:
2699 ret = ldq_phys(addr);
2700 break;
2702 break;
2704 case 0x24: // Nucleus quad LDD 128 bit atomic
2705 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2706 // Only ldda allowed
2707 raise_exception(TT_ILL_INSN);
2708 return 0;
2709 case 0x04: // Nucleus
2710 case 0x0c: // Nucleus Little Endian (LE)
2712 switch(size) {
2713 case 1:
2714 ret = ldub_nucleus(addr);
2715 break;
2716 case 2:
2717 ret = lduw_nucleus(addr);
2718 break;
2719 case 4:
2720 ret = ldl_nucleus(addr);
2721 break;
2722 default:
2723 case 8:
2724 ret = ldq_nucleus(addr);
2725 break;
2727 break;
2729 case 0x4a: // UPA config
2730 // XXX
2731 break;
2732 case 0x45: // LSU
2733 ret = env->lsu;
2734 break;
2735 case 0x50: // I-MMU regs
2737 int reg = (addr >> 3) & 0xf;
2739 if (reg == 0) {
2740 // I-TSB Tag Target register
2741 ret = ultrasparc_tag_target(env->immu.tag_access);
2742 } else {
2743 ret = env->immuregs[reg];
2746 break;
2748 case 0x51: // I-MMU 8k TSB pointer
2750 // env->immuregs[5] holds I-MMU TSB register value
2751 // env->immuregs[6] holds I-MMU Tag Access register value
2752 ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
2753 8*1024);
2754 break;
2756 case 0x52: // I-MMU 64k TSB pointer
2758 // env->immuregs[5] holds I-MMU TSB register value
2759 // env->immuregs[6] holds I-MMU Tag Access register value
2760 ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
2761 64*1024);
2762 break;
2764 case 0x55: // I-MMU data access
2766 int reg = (addr >> 3) & 0x3f;
2768 ret = env->itlb[reg].tte;
2769 break;
2771 case 0x56: // I-MMU tag read
2773 int reg = (addr >> 3) & 0x3f;
2775 ret = env->itlb[reg].tag;
2776 break;
2778 case 0x58: // D-MMU regs
2780 int reg = (addr >> 3) & 0xf;
2782 if (reg == 0) {
2783 // D-TSB Tag Target register
2784 ret = ultrasparc_tag_target(env->dmmu.tag_access);
2785 } else {
2786 ret = env->dmmuregs[reg];
2788 break;
2790 case 0x59: // D-MMU 8k TSB pointer
2792 // env->dmmuregs[5] holds D-MMU TSB register value
2793 // env->dmmuregs[6] holds D-MMU Tag Access register value
2794 ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
2795 8*1024);
2796 break;
2798 case 0x5a: // D-MMU 64k TSB pointer
2800 // env->dmmuregs[5] holds D-MMU TSB register value
2801 // env->dmmuregs[6] holds D-MMU Tag Access register value
2802 ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
2803 64*1024);
2804 break;
2806 case 0x5d: // D-MMU data access
2808 int reg = (addr >> 3) & 0x3f;
2810 ret = env->dtlb[reg].tte;
2811 break;
2813 case 0x5e: // D-MMU tag read
2815 int reg = (addr >> 3) & 0x3f;
2817 ret = env->dtlb[reg].tag;
2818 break;
2820 case 0x46: // D-cache data
2821 case 0x47: // D-cache tag access
2822 case 0x4b: // E-cache error enable
2823 case 0x4c: // E-cache asynchronous fault status
2824 case 0x4d: // E-cache asynchronous fault address
2825 case 0x4e: // E-cache tag data
2826 case 0x66: // I-cache instruction access
2827 case 0x67: // I-cache tag access
2828 case 0x6e: // I-cache predecode
2829 case 0x6f: // I-cache LRU etc.
2830 case 0x76: // E-cache tag
2831 case 0x7e: // E-cache tag
2832 break;
2833 case 0x5b: // D-MMU data pointer
2834 case 0x48: // Interrupt dispatch, RO
2835 case 0x49: // Interrupt data receive
2836 case 0x7f: // Incoming interrupt vector, RO
2837 // XXX
2838 break;
2839 case 0x54: // I-MMU data in, WO
2840 case 0x57: // I-MMU demap, WO
2841 case 0x5c: // D-MMU data in, WO
2842 case 0x5f: // D-MMU demap, WO
2843 case 0x77: // Interrupt vector, WO
2844 default:
2845 do_unassigned_access(addr, 0, 0, 1, size);
2846 ret = 0;
2847 break;
2850 /* Convert from little endian */
2851 switch (asi) {
2852 case 0x0c: // Nucleus Little Endian (LE)
2853 case 0x18: // As if user primary LE
2854 case 0x19: // As if user secondary LE
2855 case 0x1c: // Bypass LE
2856 case 0x1d: // Bypass, non-cacheable LE
2857 case 0x88: // Primary LE
2858 case 0x89: // Secondary LE
2859 case 0x8a: // Primary no-fault LE
2860 case 0x8b: // Secondary no-fault LE
2861 switch(size) {
2862 case 2:
2863 ret = bswap16(ret);
2864 break;
2865 case 4:
2866 ret = bswap32(ret);
2867 break;
2868 case 8:
2869 ret = bswap64(ret);
2870 break;
2871 default:
2872 break;
2874 default:
2875 break;
2878 /* Convert to signed number */
2879 if (sign) {
2880 switch(size) {
2881 case 1:
2882 ret = (int8_t) ret;
2883 break;
2884 case 2:
2885 ret = (int16_t) ret;
2886 break;
2887 case 4:
2888 ret = (int32_t) ret;
2889 break;
2890 default:
2891 break;
2894 #ifdef DEBUG_ASI
2895 dump_asi("read ", last_addr, asi, size, ret);
2896 #endif
2897 return ret;
2900 void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
2902 #ifdef DEBUG_ASI
2903 dump_asi("write", addr, asi, size, val);
2904 #endif
2906 asi &= 0xff;
2908 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2909 || (cpu_has_hypervisor(env)
2910 && asi >= 0x30 && asi < 0x80
2911 && !(env->hpstate & HS_PRIV)))
