ssi: Convert legacy SSI_BUS -> BUS casts
[qemu.git] / target-arm / helper.c
blobf65cbac1ee0dbde7b735d2d947a69c700fa24112
1 #include "cpu.h"
2 #include "exec/gdbstub.h"
3 #include "helper.h"
4 #include "qemu/host-utils.h"
5 #include "sysemu/arch_init.h"
6 #include "sysemu/sysemu.h"
7 #include "qemu/bitops.h"
8 #include "qemu/crc32c.h"
9 #include <zlib.h> /* For crc32 */
11 #ifndef CONFIG_USER_ONLY
12 static inline int get_phys_addr(CPUARMState *env, uint32_t address,
13 int access_type, int is_user,
14 hwaddr *phys_ptr, int *prot,
15 target_ulong *page_size);
17 /* Definitions for the PMCCNTR and PMCR registers */
18 #define PMCRD 0x8
19 #define PMCRC 0x4
20 #define PMCRE 0x1
21 #endif
23 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
25 int nregs;
27 /* VFP data registers are always little-endian. */
28 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
29 if (reg < nregs) {
30 stfq_le_p(buf, env->vfp.regs[reg]);
31 return 8;
33 if (arm_feature(env, ARM_FEATURE_NEON)) {
34 /* Aliases for Q regs. */
35 nregs += 16;
36 if (reg < nregs) {
37 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
38 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
39 return 16;
42 switch (reg - nregs) {
43 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
44 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
45 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
47 return 0;
50 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
52 int nregs;
54 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
55 if (reg < nregs) {
56 env->vfp.regs[reg] = ldfq_le_p(buf);
57 return 8;
59 if (arm_feature(env, ARM_FEATURE_NEON)) {
60 nregs += 16;
61 if (reg < nregs) {
62 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
63 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
64 return 16;
67 switch (reg - nregs) {
68 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
69 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
70 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
72 return 0;
75 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
77 switch (reg) {
78 case 0 ... 31:
79 /* 128 bit FP register */
80 stfq_le_p(buf, env->vfp.regs[reg * 2]);
81 stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
82 return 16;
83 case 32:
84 /* FPSR */
85 stl_p(buf, vfp_get_fpsr(env));
86 return 4;
87 case 33:
88 /* FPCR */
89 stl_p(buf, vfp_get_fpcr(env));
90 return 4;
91 default:
92 return 0;
96 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
98 switch (reg) {
99 case 0 ... 31:
100 /* 128 bit FP register */
101 env->vfp.regs[reg * 2] = ldfq_le_p(buf);
102 env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
103 return 16;
104 case 32:
105 /* FPSR */
106 vfp_set_fpsr(env, ldl_p(buf));
107 return 4;
108 case 33:
109 /* FPCR */
110 vfp_set_fpcr(env, ldl_p(buf));
111 return 4;
112 default:
113 return 0;
117 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
119 if (cpreg_field_is_64bit(ri)) {
120 return CPREG_FIELD64(env, ri);
121 } else {
122 return CPREG_FIELD32(env, ri);
126 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
127 uint64_t value)
129 if (cpreg_field_is_64bit(ri)) {
130 CPREG_FIELD64(env, ri) = value;
131 } else {
132 CPREG_FIELD32(env, ri) = value;
136 static uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
138 /* Raw read of a coprocessor register (as needed for migration, etc). */
139 if (ri->type & ARM_CP_CONST) {
140 return ri->resetvalue;
141 } else if (ri->raw_readfn) {
142 return ri->raw_readfn(env, ri);
143 } else if (ri->readfn) {
144 return ri->readfn(env, ri);
145 } else {
146 return raw_read(env, ri);
150 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
151 uint64_t v)
153 /* Raw write of a coprocessor register (as needed for migration, etc).
154 * Note that constant registers are treated as write-ignored; the
155 * caller should check for success by whether a readback gives the
156 * value written.
158 if (ri->type & ARM_CP_CONST) {
159 return;
160 } else if (ri->raw_writefn) {
161 ri->raw_writefn(env, ri, v);
162 } else if (ri->writefn) {
163 ri->writefn(env, ri, v);
164 } else {
165 raw_write(env, ri, v);
169 bool write_cpustate_to_list(ARMCPU *cpu)
171 /* Write the coprocessor state from cpu->env to the (index,value) list. */
172 int i;
173 bool ok = true;
175 for (i = 0; i < cpu->cpreg_array_len; i++) {
176 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
177 const ARMCPRegInfo *ri;
179 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
180 if (!ri) {
181 ok = false;
182 continue;
184 if (ri->type & ARM_CP_NO_MIGRATE) {
185 continue;
187 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
189 return ok;
192 bool write_list_to_cpustate(ARMCPU *cpu)
194 int i;
195 bool ok = true;
197 for (i = 0; i < cpu->cpreg_array_len; i++) {
198 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
199 uint64_t v = cpu->cpreg_values[i];
200 const ARMCPRegInfo *ri;
202 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
203 if (!ri) {
204 ok = false;
205 continue;
207 if (ri->type & ARM_CP_NO_MIGRATE) {
208 continue;
210 /* Write value and confirm it reads back as written
211 * (to catch read-only registers and partially read-only
212 * registers where the incoming migration value doesn't match)
214 write_raw_cp_reg(&cpu->env, ri, v);
215 if (read_raw_cp_reg(&cpu->env, ri) != v) {
216 ok = false;
219 return ok;
222 static void add_cpreg_to_list(gpointer key, gpointer opaque)
224 ARMCPU *cpu = opaque;
225 uint64_t regidx;
226 const ARMCPRegInfo *ri;
228 regidx = *(uint32_t *)key;
229 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
231 if (!(ri->type & ARM_CP_NO_MIGRATE)) {
232 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
233 /* The value array need not be initialized at this point */
234 cpu->cpreg_array_len++;
238 static void count_cpreg(gpointer key, gpointer opaque)
240 ARMCPU *cpu = opaque;
241 uint64_t regidx;
242 const ARMCPRegInfo *ri;
244 regidx = *(uint32_t *)key;
245 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
247 if (!(ri->type & ARM_CP_NO_MIGRATE)) {
248 cpu->cpreg_array_len++;
252 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
254 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
255 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
257 if (aidx > bidx) {
258 return 1;
260 if (aidx < bidx) {
261 return -1;
263 return 0;
266 static void cpreg_make_keylist(gpointer key, gpointer value, gpointer udata)
268 GList **plist = udata;
270 *plist = g_list_prepend(*plist, key);
273 void init_cpreg_list(ARMCPU *cpu)
275 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
276 * Note that we require cpreg_tuples[] to be sorted by key ID.
278 GList *keys = NULL;
279 int arraylen;
281 g_hash_table_foreach(cpu->cp_regs, cpreg_make_keylist, &keys);
283 keys = g_list_sort(keys, cpreg_key_compare);
285 cpu->cpreg_array_len = 0;
287 g_list_foreach(keys, count_cpreg, cpu);
289 arraylen = cpu->cpreg_array_len;
290 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
291 cpu->cpreg_values = g_new(uint64_t, arraylen);
292 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
293 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
294 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
295 cpu->cpreg_array_len = 0;
297 g_list_foreach(keys, add_cpreg_to_list, cpu);
299 assert(cpu->cpreg_array_len == arraylen);
301 g_list_free(keys);
304 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
306 env->cp15.c3 = value;
307 tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
310 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
312 if (env->cp15.c13_fcse != value) {
313 /* Unlike real hardware the qemu TLB uses virtual addresses,
314 * not modified virtual addresses, so this causes a TLB flush.
316 tlb_flush(env, 1);
317 env->cp15.c13_fcse = value;
321 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
322 uint64_t value)
324 if (env->cp15.c13_context != value && !arm_feature(env, ARM_FEATURE_MPU)) {
325 /* For VMSA (when not using the LPAE long descriptor page table
326 * format) this register includes the ASID, so do a TLB flush.
327 * For PMSA it is purely a process ID and no action is needed.
329 tlb_flush(env, 1);
331 env->cp15.c13_context = value;
334 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
335 uint64_t value)
337 /* Invalidate all (TLBIALL) */
338 tlb_flush(env, 1);
341 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
342 uint64_t value)
344 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
345 tlb_flush_page(env, value & TARGET_PAGE_MASK);
348 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
349 uint64_t value)
351 /* Invalidate by ASID (TLBIASID) */
352 tlb_flush(env, value == 0);
355 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
356 uint64_t value)
358 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
359 tlb_flush_page(env, value & TARGET_PAGE_MASK);
362 static const ARMCPRegInfo cp_reginfo[] = {
363 /* DBGDIDR: just RAZ. In particular this means the "debug architecture
364 * version" bits will read as a reserved value, which should cause
365 * Linux to not try to use the debug hardware.
367 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
368 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
369 /* MMU Domain access control / MPU write buffer control */
370 { .name = "DACR", .cp = 15,
371 .crn = 3, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
372 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3),
373 .resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, },
374 { .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0,
375 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
376 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
377 { .name = "CONTEXTIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 1,
378 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_context),
379 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
380 /* ??? This covers not just the impdef TLB lockdown registers but also
381 * some v7VMSA registers relating to TEX remap, so it is overly broad.
383 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY,
384 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
385 /* MMU TLB control. Note that the wildcarding means we cover not just
386 * the unified TLB ops but also the dside/iside/inner-shareable variants.
388 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
389 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
390 .type = ARM_CP_NO_MIGRATE },
391 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
392 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
393 .type = ARM_CP_NO_MIGRATE },
394 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
395 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
396 .type = ARM_CP_NO_MIGRATE },
397 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
398 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
399 .type = ARM_CP_NO_MIGRATE },
400 /* Cache maintenance ops; some of this space may be overridden later. */
401 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
402 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
403 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
404 REGINFO_SENTINEL
407 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
408 /* Not all pre-v6 cores implemented this WFI, so this is slightly
409 * over-broad.
411 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
412 .access = PL1_W, .type = ARM_CP_WFI },
413 REGINFO_SENTINEL
416 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
417 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
418 * is UNPREDICTABLE; we choose to NOP as most implementations do).
420 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
421 .access = PL1_W, .type = ARM_CP_WFI },
422 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
423 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
424 * OMAPCP will override this space.
426 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
427 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
428 .resetvalue = 0 },
429 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
430 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
431 .resetvalue = 0 },
432 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
433 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
434 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
435 .resetvalue = 0 },
436 REGINFO_SENTINEL
439 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
440 uint64_t value)
442 if (env->cp15.c1_coproc != value) {
443 env->cp15.c1_coproc = value;
444 /* ??? Is this safe when called from within a TB? */
445 tb_flush(env);
449 static const ARMCPRegInfo v6_cp_reginfo[] = {
450 /* prefetch by MVA in v6, NOP in v7 */
451 { .name = "MVA_prefetch",
452 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
453 .access = PL1_W, .type = ARM_CP_NOP },
454 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
455 .access = PL0_W, .type = ARM_CP_NOP },
456 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
457 .access = PL0_W, .type = ARM_CP_NOP },
458 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
459 .access = PL0_W, .type = ARM_CP_NOP },
460 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
461 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_insn),
462 .resetvalue = 0, },
463 /* Watchpoint Fault Address Register : should actually only be present
464 * for 1136, 1176, 11MPCore.
466 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
467 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
468 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
469 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2,
470 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_coproc),
471 .resetvalue = 0, .writefn = cpacr_write },
472 REGINFO_SENTINEL
475 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri)
477 /* Perfomance monitor registers user accessibility is controlled
478 * by PMUSERENR.
480 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
481 return CP_ACCESS_TRAP;
483 return CP_ACCESS_OK;
486 #ifndef CONFIG_USER_ONLY
487 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
488 uint64_t value)
490 /* Don't computer the number of ticks in user mode */
491 uint32_t temp_ticks;
493 temp_ticks = qemu_clock_get_us(QEMU_CLOCK_VIRTUAL) *
494 get_ticks_per_sec() / 1000000;
496 if (env->cp15.c9_pmcr & PMCRE) {
497 /* If the counter is enabled */
498 if (env->cp15.c9_pmcr & PMCRD) {
499 /* Increment once every 64 processor clock cycles */
500 env->cp15.c15_ccnt = (temp_ticks/64) - env->cp15.c15_ccnt;
501 } else {
502 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
506 if (value & PMCRC) {
507 /* The counter has been reset */
508 env->cp15.c15_ccnt = 0;
511 /* only the DP, X, D and E bits are writable */
512 env->cp15.c9_pmcr &= ~0x39;
513 env->cp15.c9_pmcr |= (value & 0x39);
515 if (env->cp15.c9_pmcr & PMCRE) {
516 if (env->cp15.c9_pmcr & PMCRD) {
517 /* Increment once every 64 processor clock cycles */
518 temp_ticks /= 64;
520 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
524 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
526 uint32_t total_ticks;
528 if (!(env->cp15.c9_pmcr & PMCRE)) {
529 /* Counter is disabled, do not change value */
530 return env->cp15.c15_ccnt;
533 total_ticks = qemu_clock_get_us(QEMU_CLOCK_VIRTUAL) *
534 get_ticks_per_sec() / 1000000;
536 if (env->cp15.c9_pmcr & PMCRD) {
537 /* Increment once every 64 processor clock cycles */
538 total_ticks /= 64;
540 return total_ticks - env->cp15.c15_ccnt;
543 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
544 uint64_t value)
546 uint32_t total_ticks;
548 if (!(env->cp15.c9_pmcr & PMCRE)) {
549 /* Counter is disabled, set the absolute value */
550 env->cp15.c15_ccnt = value;
551 return;
554 total_ticks = qemu_clock_get_us(QEMU_CLOCK_VIRTUAL) *
555 get_ticks_per_sec() / 1000000;
557 if (env->cp15.c9_pmcr & PMCRD) {
558 /* Increment once every 64 processor clock cycles */
559 total_ticks /= 64;
561 env->cp15.c15_ccnt = total_ticks - value;
563 #endif
565 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
566 uint64_t value)
568 value &= (1 << 31);
569 env->cp15.c9_pmcnten |= value;
572 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
573 uint64_t value)
575 value &= (1 << 31);
576 env->cp15.c9_pmcnten &= ~value;
579 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
580 uint64_t value)
582 env->cp15.c9_pmovsr &= ~value;
585 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
586 uint64_t value)
588 env->cp15.c9_pmxevtyper = value & 0xff;
591 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
592 uint64_t value)
594 env->cp15.c9_pmuserenr = value & 1;
597 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
598 uint64_t value)
600 /* We have no event counters so only the C bit can be changed */
601 value &= (1 << 31);
602 env->cp15.c9_pminten |= value;
605 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
606 uint64_t value)
608 value &= (1 << 31);
609 env->cp15.c9_pminten &= ~value;
612 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
613 uint64_t value)
615 /* Note that even though the AArch64 view of this register has bits
616 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
617 * architectural requirements for bits which are RES0 only in some
618 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
619 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
621 env->cp15.c12_vbar = value & ~0x1Ful;
624 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
626 ARMCPU *cpu = arm_env_get_cpu(env);
627 return cpu->ccsidr[env->cp15.c0_cssel];
630 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
631 uint64_t value)
633 env->cp15.c0_cssel = value & 0xf;
636 static const ARMCPRegInfo v7_cp_reginfo[] = {
637 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
638 * debug components
640 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
641 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
642 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
643 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
644 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
645 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
646 .access = PL1_W, .type = ARM_CP_NOP },
647 /* Performance monitors are implementation defined in v7,
648 * but with an ARM recommended set of registers, which we
649 * follow (although we don't actually implement any counters)
651 * Performance registers fall into three categories:
652 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
653 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
654 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
655 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
656 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
658 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
659 .access = PL0_RW, .resetvalue = 0,
660 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
661 .writefn = pmcntenset_write,
662 .accessfn = pmreg_access,
663 .raw_writefn = raw_write },
664 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
665 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
666 .accessfn = pmreg_access,
667 .writefn = pmcntenclr_write,
668 .type = ARM_CP_NO_MIGRATE },
669 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
670 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
671 .accessfn = pmreg_access,
672 .writefn = pmovsr_write,
673 .raw_writefn = raw_write },
674 /* Unimplemented so WI. */
675 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
676 .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP },
677 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
678 * We choose to RAZ/WI.
