ssi: Convert legacy SSI_BUS -> BUS casts
[qemu.git] / target-arm / helper-a64.c
blobc2ce33ee88d411b8d00b34be1559dd66c80db9f9
1 /*
2 * AArch64 specific helpers
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "cpu.h"
21 #include "exec/gdbstub.h"
22 #include "helper.h"
23 #include "qemu/host-utils.h"
24 #include "sysemu/sysemu.h"
25 #include "qemu/bitops.h"
27 /* C2.4.7 Multiply and divide */
28 /* special cases for 0 and LLONG_MIN are mandated by the standard */
29 uint64_t HELPER(udiv64)(uint64_t num, uint64_t den)
31 if (den == 0) {
32 return 0;
34 return num / den;
37 int64_t HELPER(sdiv64)(int64_t num, int64_t den)
39 if (den == 0) {
40 return 0;
42 if (num == LLONG_MIN && den == -1) {
43 return LLONG_MIN;
45 return num / den;
48 uint64_t HELPER(clz64)(uint64_t x)
50 return clz64(x);
53 uint64_t HELPER(cls64)(uint64_t x)
55 return clrsb64(x);
58 uint32_t HELPER(cls32)(uint32_t x)
60 return clrsb32(x);
63 uint64_t HELPER(rbit64)(uint64_t x)
65 /* assign the correct byte position */
66 x = bswap64(x);
68 /* assign the correct nibble position */
69 x = ((x & 0xf0f0f0f0f0f0f0f0ULL) >> 4)
70 | ((x & 0x0f0f0f0f0f0f0f0fULL) << 4);
72 /* assign the correct bit position */
73 x = ((x & 0x8888888888888888ULL) >> 3)
74 | ((x & 0x4444444444444444ULL) >> 1)
75 | ((x & 0x2222222222222222ULL) << 1)
76 | ((x & 0x1111111111111111ULL) << 3);
78 return x;
81 /* Convert a softfloat float_relation_ (as returned by
82 * the float*_compare functions) to the correct ARM
83 * NZCV flag state.
85 static inline uint32_t float_rel_to_flags(int res)
87 uint64_t flags;
88 switch (res) {
89 case float_relation_equal:
90 flags = PSTATE_Z | PSTATE_C;
91 break;
92 case float_relation_less:
93 flags = PSTATE_N;
94 break;
95 case float_relation_greater:
96 flags = PSTATE_C;
97 break;
98 case float_relation_unordered:
99 default:
100 flags = PSTATE_C | PSTATE_V;
101 break;
103 return flags;
106 uint64_t HELPER(vfp_cmps_a64)(float32 x, float32 y, void *fp_status)
108 return float_rel_to_flags(float32_compare_quiet(x, y, fp_status));
111 uint64_t HELPER(vfp_cmpes_a64)(float32 x, float32 y, void *fp_status)
113 return float_rel_to_flags(float32_compare(x, y, fp_status));
116 uint64_t HELPER(vfp_cmpd_a64)(float64 x, float64 y, void *fp_status)
118 return float_rel_to_flags(float64_compare_quiet(x, y, fp_status));
121 uint64_t HELPER(vfp_cmped_a64)(float64 x, float64 y, void *fp_status)
123 return float_rel_to_flags(float64_compare(x, y, fp_status));
126 float32 HELPER(vfp_mulxs)(float32 a, float32 b, void *fpstp)
128 float_status *fpst = fpstp;
130 if ((float32_is_zero(a) && float32_is_infinity(b)) ||
131 (float32_is_infinity(a) && float32_is_zero(b))) {
132 /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
133 return make_float32((1U << 30) |
134 ((float32_val(a) ^ float32_val(b)) & (1U << 31)));
136 return float32_mul(a, b, fpst);
139 float64 HELPER(vfp_mulxd)(float64 a, float64 b, void *fpstp)
141 float_status *fpst = fpstp;
143 if ((float64_is_zero(a) && float64_is_infinity(b)) ||
144 (float64_is_infinity(a) && float64_is_zero(b))) {
145 /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
146 return make_float64((1ULL << 62) |
147 ((float64_val(a) ^ float64_val(b)) & (1ULL << 63)));
149 return float64_mul(a, b, fpst);
152 uint64_t HELPER(simd_tbl)(CPUARMState *env, uint64_t result, uint64_t indices,
153 uint32_t rn, uint32_t numregs)
155 /* Helper function for SIMD TBL and TBX. We have to do the table
156 * lookup part for the 64 bits worth of indices we're passed in.