2912 raise_exception(TT_PRIV_ACT);
2914 helper_check_align(addr, size - 1);
2915 addr = asi_address_mask(env, asi, addr);
2917 /* Convert to little endian */
2918 switch (asi) {
2919 case 0x0c: // Nucleus Little Endian (LE)
2920 case 0x18: // As if user primary LE
2921 case 0x19: // As if user secondary LE
2922 case 0x1c: // Bypass LE
2923 case 0x1d: // Bypass, non-cacheable LE
2924 case 0x88: // Primary LE
2925 case 0x89: // Secondary LE
2926 switch(size) {
2927 case 2:
2928 val = bswap16(val);
2929 break;
2930 case 4:
2931 val = bswap32(val);
2932 break;
2933 case 8:
2934 val = bswap64(val);
2935 break;
2936 default:
2937 break;
2939 default:
2940 break;
2943 switch(asi) {
2944 case 0x10: // As if user primary
2945 case 0x11: // As if user secondary
2946 case 0x18: // As if user primary LE
2947 case 0x19: // As if user secondary LE
2948 case 0x80: // Primary
2949 case 0x81: // Secondary
2950 case 0x88: // Primary LE
2951 case 0x89: // Secondary LE
2952 case 0xe2: // UA2007 Primary block init
2953 case 0xe3: // UA2007 Secondary block init
2954 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
2955 if (cpu_hypervisor_mode(env)) {
2956 switch(size) {
2957 case 1:
2958 stb_hypv(addr, val);
2959 break;
2960 case 2:
2961 stw_hypv(addr, val);
2962 break;
2963 case 4:
2964 stl_hypv(addr, val);
2965 break;
2966 case 8:
2967 default:
2968 stq_hypv(addr, val);
2969 break;
2971 } else {
2972 /* secondary space access has lowest asi bit equal to 1 */
2973 if (asi & 1) {
2974 switch(size) {
2975 case 1:
2976 stb_kernel_secondary(addr, val);
2977 break;
2978 case 2:
2979 stw_kernel_secondary(addr, val);
2980 break;
2981 case 4:
2982 stl_kernel_secondary(addr, val);
2983 break;
2984 case 8:
2985 default:
2986 stq_kernel_secondary(addr, val);
2987 break;
2989 } else {
2990 switch(size) {
2991 case 1:
2992 stb_kernel(addr, val);
2993 break;
2994 case 2:
2995 stw_kernel(addr, val);
2996 break;
2997 case 4:
2998 stl_kernel(addr, val);
2999 break;
3000 case 8:
3001 default:
3002 stq_kernel(addr, val);
3003 break;
3007 } else {
3008 /* secondary space access has lowest asi bit equal to 1 */
3009 if (asi & 1) {
3010 switch(size) {
3011 case 1:
3012 stb_user_secondary(addr, val);
3013 break;
3014 case 2:
3015 stw_user_secondary(addr, val);
3016 break;
3017 case 4:
3018 stl_user_secondary(addr, val);
3019 break;
3020 case 8:
3021 default:
3022 stq_user_secondary(addr, val);
3023 break;
3025 } else {
3026 switch(size) {
3027 case 1:
3028 stb_user(addr, val);
3029 break;
3030 case 2:
3031 stw_user(addr, val);
3032 break;
3033 case 4:
3034 stl_user(addr, val);
3035 break;
3036 case 8:
3037 default:
3038 stq_user(addr, val);
3039 break;
3043 break;
3044 case 0x14: // Bypass
3045 case 0x15: // Bypass, non-cacheable
3046 case 0x1c: // Bypass LE
3047 case 0x1d: // Bypass, non-cacheable LE
3049 switch(size) {
3050 case 1:
3051 stb_phys(addr, val);
3052 break;
3053 case 2:
3054 stw_phys(addr, val);
3055 break;
3056 case 4:
3057 stl_phys(addr, val);
3058 break;
3059 case 8:
3060 default:
3061 stq_phys(addr, val);
3062 break;
3065 return;
3066 case 0x24: // Nucleus quad LDD 128 bit atomic
3067 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
3068 // Only ldda allowed
3069 raise_exception(TT_ILL_INSN);
3070 return;
3071 case 0x04: // Nucleus
3072 case 0x0c: // Nucleus Little Endian (LE)
3074 switch(size) {
3075 case 1:
3076 stb_nucleus(addr, val);
3077 break;
3078 case 2:
3079 stw_nucleus(addr, val);
3080 break;
3081 case 4:
3082 stl_nucleus(addr, val);
3083 break;
3084 default:
3085 case 8:
3086 stq_nucleus(addr, val);
3087 break;
3089 break;
3092 case 0x4a: // UPA config
3093 // XXX
3094 return;
3095 case 0x45: // LSU
3097 uint64_t oldreg;
3099 oldreg = env->lsu;
3100 env->lsu = val & (DMMU_E | IMMU_E);
3101 // Mappings generated during D/I MMU disabled mode are
3102 // invalid in normal mode
3103 if (oldreg != env->lsu) {
3104 DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n",
3105 oldreg, env->lsu);
3106 #ifdef DEBUG_MMU
3107 dump_mmu(stdout, fprintf, env1);
3108 #endif
3109 tlb_flush(env, 1);
3111 return;
3113 case 0x50: // I-MMU regs
3115 int reg = (addr >> 3) & 0xf;
3116 uint64_t oldreg;
3118 oldreg = env->immuregs[reg];
3119 switch(reg) {
3120 case 0: // RO
3121 return;
3122 case 1: // Not in I-MMU
3123 case 2:
3124 return;
3125 case 3: // SFSR
3126 if ((val & 1) == 0)
3127 val = 0; // Clear SFSR
3128 env->immu.sfsr = val;
3129 break;
3130 case 4: // RO
3131 return;
3132 case 5: // TSB access
3133 DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
3134 PRIx64 "\n", env->immu.tsb, val);
3135 env->immu.tsb = val;
3136 break;
3137 case 6: // Tag access
3138 env->immu.tag_access = val;
3139 break;
3140 case 7:
3141 case 8:
3142 return;
3143 default:
3144 break;
3147 if (oldreg != env->immuregs[reg]) {