680 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
681 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
682 .accessfn = pmreg_access },
683 #ifndef CONFIG_USER_ONLY
684 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
685 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
686 .readfn = pmccntr_read, .writefn = pmccntr_write,
687 .accessfn = pmreg_access },
688 #endif
689 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
690 .access = PL0_RW,
691 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
692 .accessfn = pmreg_access, .writefn = pmxevtyper_write,
693 .raw_writefn = raw_write },
694 /* Unimplemented, RAZ/WI. */
695 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
696 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
697 .accessfn = pmreg_access },
698 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
699 .access = PL0_R | PL1_RW,
700 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
701 .resetvalue = 0,
702 .writefn = pmuserenr_write, .raw_writefn = raw_write },
703 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
704 .access = PL1_RW,
705 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
706 .resetvalue = 0,
707 .writefn = pmintenset_write, .raw_writefn = raw_write },
708 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
709 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
710 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
711 .resetvalue = 0, .writefn = pmintenclr_write, },
712 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
713 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
714 .access = PL1_RW, .writefn = vbar_write,
715 .fieldoffset = offsetof(CPUARMState, cp15.c12_vbar),
716 .resetvalue = 0 },
717 { .name = "SCR", .cp = 15, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0,
718 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_scr),
719 .resetvalue = 0, },
720 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
721 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
722 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_MIGRATE },
723 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
724 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
725 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c0_cssel),
726 .writefn = csselr_write, .resetvalue = 0 },
727 /* Auxiliary ID register: this actually has an IMPDEF value but for now
728 * just RAZ for all cores:
730 { .name = "AIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 7,
731 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
732 /* MAIR can just read-as-written because we don't implement caches
733 * and so don't need to care about memory attributes.
735 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
736 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
737 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el1),
738 .resetvalue = 0 },
739 /* For non-long-descriptor page tables these are PRRR and NMRR;
740 * regardless they still act as reads-as-written for QEMU.
741 * The override is necessary because of the overly-broad TLB_LOCKDOWN
742 * definition.
744 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, .type = ARM_CP_OVERRIDE,
745 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
746 .fieldoffset = offsetoflow32(CPUARMState, cp15.mair_el1),
747 .resetfn = arm_cp_reset_ignore },
748 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, .type = ARM_CP_OVERRIDE,
749 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
750 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el1),
751 .resetfn = arm_cp_reset_ignore },
752 REGINFO_SENTINEL
755 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
756 uint64_t value)
758 value &= 1;
759 env->teecr = value;
762 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri)
764 if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
765 return CP_ACCESS_TRAP;
767 return CP_ACCESS_OK;
770 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
771 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
772 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
773 .resetvalue = 0,
774 .writefn = teecr_write },
775 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
776 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
777 .accessfn = teehbr_access, .resetvalue = 0 },
778 REGINFO_SENTINEL
781 static const ARMCPRegInfo v6k_cp_reginfo[] = {
782 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
783 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
784 .access = PL0_RW,
785 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el0), .resetvalue = 0 },
786 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
787 .access = PL0_RW,
788 .fieldoffset = offsetoflow32(CPUARMState, cp15.tpidr_el0),
789 .resetfn = arm_cp_reset_ignore },
790 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
791 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
792 .access = PL0_R|PL1_W,
793 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el0), .resetvalue = 0 },
794 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
795 .access = PL0_R|PL1_W,
796 .fieldoffset = offsetoflow32(CPUARMState, cp15.tpidrro_el0),
797 .resetfn = arm_cp_reset_ignore },
798 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_BOTH,
799 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
800 .access = PL1_RW,
801 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el1), .resetvalue = 0 },
802 REGINFO_SENTINEL
805 #ifndef CONFIG_USER_ONLY
807 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri)
809 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
810 if (arm_current_pl(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) {
811 return CP_ACCESS_TRAP;
813 return CP_ACCESS_OK;
816 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx)
818 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
819 if (arm_current_pl(env) == 0 &&
820 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
821 return CP_ACCESS_TRAP;
823 return CP_ACCESS_OK;
826 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx)
828 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
829 * EL0[PV]TEN is zero.
831 if (arm_current_pl(env) == 0 &&
832 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
833 return CP_ACCESS_TRAP;
835 return CP_ACCESS_OK;
838 static CPAccessResult gt_pct_access(CPUARMState *env,
839 const ARMCPRegInfo *ri)
841 return gt_counter_access(env, GTIMER_PHYS);
844 static CPAccessResult gt_vct_access(CPUARMState *env,
845 const ARMCPRegInfo *ri)
847 return gt_counter_access(env, GTIMER_VIRT);
850 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
852 return gt_timer_access(env, GTIMER_PHYS);
855 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
857 return gt_timer_access(env, GTIMER_VIRT);
860 static uint64_t gt_get_countervalue(CPUARMState *env)
862 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
865 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
867 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
869 if (gt->ctl & 1) {
870 /* Timer enabled: calculate and set current ISTATUS, irq, and
871 * reset timer to when ISTATUS next has to change
873 uint64_t count = gt_get_countervalue(&cpu->env);
874 /* Note that this must be unsigned 64 bit arithmetic: */
875 int istatus = count >= gt->cval;
876 uint64_t nexttick;
878 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
879 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
880 (istatus && !(gt->ctl & 2)));
881 if (istatus) {
882 /* Next transition is when count rolls back over to zero */
883 nexttick = UINT64_MAX;
884 } else {
885 /* Next transition is when we hit cval */
886 nexttick = gt->cval;
888 /* Note that the desired next expiry time might be beyond the
889 * signed-64-bit range of a QEMUTimer -- in this case we just
890 * set the timer for as far in the future as possible. When the
891 * timer expires we will reset the timer for any remaining period.
893 if (nexttick > INT64_MAX / GTIMER_SCALE) {
894 nexttick = INT64_MAX / GTIMER_SCALE;
896 timer_mod(cpu->gt_timer[timeridx], nexttick);
897 } else {
898 /* Timer disabled: ISTATUS and timer output always clear */
899 gt->ctl &= ~4;
900 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
901 timer_del(cpu->gt_timer[timeridx]);
905 static void gt_cnt_reset(CPUARMState *env, const ARMCPRegInfo *ri)
907 ARMCPU *cpu = arm_env_get_cpu(env);
908 int timeridx = ri->opc1 & 1;
910 timer_del(cpu->gt_timer[timeridx]);
913 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
915 return gt_get_countervalue(env);
918 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
919 uint64_t value)
921 int timeridx = ri->opc1 & 1;
923 env->cp15.c14_timer[timeridx].cval = value;
924 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
927 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
929 int timeridx = ri->crm & 1;
931 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
932 gt_get_countervalue(env));
935 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
936 uint64_t value)
938 int timeridx = ri->crm & 1;
940 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) +
941 + sextract64(value, 0, 32);
942 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
945 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
946 uint64_t value)
948 ARMCPU *cpu = arm_env_get_cpu(env);
949 int timeridx = ri->crm & 1;
950 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
952 env->cp15.c14_timer[timeridx].ctl = value & 3;
953 if ((oldval ^ value) & 1) {
954 /* Enable toggled */
955 gt_recalc_timer(cpu, timeridx);
956 } else if ((oldval & value) & 2) {
957 /* IMASK toggled: don't need to recalculate,
958 * just set the interrupt line based on ISTATUS
960 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
961 (oldval & 4) && (value & 2));
965 void arm_gt_ptimer_cb(void *opaque)
967 ARMCPU *cpu = opaque;
969 gt_recalc_timer(cpu, GTIMER_PHYS);
972 void arm_gt_vtimer_cb(void *opaque)
974 ARMCPU *cpu = opaque;
976 gt_recalc_timer(cpu, GTIMER_VIRT);
979 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
980 /* Note that CNTFRQ is purely reads-as-written for the benefit
981 * of software; writing it doesn't actually change the timer frequency.
982 * Our reset value matches the fixed frequency we implement the timer at.
984 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
985 .type = ARM_CP_NO_MIGRATE,
986 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
987 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
988 .resetfn = arm_cp_reset_ignore,
990 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
991 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
992 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
993 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
994 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
996 /* overall control: mostly access permissions */
997 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
998 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
999 .access = PL1_RW,
1000 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1001 .resetvalue = 0,
1003 /* per-timer control */
1004 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1005 .type = ARM_CP_IO | ARM_CP_NO_MIGRATE, .access = PL1_RW | PL0_R,
1006 .accessfn = gt_ptimer_access,
1007 .fieldoffset = offsetoflow32(CPUARMState,
1008 cp15.c14_timer[GTIMER_PHYS].ctl),
1009 .resetfn = arm_cp_reset_ignore,
1010 .writefn = gt_ctl_write, .raw_writefn = raw_write,
1012 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1013 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1014 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1015 .accessfn = gt_ptimer_access,
1016 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1017 .resetvalue = 0,
1018 .writefn = gt_ctl_write, .raw_writefn = raw_write,
1020 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1021 .type = ARM_CP_IO | ARM_CP_NO_MIGRATE, .access = PL1_RW | PL0_R,
1022 .accessfn = gt_vtimer_access,
1023 .fieldoffset = offsetoflow32(CPUARMState,
1024 cp15.c14_timer[GTIMER_VIRT].ctl),
1025 .resetfn = arm_cp_reset_ignore,
1026 .writefn = gt_ctl_write, .raw_writefn = raw_write,
1028 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1029 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1030 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1031 .accessfn = gt_vtimer_access,
1032 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1033 .resetvalue = 0,
1034 .writefn = gt_ctl_write, .raw_writefn = raw_write,
1036 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1037 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1038 .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
1039 .accessfn = gt_ptimer_access,
1040 .readfn = gt_tval_read, .writefn = gt_tval_write,
1042 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1043 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
1044 .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
1045 .readfn = gt_tval_read, .writefn = gt_tval_write,
1047 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
1048 .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
1049 .accessfn = gt_vtimer_access,
1050 .readfn = gt_tval_read, .writefn = gt_tval_write,
1052 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1053 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
1054 .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
1055 .readfn = gt_tval_read, .writefn = gt_tval_write,
1057 /* The counter itself */
1058 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
1059 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO,
1060 .accessfn = gt_pct_access,
1061 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
1063 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
1064 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
1065 .access = PL0_R, .type = ARM_CP_NO_MIGRATE | ARM_CP_IO,
1066 .accessfn = gt_pct_access,
1067 .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
1069 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
1070 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO,
1071 .accessfn = gt_vct_access,
1072 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
1074 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
1075 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
1076 .access = PL0_R, .type = ARM_CP_NO_MIGRATE | ARM_CP_IO,
1077 .accessfn = gt_vct_access,
1078 .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
1080 /* Comparison value, indicating when the timer goes off */
1081 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
1082 .access = PL1_RW | PL0_R,
1083 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_MIGRATE,
1084 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1085 .accessfn = gt_ptimer_access, .resetfn = arm_cp_reset_ignore,
1086 .writefn = gt_cval_write, .raw_writefn = raw_write,
1088 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1089 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
1090 .access = PL1_RW | PL0_R,
1091 .type = ARM_CP_IO,
1092 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1093 .resetvalue = 0, .accessfn = gt_vtimer_access,
1094 .writefn = gt_cval_write, .raw_writefn = raw_write,
1096 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
1097 .access = PL1_RW | PL0_R,
1098 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_MIGRATE,
1099 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1100 .accessfn = gt_vtimer_access, .resetfn = arm_cp_reset_ignore,
1101 .writefn = gt_cval_write, .raw_writefn = raw_write,
1103 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1104 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
1105 .access = PL1_RW | PL0_R,
1106 .type = ARM_CP_IO,
1107 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1108 .resetvalue = 0, .accessfn = gt_vtimer_access,
1109 .writefn = gt_cval_write, .raw_writefn = raw_write,
1111 REGINFO_SENTINEL
1114 #else
1115 /* In user-mode none of the generic timer registers are accessible,
1116 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
1117 * so instead just don't register any of them.
1119 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1120 REGINFO_SENTINEL
1123 #endif
1125 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1127 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1128 env->cp15.c7_par = value;
1129 } else if (arm_feature(env, ARM_FEATURE_V7)) {
1130 env->cp15.c7_par = value & 0xfffff6ff;
1131 } else {
1132 env->cp15.c7_par = value & 0xfffff1ff;
1136 #ifndef CONFIG_USER_ONLY
1137 /* get_phys_addr() isn't present for user-mode-only targets */
1139 /* Return true if extended addresses are enabled, ie this is an
1140 * LPAE implementation and we are using the long-descriptor translation
1141 * table format because the TTBCR EAE bit is set.
1143 static inline bool extended_addresses_enabled(CPUARMState *env)
1145 return arm_feature(env, ARM_FEATURE_LPAE)
1146 && (env->cp15.c2_control & (1U << 31));
1149 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri)
1151 if (ri->opc2 & 4) {
1152 /* Other states are only available with TrustZone; in
1153 * a non-TZ implementation these registers don't exist
1154 * at all, which is an Uncategorized trap. This underdecoding
1155 * is safe because the reginfo is NO_MIGRATE.
1157 return CP_ACCESS_TRAP_UNCATEGORIZED;
1159 return CP_ACCESS_OK;
1162 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1164 hwaddr phys_addr;
1165 target_ulong page_size;
1166 int prot;
1167 int ret, is_user = ri->opc2 & 2;
1168 int access_type = ri->opc2 & 1;
1170 ret = get_phys_addr(env, value, access_type, is_user,
1171 &phys_addr, &prot, &page_size);
1172 if (extended_addresses_enabled(env)) {
1173 /* ret is a DFSR/IFSR value for the long descriptor
1174 * translation table format, but with WnR always clear.
1175 * Convert it to a 64-bit PAR.
1177 uint64_t par64 = (1 << 11); /* LPAE bit always set */
1178 if (ret == 0) {
1179 par64 |= phys_addr & ~0xfffULL;
1180 /* We don't set the ATTR or SH fields in the PAR. */
1181 } else {
1182 par64 |= 1; /* F */
1183 par64 |= (ret & 0x3f) << 1; /* FS */
1184 /* Note that S2WLK and FSTAGE are always zero, because we don't
1185 * implement virtualization and therefore there can't be a stage 2
1186 * fault.
1189 env->cp15.c7_par = par64;
1190 env->cp15.c7_par_hi = par64 >> 32;
1191 } else {
1192 /* ret is a DFSR/IFSR value for the short descriptor
1193 * translation table format (with WnR always clear).
1194 * Convert it to a 32-bit PAR.
1196 if (ret == 0) {
1197 /* We do not set any attribute bits in the PAR */
1198 if (page_size == (1 << 24)
1199 && arm_feature(env, ARM_FEATURE_V7)) {
1200 env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1;
1201 } else {
1202 env->cp15.c7_par = phys_addr & 0xfffff000;
1204 } else {
1205 env->cp15.c7_par = ((ret & (1 << 10)) >> 5) |
1206 ((ret & (1 << 12)) >> 6) |
1207 ((ret & 0xf) << 1) | 1;
1209 env->cp15.c7_par_hi = 0;
1212 #endif
1214 static const ARMCPRegInfo vapa_cp_reginfo[] = {
1215 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
1216 .access = PL1_RW, .resetvalue = 0,
1217 .fieldoffset = offsetof(CPUARMState, cp15.c7_par),
1218 .writefn = par_write },
1219 #ifndef CONFIG_USER_ONLY
1220 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
1221 .access = PL1_W, .accessfn = ats_access,
1222 .writefn = ats_write, .type = ARM_CP_NO_MIGRATE },
1223 #endif
1224 REGINFO_SENTINEL
1227 /* Return basic MPU access permission bits. */
1228 static uint32_t simple_mpu_ap_bits(uint32_t val)
1230 uint32_t ret;
1231 uint32_t mask;
1232 int i;
1233 ret = 0;
1234 mask = 3;
1235 for (i = 0; i < 16; i += 2) {
1236 ret |= (val >> i) & mask;
1237 mask <<= 2;
1239 return ret;
1242 /* Pad basic MPU access permission bits to extended format. */
1243 static uint32_t extended_mpu_ap_bits(uint32_t val)
1245 uint32_t ret;
1246 uint32_t mask;
1247 int i;
1248 ret = 0;
1249 mask = 3;
1250 for (i = 0; i < 16; i += 2) {
1251 ret |= (val & mask) << i;
1252 mask <<= 2;
1254 return ret;
1257 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1258 uint64_t value)
1260 env->cp15.c5_data = extended_mpu_ap_bits(value);
1263 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1265 return simple_mpu_ap_bits(env->cp15.c5_data);
1268 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1269 uint64_t value)
1271 env->cp15.c5_insn = extended_mpu_ap_bits(value);
1274 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1276 return simple_mpu_ap_bits(env->cp15.c5_insn);
1279 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
1280 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
1281 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
1282 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0,
1283 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
1284 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
1285 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
1286 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0,
1287 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
1288 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
1289 .access = PL1_RW,
1290 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
1291 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
1292 .access = PL1_RW,
1293 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
1294 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
1295 .access = PL1_RW,
1296 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
1297 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
1298 .access = PL1_RW,
1299 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
1300 /* Protection region base and size registers */
1301 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
1302 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1303 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
1304 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
1305 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1306 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
1307 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
1308 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1309 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
1310 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
1311 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1312 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
1313 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
1314 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1315 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
1316 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
1317 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1318 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
1319 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
1320 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1321 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
1322 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
1323 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1324 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
1325 REGINFO_SENTINEL
1328 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
1329 uint64_t value)
1331 int maskshift = extract32(value, 0, 3);
1333 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & (1 << 31))) {
1334 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
1335 } else {
1336 value &= 7;
1338 /* Note that we always calculate c2_mask and c2_base_mask, but
1339 * they are only used for short-descriptor tables (ie if EAE is 0);
1340 * for long-descriptor tables the TTBCR fields are used differently
1341 * and the c2_mask and c2_base_mask values are meaningless.