157 * result is the initial results vector (either zeroes for TBL
158 * or some guest values for TBX), rn the register number where
159 * the table starts, and numregs the number of registers in the table.
160 * We return the results of the lookups.
162 int shift;
164 for (shift = 0; shift < 64; shift += 8) {
165 int index = extract64(indices, shift, 8);
166 if (index < 16 * numregs) {
167 /* Convert index (a byte offset into the virtual table
168 * which is a series of 128-bit vectors concatenated)
169 * into the correct vfp.regs[] element plus a bit offset
170 * into that element, bearing in mind that the table
171 * can wrap around from V31 to V0.
173 int elt = (rn * 2 + (index >> 3)) % 64;
174 int bitidx = (index & 7) * 8;
175 uint64_t val = extract64(env->vfp.regs[elt], bitidx, 8);
177 result = deposit64(result, shift, 8, val);
180 return result;
183 /* 64bit/double versions of the neon float compare functions */
184 uint64_t HELPER(neon_ceq_f64)(float64 a, float64 b, void *fpstp)
186 float_status *fpst = fpstp;
187 return -float64_eq_quiet(a, b, fpst);
190 uint64_t HELPER(neon_cge_f64)(float64 a, float64 b, void *fpstp)
192 float_status *fpst = fpstp;
193 return -float64_le(b, a, fpst);
196 uint64_t HELPER(neon_cgt_f64)(float64 a, float64 b, void *fpstp)
198 float_status *fpst = fpstp;
199 return -float64_lt(b, a, fpst);
202 /* Reciprocal step and sqrt step. Note that unlike the A32/T32
203 * versions, these do a fully fused multiply-add or
204 * multiply-add-and-halve.
206 #define float32_two make_float32(0x40000000)
207 #define float32_three make_float32(0x40400000)
208 #define float32_one_point_five make_float32(0x3fc00000)
210 #define float64_two make_float64(0x4000000000000000ULL)
211 #define float64_three make_float64(0x4008000000000000ULL)
212 #define float64_one_point_five make_float64(0x3FF8000000000000ULL)
214 float32 HELPER(recpsf_f32)(float32 a, float32 b, void *fpstp)
216 float_status *fpst = fpstp;
218 a = float32_chs(a);
219 if ((float32_is_infinity(a) && float32_is_zero(b)) ||
220 (float32_is_infinity(b) && float32_is_zero(a))) {
221 return float32_two;
223 return float32_muladd(a, b, float32_two, 0, fpst);
226 float64 HELPER(recpsf_f64)(float64 a, float64 b, void *fpstp)
228 float_status *fpst = fpstp;
230 a = float64_chs(a);
231 if ((float64_is_infinity(a) && float64_is_zero(b)) ||
232 (float64_is_infinity(b) && float64_is_zero(a))) {
233 return float64_two;
235 return float64_muladd(a, b, float64_two, 0, fpst);
238 float32 HELPER(rsqrtsf_f32)(float32 a, float32 b, void *fpstp)
240 float_status *fpst = fpstp;
242 a = float32_chs(a);
243 if ((float32_is_infinity(a) && float32_is_zero(b)) ||
244 (float32_is_infinity(b) && float32_is_zero(a))) {
245 return float32_one_point_five;
247 return float32_muladd(a, b, float32_three, float_muladd_halve_result, fpst);
250 float64 HELPER(rsqrtsf_f64)(float64 a, float64 b, void *fpstp)
252 float_status *fpst = fpstp;
254 a = float64_chs(a);
255 if ((float64_is_infinity(a) && float64_is_zero(b)) ||
256 (float64_is_infinity(b) && float64_is_zero(a))) {
257 return float64_one_point_five;
259 return float64_muladd(a, b, float64_three, float_muladd_halve_result, fpst);