3148 DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
3149 PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
3151 #ifdef DEBUG_MMU
3152 dump_mmu(stdout, fprintf, env);
3153 #endif
3154 return;
3156 case 0x54: // I-MMU data in
3157 replace_tlb_1bit_lru(env->itlb, env->immu.tag_access, val, "immu", env);
3158 return;
3159 case 0x55: // I-MMU data access
3161 // TODO: auto demap
3163 unsigned int i = (addr >> 3) & 0x3f;
3165 replace_tlb_entry(&env->itlb[i], env->immu.tag_access, val, env);
3167 #ifdef DEBUG_MMU
3168 DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
3169 dump_mmu(stdout, fprintf, env);
3170 #endif
3171 return;
3173 case 0x57: // I-MMU demap
3174 demap_tlb(env->itlb, addr, "immu", env);
3175 return;
3176 case 0x58: // D-MMU regs
3178 int reg = (addr >> 3) & 0xf;
3179 uint64_t oldreg;
3181 oldreg = env->dmmuregs[reg];
3182 switch(reg) {
3183 case 0: // RO
3184 case 4:
3185 return;
3186 case 3: // SFSR
3187 if ((val & 1) == 0) {
3188 val = 0; // Clear SFSR, Fault address
3189 env->dmmu.sfar = 0;
3191 env->dmmu.sfsr = val;
3192 break;
3193 case 1: // Primary context
3194 env->dmmu.mmu_primary_context = val;
3195 /* can be optimized to only flush MMU_USER_IDX
3196 and MMU_KERNEL_IDX entries */
3197 tlb_flush(env, 1);
3198 break;
3199 case 2: // Secondary context
3200 env->dmmu.mmu_secondary_context = val;
3201 /* can be optimized to only flush MMU_USER_SECONDARY_IDX
3202 and MMU_KERNEL_SECONDARY_IDX entries */
3203 tlb_flush(env, 1);
3204 break;
3205 case 5: // TSB access
3206 DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
3207 PRIx64 "\n", env->dmmu.tsb, val);
3208 env->dmmu.tsb = val;
3209 break;
3210 case 6: // Tag access
3211 env->dmmu.tag_access = val;
3212 break;
3213 case 7: // Virtual Watchpoint
3214 case 8: // Physical Watchpoint
3215 default:
3216 env->dmmuregs[reg] = val;
3217 break;
3220 if (oldreg != env->dmmuregs[reg]) {
3221 DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
3222 PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
3224 #ifdef DEBUG_MMU
3225 dump_mmu(stdout, fprintf, env);
3226 #endif
3227 return;
3229 case 0x5c: // D-MMU data in
3230 replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access, val, "dmmu", env);
3231 return;
3232 case 0x5d: // D-MMU data access
3234 unsigned int i = (addr >> 3) & 0x3f;
3236 replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access, val, env);
3238 #ifdef DEBUG_MMU
3239 DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
3240 dump_mmu(stdout, fprintf, env);
3241 #endif
3242 return;
3244 case 0x5f: // D-MMU demap
3245 demap_tlb(env->dtlb, addr, "dmmu", env);
3246 return;
3247 case 0x49: // Interrupt data receive
3248 // XXX
3249 return;
3250 case 0x46: // D-cache data
3251 case 0x47: // D-cache tag access
3252 case 0x4b: // E-cache error enable
3253 case 0x4c: // E-cache asynchronous fault status
3254 case 0x4d: // E-cache asynchronous fault address
3255 case 0x4e: // E-cache tag data
3256 case 0x66: // I-cache instruction access
3257 case 0x67: // I-cache tag access
3258 case 0x6e: // I-cache predecode
3259 case 0x6f: // I-cache LRU etc.
3260 case 0x76: // E-cache tag
3261 case 0x7e: // E-cache tag
3262 return;
3263 case 0x51: // I-MMU 8k TSB pointer, RO
3264 case 0x52: // I-MMU 64k TSB pointer, RO
3265 case 0x56: // I-MMU tag read, RO
3266 case 0x59: // D-MMU 8k TSB pointer, RO
3267 case 0x5a: // D-MMU 64k TSB pointer, RO
3268 case 0x5b: // D-MMU data pointer, RO
3269 case 0x5e: // D-MMU tag read, RO
3270 case 0x48: // Interrupt dispatch, RO
3271 case 0x7f: // Incoming interrupt vector, RO
3272 case 0x82: // Primary no-fault, RO
3273 case 0x83: // Secondary no-fault, RO
3274 case 0x8a: // Primary no-fault LE, RO
3275 case 0x8b: // Secondary no-fault LE, RO
3276 default:
3277 do_unassigned_access(addr, 1, 0, 1, size);
3278 return;
3281 #endif /* CONFIG_USER_ONLY */
3283 void helper_ldda_asi(target_ulong addr, int asi, int rd)
3285 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
3286 || (cpu_has_hypervisor(env)
3287 && asi >= 0x30 && asi < 0x80
3288 && !(env->hpstate & HS_PRIV)))
3289 raise_exception(TT_PRIV_ACT);
3291 addr = asi_address_mask(env, asi, addr);
3293 switch (asi) {
3294 #if !defined(CONFIG_USER_ONLY)
3295 case 0x24: // Nucleus quad LDD 128 bit atomic
3296 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
3297 helper_check_align(addr, 0xf);
3298 if (rd == 0) {
3299 env->gregs[1] = ldq_nucleus(addr + 8);
3300 if (asi == 0x2c)
3301 bswap64s(&env->gregs[1]);
3302 } else if (rd < 8) {
3303 env->gregs[rd] = ldq_nucleus(addr);
3304 env->gregs[rd + 1] = ldq_nucleus(addr + 8);
3305 if (asi == 0x2c) {
3306 bswap64s(&env->gregs[rd]);
3307 bswap64s(&env->gregs[rd + 1]);
3309 } else {
3310 env->regwptr[rd] = ldq_nucleus(addr);
3311 env->regwptr[rd + 1] = ldq_nucleus(addr + 8);
3312 if (asi == 0x2c) {
3313 bswap64s(&env->regwptr[rd]);