1343 env->cp15.c2_control = value;
1344 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> maskshift);
1345 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> maskshift);
1348 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1349 uint64_t value)
1351 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1352 /* With LPAE the TTBCR could result in a change of ASID
1353 * via the TTBCR.A1 bit, so do a TLB flush.
1355 tlb_flush(env, 1);
1357 vmsa_ttbcr_raw_write(env, ri, value);
1360 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1362 env->cp15.c2_base_mask = 0xffffc000u;
1363 env->cp15.c2_control = 0;
1364 env->cp15.c2_mask = 0;
1367 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
1368 uint64_t value)
1370 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
1371 tlb_flush(env, 1);
1372 env->cp15.c2_control = value;
1375 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1376 uint64_t value)
1378 /* 64 bit accesses to the TTBRs can change the ASID and so we
1379 * must flush the TLB.
1381 if (cpreg_field_is_64bit(ri)) {
1382 tlb_flush(env, 1);
1384 raw_write(env, ri, value);
1387 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
1388 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
1389 .access = PL1_RW,
1390 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
1391 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
1392 .access = PL1_RW,
1393 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
1394 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
1395 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
1396 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el1),
1397 .writefn = vmsa_ttbr_write, .resetvalue = 0 },
1398 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
1399 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
1400 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el1),
1401 .writefn = vmsa_ttbr_write, .resetvalue = 0 },
1402 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
1403 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
1404 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
1405 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
1406 .fieldoffset = offsetof(CPUARMState, cp15.c2_control) },
1407 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
1408 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE, .writefn = vmsa_ttbcr_write,
1409 .resetfn = arm_cp_reset_ignore, .raw_writefn = vmsa_ttbcr_raw_write,
1410 .fieldoffset = offsetoflow32(CPUARMState, cp15.c2_control) },
1411 { .name = "DFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
1412 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_data),
1413 .resetvalue = 0, },
1414 REGINFO_SENTINEL
1417 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
1418 uint64_t value)
1420 env->cp15.c15_ticonfig = value & 0xe7;
1421 /* The OS_TYPE bit in this register changes the reported CPUID! */
1422 env->cp15.c0_cpuid = (value & (1 << 5)) ?
1423 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1426 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
1427 uint64_t value)
1429 env->cp15.c15_threadid = value & 0xffff;
1432 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
1433 uint64_t value)
1435 /* Wait-for-interrupt (deprecated) */
1436 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
1439 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
1440 uint64_t value)
1442 /* On OMAP there are registers indicating the max/min index of dcache lines
1443 * containing a dirty line; cache flush operations have to reset these.
1445 env->cp15.c15_i_max = 0x000;
1446 env->cp15.c15_i_min = 0xff0;
1449 static const ARMCPRegInfo omap_cp_reginfo[] = {
1450 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
1451 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
1452 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
1453 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1454 .access = PL1_RW, .type = ARM_CP_NOP },
1455 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1456 .access = PL1_RW,
1457 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
1458 .writefn = omap_ticonfig_write },
1459 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
1460 .access = PL1_RW,
1461 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
1462 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
1463 .access = PL1_RW, .resetvalue = 0xff0,
1464 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
1465 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
1466 .access = PL1_RW,
1467 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
1468 .writefn = omap_threadid_write },
1469 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
1470 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1471 .type = ARM_CP_NO_MIGRATE,
1472 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
1473 /* TODO: Peripheral port remap register:
1474 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
1475 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
1476 * when MMU is off.
1478 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
1479 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
1480 .type = ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE,
1481 .writefn = omap_cachemaint_write },
1482 { .name = "C9", .cp = 15, .crn = 9,
1483 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
1484 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
1485 REGINFO_SENTINEL
1488 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1489 uint64_t value)
1491 value &= 0x3fff;
1492 if (env->cp15.c15_cpar != value) {
1493 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1494 tb_flush(env);
1495 env->cp15.c15_cpar = value;
1499 static const ARMCPRegInfo xscale_cp_reginfo[] = {
1500 { .name = "XSCALE_CPAR",
1501 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1502 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
1503 .writefn = xscale_cpar_write, },
1504 { .name = "XSCALE_AUXCR",
1505 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
1506 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
1507 .resetvalue = 0, },
1508 REGINFO_SENTINEL
1511 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
1512 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
1513 * implementation of this implementation-defined space.
1514 * Ideally this should eventually disappear in favour of actually
1515 * implementing the correct behaviour for all cores.
1517 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
1518 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
1519 .access = PL1_RW,
1520 .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE | ARM_CP_OVERRIDE,
1521 .resetvalue = 0 },
1522 REGINFO_SENTINEL
1525 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
1526 /* Cache status: RAZ because we have no cache so it's always clean */
1527 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
1528 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1529 .resetvalue = 0 },
1530 REGINFO_SENTINEL
1533 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
1534 /* We never have a a block transfer operation in progress */
1535 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
1536 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1537 .resetvalue = 0 },
1538 /* The cache ops themselves: these all NOP for QEMU */
1539 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
1540 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1541 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
1542 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1543 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
1544 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1545 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
1546 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1547 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
1548 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1549 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
1550 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1551 REGINFO_SENTINEL
1554 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
1555 /* The cache test-and-clean instructions always return (1 << 30)
1556 * to indicate that there are no dirty cache lines.
1558 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
1559 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1560 .resetvalue = (1 << 30) },
1561 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
1562 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1563 .resetvalue = (1 << 30) },
1564 REGINFO_SENTINEL
1567 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
1568 /* Ignore ReadBuffer accesses */
1569 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
1570 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
1571 .access = PL1_RW, .resetvalue = 0,
1572 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE },
1573 REGINFO_SENTINEL
1576 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1578 CPUState *cs = CPU(arm_env_get_cpu(env));
1579 uint32_t mpidr = cs->cpu_index;
1580 /* We don't support setting cluster ID ([8..11]) (known as Aff1
1581 * in later ARM ARM versions), or any of the higher affinity level fields,
1582 * so these bits always RAZ.
1584 if (arm_feature(env, ARM_FEATURE_V7MP)) {
1585 mpidr |= (1U << 31);
1586 /* Cores which are uniprocessor (non-coherent)
1587 * but still implement the MP extensions set
1588 * bit 30. (For instance, A9UP.) However we do
1589 * not currently model any of those cores.
1592 return mpidr;
1595 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
1596 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
1597 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
1598 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_MIGRATE },
1599 REGINFO_SENTINEL
1602 static uint64_t par64_read(CPUARMState *env, const ARMCPRegInfo *ri)
1604 return ((uint64_t)env->cp15.c7_par_hi << 32) | env->cp15.c7_par;
1607 static void par64_write(CPUARMState *env, const ARMCPRegInfo *ri,
1608 uint64_t value)
1610 env->cp15.c7_par_hi = value >> 32;
1611 env->cp15.c7_par = value;
1614 static void par64_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1616 env->cp15.c7_par_hi = 0;
1617 env->cp15.c7_par = 0;
1620 static const ARMCPRegInfo lpae_cp_reginfo[] = {
1621 /* NOP AMAIR0/1: the override is because these clash with the rather
1622 * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
1624 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
1625 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
1626 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
1627 .resetvalue = 0 },
1628 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
1629 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
1630 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
1631 .resetvalue = 0 },
1632 /* 64 bit access versions of the (dummy) debug registers */
1633 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
1634 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
1635 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
1636 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
1637 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
1638 .access = PL1_RW, .type = ARM_CP_64BIT,
1639 .readfn = par64_read, .writefn = par64_write, .resetfn = par64_reset },
1640 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
1641 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE,
1642 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el1),
1643 .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore },
1644 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
1645 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE,
1646 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el1),
1647 .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore },
1648 REGINFO_SENTINEL
1651 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1653 return vfp_get_fpcr(env);
1656 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1657 uint64_t value)
1659 vfp_set_fpcr(env, value);
1662 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1664 return vfp_get_fpsr(env);
1667 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1668 uint64_t value)
1670 vfp_set_fpsr(env, value);
1673 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
1674 const ARMCPRegInfo *ri)
1676 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
1677 * SCTLR_EL1.UCI is set.
1679 if (arm_current_pl(env) == 0 && !(env->cp15.c1_sys & SCTLR_UCI)) {
1680 return CP_ACCESS_TRAP;
1682 return CP_ACCESS_OK;
1685 static void tlbi_aa64_va_write(CPUARMState *env, const ARMCPRegInfo *ri,
1686 uint64_t value)
1688 /* Invalidate by VA (AArch64 version) */
1689 uint64_t pageaddr = value << 12;
1690 tlb_flush_page(env, pageaddr);
1693 static void tlbi_aa64_vaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
1694 uint64_t value)
1696 /* Invalidate by VA, all ASIDs (AArch64 version) */
1697 uint64_t pageaddr = value << 12;
1698 tlb_flush_page(env, pageaddr);
1701 static void tlbi_aa64_asid_write(CPUARMState *env, const ARMCPRegInfo *ri,
1702 uint64_t value)
1704 /* Invalidate by ASID (AArch64 version) */
1705 int asid = extract64(value, 48, 16);
1706 tlb_flush(env, asid == 0);
1709 static const ARMCPRegInfo v8_cp_reginfo[] = {
1710 /* Minimal set of EL0-visible registers. This will need to be expanded
1711 * significantly for system emulation of AArch64 CPUs.
1713 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
1714 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
1715 .access = PL0_RW, .type = ARM_CP_NZCV },
1716 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
1717 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
1718 .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
1719 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
1720 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
1721 .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
1722 /* Prohibit use of DC ZVA. OPTME: implement DC ZVA and allow its use.
1723 * For system mode the DZP bit here will need to be computed, not constant.
1725 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
1726 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
1727 .access = PL0_R, .type = ARM_CP_CONST,
1728 .resetvalue = 0x10 },
1729 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
1730 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
1731 .access = PL1_R, .type = ARM_CP_CURRENTEL },
1732 /* Cache ops: all NOPs since we don't emulate caches */
1733 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
1734 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
1735 .access = PL1_W, .type = ARM_CP_NOP },
1736 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
1737 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
1738 .access = PL1_W, .type = ARM_CP_NOP },
1739 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
1740 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
1741 .access = PL0_W, .type = ARM_CP_NOP,
1742 .accessfn = aa64_cacheop_access },
1743 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
1744 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
1745 .access = PL1_W, .type = ARM_CP_NOP },
1746 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
1747 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
1748 .access = PL1_W, .type = ARM_CP_NOP },
1749 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
1750 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
1751 .access = PL0_W, .type = ARM_CP_NOP,
1752 .accessfn = aa64_cacheop_access },
1753 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
1754 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
1755 .access = PL1_W, .type = ARM_CP_NOP },
1756 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
1757 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
1758 .access = PL0_W, .type = ARM_CP_NOP,
1759 .accessfn = aa64_cacheop_access },
1760 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
1761 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
1762 .access = PL0_W, .type = ARM_CP_NOP,
1763 .accessfn = aa64_cacheop_access },
1764 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
1765 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
1766 .access = PL1_W, .type = ARM_CP_NOP },
1767 /* TLBI operations */
1768 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
1769 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1770 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1771 .writefn = tlbiall_write },
1772 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
1773 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1774 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1775 .writefn = tlbi_aa64_va_write },
1776 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
1777 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1778 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1779 .writefn = tlbi_aa64_asid_write },
1780 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
1781 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1782 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1783 .writefn = tlbi_aa64_vaa_write },
1784 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
1785 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 5,
1786 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1787 .writefn = tlbi_aa64_va_write },
1788 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
1789 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 7,
1790 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1791 .writefn = tlbi_aa64_vaa_write },
1792 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
1793 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1794 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1795 .writefn = tlbiall_write },
1796 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
1797 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1798 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1799 .writefn = tlbi_aa64_va_write },
1800 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
1801 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1802 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1803 .writefn = tlbi_aa64_asid_write },
1804 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
1805 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1806 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1807 .writefn = tlbi_aa64_vaa_write },
1808 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
1809 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 5,
1810 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1811 .writefn = tlbi_aa64_va_write },
1812 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
1813 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 7,
1814 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1815 .writefn = tlbi_aa64_vaa_write },
1816 /* Dummy implementation of monitor debug system control register:
1817 * we don't support debug.
1819 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_AA64,
1820 .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
1821 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1822 /* We define a dummy WI OSLAR_EL1, because Linux writes to it. */
1823 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_AA64,
1824 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
1825 .access = PL1_W, .type = ARM_CP_NOP },
1826 REGINFO_SENTINEL
1829 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1830 uint64_t value)
1832 env->cp15.c1_sys = value;
1833 /* ??? Lots of these bits are not implemented. */
1834 /* This may enable/disable the MMU, so do a TLB flush. */
1835 tlb_flush(env, 1);
1838 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
1840 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
1841 * but the AArch32 CTR has its own reginfo struct)
1843 if (arm_current_pl(env) == 0 && !(env->cp15.c1_sys & SCTLR_UCT)) {
1844 return CP_ACCESS_TRAP;
1846 return CP_ACCESS_OK;
1849 static void define_aarch64_debug_regs(ARMCPU *cpu)
1851 /* Define breakpoint and watchpoint registers. These do nothing
1852 * but read as written, for now.
1854 int i;
1856 for (i = 0; i < 16; i++) {
1857 ARMCPRegInfo dbgregs[] = {
1858 { .name = "DBGBVR", .state = ARM_CP_STATE_AA64,
1859 .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
1860 .access = PL1_RW,
1861 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]) },
1862 { .name = "DBGBCR", .state = ARM_CP_STATE_AA64,
1863 .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
1864 .access = PL1_RW,
1865 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]) },
1866 { .name = "DBGWVR", .state = ARM_CP_STATE_AA64,
1867 .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
1868 .access = PL1_RW,
1869 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]) },
1870 { .name = "DBGWCR", .state = ARM_CP_STATE_AA64,
1871 .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
1872 .access = PL1_RW,
1873 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]) },
1874 REGINFO_SENTINEL
1876 define_arm_cp_regs(cpu, dbgregs);
1880 void register_cp_regs_for_features(ARMCPU *cpu)
1882 /* Register all the coprocessor registers based on feature bits */
1883 CPUARMState *env = &cpu->env;
1884 if (arm_feature(env, ARM_FEATURE_M)) {
1885 /* M profile has no coprocessor registers */
1886 return;
1889 define_arm_cp_regs(cpu, cp_reginfo);
1890 if (arm_feature(env, ARM_FEATURE_V6)) {
1891 /* The ID registers all have impdef reset values */
1892 ARMCPRegInfo v6_idregs[] = {
1893 { .name = "ID_PFR0", .cp = 15, .crn = 0, .crm = 1,
1894 .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
1895 .resetvalue = cpu->id_pfr0 },
1896 { .name = "ID_PFR1", .cp = 15, .crn = 0, .crm = 1,
1897 .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
1898 .resetvalue = cpu->id_pfr1 },
1899 { .name = "ID_DFR0", .cp = 15, .crn = 0, .crm = 1,
1900 .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
1901 .resetvalue = cpu->id_dfr0 },
1902 { .name = "ID_AFR0", .cp = 15, .crn = 0, .crm = 1,
1903 .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
1904 .resetvalue = cpu->id_afr0 },
1905 { .name = "ID_MMFR0", .cp = 15, .crn = 0, .crm = 1,
1906 .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
1907 .resetvalue = cpu->id_mmfr0 },
1908 { .name = "ID_MMFR1", .cp = 15, .crn = 0, .crm = 1,
1909 .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
1910 .resetvalue = cpu->id_mmfr1 },
1911 { .name = "ID_MMFR2", .cp = 15, .crn = 0, .crm = 1,
1912 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
1913 .resetvalue = cpu->id_mmfr2 },
1914 { .name = "ID_MMFR3", .cp = 15, .crn = 0, .crm = 1,
1915 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
1916 .resetvalue = cpu->id_mmfr3 },
1917 { .name = "ID_ISAR0", .cp = 15, .crn = 0, .crm = 2,
1918 .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
1919 .resetvalue = cpu->id_isar0 },
1920 { .name = "ID_ISAR1", .cp = 15, .crn = 0, .crm = 2,
1921 .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
1922 .resetvalue = cpu->id_isar1 },
1923 { .name = "ID_ISAR2", .cp = 15, .crn = 0, .crm = 2,
1924 .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
1925 .resetvalue = cpu->id_isar2 },
1926 { .name = "ID_ISAR3", .cp = 15, .crn = 0, .crm = 2,
1927 .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
1928 .resetvalue = cpu->id_isar3 },
1929 { .name = "ID_ISAR4", .cp = 15, .crn = 0, .crm = 2,
1930 .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
1931 .resetvalue = cpu->id_isar4 },
1932 { .name = "ID_ISAR5", .cp = 15, .crn = 0, .crm = 2,
1933 .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
1934 .resetvalue = cpu->id_isar5 },
1935 /* 6..7 are as yet unallocated and must RAZ */
1936 { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
1937 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
1938 .resetvalue = 0 },
1939 { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
1940 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
1941 .resetvalue = 0 },
1942 REGINFO_SENTINEL
1944 define_arm_cp_regs(cpu, v6_idregs);
1945 define_arm_cp_regs(cpu, v6_cp_reginfo);
1946 } else {
1947 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
1949 if (arm_feature(env, ARM_FEATURE_V6K)) {
1950 define_arm_cp_regs(cpu, v6k_cp_reginfo);
1952 if (arm_feature(env, ARM_FEATURE_V7)) {
1953 /* v7 performance monitor control register: same implementor
1954 * field as main ID register, and we implement only the cycle
1955 * count register.
1957 #ifndef CONFIG_USER_ONLY
1958 ARMCPRegInfo pmcr = {
1959 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
1960 .access = PL0_RW, .resetvalue = cpu->midr & 0xff000000,
1961 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
1962 .accessfn = pmreg_access, .writefn = pmcr_write,
1963 .raw_writefn = raw_write,
1965 define_one_arm_cp_reg(cpu, &pmcr);
1966 #endif
1967 ARMCPRegInfo clidr = {
1968 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
1969 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
1970 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
1972 define_one_arm_cp_reg(cpu, &clidr);
1973 define_arm_cp_regs(cpu, v7_cp_reginfo);
1974 } else {
1975 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
1977 if (arm_feature(env, ARM_FEATURE_V8)) {
1978 /* AArch64 ID registers, which all have impdef reset values */
1979 ARMCPRegInfo v8_idregs[] = {
1980 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
1981 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
1982 .access = PL1_R, .type = ARM_CP_CONST,
1983 .resetvalue = cpu->id_aa64pfr0 },
1984 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
1985 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
1986 .access = PL1_R, .type = ARM_CP_CONST,
1987 .resetvalue = cpu->id_aa64pfr1},
1988 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
1989 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
1990 .access = PL1_R, .type = ARM_CP_CONST,
1991 .resetvalue = cpu->id_aa64dfr0 },
1992 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
1993 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
1994 .access = PL1_R, .type = ARM_CP_CONST,
1995 .resetvalue = cpu->id_aa64dfr1 },
1996 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
1997 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
1998 .access = PL1_R, .type = ARM_CP_CONST,
1999 .resetvalue = cpu->id_aa64afr0 },
2000 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
2001 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
2002 .access = PL1_R, .type = ARM_CP_CONST,
2003 .resetvalue = cpu->id_aa64afr1 },
2004 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
2005 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
2006 .access = PL1_R, .type = ARM_CP_CONST,
2007 .resetvalue = cpu->id_aa64isar0 },
2008 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
2009 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
2010 .access = PL1_R, .type = ARM_CP_CONST,
2011 .resetvalue = cpu->id_aa64isar1 },
2012 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
2013 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
2014 .access = PL1_R, .type = ARM_CP_CONST,
2015 .resetvalue = cpu->id_aa64mmfr0 },
2016 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
2017 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
2018 .access = PL1_R, .type = ARM_CP_CONST,
2019 .resetvalue = cpu->id_aa64mmfr1 },
2020 REGINFO_SENTINEL
2022 define_arm_cp_regs(cpu, v8_idregs);
2023 define_arm_cp_regs(cpu, v8_cp_reginfo);
2024 define_aarch64_debug_regs(cpu);
2026 if (arm_feature(env, ARM_FEATURE_MPU)) {
2027 /* These are the MPU registers prior to PMSAv6. Any new
2028 * PMSA core later than the ARM946 will require that we
2029 * implement the PMSAv6 or PMSAv7 registers, which are
2030 * completely different.
2032 assert(!arm_feature(env, ARM_FEATURE_V6));
2033 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
2034 } else {
2035 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
2037 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
2038 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
2040 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
2041 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
2043 if (arm_feature(env, ARM_FEATURE_VAPA)) {
2044 define_arm_cp_regs(cpu, vapa_cp_reginfo);
2046 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
2047 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
2049 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
2050 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
2052 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
2053 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
2055 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
2056 define_arm_cp_regs(cpu, omap_cp_reginfo);
2058 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
2059 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
2061 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
2062 define_arm_cp_regs(cpu, xscale_cp_reginfo);
2064 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
2065 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
2067 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2068 define_arm_cp_regs(cpu, lpae_cp_reginfo);
2070 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
2071 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
2072 * be read-only (ie write causes UNDEF exception).
2075 ARMCPRegInfo id_cp_reginfo[] = {
2076 /* Note that the MIDR isn't a simple constant register because
2077 * of the TI925 behaviour where writes to another register can
2078 * cause the MIDR value to change.
2080 * Unimplemented registers in the c15 0 0 0 space default to
2081 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
2082 * and friends override accordingly.
2084 { .name = "MIDR",
2085 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
2086 .access = PL1_R, .resetvalue = cpu->midr,
2087 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
2088 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
2089 .type = ARM_CP_OVERRIDE },
2090 { .name = "MIDR_EL1", .state = ARM_CP_STATE_AA64,
2091 .opc0 = 3, .opc1 = 0, .opc2 = 0, .crn = 0, .crm = 0,
2092 .access = PL1_R, .resetvalue = cpu->midr, .type = ARM_CP_CONST },
2093 { .name = "CTR",
2094 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
2095 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
2096 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
2097 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
2098 .access = PL0_R, .accessfn = ctr_el0_access,
2099 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
2100 { .name = "TCMTR",
2101 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
2102 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2103 { .name = "TLBTR",
2104 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
2105 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2106 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
2107 { .name = "DUMMY",
2108 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
2109 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2110 { .name = "DUMMY",
2111 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
2112 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2113 { .name = "DUMMY",
2114 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
2115 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2116 { .name = "DUMMY",
2117 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
2118 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2119 { .name = "DUMMY",
2120 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
2121 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2122 REGINFO_SENTINEL
2124 ARMCPRegInfo crn0_wi_reginfo = {
2125 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
2126 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
2127 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
2129 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
2130 arm_feature(env, ARM_FEATURE_STRONGARM)) {
2131 ARMCPRegInfo *r;
2132 /* Register the blanket "writes ignored" value first to cover the
2133 * whole space. Then update the specific ID registers to allow write
2134 * access, so that they ignore writes rather than causing them to
2135 * UNDEF.
2137 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
2138 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
2139 r->access = PL1_RW;
2142 define_arm_cp_regs(cpu, id_cp_reginfo);
2145 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
2146 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
2149 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
2150 ARMCPRegInfo auxcr = {
2151 .name = "AUXCR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1,
2152 .access = PL1_RW, .type = ARM_CP_CONST,
2153 .resetvalue = cpu->reset_auxcr
2155 define_one_arm_cp_reg(cpu, &auxcr);
2158 if (arm_feature(env, ARM_FEATURE_CBAR)) {
2159 ARMCPRegInfo cbar = {
2160 .name = "CBAR", .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
2161 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
2162 .fieldoffset = offsetof(CPUARMState, cp15.c15_config_base_address)
2164 define_one_arm_cp_reg(cpu, &cbar);
2167 /* Generic registers whose values depend on the implementation */
2169 ARMCPRegInfo sctlr = {
2170 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
2171 .opc0 = 3, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
2172 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_sys),
2173 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
2174 .raw_writefn = raw_write,
2176 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
2177 /* Normally we would always end the TB on an SCTLR write, but Linux
2178 * arch/arm/mach-pxa/sleep.S expects two instructions following
2179 * an MMU enable to execute from cache. Imitate this behaviour.
2181 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
2183 define_one_arm_cp_reg(cpu, &sctlr);
2187 ARMCPU *cpu_arm_init(const char *cpu_model)
2189 ARMCPU *cpu;
2190 ObjectClass *oc;
2192 oc = cpu_class_by_name(TYPE_ARM_CPU, cpu_model);
2193 if (!oc) {
2194 return NULL;
2196 cpu = ARM_CPU(object_new(object_class_get_name(oc)));
2198 /* TODO this should be set centrally, once possible */
2199 object_property_set_bool(OBJECT(cpu), true, "realized", NULL);
2201 return cpu;
2204 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
2206 CPUState *cs = CPU(cpu);
2207 CPUARMState *env = &cpu->env;
2209 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2210 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
2211 aarch64_fpu_gdb_set_reg,
2212 34, "aarch64-fpu.xml", 0);
2213 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
2214 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
2215 51, "arm-neon.xml", 0);
2216 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
2217 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
2218 35, "arm-vfp3.xml", 0);
2219 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
2220 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
2221 19, "arm-vfp.xml", 0);
2225 /* Sort alphabetically by type name, except for "any". */
2226 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
2228 ObjectClass *class_a = (ObjectClass *)a;
2229 ObjectClass *class_b = (ObjectClass *)b;
2230 const char *name_a, *name_b;
2232 name_a = object_class_get_name(class_a);
2233 name_b = object_class_get_name(class_b);
2234 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
2235 return 1;
2236 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
2237 return -1;
2238 } else {
2239 return strcmp(name_a, name_b);
2243 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
2245 ObjectClass *oc = data;
2246 CPUListState *s = user_data;
2247 const char *typename;
2248 char *name;
2250 typename = object_class_get_name(oc);
2251 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
2252 (*s->cpu_fprintf)(s->file, " %s\n",
2253 name);
2254 g_free(name);
2257 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
2259 CPUListState s = {
2260 .file = f,
2261 .cpu_fprintf = cpu_fprintf,
2263 GSList *list;
2265 list = object_class_get_list(TYPE_ARM_CPU, false);
2266 list = g_slist_sort(list, arm_cpu_list_compare);
2267 (*cpu_fprintf)(f, "Available CPUs:\n");
2268 g_slist_foreach(list, arm_cpu_list_entry, &s);
2269 g_slist_free(list);
2270 #ifdef CONFIG_KVM
2271 /* The 'host' CPU type is dynamically registered only if KVM is
2272 * enabled, so we have to special-case it here:
2274 (*cpu_fprintf)(f, " host (only available in KVM mode)\n");
2275 #endif
2278 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
2280 ObjectClass *oc = data;
2281 CpuDefinitionInfoList **cpu_list = user_data;
2282 CpuDefinitionInfoList *entry;
2283 CpuDefinitionInfo *info;
2284 const char *typename;
2286 typename = object_class_get_name(oc);
2287 info = g_malloc0(sizeof(*info));
2288 info->name = g_strndup(typename,
2289 strlen(typename) - strlen("-" TYPE_ARM_CPU));
2291 entry = g_malloc0(sizeof(*entry));
2292 entry->value = info;
2293 entry->next = *cpu_list;
2294 *cpu_list = entry;
2297 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
2299 CpuDefinitionInfoList *cpu_list = NULL;
2300 GSList *list;
2302 list = object_class_get_list(TYPE_ARM_CPU, false);
2303 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
2304 g_slist_free(list);
2306 return cpu_list;
2309 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
2310 void *opaque, int state,
2311 int crm, int opc1, int opc2)
2313 /* Private utility function for define_one_arm_cp_reg_with_opaque():
2314 * add a single reginfo struct to the hash table.
2316 uint32_t *key = g_new(uint32_t, 1);
2317 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
2318 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
2319 if (r->state == ARM_CP_STATE_BOTH && state == ARM_CP_STATE_AA32) {
2320 /* The AArch32 view of a shared register sees the lower 32 bits
2321 * of a 64 bit backing field. It is not migratable as the AArch64
2322 * view handles that. AArch64 also handles reset.
2323 * We assume it is a cp15 register.
2325 r2->cp = 15;
2326 r2->type |= ARM_CP_NO_MIGRATE;
2327 r2->resetfn = arm_cp_reset_ignore;
2328 #ifdef HOST_WORDS_BIGENDIAN
2329 if (r2->fieldoffset) {
2330 r2->fieldoffset += sizeof(uint32_t);
2332 #endif
2334 if (state == ARM_CP_STATE_AA64) {
2335 /* To allow abbreviation of ARMCPRegInfo
2336 * definitions, we treat cp == 0 as equivalent to
2337 * the value for "standard guest-visible sysreg".
2339 if (r->cp == 0) {
2340 r2->cp = CP_REG_ARM64_SYSREG_CP;
2342 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
2343 r2->opc0, opc1, opc2);
2344 } else {
2345 *key = ENCODE_CP_REG(r2->cp, is64, r2->crn, crm, opc1, opc2);
2347 if (opaque) {
2348 r2->opaque = opaque;
2350 /* reginfo passed to helpers is correct for the actual access,
2351 * and is never ARM_CP_STATE_BOTH:
2353 r2->state = state;
2354 /* Make sure reginfo passed to helpers for wildcarded regs
2355 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
2357 r2->crm = crm;
2358 r2->opc1 = opc1;
2359 r2->opc2 = opc2;
2360 /* By convention, for wildcarded registers only the first
2361 * entry is used for migration; the others are marked as
2362 * NO_MIGRATE so we don't try to transfer the register
2363 * multiple times. Special registers (ie NOP/WFI) are
2364 * never migratable.
2366 if ((r->type & ARM_CP_SPECIAL) ||
2367 ((r->crm == CP_ANY) && crm != 0) ||
2368 ((r->opc1 == CP_ANY) && opc1 != 0) ||
2369 ((r->opc2 == CP_ANY) && opc2 != 0)) {
2370 r2->type |= ARM_CP_NO_MIGRATE;
2373 /* Overriding of an existing definition must be explicitly
2374 * requested.
2376 if (!(r->type & ARM_CP_OVERRIDE)) {
2377 ARMCPRegInfo *oldreg;
2378 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
2379 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
2380 fprintf(stderr, "Register redefined: cp=%d %d bit "
2381 "crn=%d crm=%d opc1=%d opc2=%d, "
2382 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
2383 r2->crn, r2->crm, r2->opc1, r2->opc2,
2384 oldreg->name, r2->name);
2385 g_assert_not_reached();
2388 g_hash_table_insert(cpu->cp_regs, key, r2);
2392 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2393 const ARMCPRegInfo *r, void *opaque)
2395 /* Define implementations of coprocessor registers.
2396 * We store these in a hashtable because typically
2397 * there are less than 150 registers in a space which
2398 * is 16*16*16*8*8 = 262144 in size.
2399 * Wildcarding is supported for the crm, opc1 and opc2 fields.
2400 * If a register is defined twice then the second definition is
2401 * used, so this can be used to define some generic registers and
2402 * then override them with implementation specific variations.
2403 * At least one of the original and the second definition should
2404 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
2405 * against accidental use.
2407 * The state field defines whether the register is to be
2408 * visible in the AArch32 or AArch64 execution state. If the
2409 * state is set to ARM_CP_STATE_BOTH then we synthesise a
2410 * reginfo structure for the AArch32 view, which sees the lower
2411 * 32 bits of the 64 bit register.
2413 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
2414 * be wildcarded. AArch64 registers are always considered to be 64
2415 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
2416 * the register, if any.
2418 int crm, opc1, opc2, state;
2419 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
2420 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
2421 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
2422 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
2423 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
2424 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
2425 /* 64 bit registers have only CRm and Opc1 fields */
2426 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
2427 /* op0 only exists in the AArch64 encodings */
2428 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
2429 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
2430 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
2431 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
2432 * encodes a minimum access level for the register. We roll this
2433 * runtime check into our general permission check code, so check
2434 * here that the reginfo's specified permissions are strict enough
2435 * to encompass the generic architectural permission check.
2437 if (r->state != ARM_CP_STATE_AA32) {
2438 int mask = 0;
2439 switch (r->opc1) {
2440 case 0: case 1: case 2:
2441 /* min_EL EL1 */
2442 mask = PL1_RW;
2443 break;
2444 case 3:
2445 /* min_EL EL0 */
2446 mask = PL0_RW;
2447 break;
2448 case 4:
2449 /* min_EL EL2 */
2450 mask = PL2_RW;
2451 break;
2452 case 5:
2453 /* unallocated encoding, so not possible */
2454 assert(false);
2455 break;
2456 case 6:
2457 /* min_EL EL3 */
2458 mask = PL3_RW;
2459 break;
2460 case 7:
2461 /* min_EL EL1, secure mode only (we don't check the latter) */
2462 mask = PL1_RW;
2463 break;
2464 default:
2465 /* broken reginfo with out-of-range opc1 */
2466 assert(false);
2467 break;
2469 /* assert our permissions are not too lax (stricter is fine) */
2470 assert((r->access & ~mask) == 0);
2473 /* Check that the register definition has enough info to handle
2474 * reads and writes if they are permitted.