3314 bswap64s(&env->regwptr[rd + 1]);
3317 break;
3318 #endif
3319 default:
3320 helper_check_align(addr, 0x3);
3321 if (rd == 0)
3322 env->gregs[1] = helper_ld_asi(addr + 4, asi, 4, 0);
3323 else if (rd < 8) {
3324 env->gregs[rd] = helper_ld_asi(addr, asi, 4, 0);
3325 env->gregs[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
3326 } else {
3327 env->regwptr[rd] = helper_ld_asi(addr, asi, 4, 0);
3328 env->regwptr[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
3330 break;
3334 void helper_ldf_asi(target_ulong addr, int asi, int size, int rd)
3336 unsigned int i;
3337 CPU_DoubleU u;
3339 helper_check_align(addr, 3);
3340 addr = asi_address_mask(env, asi, addr);
3342 switch (asi) {
3343 case 0xf0: /* UA2007/JPS1 Block load primary */
3344 case 0xf1: /* UA2007/JPS1 Block load secondary */
3345 case 0xf8: /* UA2007/JPS1 Block load primary LE */
3346 case 0xf9: /* UA2007/JPS1 Block load secondary LE */
3347 if (rd & 7) {
3348 raise_exception(TT_ILL_INSN);
3349 return;
3351 helper_check_align(addr, 0x3f);
3352 for (i = 0; i < 16; i++) {
3353 *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x8f, 4,
3355 addr += 4;
3358 return;
3359 case 0x16: /* UA2007 Block load primary, user privilege */
3360 case 0x17: /* UA2007 Block load secondary, user privilege */
3361 case 0x1e: /* UA2007 Block load primary LE, user privilege */
3362 case 0x1f: /* UA2007 Block load secondary LE, user privilege */
3363 case 0x70: /* JPS1 Block load primary, user privilege */
3364 case 0x71: /* JPS1 Block load secondary, user privilege */
3365 case 0x78: /* JPS1 Block load primary LE, user privilege */
3366 case 0x79: /* JPS1 Block load secondary LE, user privilege */
3367 if (rd & 7) {
3368 raise_exception(TT_ILL_INSN);
3369 return;
3371 helper_check_align(addr, 0x3f);
3372 for (i = 0; i < 16; i++) {
3373 *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x19, 4,
3375 addr += 4;
3378 return;
3379 default:
3380 break;
3383 switch(size) {
3384 default:
3385 case 4:
3386 *((uint32_t *)&env->fpr[rd]) = helper_ld_asi(addr, asi, size, 0);
3387 break;
3388 case 8:
3389 u.ll = helper_ld_asi(addr, asi, size, 0);
3390 *((uint32_t *)&env->fpr[rd++]) = u.l.upper;
3391 *((uint32_t *)&env->fpr[rd++]) = u.l.lower;
3392 break;
3393 case 16:
3394 u.ll = helper_ld_asi(addr, asi, 8, 0);
3395 *((uint32_t *)&env->fpr[rd++]) = u.l.upper;
3396 *((uint32_t *)&env->fpr[rd++]) = u.l.lower;
3397 u.ll = helper_ld_asi(addr + 8, asi, 8, 0);
3398 *((uint32_t *)&env->fpr[rd++]) = u.l.upper;
3399 *((uint32_t *)&env->fpr[rd++]) = u.l.lower;
3400 break;
3404 void helper_stf_asi(target_ulong addr, int asi, int size, int rd)
3406 unsigned int i;
3407 target_ulong val = 0;
3408 CPU_DoubleU u;
3410 helper_check_align(addr, 3);
3411 addr = asi_address_mask(env, asi, addr);
3413 switch (asi) {
3414 case 0xe0: /* UA2007/JPS1 Block commit store primary (cache flush) */
3415 case 0xe1: /* UA2007/JPS1 Block commit store secondary (cache flush) */
3416 case 0xf0: /* UA2007/JPS1 Block store primary */
3417 case 0xf1: /* UA2007/JPS1 Block store secondary */
3418 case 0xf8: /* UA2007/JPS1 Block store primary LE */
3419 case 0xf9: /* UA2007/JPS1 Block store secondary LE */
3420 if (rd & 7) {
3421 raise_exception(TT_ILL_INSN);
3422 return;
3424 helper_check_align(addr, 0x3f);
3425 for (i = 0; i < 16; i++) {
3426 val = *(uint32_t *)&env->fpr[rd++];
3427 helper_st_asi(addr, val, asi & 0x8f, 4);
3428 addr += 4;
3431 return;
3432 case 0x16: /* UA2007 Block load primary, user privilege */
3433 case 0x17: /* UA2007 Block load secondary, user privilege */
3434 case 0x1e: /* UA2007 Block load primary LE, user privilege */
3435 case 0x1f: /* UA2007 Block load secondary LE, user privilege */
3436 case 0x70: /* JPS1 Block store primary, user privilege */
3437 case 0x71: /* JPS1 Block store secondary, user privilege */
3438 case 0x78: /* JPS1 Block load primary LE, user privilege */
3439 case 0x79: /* JPS1 Block load secondary LE, user privilege */
3440 if (rd & 7) {
3441 raise_exception(TT_ILL_INSN);
3442 return;
3444 helper_check_align(addr, 0x3f);
3445 for (i = 0; i < 16; i++) {
3446 val = *(uint32_t *)&env->fpr[rd++];
3447 helper_st_asi(addr, val, asi & 0x19, 4);
3448 addr += 4;
3451 return;
3452 default:
3453 break;
3456 switch(size) {
3457 default:
3458 case 4:
3459 helper_st_asi(addr, *(uint32_t *)&env->fpr[rd], asi, size);
3460 break;
3461 case 8:
3462 u.l.upper = *(uint32_t *)&env->fpr[rd++];
3463 u.l.lower = *(uint32_t *)&env->fpr[rd++];
3464 helper_st_asi(addr, u.ll, asi, size);
3465 break;
3466 case 16:
3467 u.l.upper = *(uint32_t *)&env->fpr[rd++];
3468 u.l.lower = *(uint32_t *)&env->fpr[rd++];
3469 helper_st_asi(addr, u.ll, asi, 8);
3470 u.l.upper = *(uint32_t *)&env->fpr[rd++];
3471 u.l.lower = *(uint32_t *)&env->fpr[rd++];
3472 helper_st_asi(addr + 8, u.ll, asi, 8);
3473 break;