2476 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
2477 if (r->access & PL3_R) {
2478 assert(r->fieldoffset || r->readfn);
2480 if (r->access & PL3_W) {
2481 assert(r->fieldoffset || r->writefn);
2484 /* Bad type field probably means missing sentinel at end of reg list */
2485 assert(cptype_valid(r->type));
2486 for (crm = crmmin; crm <= crmmax; crm++) {
2487 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
2488 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
2489 for (state = ARM_CP_STATE_AA32;
2490 state <= ARM_CP_STATE_AA64; state++) {
2491 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
2492 continue;
2494 add_cpreg_to_hashtable(cpu, r, opaque, state,
2495 crm, opc1, opc2);
2502 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2503 const ARMCPRegInfo *regs, void *opaque)
2505 /* Define a whole list of registers */
2506 const ARMCPRegInfo *r;
2507 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
2508 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
2512 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
2514 return g_hash_table_lookup(cpregs, &encoded_cp);
2517 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2518 uint64_t value)
2520 /* Helper coprocessor write function for write-ignore registers */
2523 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
2525 /* Helper coprocessor write function for read-as-zero registers */
2526 return 0;
2529 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
2531 /* Helper coprocessor reset function for do-nothing-on-reset registers */
2534 static int bad_mode_switch(CPUARMState *env, int mode)
2536 /* Return true if it is not valid for us to switch to
2537 * this CPU mode (ie all the UNPREDICTABLE cases in
2538 * the ARM ARM CPSRWriteByInstr pseudocode).
2540 switch (mode) {
2541 case ARM_CPU_MODE_USR:
2542 case ARM_CPU_MODE_SYS:
2543 case ARM_CPU_MODE_SVC:
2544 case ARM_CPU_MODE_ABT:
2545 case ARM_CPU_MODE_UND:
2546 case ARM_CPU_MODE_IRQ:
2547 case ARM_CPU_MODE_FIQ:
2548 return 0;
2549 default:
2550 return 1;
2554 uint32_t cpsr_read(CPUARMState *env)
2556 int ZF;
2557 ZF = (env->ZF == 0);
2558 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
2559 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
2560 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
2561 | ((env->condexec_bits & 0xfc) << 8)
2562 | (env->GE << 16) | (env->daif & CPSR_AIF);
2565 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
2567 if (mask & CPSR_NZCV) {
2568 env->ZF = (~val) & CPSR_Z;
2569 env->NF = val;
2570 env->CF = (val >> 29) & 1;
2571 env->VF = (val << 3) & 0x80000000;
2573 if (mask & CPSR_Q)
2574 env->QF = ((val & CPSR_Q) != 0);
2575 if (mask & CPSR_T)
2576 env->thumb = ((val & CPSR_T) != 0);
2577 if (mask & CPSR_IT_0_1) {
2578 env->condexec_bits &= ~3;
2579 env->condexec_bits |= (val >> 25) & 3;
2581 if (mask & CPSR_IT_2_7) {
2582 env->condexec_bits &= 3;
2583 env->condexec_bits |= (val >> 8) & 0xfc;
2585 if (mask & CPSR_GE) {
2586 env->GE = (val >> 16) & 0xf;
2589 env->daif &= ~(CPSR_AIF & mask);
2590 env->daif |= val & CPSR_AIF & mask;
2592 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
2593 if (bad_mode_switch(env, val & CPSR_M)) {
2594 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
2595 * We choose to ignore the attempt and leave the CPSR M field
2596 * untouched.
2598 mask &= ~CPSR_M;
2599 } else {
2600 switch_mode(env, val & CPSR_M);
2603 mask &= ~CACHED_CPSR_BITS;
2604 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
2607 /* Sign/zero extend */
2608 uint32_t HELPER(sxtb16)(uint32_t x)
2610 uint32_t res;
2611 res = (uint16_t)(int8_t)x;
2612 res |= (uint32_t)(int8_t)(x >> 16) << 16;
2613 return res;
2616 uint32_t HELPER(uxtb16)(uint32_t x)
2618 uint32_t res;
2619 res = (uint16_t)(uint8_t)x;
2620 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
2621 return res;
2624 uint32_t HELPER(clz)(uint32_t x)
2626 return clz32(x);
2629 int32_t HELPER(sdiv)(int32_t num, int32_t den)
2631 if (den == 0)
2632 return 0;
2633 if (num == INT_MIN && den == -1)
2634 return INT_MIN;
2635 return num / den;
2638 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
2640 if (den == 0)
2641 return 0;
2642 return num / den;
2645 uint32_t HELPER(rbit)(uint32_t x)
2647 x = ((x & 0xff000000) >> 24)
2648 | ((x & 0x00ff0000) >> 8)
2649 | ((x & 0x0000ff00) << 8)
2650 | ((x & 0x000000ff) << 24);
2651 x = ((x & 0xf0f0f0f0) >> 4)
2652 | ((x & 0x0f0f0f0f) << 4);
2653 x = ((x & 0x88888888) >> 3)
2654 | ((x & 0x44444444) >> 1)
2655 | ((x & 0x22222222) << 1)
2656 | ((x & 0x11111111) << 3);
2657 return x;
2660 #if defined(CONFIG_USER_ONLY)
2662 void arm_cpu_do_interrupt(CPUState *cs)
2664 ARMCPU *cpu = ARM_CPU(cs);
2665 CPUARMState *env = &cpu->env;
2667 env->exception_index = -1;
2670 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
2671 int mmu_idx)
2673 if (rw == 2) {
2674 env->exception_index = EXCP_PREFETCH_ABORT;
2675 env->cp15.c6_insn = address;
2676 } else {
2677 env->exception_index = EXCP_DATA_ABORT;
2678 env->cp15.c6_data = address;
2680 return 1;
2683 /* These should probably raise undefined insn exceptions. */
2684 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
2686 cpu_abort(env, "v7m_mrs %d\n", reg);
2689 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
2691 cpu_abort(env, "v7m_mrs %d\n", reg);
2692 return 0;
2695 void switch_mode(CPUARMState *env, int mode)
2697 if (mode != ARM_CPU_MODE_USR)
2698 cpu_abort(env, "Tried to switch out of user mode\n");
2701 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
2703 cpu_abort(env, "banked r13 write\n");
2706 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
2708 cpu_abort(env, "banked r13 read\n");
2709 return 0;
2712 #else
2714 /* Map CPU modes onto saved register banks. */
2715 int bank_number(int mode)
2717 switch (mode) {
2718 case ARM_CPU_MODE_USR:
2719 case ARM_CPU_MODE_SYS:
2720 return 0;
2721 case ARM_CPU_MODE_SVC:
2722 return 1;
2723 case ARM_CPU_MODE_ABT:
2724 return 2;
2725 case ARM_CPU_MODE_UND:
2726 return 3;
2727 case ARM_CPU_MODE_IRQ:
2728 return 4;
2729 case ARM_CPU_MODE_FIQ:
2730 return 5;
2732 hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode);
2735 void switch_mode(CPUARMState *env, int mode)
2737 int old_mode;
2738 int i;
2740 old_mode = env->uncached_cpsr & CPSR_M;
2741 if (mode == old_mode)
2742 return;
2744 if (old_mode == ARM_CPU_MODE_FIQ) {
2745 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
2746 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
2747 } else if (mode == ARM_CPU_MODE_FIQ) {
2748 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
2749 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
2752 i = bank_number(old_mode);
2753 env->banked_r13[i] = env->regs[13];
2754 env->banked_r14[i] = env->regs[14];
2755 env->banked_spsr[i] = env->spsr;
2757 i = bank_number(mode);
2758 env->regs[13] = env->banked_r13[i];
2759 env->regs[14] = env->banked_r14[i];
2760 env->spsr = env->banked_spsr[i];
2763 static void v7m_push(CPUARMState *env, uint32_t val)
2765 CPUState *cs = ENV_GET_CPU(env);
2766 env->regs[13] -= 4;
2767 stl_phys(cs->as, env->regs[13], val);
2770 static uint32_t v7m_pop(CPUARMState *env)
2772 CPUState *cs = ENV_GET_CPU(env);
2773 uint32_t val;
2774 val = ldl_phys(cs->as, env->regs[13]);
2775 env->regs[13] += 4;
2776 return val;
2779 /* Switch to V7M main or process stack pointer. */
2780 static void switch_v7m_sp(CPUARMState *env, int process)
2782 uint32_t tmp;
2783 if (env->v7m.current_sp != process) {
2784 tmp = env->v7m.other_sp;
2785 env->v7m.other_sp = env->regs[13];
2786 env->regs[13] = tmp;
2787 env->v7m.current_sp = process;
2791 static void do_v7m_exception_exit(CPUARMState *env)
2793 uint32_t type;
2794 uint32_t xpsr;
2796 type = env->regs[15];
2797 if (env->v7m.exception != 0)
2798 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
2800 /* Switch to the target stack. */
2801 switch_v7m_sp(env, (type & 4) != 0);
2802 /* Pop registers. */
2803 env->regs[0] = v7m_pop(env);
2804 env->regs[1] = v7m_pop(env);
2805 env->regs[2] = v7m_pop(env);
2806 env->regs[3] = v7m_pop(env);
2807 env->regs[12] = v7m_pop(env);
2808 env->regs[14] = v7m_pop(env);
2809 env->regs[15] = v7m_pop(env);
2810 xpsr = v7m_pop(env);
2811 xpsr_write(env, xpsr, 0xfffffdff);
2812 /* Undo stack alignment. */
2813 if (xpsr & 0x200)
2814 env->regs[13] |= 4;
2815 /* ??? The exception return type specifies Thread/Handler mode. However
2816 this is also implied by the xPSR value. Not sure what to do
2817 if there is a mismatch. */
2818 /* ??? Likewise for mismatches between the CONTROL register and the stack
2819 pointer. */
2822 /* Exception names for debug logging; note that not all of these
2823 * precisely correspond to architectural exceptions.
2825 static const char * const excnames[] = {
2826 [EXCP_UDEF] = "Undefined Instruction",
2827 [EXCP_SWI] = "SVC",
2828 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
2829 [EXCP_DATA_ABORT] = "Data Abort",
2830 [EXCP_IRQ] = "IRQ",
2831 [EXCP_FIQ] = "FIQ",
2832 [EXCP_BKPT] = "Breakpoint",
2833 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
2834 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
2835 [EXCP_STREX] = "QEMU intercept of STREX",
2838 static inline void arm_log_exception(int idx)
2840 if (qemu_loglevel_mask(CPU_LOG_INT)) {
2841 const char *exc = NULL;
2843 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
2844 exc = excnames[idx];
2846 if (!exc) {
2847 exc = "unknown";
2849 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
2853 void arm_v7m_cpu_do_interrupt(CPUState *cs)
2855 ARMCPU *cpu = ARM_CPU(cs);
2856 CPUARMState *env = &cpu->env;
2857 uint32_t xpsr = xpsr_read(env);
2858 uint32_t lr;
2859 uint32_t addr;
2861 arm_log_exception(env->exception_index);
2863 lr = 0xfffffff1;
2864 if (env->v7m.current_sp)
2865 lr |= 4;
2866 if (env->v7m.exception == 0)
2867 lr |= 8;
2869 /* For exceptions we just mark as pending on the NVIC, and let that
2870 handle it. */
2871 /* TODO: Need to escalate if the current priority is higher than the
2872 one we're raising. */
2873 switch (env->exception_index) {
2874 case EXCP_UDEF:
2875 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
2876 return;
2877 case EXCP_SWI:
2878 /* The PC already points to the next instruction. */
2879 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
2880 return;
2881 case EXCP_PREFETCH_ABORT:
2882 case EXCP_DATA_ABORT:
2883 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
2884 return;
2885 case EXCP_BKPT:
2886 if (semihosting_enabled) {
2887 int nr;
2888 nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
2889 if (nr == 0xab) {
2890 env->regs[15] += 2;
2891 env->regs[0] = do_arm_semihosting(env);
2892 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
2893 return;
2896 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
2897 return;
2898 case EXCP_IRQ:
2899 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
2900 break;
2901 case EXCP_EXCEPTION_EXIT:
2902 do_v7m_exception_exit(env);
2903 return;
2904 default:
2905 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
2906 return; /* Never happens. Keep compiler happy. */
2909 /* Align stack pointer. */
2910 /* ??? Should only do this if Configuration Control Register
2911 STACKALIGN bit is set. */
2912 if (env->regs[13] & 4) {
2913 env->regs[13] -= 4;
2914 xpsr |= 0x200;
2916 /* Switch to the handler mode. */
2917 v7m_push(env, xpsr);
2918 v7m_push(env, env->regs[15]);
2919 v7m_push(env, env->regs[14]);
2920 v7m_push(env, env->regs[12]);
2921 v7m_push(env, env->regs[3]);
2922 v7m_push(env, env->regs[2]);
2923 v7m_push(env, env->regs[1]);
2924 v7m_push(env, env->regs[0]);
2925 switch_v7m_sp(env, 0);
2926 /* Clear IT bits */
2927 env->condexec_bits = 0;
2928 env->regs[14] = lr;
2929 addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4);
2930 env->regs[15] = addr & 0xfffffffe;
2931 env->thumb = addr & 1;
2934 /* Handle a CPU exception. */
2935 void arm_cpu_do_interrupt(CPUState *cs)
2937 ARMCPU *cpu = ARM_CPU(cs);
2938 CPUARMState *env = &cpu->env;
2939 uint32_t addr;
2940 uint32_t mask;
2941 int new_mode;
2942 uint32_t offset;
2944 assert(!IS_M(env));
2946 arm_log_exception(env->exception_index);
2948 /* TODO: Vectored interrupt controller. */
2949 switch (env->exception_index) {
2950 case EXCP_UDEF:
2951 new_mode = ARM_CPU_MODE_UND;
2952 addr = 0x04;
2953 mask = CPSR_I;
2954 if (env->thumb)
2955 offset = 2;
2956 else
2957 offset = 4;
2958 break;
2959 case EXCP_SWI:
2960 if (semihosting_enabled) {
2961 /* Check for semihosting interrupt. */
2962 if (env->thumb) {
2963 mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
2964 & 0xff;
2965 } else {
2966 mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
2967 & 0xffffff;
2969 /* Only intercept calls from privileged modes, to provide some
2970 semblance of security. */
2971 if (((mask == 0x123456 && !env->thumb)
2972 || (mask == 0xab && env->thumb))
2973 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
2974 env->regs[0] = do_arm_semihosting(env);
2975 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
2976 return;
2979 new_mode = ARM_CPU_MODE_SVC;
2980 addr = 0x08;
2981 mask = CPSR_I;
2982 /* The PC already points to the next instruction. */
2983 offset = 0;
2984 break;
2985 case EXCP_BKPT:
2986 /* See if this is a semihosting syscall. */
2987 if (env->thumb && semihosting_enabled) {
2988 mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
2989 if (mask == 0xab
2990 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
2991 env->regs[15] += 2;
2992 env->regs[0] = do_arm_semihosting(env);
2993 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
2994 return;
2997 env->cp15.c5_insn = 2;
2998 /* Fall through to prefetch abort. */
2999 case EXCP_PREFETCH_ABORT:
3000 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
3001 env->cp15.c5_insn, env->cp15.c6_insn);
3002 new_mode = ARM_CPU_MODE_ABT;
3003 addr = 0x0c;
3004 mask = CPSR_A | CPSR_I;
3005 offset = 4;
3006 break;
3007 case EXCP_DATA_ABORT:
3008 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
3009 env->cp15.c5_data, env->cp15.c6_data);
3010 new_mode = ARM_CPU_MODE_ABT;
3011 addr = 0x10;
3012 mask = CPSR_A | CPSR_I;
3013 offset = 8;
3014 break;
3015 case EXCP_IRQ:
3016 new_mode = ARM_CPU_MODE_IRQ;
3017 addr = 0x18;
3018 /* Disable IRQ and imprecise data aborts. */
3019 mask = CPSR_A | CPSR_I;
3020 offset = 4;
3021 break;
3022 case EXCP_FIQ:
3023 new_mode = ARM_CPU_MODE_FIQ;
3024 addr = 0x1c;
3025 /* Disable FIQ, IRQ and imprecise data aborts. */
3026 mask = CPSR_A | CPSR_I | CPSR_F;
3027 offset = 4;
3028 break;
3029 default:
3030 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
3031 return; /* Never happens. Keep compiler happy. */
3033 /* High vectors. */
3034 if (env->cp15.c1_sys & SCTLR_V) {
3035 /* when enabled, base address cannot be remapped. */
3036 addr += 0xffff0000;
3037 } else {
3038 /* ARM v7 architectures provide a vector base address register to remap
3039 * the interrupt vector table.
3040 * This register is only followed in non-monitor mode, and has a secure
3041 * and un-secure copy. Since the cpu is always in a un-secure operation
3042 * and is never in monitor mode this feature is always active.
3043 * Note: only bits 31:5 are valid.
3045 addr += env->cp15.c12_vbar;
3047 switch_mode (env, new_mode);
3048 env->spsr = cpsr_read(env);
3049 /* Clear IT bits. */
3050 env->condexec_bits = 0;
3051 /* Switch to the new mode, and to the correct instruction set. */
3052 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
3053 env->daif |= mask;
3054 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
3055 * and we should just guard the thumb mode on V4 */
3056 if (arm_feature(env, ARM_FEATURE_V4T)) {
3057 env->thumb = (env->cp15.c1_sys & SCTLR_TE) != 0;
3059 env->regs[14] = env->regs[15] + offset;
3060 env->regs[15] = addr;
3061 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
3064 /* Check section/page access permissions.
3065 Returns the page protection flags, or zero if the access is not
3066 permitted. */
3067 static inline int check_ap(CPUARMState *env, int ap, int domain_prot,
3068 int access_type, int is_user)
3070 int prot_ro;
3072 if (domain_prot == 3) {
3073 return PAGE_READ | PAGE_WRITE;
3076 if (access_type == 1)
3077 prot_ro = 0;
3078 else
3079 prot_ro = PAGE_READ;
3081 switch (ap) {
3082 case 0:
3083 if (arm_feature(env, ARM_FEATURE_V7)) {
3084 return 0;
3086 if (access_type == 1)
3087 return 0;
3088 switch (env->cp15.c1_sys & (SCTLR_S | SCTLR_R)) {
3089 case SCTLR_S:
3090 return is_user ? 0 : PAGE_READ;
3091 case SCTLR_R:
3092 return PAGE_READ;
3093 default:
3094 return 0;
3096 case 1:
3097 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
3098 case 2:
3099 if (is_user)
3100 return prot_ro;
3101 else
3102 return PAGE_READ | PAGE_WRITE;
3103 case 3:
3104 return PAGE_READ | PAGE_WRITE;
3105 case 4: /* Reserved. */
3106 return 0;
3107 case 5:
3108 return is_user ? 0 : prot_ro;
3109 case 6:
3110 return prot_ro;
3111 case 7:
3112 if (!arm_feature (env, ARM_FEATURE_V6K))
3113 return 0;
3114 return prot_ro;
3115 default:
3116 abort();
3120 static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address)
3122 uint32_t table;
3124 if (address & env->cp15.c2_mask)
3125 table = env->cp15.ttbr1_el1 & 0xffffc000;
3126 else
3127 table = env->cp15.ttbr0_el1 & env->cp15.c2_base_mask;
3129 table |= (address >> 18) & 0x3ffc;
3130 return table;
3133 static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
3134 int is_user, hwaddr *phys_ptr,
3135 int *prot, target_ulong *page_size)
3137 CPUState *cs = ENV_GET_CPU(env);
3138 int code;
3139 uint32_t table;
3140 uint32_t desc;
3141 int type;
3142 int ap;
3143 int domain;
3144 int domain_prot;
3145 hwaddr phys_addr;
3147 /* Pagetable walk. */
3148 /* Lookup l1 descriptor. */
3149 table = get_level1_table_address(env, address);
3150 desc = ldl_phys(cs->as, table);
3151 type = (desc & 3);
3152 domain = (desc >> 5) & 0x0f;
3153 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
3154 if (type == 0) {
3155 /* Section translation fault. */
3156 code = 5;
3157 goto do_fault;
3159 if (domain_prot == 0 || domain_prot == 2) {
3160 if (type == 2)
3161 code = 9; /* Section domain fault. */
3162 else
3163 code = 11; /* Page domain fault. */
3164 goto do_fault;
3166 if (type == 2) {
3167 /* 1Mb section. */
3168 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
3169 ap = (desc >> 10) & 3;
3170 code = 13;
3171 *page_size = 1024 * 1024;
3172 } else {
3173 /* Lookup l2 entry. */
3174 if (type == 1) {
3175 /* Coarse pagetable. */
3176 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
3177 } else {
3178 /* Fine pagetable. */
3179 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
3181 desc = ldl_phys(cs->as, table);
3182 switch (desc & 3) {
3183 case 0: /* Page translation fault. */
3184 code = 7;
3185 goto do_fault;
3186 case 1: /* 64k page. */
3187 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
3188 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
3189 *page_size = 0x10000;
3190 break;
3191 case 2: /* 4k page. */
3192 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
3193 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
3194 *page_size = 0x1000;
3195 break;
3196 case 3: /* 1k page. */
3197 if (type == 1) {
3198 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
3199 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
3200 } else {
3201 /* Page translation fault. */
3202 code = 7;
3203 goto do_fault;
3205 } else {
3206 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
3208 ap = (desc >> 4) & 3;
3209 *page_size = 0x400;
3210 break;
3211 default:
3212 /* Never happens, but compiler isn't smart enough to tell. */
3213 abort();
3215 code = 15;
3217 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
3218 if (!*prot) {
3219 /* Access permission fault. */
3220 goto do_fault;
3222 *prot |= PAGE_EXEC;
3223 *phys_ptr = phys_addr;
3224 return 0;
3225 do_fault:
3226 return code | (domain << 4);
3229 static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
3230 int is_user, hwaddr *phys_ptr,
3231 int *prot, target_ulong *page_size)
3233 CPUState *cs = ENV_GET_CPU(env);
3234 int code;
3235 uint32_t table;
3236 uint32_t desc;
3237 uint32_t xn;
3238 uint32_t pxn = 0;
3239 int type;
3240 int ap;
3241 int domain = 0;
3242 int domain_prot;
3243 hwaddr phys_addr;
3245 /* Pagetable walk. */
3246 /* Lookup l1 descriptor. */
3247 table = get_level1_table_address(env, address);
3248 desc = ldl_phys(cs->as, table);
3249 type = (desc & 3);
3250 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
3251 /* Section translation fault, or attempt to use the encoding
3252 * which is Reserved on implementations without PXN.
3254 code = 5;
3255 goto do_fault;
3257 if ((type == 1) || !(desc & (1 << 18))) {
3258 /* Page or Section. */
3259 domain = (desc >> 5) & 0x0f;
3261 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
3262 if (domain_prot == 0 || domain_prot == 2) {
3263 if (type != 1) {
3264 code = 9; /* Section domain fault. */
3265 } else {
3266 code = 11; /* Page domain fault. */
3268 goto do_fault;
3270 if (type != 1) {
3271 if (desc & (1 << 18)) {
3272 /* Supersection. */
3273 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
3274 *page_size = 0x1000000;
3275 } else {
3276 /* Section. */
3277 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
3278 *page_size = 0x100000;
3280 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
3281 xn = desc & (1 << 4);
3282 pxn = desc & 1;
3283 code = 13;
3284 } else {
3285 if (arm_feature(env, ARM_FEATURE_PXN)) {
3286 pxn = (desc >> 2) & 1;
3288 /* Lookup l2 entry. */
3289 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
3290 desc = ldl_phys(cs->as, table);
3291 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
3292 switch (desc & 3) {
3293 case 0: /* Page translation fault. */
3294 code = 7;
3295 goto do_fault;
3296 case 1: /* 64k page. */
3297 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
3298 xn = desc & (1 << 15);
3299 *page_size = 0x10000;
3300 break;
3301 case 2: case 3: /* 4k page. */
3302 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
3303 xn = desc & 1;
3304 *page_size = 0x1000;
3305 break;
3306 default:
3307 /* Never happens, but compiler isn't smart enough to tell. */
3308 abort();
3310 code = 15;
3312 if (domain_prot == 3) {
3313 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
3314 } else {
3315 if (pxn && !is_user) {
3316 xn = 1;
3318 if (xn && access_type == 2)
3319 goto do_fault;
3321 /* The simplified model uses AP[0] as an access control bit. */
3322 if ((env->cp15.c1_sys & SCTLR_AFE) && (ap & 1) == 0) {
3323 /* Access flag fault. */
3324 code = (code == 15) ? 6 : 3;
3325 goto do_fault;
3327 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
3328 if (!*prot) {
3329 /* Access permission fault. */
3330 goto do_fault;
3332 if (!xn) {
3333 *prot |= PAGE_EXEC;
3336 *phys_ptr = phys_addr;
3337 return 0;
3338 do_fault:
3339 return code | (domain << 4);
3342 /* Fault type for long-descriptor MMU fault reporting; this corresponds
3343 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
3345 typedef enum {
3346 translation_fault = 1,
3347 access_fault = 2,
3348 permission_fault = 3,
3349 } MMUFaultType;
3351 static int get_phys_addr_lpae(CPUARMState *env, uint32_t address,
3352 int access_type, int is_user,
3353 hwaddr *phys_ptr, int *prot,
3354 target_ulong *page_size_ptr)
3356 CPUState *cs = ENV_GET_CPU(env);
3357 /* Read an LPAE long-descriptor translation table. */
3358 MMUFaultType fault_type = translation_fault;
3359 uint32_t level = 1;
3360 uint32_t epd;
3361 uint32_t tsz;
3362 uint64_t ttbr;
3363 int ttbr_select;
3364 int n;
3365 hwaddr descaddr;
3366 uint32_t tableattrs;
3367 target_ulong page_size;
3368 uint32_t attrs;
3370 /* Determine whether this address is in the region controlled by
3371 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
3372 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
3373 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
3375 uint32_t t0sz = extract32(env->cp15.c2_control, 0, 3);
3376 uint32_t t1sz = extract32(env->cp15.c2_control, 16, 3);
3377 if (t0sz && !extract32(address, 32 - t0sz, t0sz)) {
3378 /* there is a ttbr0 region and we are in it (high bits all zero) */
3379 ttbr_select = 0;
3380 } else if (t1sz && !extract32(~address, 32 - t1sz, t1sz)) {
3381 /* there is a ttbr1 region and we are in it (high bits all one) */
3382 ttbr_select = 1;
3383 } else if (!t0sz) {
3384 /* ttbr0 region is "everything not in the ttbr1 region" */
3385 ttbr_select = 0;
3386 } else if (!t1sz) {
3387 /* ttbr1 region is "everything not in the ttbr0 region" */
3388 ttbr_select = 1;
3389 } else {
3390 /* in the gap between the two regions, this is a Translation fault */
3391 fault_type = translation_fault;
3392 goto do_fault;
3395 /* Note that QEMU ignores shareability and cacheability attributes,
3396 * so we don't need to do anything with the SH, ORGN, IRGN fields
3397 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
3398 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
3399 * implement any ASID-like capability so we can ignore it (instead
3400 * we will always flush the TLB any time the ASID is changed).
3402 if (ttbr_select == 0) {
3403 ttbr = env->cp15.ttbr0_el1;
3404 epd = extract32(env->cp15.c2_control, 7, 1);
3405 tsz = t0sz;
3406 } else {
3407 ttbr = env->cp15.ttbr1_el1;
3408 epd = extract32(env->cp15.c2_control, 23, 1);
3409 tsz = t1sz;
3412 if (epd) {
3413 /* Translation table walk disabled => Translation fault on TLB miss */
3414 goto do_fault;
3417 /* If the region is small enough we will skip straight to a 2nd level
3418 * lookup. This affects the number of bits of the address used in
3419 * combination with the TTBR to find the first descriptor. ('n' here
3420 * matches the usage in the ARM ARM sB3.6.6, where bits [39..n] are
3421 * from the TTBR, [n-1..3] from the vaddr, and [2..0] always zero).
3423 if (tsz > 1) {
3424 level = 2;
3425 n = 14 - tsz;
3426 } else {
3427 n = 5 - tsz;
3430 /* Clear the vaddr bits which aren't part of the within-region address,
3431 * so that we don't have to special case things when calculating the
3432 * first descriptor address.
3434 address &= (0xffffffffU >> tsz);
3436 /* Now we can extract the actual base address from the TTBR */
3437 descaddr = extract64(ttbr, 0, 40);
3438 descaddr &= ~((1ULL << n) - 1);
3440 tableattrs = 0;
3441 for (;;) {
3442 uint64_t descriptor;
3444 descaddr |= ((address >> (9 * (4 - level))) & 0xff8);
3445 descriptor = ldq_phys(cs->as, descaddr);
3446 if (!(descriptor & 1) ||
3447 (!(descriptor & 2) && (level == 3))) {
3448 /* Invalid, or the Reserved level 3 encoding */
3449 goto do_fault;
3451 descaddr = descriptor & 0xfffffff000ULL;
3453 if ((descriptor & 2) && (level < 3)) {
3454 /* Table entry. The top five bits are attributes which may
3455 * propagate down through lower levels of the table (and
3456 * which are all arranged so that 0 means "no effect", so
3457 * we can gather them up by ORing in the bits at each level).
3459 tableattrs |= extract64(descriptor, 59, 5);
3460 level++;
3461 continue;
3463 /* Block entry at level 1 or 2, or page entry at level 3.
3464 * These are basically the same thing, although the number
3465 * of bits we pull in from the vaddr varies.
3467 page_size = (1 << (39 - (9 * level)));
3468 descaddr |= (address & (page_size - 1));
3469 /* Extract attributes from the descriptor and merge with table attrs */
3470 attrs = extract64(descriptor, 2, 10)
3471 | (extract64(descriptor, 52, 12) << 10);
3472 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
3473 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
3474 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
3475 * means "force PL1 access only", which means forcing AP[1] to 0.
3477 if (extract32(tableattrs, 2, 1)) {
3478 attrs &= ~(1 << 4);
3480 /* Since we're always in the Non-secure state, NSTable is ignored. */
3481 break;
3483 /* Here descaddr is the final physical address, and attributes
3484 * are all in attrs.
3486 fault_type = access_fault;
3487 if ((attrs & (1 << 8)) == 0) {
3488 /* Access flag */
3489 goto do_fault;
3491 fault_type = permission_fault;
3492 if (is_user && !(attrs & (1 << 4))) {
3493 /* Unprivileged access not enabled */
3494 goto do_fault;
3496 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
3497 if (attrs & (1 << 12) || (!is_user && (attrs & (1 << 11)))) {
3498 /* XN or PXN */
3499 if (access_type == 2) {
3500 goto do_fault;
3502 *prot &= ~PAGE_EXEC;
3504 if (attrs & (1 << 5)) {
3505 /* Write access forbidden */
3506 if (access_type == 1) {
3507 goto do_fault;
3509 *prot &= ~PAGE_WRITE;
3512 *phys_ptr = descaddr;
3513 *page_size_ptr = page_size;
3514 return 0;
3516 do_fault:
3517 /* Long-descriptor format IFSR/DFSR value */
3518 return (1 << 9) | (fault_type << 2) | level;
3521 static int get_phys_addr_mpu(CPUARMState *env, uint32_t address,
3522 int access_type, int is_user,
3523 hwaddr *phys_ptr, int *prot)
3525 int n;
3526 uint32_t mask;
3527 uint32_t base;
3529 *phys_ptr = address;
3530 for (n = 7; n >= 0; n--) {
3531 base = env->cp15.c6_region[n];
3532 if ((base & 1) == 0)
3533 continue;
3534 mask = 1 << ((base >> 1) & 0x1f);
3535 /* Keep this shift separate from the above to avoid an
3536 (undefined) << 32. */
3537 mask = (mask << 1) - 1;
3538 if (((base ^ address) & ~mask) == 0)
3539 break;
3541 if (n < 0)
3542 return 2;
3544 if (access_type == 2) {
3545 mask = env->cp15.c5_insn;
3546 } else {
3547 mask = env->cp15.c5_data;
3549 mask = (mask >> (n * 4)) & 0xf;
3550 switch (mask) {
3551 case 0:
3552 return 1;
3553 case 1:
3554 if (is_user)
3555 return 1;
3556 *prot = PAGE_READ | PAGE_WRITE;
3557 break;
3558 case 2:
3559 *prot = PAGE_READ;
3560 if (!is_user)
3561 *prot |= PAGE_WRITE;
3562 break;
3563 case 3:
3564 *prot = PAGE_READ | PAGE_WRITE;
3565 break;
3566 case 5:
3567 if (is_user)
3568 return 1;
3569 *prot = PAGE_READ;
3570 break;
3571 case 6:
3572 *prot = PAGE_READ;
3573 break;
3574 default:
3575 /* Bad permission. */
3576 return 1;
3578 *prot |= PAGE_EXEC;
3579 return 0;
3582 /* get_phys_addr - get the physical address for this virtual address
3584 * Find the physical address corresponding to the given virtual address,
3585 * by doing a translation table walk on MMU based systems or using the
3586 * MPU state on MPU based systems.
3588 * Returns 0 if the translation was successful. Otherwise, phys_ptr,
3589 * prot and page_size are not filled in, and the return value provides
3590 * information on why the translation aborted, in the format of a
3591 * DFSR/IFSR fault register, with the following caveats:
3592 * * we honour the short vs long DFSR format differences.
3593 * * the WnR bit is never set (the caller must do this).
3594 * * for MPU based systems we don't bother to return a full FSR format
3595 * value.