3477 target_ulong helper_cas_asi(target_ulong addr, target_ulong val1,
3478 target_ulong val2, uint32_t asi)
3480 target_ulong ret;
3482 val2 &= 0xffffffffUL;
3483 ret = helper_ld_asi(addr, asi, 4, 0);
3484 ret &= 0xffffffffUL;
3485 if (val2 == ret)
3486 helper_st_asi(addr, val1 & 0xffffffffUL, asi, 4);
3487 return ret;
3490 target_ulong helper_casx_asi(target_ulong addr, target_ulong val1,
3491 target_ulong val2, uint32_t asi)
3493 target_ulong ret;
3495 ret = helper_ld_asi(addr, asi, 8, 0);
3496 if (val2 == ret)
3497 helper_st_asi(addr, val1, asi, 8);
3498 return ret;
3500 #endif /* TARGET_SPARC64 */
3502 #ifndef TARGET_SPARC64
3503 void helper_rett(void)
3505 unsigned int cwp;
3507 if (env->psret == 1)
3508 raise_exception(TT_ILL_INSN);
3510 env->psret = 1;
3511 cwp = cwp_inc(env->cwp + 1) ;
3512 if (env->wim & (1 << cwp)) {
3513 raise_exception(TT_WIN_UNF);
3515 set_cwp(cwp);
3516 env->psrs = env->psrps;
3518 #endif
3520 static target_ulong helper_udiv_common(target_ulong a, target_ulong b, int cc)
3522 int overflow = 0;
3523 uint64_t x0;
3524 uint32_t x1;
3526 x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
3527 x1 = (b & 0xffffffff);
3529 if (x1 == 0) {
3530 raise_exception(TT_DIV_ZERO);
3533 x0 = x0 / x1;
3534 if (x0 > 0xffffffff) {
3535 x0 = 0xffffffff;
3536 overflow = 1;
3539 if (cc) {
3540 env->cc_dst = x0;
3541 env->cc_src2 = overflow;
3542 env->cc_op = CC_OP_DIV;
3544 return x0;
3547 target_ulong helper_udiv(target_ulong a, target_ulong b)
3549 return helper_udiv_common(a, b, 0);
3552 target_ulong helper_udiv_cc(target_ulong a, target_ulong b)
3554 return helper_udiv_common(a, b, 1);
3557 static target_ulong helper_sdiv_common(target_ulong a, target_ulong b, int cc)
3559 int overflow = 0;
3560 int64_t x0;
3561 int32_t x1;
3563 x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
3564 x1 = (b & 0xffffffff);
3566 if (x1 == 0) {
3567 raise_exception(TT_DIV_ZERO);
3570 x0 = x0 / x1;
3571 if ((int32_t) x0 != x0) {
3572 x0 = x0 < 0 ? 0x80000000: 0x7fffffff;
3573 overflow = 1;
3576 if (cc) {
3577 env->cc_dst = x0;
3578 env->cc_src2 = overflow;
3579 env->cc_op = CC_OP_DIV;
3581 return x0;
3584 target_ulong helper_sdiv(target_ulong a, target_ulong b)
3586 return helper_sdiv_common(a, b, 0);
3589 target_ulong helper_sdiv_cc(target_ulong a, target_ulong b)
3591 return helper_sdiv_common(a, b, 1);
3594 void helper_stdf(target_ulong addr, int mem_idx)
3596 helper_check_align(addr, 7);
3597 #if !defined(CONFIG_USER_ONLY)
3598 switch (mem_idx) {
3599 case MMU_USER_IDX:
3600 stfq_user(addr, DT0);
3601 break;
3602 case MMU_KERNEL_IDX:
3603 stfq_kernel(addr, DT0);
3604 break;
3605 #ifdef TARGET_SPARC64
3606 case MMU_HYPV_IDX:
3607 stfq_hypv(addr, DT0);
3608 break;
3609 #endif
3610 default:
3611 DPRINTF_MMU("helper_stdf: need to check MMU idx %d\n", mem_idx);
3612 break;
3614 #else
3615 stfq_raw(address_mask(env, addr), DT0);
3616 #endif
3619 void helper_lddf(target_ulong addr, int mem_idx)
3621 helper_check_align(addr, 7);
3622 #if !defined(CONFIG_USER_ONLY)
3623 switch (mem_idx) {
3624 case MMU_USER_IDX:
3625 DT0 = ldfq_user(addr);
3626 break;
3627 case MMU_KERNEL_IDX:
3628 DT0 = ldfq_kernel(addr);
3629 break;
3630 #ifdef TARGET_SPARC64
3631 case MMU_HYPV_IDX:
3632 DT0 = ldfq_hypv(addr);
3633 break;
3634 #endif
3635 default:
3636 DPRINTF_MMU("helper_lddf: need to check MMU idx %d\n", mem_idx);
3637 break;
3639 #else
3640 DT0 = ldfq_raw(address_mask(env, addr));
3641 #endif
3644 void helper_ldqf(target_ulong addr, int mem_idx)
3646 // XXX add 128 bit load
3647 CPU_QuadU u;
3649 helper_check_align(addr, 7);
3650 #if !defined(CONFIG_USER_ONLY)
3651 switch (mem_idx) {
3652 case MMU_USER_IDX:
3653 u.ll.upper = ldq_user(addr);
3654 u.ll.lower = ldq_user(addr + 8);
3655 QT0 = u.q;
3656 break;
3657 case MMU_KERNEL_IDX:
3658 u.ll.upper = ldq_kernel(addr);
3659 u.ll.lower = ldq_kernel(addr + 8);
3660 QT0 = u.q;
3661 break;
3662 #ifdef TARGET_SPARC64
3663 case MMU_HYPV_IDX:
3664 u.ll.upper = ldq_hypv(addr);
3665 u.ll.lower = ldq_hypv(addr + 8);
3666 QT0 = u.q;
3667 break;
3668 #endif
3669 default:
3670 DPRINTF_MMU("helper_ldqf: need to check MMU idx %d\n", mem_idx);
3671 break;
3673 #else
3674 u.ll.upper = ldq_raw(address_mask(env, addr));
3675 u.ll.lower = ldq_raw(address_mask(env, addr + 8));
3676 QT0 = u.q;
3677 #endif
3680 void helper_stqf(target_ulong addr, int mem_idx)
3682 // XXX add 128 bit store
3683 CPU_QuadU u;
3685 helper_check_align(addr, 7);
3686 #if !defined(CONFIG_USER_ONLY)
3687 switch (mem_idx) {
3688 case MMU_USER_IDX:
3689 u.q = QT0;
3690 stq_user(addr, u.ll.upper);
3691 stq_user(addr + 8, u.ll.lower);
3692 break;
3693 case MMU_KERNEL_IDX:
3694 u.q = QT0;
3695 stq_kernel(addr, u.ll.upper);
3696 stq_kernel(addr + 8, u.ll.lower);
3697 break;
3698 #ifdef TARGET_SPARC64
3699 case MMU_HYPV_IDX:
3700 u.q = QT0;
3701 stq_hypv(addr, u.ll.upper);