3597 * @env: CPUARMState
3598 * @address: virtual address to get physical address for
3599 * @access_type: 0 for read, 1 for write, 2 for execute
3600 * @is_user: 0 for privileged access, 1 for user
3601 * @phys_ptr: set to the physical address corresponding to the virtual address
3602 * @prot: set to the permissions for the page containing phys_ptr
3603 * @page_size: set to the size of the page containing phys_ptr
3605 static inline int get_phys_addr(CPUARMState *env, uint32_t address,
3606 int access_type, int is_user,
3607 hwaddr *phys_ptr, int *prot,
3608 target_ulong *page_size)
3610 /* Fast Context Switch Extension. */
3611 if (address < 0x02000000)
3612 address += env->cp15.c13_fcse;
3614 if ((env->cp15.c1_sys & SCTLR_M) == 0) {
3615 /* MMU/MPU disabled. */
3616 *phys_ptr = address;
3617 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
3618 *page_size = TARGET_PAGE_SIZE;
3619 return 0;
3620 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
3621 *page_size = TARGET_PAGE_SIZE;
3622 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
3623 prot);
3624 } else if (extended_addresses_enabled(env)) {
3625 return get_phys_addr_lpae(env, address, access_type, is_user, phys_ptr,
3626 prot, page_size);
3627 } else if (env->cp15.c1_sys & SCTLR_XP) {
3628 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
3629 prot, page_size);
3630 } else {
3631 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
3632 prot, page_size);
3636 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address,
3637 int access_type, int mmu_idx)
3639 hwaddr phys_addr;
3640 target_ulong page_size;
3641 int prot;
3642 int ret, is_user;
3644 is_user = mmu_idx == MMU_USER_IDX;
3645 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
3646 &page_size);
3647 if (ret == 0) {
3648 /* Map a single [sub]page. */
3649 phys_addr &= ~(hwaddr)0x3ff;
3650 address &= ~(uint32_t)0x3ff;
3651 tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size);
3652 return 0;
3655 if (access_type == 2) {
3656 env->cp15.c5_insn = ret;
3657 env->cp15.c6_insn = address;
3658 env->exception_index = EXCP_PREFETCH_ABORT;
3659 } else {
3660 env->cp15.c5_data = ret;
3661 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
3662 env->cp15.c5_data |= (1 << 11);
3663 env->cp15.c6_data = address;
3664 env->exception_index = EXCP_DATA_ABORT;
3666 return 1;
3669 hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
3671 ARMCPU *cpu = ARM_CPU(cs);
3672 hwaddr phys_addr;
3673 target_ulong page_size;
3674 int prot;
3675 int ret;
3677 ret = get_phys_addr(&cpu->env, addr, 0, 0, &phys_addr, &prot, &page_size);
3679 if (ret != 0) {
3680 return -1;
3683 return phys_addr;
3686 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
3688 if ((env->uncached_cpsr & CPSR_M) == mode) {
3689 env->regs[13] = val;
3690 } else {
3691 env->banked_r13[bank_number(mode)] = val;
3695 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
3697 if ((env->uncached_cpsr & CPSR_M) == mode) {
3698 return env->regs[13];
3699 } else {
3700 return env->banked_r13[bank_number(mode)];
3704 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
3706 switch (reg) {
3707 case 0: /* APSR */
3708 return xpsr_read(env) & 0xf8000000;
3709 case 1: /* IAPSR */
3710 return xpsr_read(env) & 0xf80001ff;
3711 case 2: /* EAPSR */
3712 return xpsr_read(env) & 0xff00fc00;
3713 case 3: /* xPSR */
3714 return xpsr_read(env) & 0xff00fdff;
3715 case 5: /* IPSR */
3716 return xpsr_read(env) & 0x000001ff;
3717 case 6: /* EPSR */
3718 return xpsr_read(env) & 0x0700fc00;
3719 case 7: /* IEPSR */
3720 return xpsr_read(env) & 0x0700edff;
3721 case 8: /* MSP */
3722 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
3723 case 9: /* PSP */
3724 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
3725 case 16: /* PRIMASK */
3726 return (env->daif & PSTATE_I) != 0;
3727 case 17: /* BASEPRI */
3728 case 18: /* BASEPRI_MAX */
3729 return env->v7m.basepri;
3730 case 19: /* FAULTMASK */
3731 return (env->daif & PSTATE_F) != 0;
3732 case 20: /* CONTROL */
3733 return env->v7m.control;
3734 default:
3735 /* ??? For debugging only. */
3736 cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
3737 return 0;
3741 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
3743 switch (reg) {
3744 case 0: /* APSR */
3745 xpsr_write(env, val, 0xf8000000);
3746 break;
3747 case 1: /* IAPSR */
3748 xpsr_write(env, val, 0xf8000000);
3749 break;
3750 case 2: /* EAPSR */
3751 xpsr_write(env, val, 0xfe00fc00);
3752 break;
3753 case 3: /* xPSR */
3754 xpsr_write(env, val, 0xfe00fc00);
3755 break;
3756 case 5: /* IPSR */
3757 /* IPSR bits are readonly. */
3758 break;
3759 case 6: /* EPSR */
3760 xpsr_write(env, val, 0x0600fc00);
3761 break;
3762 case 7: /* IEPSR */
3763 xpsr_write(env, val, 0x0600fc00);
3764 break;
3765 case 8: /* MSP */
3766 if (env->v7m.current_sp)
3767 env->v7m.other_sp = val;
3768 else
3769 env->regs[13] = val;
3770 break;
3771 case 9: /* PSP */
3772 if (env->v7m.current_sp)
3773 env->regs[13] = val;
3774 else
3775 env->v7m.other_sp = val;
3776 break;
3777 case 16: /* PRIMASK */
3778 if (val & 1) {
3779 env->daif |= PSTATE_I;
3780 } else {
3781 env->daif &= ~PSTATE_I;
3783 break;
3784 case 17: /* BASEPRI */
3785 env->v7m.basepri = val & 0xff;
3786 break;
3787 case 18: /* BASEPRI_MAX */
3788 val &= 0xff;
3789 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
3790 env->v7m.basepri = val;
3791 break;
3792 case 19: /* FAULTMASK */
3793 if (val & 1) {
3794 env->daif |= PSTATE_F;
3795 } else {
3796 env->daif &= ~PSTATE_F;
3798 break;
3799 case 20: /* CONTROL */
3800 env->v7m.control = val & 3;
3801 switch_v7m_sp(env, (val & 2) != 0);
3802 break;
3803 default:
3804 /* ??? For debugging only. */
3805 cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
3806 return;
3810 #endif
3812 /* Note that signed overflow is undefined in C. The following routines are
3813 careful to use unsigned types where modulo arithmetic is required.
3814 Failure to do so _will_ break on newer gcc. */
3816 /* Signed saturating arithmetic. */
3818 /* Perform 16-bit signed saturating addition. */
3819 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
3821 uint16_t res;
3823 res = a + b;
3824 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
3825 if (a & 0x8000)
3826 res = 0x8000;
3827 else
3828 res = 0x7fff;
3830 return res;
3833 /* Perform 8-bit signed saturating addition. */
3834 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
3836 uint8_t res;
3838 res = a + b;
3839 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
3840 if (a & 0x80)
3841 res = 0x80;
3842 else
3843 res = 0x7f;
3845 return res;
3848 /* Perform 16-bit signed saturating subtraction. */
3849 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
3851 uint16_t res;
3853 res = a - b;
3854 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
3855 if (a & 0x8000)
3856 res = 0x8000;
3857 else
3858 res = 0x7fff;
3860 return res;
3863 /* Perform 8-bit signed saturating subtraction. */
3864 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
3866 uint8_t res;
3868 res = a - b;
3869 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
3870 if (a & 0x80)
3871 res = 0x80;
3872 else
3873 res = 0x7f;
3875 return res;
3878 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
3879 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
3880 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
3881 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
3882 #define PFX q
3884 #include "op_addsub.h"
3886 /* Unsigned saturating arithmetic. */
3887 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
3889 uint16_t res;
3890 res = a + b;
3891 if (res < a)
3892 res = 0xffff;
3893 return res;
3896 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
3898 if (a > b)
3899 return a - b;
3900 else
3901 return 0;
3904 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
3906 uint8_t res;
3907 res = a + b;
3908 if (res < a)
3909 res = 0xff;
3910 return res;
3913 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
3915 if (a > b)
3916 return a - b;
3917 else
3918 return 0;
3921 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
3922 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
3923 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
3924 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
3925 #define PFX uq
3927 #include "op_addsub.h"
3929 /* Signed modulo arithmetic. */
3930 #define SARITH16(a, b, n, op) do { \
3931 int32_t sum; \
3932 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
3933 RESULT(sum, n, 16); \
3934 if (sum >= 0) \
3935 ge |= 3 << (n * 2); \
3936 } while(0)
3938 #define SARITH8(a, b, n, op) do { \
3939 int32_t sum; \
3940 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
3941 RESULT(sum, n, 8); \
3942 if (sum >= 0) \
3943 ge |= 1 << n; \
3944 } while(0)
3947 #define ADD16(a, b, n) SARITH16(a, b, n, +)
3948 #define SUB16(a, b, n) SARITH16(a, b, n, -)
3949 #define ADD8(a, b, n) SARITH8(a, b, n, +)
3950 #define SUB8(a, b, n) SARITH8(a, b, n, -)
3951 #define PFX s
3952 #define ARITH_GE
3954 #include "op_addsub.h"
3956 /* Unsigned modulo arithmetic. */
3957 #define ADD16(a, b, n) do { \
3958 uint32_t sum; \
3959 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
3960 RESULT(sum, n, 16); \
3961 if ((sum >> 16) == 1) \
3962 ge |= 3 << (n * 2); \
3963 } while(0)
3965 #define ADD8(a, b, n) do { \
3966 uint32_t sum; \
3967 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
3968 RESULT(sum, n, 8); \
3969 if ((sum >> 8) == 1) \
3970 ge |= 1 << n; \
3971 } while(0)
3973 #define SUB16(a, b, n) do { \
3974 uint32_t sum; \
3975 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
3976 RESULT(sum, n, 16); \
3977 if ((sum >> 16) == 0) \
3978 ge |= 3 << (n * 2); \
3979 } while(0)
3981 #define SUB8(a, b, n) do { \
3982 uint32_t sum; \
3983 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
3984 RESULT(sum, n, 8); \
3985 if ((sum >> 8) == 0) \
3986 ge |= 1 << n; \
3987 } while(0)
3989 #define PFX u
3990 #define ARITH_GE
3992 #include "op_addsub.h"
3994 /* Halved signed arithmetic. */
3995 #define ADD16(a, b, n) \
3996 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
3997 #define SUB16(a, b, n) \
3998 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
3999 #define ADD8(a, b, n) \
4000 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
4001 #define SUB8(a, b, n) \
4002 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
4003 #define PFX sh
4005 #include "op_addsub.h"
4007 /* Halved unsigned arithmetic. */
4008 #define ADD16(a, b, n) \
4009 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
4010 #define SUB16(a, b, n) \
4011 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
4012 #define ADD8(a, b, n) \
4013 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
4014 #define SUB8(a, b, n) \
4015 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
4016 #define PFX uh
4018 #include "op_addsub.h"
4020 static inline uint8_t do_usad(uint8_t a, uint8_t b)
4022 if (a > b)
4023 return a - b;
4024 else
4025 return b - a;
4028 /* Unsigned sum of absolute byte differences. */
4029 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
4031 uint32_t sum;
4032 sum = do_usad(a, b);
4033 sum += do_usad(a >> 8, b >> 8);
4034 sum += do_usad(a >> 16, b >>16);
4035 sum += do_usad(a >> 24, b >> 24);
4036 return sum;
4039 /* For ARMv6 SEL instruction. */
4040 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
4042 uint32_t mask;
4044 mask = 0;
4045 if (flags & 1)
4046 mask |= 0xff;
4047 if (flags & 2)
4048 mask |= 0xff00;
4049 if (flags & 4)
4050 mask |= 0xff0000;
4051 if (flags & 8)
4052 mask |= 0xff000000;
4053 return (a & mask) | (b & ~mask);
4056 /* VFP support. We follow the convention used for VFP instructions:
4057 Single precision routines have a "s" suffix, double precision a
4058 "d" suffix. */
4060 /* Convert host exception flags to vfp form. */
4061 static inline int vfp_exceptbits_from_host(int host_bits)
4063 int target_bits = 0;
4065 if (host_bits & float_flag_invalid)
4066 target_bits |= 1;
4067 if (host_bits & float_flag_divbyzero)
4068 target_bits |= 2;
4069 if (host_bits & float_flag_overflow)
4070 target_bits |= 4;
4071 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
4072 target_bits |= 8;
4073 if (host_bits & float_flag_inexact)
4074 target_bits |= 0x10;
4075 if (host_bits & float_flag_input_denormal)
4076 target_bits |= 0x80;
4077 return target_bits;
4080 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
4082 int i;
4083 uint32_t fpscr;
4085 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
4086 | (env->vfp.vec_len << 16)
4087 | (env->vfp.vec_stride << 20);
4088 i = get_float_exception_flags(&env->vfp.fp_status);
4089 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
4090 fpscr |= vfp_exceptbits_from_host(i);
4091 return fpscr;
4094 uint32_t vfp_get_fpscr(CPUARMState *env)
4096 return HELPER(vfp_get_fpscr)(env);
4099 /* Convert vfp exception flags to target form. */
4100 static inline int vfp_exceptbits_to_host(int target_bits)
4102 int host_bits = 0;
4104 if (target_bits & 1)
4105 host_bits |= float_flag_invalid;
4106 if (target_bits & 2)
4107 host_bits |= float_flag_divbyzero;
4108 if (target_bits & 4)
4109 host_bits |= float_flag_overflow;
4110 if (target_bits & 8)
4111 host_bits |= float_flag_underflow;
4112 if (target_bits & 0x10)
4113 host_bits |= float_flag_inexact;
4114 if (target_bits & 0x80)
4115 host_bits |= float_flag_input_denormal;
4116 return host_bits;
4119 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
4121 int i;
4122 uint32_t changed;
4124 changed = env->vfp.xregs[ARM_VFP_FPSCR];
4125 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
4126 env->vfp.vec_len = (val >> 16) & 7;
4127 env->vfp.vec_stride = (val >> 20) & 3;
4129 changed ^= val;
4130 if (changed & (3 << 22)) {
4131 i = (val >> 22) & 3;
4132 switch (i) {
4133 case FPROUNDING_TIEEVEN:
4134 i = float_round_nearest_even;
4135 break;
4136 case FPROUNDING_POSINF:
4137 i = float_round_up;
4138 break;
4139 case FPROUNDING_NEGINF:
4140 i = float_round_down;
4141 break;
4142 case FPROUNDING_ZERO:
4143 i = float_round_to_zero;
4144 break;
4146 set_float_rounding_mode(i, &env->vfp.fp_status);
4148 if (changed & (1 << 24)) {
4149 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
4150 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
4152 if (changed & (1 << 25))
4153 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
4155 i = vfp_exceptbits_to_host(val);
4156 set_float_exception_flags(i, &env->vfp.fp_status);
4157 set_float_exception_flags(0, &env->vfp.standard_fp_status);
4160 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
4162 HELPER(vfp_set_fpscr)(env, val);
4165 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
4167 #define VFP_BINOP(name) \
4168 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
4170 float_status *fpst = fpstp; \
4171 return float32_ ## name(a, b, fpst); \
4173 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
4175 float_status *fpst = fpstp; \
4176 return float64_ ## name(a, b, fpst); \
4178 VFP_BINOP(add)
4179 VFP_BINOP(sub)
4180 VFP_BINOP(mul)
4181 VFP_BINOP(div)
4182 VFP_BINOP(min)
4183 VFP_BINOP(max)
4184 VFP_BINOP(minnum)
4185 VFP_BINOP(maxnum)
4186 #undef VFP_BINOP
4188 float32 VFP_HELPER(neg, s)(float32 a)
4190 return float32_chs(a);
4193 float64 VFP_HELPER(neg, d)(float64 a)
4195 return float64_chs(a);
4198 float32 VFP_HELPER(abs, s)(float32 a)
4200 return float32_abs(a);
4203 float64 VFP_HELPER(abs, d)(float64 a)
4205 return float64_abs(a);
4208 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
4210 return float32_sqrt(a, &env->vfp.fp_status);
4213 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
4215 return float64_sqrt(a, &env->vfp.fp_status);
4218 /* XXX: check quiet/signaling case */
4219 #define DO_VFP_cmp(p, type) \
4220 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
4222 uint32_t flags; \
4223 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
4224 case 0: flags = 0x6; break; \
4225 case -1: flags = 0x8; break; \
4226 case 1: flags = 0x2; break; \
4227 default: case 2: flags = 0x3; break; \
4229 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
4230 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
4232 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
4234 uint32_t flags; \
4235 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
4236 case 0: flags = 0x6; break; \
4237 case -1: flags = 0x8; break; \
4238 case 1: flags = 0x2; break; \
4239 default: case 2: flags = 0x3; break; \
4241 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
4242 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
4244 DO_VFP_cmp(s, float32)
4245 DO_VFP_cmp(d, float64)
4246 #undef DO_VFP_cmp
4248 /* Integer to float and float to integer conversions */
4250 #define CONV_ITOF(name, fsz, sign) \
4251 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
4253 float_status *fpst = fpstp; \
4254 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
4257 #define CONV_FTOI(name, fsz, sign, round) \
4258 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
4260 float_status *fpst = fpstp; \
4261 if (float##fsz##_is_any_nan(x)) { \
4262 float_raise(float_flag_invalid, fpst); \
4263 return 0; \
4265 return float##fsz##_to_##sign##int32##round(x, fpst); \
4268 #define FLOAT_CONVS(name, p, fsz, sign) \
4269 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
4270 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
4271 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
4273 FLOAT_CONVS(si, s, 32, )
4274 FLOAT_CONVS(si, d, 64, )
4275 FLOAT_CONVS(ui, s, 32, u)
4276 FLOAT_CONVS(ui, d, 64, u)
4278 #undef CONV_ITOF
4279 #undef CONV_FTOI
4280 #undef FLOAT_CONVS
4282 /* floating point conversion */
4283 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
4285 float64 r = float32_to_float64(x, &env->vfp.fp_status);
4286 /* ARM requires that S<->D conversion of any kind of NaN generates
4287 * a quiet NaN by forcing the most significant frac bit to 1.