3702 stq_hypv(addr + 8, u.ll.lower);
3703 break;
3704 #endif
3705 default:
3706 DPRINTF_MMU("helper_stqf: need to check MMU idx %d\n", mem_idx);
3707 break;
3709 #else
3710 u.q = QT0;
3711 stq_raw(address_mask(env, addr), u.ll.upper);
3712 stq_raw(address_mask(env, addr + 8), u.ll.lower);
3713 #endif
3716 static inline void set_fsr(void)
3718 int rnd_mode;
3720 switch (env->fsr & FSR_RD_MASK) {
3721 case FSR_RD_NEAREST:
3722 rnd_mode = float_round_nearest_even;
3723 break;
3724 default:
3725 case FSR_RD_ZERO:
3726 rnd_mode = float_round_to_zero;
3727 break;
3728 case FSR_RD_POS:
3729 rnd_mode = float_round_up;
3730 break;
3731 case FSR_RD_NEG:
3732 rnd_mode = float_round_down;
3733 break;
3735 set_float_rounding_mode(rnd_mode, &env->fp_status);
3738 void helper_ldfsr(uint32_t new_fsr)
3740 env->fsr = (new_fsr & FSR_LDFSR_MASK) | (env->fsr & FSR_LDFSR_OLDMASK);
3741 set_fsr();
3744 #ifdef TARGET_SPARC64
3745 void helper_ldxfsr(uint64_t new_fsr)
3747 env->fsr = (new_fsr & FSR_LDXFSR_MASK) | (env->fsr & FSR_LDXFSR_OLDMASK);
3748 set_fsr();
3750 #endif
3752 void helper_debug(void)
3754 env->exception_index = EXCP_DEBUG;
3755 cpu_loop_exit(env);
3758 #ifndef TARGET_SPARC64
3759 /* XXX: use another pointer for %iN registers to avoid slow wrapping
3760 handling ? */
3761 void helper_save(void)
3763 uint32_t cwp;
3765 cwp = cwp_dec(env->cwp - 1);
3766 if (env->wim & (1 << cwp)) {
3767 raise_exception(TT_WIN_OVF);
3769 set_cwp(cwp);
3772 void helper_restore(void)
3774 uint32_t cwp;
3776 cwp = cwp_inc(env->cwp + 1);
3777 if (env->wim & (1 << cwp)) {
3778 raise_exception(TT_WIN_UNF);
3780 set_cwp(cwp);
3783 void helper_wrpsr(target_ulong new_psr)
3785 if ((new_psr & PSR_CWP) >= env->nwindows) {
3786 raise_exception(TT_ILL_INSN);
3787 } else {
3788 cpu_put_psr(env, new_psr);
3792 target_ulong helper_rdpsr(void)
3794 return get_psr();
3797 #else
3798 /* XXX: use another pointer for %iN registers to avoid slow wrapping
3799 handling ? */
3800 void helper_save(void)
3802 uint32_t cwp;
3804 cwp = cwp_dec(env->cwp - 1);
3805 if (env->cansave == 0) {
3806 raise_exception(TT_SPILL | (env->otherwin != 0 ?
3807 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3808 ((env->wstate & 0x7) << 2)));
3809 } else {
3810 if (env->cleanwin - env->canrestore == 0) {
3811 // XXX Clean windows without trap
3812 raise_exception(TT_CLRWIN);
3813 } else {
3814 env->cansave--;
3815 env->canrestore++;
3816 set_cwp(cwp);
3821 void helper_restore(void)
3823 uint32_t cwp;
3825 cwp = cwp_inc(env->cwp + 1);
3826 if (env->canrestore == 0) {
3827 raise_exception(TT_FILL | (env->otherwin != 0 ?
3828 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3829 ((env->wstate & 0x7) << 2)));
3830 } else {
3831 env->cansave++;
3832 env->canrestore--;
3833 set_cwp(cwp);
3837 void helper_flushw(void)
3839 if (env->cansave != env->nwindows - 2) {
3840 raise_exception(TT_SPILL | (env->otherwin != 0 ?
3841 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3842 ((env->wstate & 0x7) << 2)));
3846 void helper_saved(void)
3848 env->cansave++;
3849 if (env->otherwin == 0)
3850 env->canrestore--;
3851 else
3852 env->otherwin--;
3855 void helper_restored(void)
3857 env->canrestore++;
3858 if (env->cleanwin < env->nwindows - 1)
3859 env->cleanwin++;
3860 if (env->otherwin == 0)
3861 env->cansave--;
3862 else
3863 env->otherwin--;
3866 static target_ulong get_ccr(void)
3868 target_ulong psr;
3870 psr = get_psr();
3872 return ((env->xcc >> 20) << 4) | ((psr & PSR_ICC) >> 20);
3875 target_ulong cpu_get_ccr(CPUState *env1)
3877 CPUState *saved_env;
3878 target_ulong ret;
3880 saved_env = env;
3881 env = env1;
3882 ret = get_ccr();
3883 env = saved_env;
3884 return ret;
3887 static void put_ccr(target_ulong val)
3889 target_ulong tmp = val;
3891 env->xcc = (tmp >> 4) << 20;
3892 env->psr = (tmp & 0xf) << 20;
3893 CC_OP = CC_OP_FLAGS;
3896 void cpu_put_ccr(CPUState *env1, target_ulong val)
3898 CPUState *saved_env;
3900 saved_env = env;
3901 env = env1;
3902 put_ccr(val);
3903 env = saved_env;
3906 static target_ulong get_cwp64(void)
3908 return env->nwindows - 1 - env->cwp;
3911 target_ulong cpu_get_cwp64(CPUState *env1)
3913 CPUState *saved_env;
3914 target_ulong ret;
3916 saved_env = env;
3917 env = env1;
3918 ret = get_cwp64();
3919 env = saved_env;
3920 return ret;
3923 static void put_cwp64(int cwp)
3925 if (unlikely(cwp >= env->nwindows || cwp < 0)) {
3926 cwp %= env->nwindows;
3928 set_cwp(env->nwindows - 1 - cwp);
3931 void cpu_put_cwp64(CPUState *env1, int cwp)
3933 CPUState *saved_env;
3935 saved_env = env;
3936 env = env1;
3937 put_cwp64(cwp);
3938 env = saved_env;
3941 target_ulong helper_rdccr(void)
3943 return get_ccr();
3946 void helper_wrccr(target_ulong new_ccr)
3948 put_ccr(new_ccr);
3951 // CWP handling is reversed in V9, but we still use the V8 register
3952 // order.
3953 target_ulong helper_rdcwp(void)
3955 return get_cwp64();
3958 void helper_wrcwp(target_ulong new_cwp)
3960 put_cwp64(new_cwp);
3963 // This function uses non-native bit order
3964 #define GET_FIELD(X, FROM, TO) \
3965 ((X) >> (63 - (TO)) & ((1ULL << ((TO) - (FROM) + 1)) - 1))
3967 // This function uses the order in the manuals, i.e. bit 0 is 2^0
3968 #define GET_FIELD_SP(X, FROM, TO) \
3969 GET_FIELD(X, 63 - (TO), 63 - (FROM))
3971 target_ulong helper_array8(target_ulong pixel_addr, target_ulong cubesize)
3973 return (GET_FIELD_SP(pixel_addr, 60, 63) << (17 + 2 * cubesize)) |
3974 (GET_FIELD_SP(pixel_addr, 39, 39 + cubesize - 1) << (17 + cubesize)) |
3975 (GET_FIELD_SP(pixel_addr, 17 + cubesize - 1, 17) << 17) |
3976 (GET_FIELD_SP(pixel_addr, 56, 59) << 13) |
3977 (GET_FIELD_SP(pixel_addr, 35, 38) << 9) |
3978 (GET_FIELD_SP(pixel_addr, 13, 16) << 5) |
3979 (((pixel_addr >> 55) & 1) << 4) |
3980 (GET_FIELD_SP(pixel_addr, 33, 34) << 2) |
3981 GET_FIELD_SP(pixel_addr, 11, 12);
3984 target_ulong helper_alignaddr(target_ulong addr, target_ulong offset)
3986 uint64_t tmp;
3988 tmp = addr + offset;
3989 env->gsr &= ~7ULL;
3990 env->gsr |= tmp & 7ULL;
3991 return tmp & ~7ULL;
3994 target_ulong helper_popc(target_ulong val)
3996 return ctpop64(val);
3999 static inline uint64_t *get_gregset(uint32_t pstate)
4001 switch (pstate) {
4002 default:
4003 DPRINTF_PSTATE("ERROR in get_gregset: active pstate bits=%x%s%s%s\n",
4004 pstate,
4005 (pstate & PS_IG) ? " IG" : "",
4006 (pstate & PS_MG) ? " MG" : "",
4007 (pstate & PS_AG) ? " AG" : "");
4008 /* pass through to normal set of global registers */
4009 case 0:
4010 return env->bgregs;
4011 case PS_AG:
4012 return env->agregs;
4013 case PS_MG:
4014 return env->mgregs;
4015 case PS_IG:
4016 return env->igregs;
4020 static inline void change_pstate(uint32_t new_pstate)
4022 uint32_t pstate_regs, new_pstate_regs;
4023 uint64_t *src, *dst;
4025 if (env->def->features & CPU_FEATURE_GL) {
4026 // PS_AG is not implemented in this case
4027 new_pstate &= ~PS_AG;
4030 pstate_regs = env->pstate & 0xc01;
4031 new_pstate_regs = new_pstate & 0xc01;
4033 if (new_pstate_regs != pstate_regs) {
4034 DPRINTF_PSTATE("change_pstate: switching regs old=%x new=%x\n",
4035 pstate_regs, new_pstate_regs);
4036 // Switch global register bank
4037 src = get_gregset(new_pstate_regs);
4038 dst = get_gregset(pstate_regs);
4039 memcpy32(dst, env->gregs);
4040 memcpy32(env->gregs, src);
4042 else {
4043 DPRINTF_PSTATE("change_pstate: regs new=%x (unchanged)\n",
4044 new_pstate_regs);
4046 env->pstate = new_pstate;
4049 void helper_wrpstate(target_ulong new_state)
4051 change_pstate(new_state & 0xf3f);
4053 #if !defined(CONFIG_USER_ONLY)
4054 if (cpu_interrupts_enabled(env)) {
4055 cpu_check_irqs(env);
4057 #endif
4060 void cpu_change_pstate(CPUState *env1, uint32_t new_pstate)
4062 CPUState *saved_env;
4064 saved_env = env;
4065 env = env1;
4066 change_pstate(new_pstate);
4067 env = saved_env;
4070 void helper_wrpil(target_ulong new_pil)
4072 #if !defined(CONFIG_USER_ONLY)
4073 DPRINTF_PSTATE("helper_wrpil old=%x new=%x\n",
4074 env->psrpil, (uint32_t)new_pil);
4076 env->psrpil = new_pil;
4078 if (cpu_interrupts_enabled(env)) {
4079 cpu_check_irqs(env);
4081 #endif
4084 void helper_done(void)
4086 trap_state* tsptr = cpu_tsptr(env);
4088 env->pc = tsptr->tnpc;
4089 env->npc = tsptr->tnpc + 4;
4090 put_ccr(tsptr->tstate >> 32);
4091 env->asi = (tsptr->tstate >> 24) & 0xff;
4092 change_pstate((tsptr->tstate >> 8) & 0xf3f);
4093 put_cwp64(tsptr->tstate & 0xff);
4094 env->tl--;
4096 DPRINTF_PSTATE("... helper_done tl=%d\n", env->tl);
4098 #if !defined(CONFIG_USER_ONLY)
4099 if (cpu_interrupts_enabled(env)) {
4100 cpu_check_irqs(env);
4102 #endif
4105 void helper_retry(void)
4107 trap_state* tsptr = cpu_tsptr(env);
4109 env->pc = tsptr->tpc;
4110 env->npc = tsptr->tnpc;
4111 put_ccr(tsptr->tstate >> 32);
4112 env->asi = (tsptr->tstate >> 24) & 0xff;
4113 change_pstate((tsptr->tstate >> 8) & 0xf3f);
4114 put_cwp64(tsptr->tstate & 0xff);
4115 env->tl--;
4117 DPRINTF_PSTATE("... helper_retry tl=%d\n", env->tl);
4119 #if !defined(CONFIG_USER_ONLY)
4120 if (cpu_interrupts_enabled(env)) {
4121 cpu_check_irqs(env);
4123 #endif
4126 static void do_modify_softint(const char* operation, uint32_t value)
4128 if (env->softint != value) {
4129 env->softint = value;
4130 DPRINTF_PSTATE(": %s new %08x\n", operation, env->softint);
4131 #if !defined(CONFIG_USER_ONLY)
4132 if (cpu_interrupts_enabled(env)) {
4133 cpu_check_irqs(env);
4135 #endif
4139 void helper_set_softint(uint64_t value)
4141 do_modify_softint("helper_set_softint", env->softint | (uint32_t)value);
4144 void helper_clear_softint(uint64_t value)
4146 do_modify_softint("helper_clear_softint", env->softint & (uint32_t)~value);
4149 void helper_write_softint(uint64_t value)
4151 do_modify_softint("helper_write_softint", (uint32_t)value);
4153 #endif
4155 #ifdef TARGET_SPARC64
4156 trap_state* cpu_tsptr(CPUState* env)