4289 return float64_maybe_silence_nan(r);
4292 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
4294 float32 r = float64_to_float32(x, &env->vfp.fp_status);
4295 /* ARM requires that S<->D conversion of any kind of NaN generates
4296 * a quiet NaN by forcing the most significant frac bit to 1.
4298 return float32_maybe_silence_nan(r);
4301 /* VFP3 fixed point conversion. */
4302 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
4303 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
4304 void *fpstp) \
4306 float_status *fpst = fpstp; \
4307 float##fsz tmp; \
4308 tmp = itype##_to_##float##fsz(x, fpst); \
4309 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
4312 /* Notice that we want only input-denormal exception flags from the
4313 * scalbn operation: the other possible flags (overflow+inexact if
4314 * we overflow to infinity, output-denormal) aren't correct for the
4315 * complete scale-and-convert operation.
4317 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
4318 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
4319 uint32_t shift, \
4320 void *fpstp) \
4322 float_status *fpst = fpstp; \
4323 int old_exc_flags = get_float_exception_flags(fpst); \
4324 float##fsz tmp; \
4325 if (float##fsz##_is_any_nan(x)) { \
4326 float_raise(float_flag_invalid, fpst); \
4327 return 0; \
4329 tmp = float##fsz##_scalbn(x, shift, fpst); \
4330 old_exc_flags |= get_float_exception_flags(fpst) \
4331 & float_flag_input_denormal; \
4332 set_float_exception_flags(old_exc_flags, fpst); \
4333 return float##fsz##_to_##itype##round(tmp, fpst); \
4336 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
4337 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
4338 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
4339 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
4341 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
4342 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
4343 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
4345 VFP_CONV_FIX(sh, d, 64, 64, int16)
4346 VFP_CONV_FIX(sl, d, 64, 64, int32)
4347 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
4348 VFP_CONV_FIX(uh, d, 64, 64, uint16)
4349 VFP_CONV_FIX(ul, d, 64, 64, uint32)
4350 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
4351 VFP_CONV_FIX(sh, s, 32, 32, int16)
4352 VFP_CONV_FIX(sl, s, 32, 32, int32)
4353 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
4354 VFP_CONV_FIX(uh, s, 32, 32, uint16)
4355 VFP_CONV_FIX(ul, s, 32, 32, uint32)
4356 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
4357 #undef VFP_CONV_FIX
4358 #undef VFP_CONV_FIX_FLOAT
4359 #undef VFP_CONV_FLOAT_FIX_ROUND
4361 /* Set the current fp rounding mode and return the old one.
4362 * The argument is a softfloat float_round_ value.
4364 uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
4366 float_status *fp_status = &env->vfp.fp_status;
4368 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
4369 set_float_rounding_mode(rmode, fp_status);
4371 return prev_rmode;
4374 /* Set the current fp rounding mode in the standard fp status and return
4375 * the old one. This is for NEON instructions that need to change the
4376 * rounding mode but wish to use the standard FPSCR values for everything
4377 * else. Always set the rounding mode back to the correct value after
4378 * modifying it.
4379 * The argument is a softfloat float_round_ value.
4381 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
4383 float_status *fp_status = &env->vfp.standard_fp_status;
4385 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
4386 set_float_rounding_mode(rmode, fp_status);
4388 return prev_rmode;
4391 /* Half precision conversions. */
4392 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
4394 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
4395 float32 r = float16_to_float32(make_float16(a), ieee, s);
4396 if (ieee) {
4397 return float32_maybe_silence_nan(r);
4399 return r;
4402 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
4404 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
4405 float16 r = float32_to_float16(a, ieee, s);
4406 if (ieee) {
4407 r = float16_maybe_silence_nan(r);
4409 return float16_val(r);
4412 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
4414 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
4417 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
4419 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
4422 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
4424 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
4427 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
4429 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
4432 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
4434 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
4435 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
4436 if (ieee) {
4437 return float64_maybe_silence_nan(r);
4439 return r;
4442 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
4444 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
4445 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
4446 if (ieee) {
4447 r = float16_maybe_silence_nan(r);
4449 return float16_val(r);
4452 #define float32_two make_float32(0x40000000)
4453 #define float32_three make_float32(0x40400000)
4454 #define float32_one_point_five make_float32(0x3fc00000)
4456 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
4458 float_status *s = &env->vfp.standard_fp_status;
4459 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
4460 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
4461 if (!(float32_is_zero(a) || float32_is_zero(b))) {
4462 float_raise(float_flag_input_denormal, s);
4464 return float32_two;
4466 return float32_sub(float32_two, float32_mul(a, b, s), s);
4469 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
4471 float_status *s = &env->vfp.standard_fp_status;
4472 float32 product;
4473 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
4474 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
4475 if (!(float32_is_zero(a) || float32_is_zero(b))) {
4476 float_raise(float_flag_input_denormal, s);
4478 return float32_one_point_five;
4480 product = float32_mul(a, b, s);
4481 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
4484 /* NEON helpers. */
4486 /* Constants 256 and 512 are used in some helpers; we avoid relying on
4487 * int->float conversions at run-time. */
4488 #define float64_256 make_float64(0x4070000000000000LL)
4489 #define float64_512 make_float64(0x4080000000000000LL)
4491 /* The algorithm that must be used to calculate the estimate
4492 * is specified by the ARM ARM.
4494 static float64 recip_estimate(float64 a, CPUARMState *env)
4496 /* These calculations mustn't set any fp exception flags,
4497 * so we use a local copy of the fp_status.
4499 float_status dummy_status = env->vfp.standard_fp_status;
4500 float_status *s = &dummy_status;
4501 /* q = (int)(a * 512.0) */
4502 float64 q = float64_mul(float64_512, a, s);
4503 int64_t q_int = float64_to_int64_round_to_zero(q, s);
4505 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
4506 q = int64_to_float64(q_int, s);
4507 q = float64_add(q, float64_half, s);
4508 q = float64_div(q, float64_512, s);
4509 q = float64_div(float64_one, q, s);
4511 /* s = (int)(256.0 * r + 0.5) */
4512 q = float64_mul(q, float64_256, s);
4513 q = float64_add(q, float64_half, s);
4514 q_int = float64_to_int64_round_to_zero(q, s);
4516 /* return (double)s / 256.0 */
4517 return float64_div(int64_to_float64(q_int, s), float64_256, s);
4520 float32 HELPER(recpe_f32)(float32 a, CPUARMState *env)
4522 float_status *s = &env->vfp.standard_fp_status;
4523 float64 f64;
4524 uint32_t val32 = float32_val(a);
4526 int result_exp;
4527 int a_exp = (val32 & 0x7f800000) >> 23;
4528 int sign = val32 & 0x80000000;
4530 if (float32_is_any_nan(a)) {
4531 if (float32_is_signaling_nan(a)) {
4532 float_raise(float_flag_invalid, s);
4534 return float32_default_nan;
4535 } else if (float32_is_infinity(a)) {
4536 return float32_set_sign(float32_zero, float32_is_neg(a));
4537 } else if (float32_is_zero_or_denormal(a)) {
4538 if (!float32_is_zero(a)) {
4539 float_raise(float_flag_input_denormal, s);
4541 float_raise(float_flag_divbyzero, s);
4542 return float32_set_sign(float32_infinity, float32_is_neg(a));
4543 } else if (a_exp >= 253) {
4544 float_raise(float_flag_underflow, s);
4545 return float32_set_sign(float32_zero, float32_is_neg(a));
4548 f64 = make_float64((0x3feULL << 52)
4549 | ((int64_t)(val32 & 0x7fffff) << 29));
4551 result_exp = 253 - a_exp;
4553 f64 = recip_estimate(f64, env);
4555 val32 = sign
4556 | ((result_exp & 0xff) << 23)
4557 | ((float64_val(f64) >> 29) & 0x7fffff);
4558 return make_float32(val32);
4561 /* The algorithm that must be used to calculate the estimate
4562 * is specified by the ARM ARM.
4564 static float64 recip_sqrt_estimate(float64 a, CPUARMState *env)
4566 /* These calculations mustn't set any fp exception flags,
4567 * so we use a local copy of the fp_status.
4569 float_status dummy_status = env->vfp.standard_fp_status;
4570 float_status *s = &dummy_status;
4571 float64 q;
4572 int64_t q_int;
4574 if (float64_lt(a, float64_half, s)) {
4575 /* range 0.25 <= a < 0.5 */
4577 /* a in units of 1/512 rounded down */
4578 /* q0 = (int)(a * 512.0); */
4579 q = float64_mul(float64_512, a, s);
4580 q_int = float64_to_int64_round_to_zero(q, s);
4582 /* reciprocal root r */
4583 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
4584 q = int64_to_float64(q_int, s);
4585 q = float64_add(q, float64_half, s);
4586 q = float64_div(q, float64_512, s);
4587 q = float64_sqrt(q, s);
4588 q = float64_div(float64_one, q, s);
4589 } else {
4590 /* range 0.5 <= a < 1.0 */
4592 /* a in units of 1/256 rounded down */
4593 /* q1 = (int)(a * 256.0); */
4594 q = float64_mul(float64_256, a, s);
4595 int64_t q_int = float64_to_int64_round_to_zero(q, s);
4597 /* reciprocal root r */
4598 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
4599 q = int64_to_float64(q_int, s);
4600 q = float64_add(q, float64_half, s);
4601 q = float64_div(q, float64_256, s);
4602 q = float64_sqrt(q, s);
4603 q = float64_div(float64_one, q, s);
4605 /* r in units of 1/256 rounded to nearest */
4606 /* s = (int)(256.0 * r + 0.5); */
4608 q = float64_mul(q, float64_256,s );
4609 q = float64_add(q, float64_half, s);
4610 q_int = float64_to_int64_round_to_zero(q, s);
4612 /* return (double)s / 256.0;*/
4613 return float64_div(int64_to_float64(q_int, s), float64_256, s);
4616 float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env)
4618 float_status *s = &env->vfp.standard_fp_status;
4619 int result_exp;
4620 float64 f64;
4621 uint32_t val;
4622 uint64_t val64;
4624 val = float32_val(a);
4626 if (float32_is_any_nan(a)) {
4627 if (float32_is_signaling_nan(a)) {
4628 float_raise(float_flag_invalid, s);
4630 return float32_default_nan;
4631 } else if (float32_is_zero_or_denormal(a)) {
4632 if (!float32_is_zero(a)) {
4633 float_raise(float_flag_input_denormal, s);
4635 float_raise(float_flag_divbyzero, s);
4636 return float32_set_sign(float32_infinity, float32_is_neg(a));
4637 } else if (float32_is_neg(a)) {
4638 float_raise(float_flag_invalid, s);
4639 return float32_default_nan;
4640 } else if (float32_is_infinity(a)) {
4641 return float32_zero;
4644 /* Normalize to a double-precision value between 0.25 and 1.0,
4645 * preserving the parity of the exponent. */
4646 if ((val & 0x800000) == 0) {
4647 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
4648 | (0x3feULL << 52)
4649 | ((uint64_t)(val & 0x7fffff) << 29));
4650 } else {
4651 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
4652 | (0x3fdULL << 52)
4653 | ((uint64_t)(val & 0x7fffff) << 29));
4656 result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2;
4658 f64 = recip_sqrt_estimate(f64, env);
4660 val64 = float64_val(f64);
4662 val = ((result_exp & 0xff) << 23)
4663 | ((val64 >> 29) & 0x7fffff);
4664 return make_float32(val);
4667 uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env)
4669 float64 f64;
4671 if ((a & 0x80000000) == 0) {
4672 return 0xffffffff;
4675 f64 = make_float64((0x3feULL << 52)
4676 | ((int64_t)(a & 0x7fffffff) << 21));
4678 f64 = recip_estimate (f64, env);
4680 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
4683 uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUARMState *env)
4685 float64 f64;
4687 if ((a & 0xc0000000) == 0) {
4688 return 0xffffffff;
4691 if (a & 0x80000000) {
4692 f64 = make_float64((0x3feULL << 52)
4693 | ((uint64_t)(a & 0x7fffffff) << 21));
4694 } else { /* bits 31-30 == '01' */
4695 f64 = make_float64((0x3fdULL << 52)
4696 | ((uint64_t)(a & 0x3fffffff) << 22));
4699 f64 = recip_sqrt_estimate(f64, env);
4701 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
4704 /* VFPv4 fused multiply-accumulate */
4705 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
4707 float_status *fpst = fpstp;
4708 return float32_muladd(a, b, c, 0, fpst);
4711 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
4713 float_status *fpst = fpstp;
4714 return float64_muladd(a, b, c, 0, fpst);
4717 /* ARMv8 round to integral */
4718 float32 HELPER(rints_exact)(float32 x, void *fp_status)
4720 return float32_round_to_int(x, fp_status);
4723 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
4725 return float64_round_to_int(x, fp_status);
4728 float32 HELPER(rints)(float32 x, void *fp_status)
4730 int old_flags = get_float_exception_flags(fp_status), new_flags;
4731 float32 ret;
4733 ret = float32_round_to_int(x, fp_status);
4735 /* Suppress any inexact exceptions the conversion produced */
4736 if (!(old_flags & float_flag_inexact)) {
4737 new_flags = get_float_exception_flags(fp_status);
4738 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
4741 return ret;
4744 float64 HELPER(rintd)(float64 x, void *fp_status)
4746 int old_flags = get_float_exception_flags(fp_status), new_flags;
4747 float64 ret;
4749 ret = float64_round_to_int(x, fp_status);
4751 new_flags = get_float_exception_flags(fp_status);
4753 /* Suppress any inexact exceptions the conversion produced */
4754 if (!(old_flags & float_flag_inexact)) {
4755 new_flags = get_float_exception_flags(fp_status);
4756 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
4759 return ret;
4762 /* Convert ARM rounding mode to softfloat */
4763 int arm_rmode_to_sf(int rmode)
4765 switch (rmode) {
4766 case FPROUNDING_TIEAWAY:
4767 rmode = float_round_ties_away;
4768 break;
4769 case FPROUNDING_ODD:
4770 /* FIXME: add support for TIEAWAY and ODD */
4771 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
4772 rmode);
4773 case FPROUNDING_TIEEVEN:
4774 default:
4775 rmode = float_round_nearest_even;
4776 break;
4777 case FPROUNDING_POSINF:
4778 rmode = float_round_up;
4779 break;
4780 case FPROUNDING_NEGINF:
4781 rmode = float_round_down;
4782 break;
4783 case FPROUNDING_ZERO:
4784 rmode = float_round_to_zero;
4785 break;
4787 return rmode;
4790 static void crc_init_buffer(uint8_t *buf, uint32_t val, uint32_t bytes)
4792 memset(buf, 0, 4);
4794 if (bytes == 1) {
4795 buf[0] = val & 0xff;
4796 } else if (bytes == 2) {
4797 buf[0] = val & 0xff;
4798 buf[1] = (val >> 8) & 0xff;
4799 } else {
4800 buf[0] = val & 0xff;
4801 buf[1] = (val >> 8) & 0xff;
4802 buf[2] = (val >> 16) & 0xff;
4803 buf[3] = (val >> 24) & 0xff;
4807 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
4809 uint8_t buf[4];
4811 crc_init_buffer(buf, val, bytes);
4813 /* zlib crc32 converts the accumulator and output to one's complement. */
4814 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
4817 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
4819 uint8_t buf[4];
4821 crc_init_buffer(buf, val, bytes);
4823 /* Linux crc32c converts the output to one's complement. */
4824 return crc32c(acc, buf, bytes) ^ 0xffffffff;