4158 return &env->ts[env->tl & MAXTL_MASK];
4160 #endif
4162 #if !defined(CONFIG_USER_ONLY)
4164 static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
4165 void *retaddr);
4167 #define MMUSUFFIX _mmu
4168 #define ALIGNED_ONLY
4170 #define SHIFT 0
4171 #include "softmmu_template.h"
4173 #define SHIFT 1
4174 #include "softmmu_template.h"
4176 #define SHIFT 2
4177 #include "softmmu_template.h"
4179 #define SHIFT 3
4180 #include "softmmu_template.h"
4182 /* XXX: make it generic ? */
4183 static void cpu_restore_state2(void *retaddr)
4185 TranslationBlock *tb;
4186 unsigned long pc;
4188 if (retaddr) {
4189 /* now we have a real cpu fault */
4190 pc = (unsigned long)retaddr;
4191 tb = tb_find_pc(pc);
4192 if (tb) {
4193 /* the PC is inside the translated code. It means that we have
4194 a virtual CPU fault */
4195 cpu_restore_state(tb, env, pc);
4200 static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
4201 void *retaddr)
4203 #ifdef DEBUG_UNALIGNED
4204 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
4205 "\n", addr, env->pc);
4206 #endif
4207 cpu_restore_state2(retaddr);
4208 raise_exception(TT_UNALIGNED);
4211 /* try to fill the TLB and return an exception if error. If retaddr is
4212 NULL, it means that the function was called in C code (i.e. not
4213 from generated code or from helper.c) */
4214 /* XXX: fix it to restore all registers */
4215 void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
4217 int ret;
4218 CPUState *saved_env;
4220 /* XXX: hack to restore env in all cases, even if not called from
4221 generated code */
4222 saved_env = env;
4223 env = cpu_single_env;
4225 ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
4226 if (ret) {
4227 cpu_restore_state2(retaddr);
4228 cpu_loop_exit(env);
4230 env = saved_env;
4233 #endif /* !CONFIG_USER_ONLY */
4235 #ifndef TARGET_SPARC64
4236 #if !defined(CONFIG_USER_ONLY)
4237 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
4238 int is_asi, int size)
4240 CPUState *saved_env;
4241 int fault_type;
4243 /* XXX: hack to restore env in all cases, even if not called from
4244 generated code */
4245 saved_env = env;
4246 env = cpu_single_env;
4247 #ifdef DEBUG_UNASSIGNED
4248 if (is_asi)
4249 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
4250 " asi 0x%02x from " TARGET_FMT_lx "\n",
4251 is_exec ? "exec" : is_write ? "write" : "read", size,
4252 size == 1 ? "" : "s", addr, is_asi, env->pc);
4253 else
4254 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
4255 " from " TARGET_FMT_lx "\n",
4256 is_exec ? "exec" : is_write ? "write" : "read", size,
4257 size == 1 ? "" : "s", addr, env->pc);
4258 #endif
4259 /* Don't overwrite translation and access faults */
4260 fault_type = (env->mmuregs[3] & 0x1c) >> 2;
4261 if ((fault_type > 4) || (fault_type == 0)) {
4262 env->mmuregs[3] = 0; /* Fault status register */
4263 if (is_asi)
4264 env->mmuregs[3] |= 1 << 16;
4265 if (env->psrs)
4266 env->mmuregs[3] |= 1 << 5;
4267 if (is_exec)
4268 env->mmuregs[3] |= 1 << 6;
4269 if (is_write)
4270 env->mmuregs[3] |= 1 << 7;
4271 env->mmuregs[3] |= (5 << 2) | 2;
4272 /* SuperSPARC will never place instruction fault addresses in the FAR */
4273 if (!is_exec) {
4274 env->mmuregs[4] = addr; /* Fault address register */
4277 /* overflow (same type fault was not read before another fault) */
4278 if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) {
4279 env->mmuregs[3] |= 1;
4282 if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
4283 if (is_exec)
4284 raise_exception(TT_CODE_ACCESS);
4285 else
4286 raise_exception(TT_DATA_ACCESS);
4289 /* flush neverland mappings created during no-fault mode,
4290 so the sequential MMU faults report proper fault types */
4291 if (env->mmuregs[0] & MMU_NF) {
4292 tlb_flush(env, 1);
4295 env = saved_env;
4297 #endif
4298 #else
4299 #if defined(CONFIG_USER_ONLY)
4300 static void do_unassigned_access(target_ulong addr, int is_write, int is_exec,
4301 int is_asi, int size)
4302 #else
4303 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
4304 int is_asi, int size)
4305 #endif
4307 CPUState *saved_env;
4309 /* XXX: hack to restore env in all cases, even if not called from
4310 generated code */
4311 saved_env = env;
4312 env = cpu_single_env;
4314 #ifdef DEBUG_UNASSIGNED
4315 printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
4316 "\n", addr, env->pc);
4317 #endif
4319 if (is_exec)
4320 raise_exception(TT_CODE_ACCESS);
4321 else
4322 raise_exception(TT_DATA_ACCESS);
4324 env = saved_env;
4326 #endif
4329 #ifdef TARGET_SPARC64
4330 void helper_tick_set_count(void *opaque, uint64_t count)
4332 #if !defined(CONFIG_USER_ONLY)
4333 cpu_tick_set_count(opaque, count);
4334 #endif
4337 uint64_t helper_tick_get_count(void *opaque)
4339 #if !defined(CONFIG_USER_ONLY)
4340 return cpu_tick_get_count(opaque);
4341 #else
4342 return 0;
4343 #endif
4346 void helper_tick_set_limit(void *opaque, uint64_t limit)
4348 #if !defined(CONFIG_USER_ONLY)
4349 cpu_tick_set_limit(opaque, limit);
4350 #endif
4352 #endif