xen-hvm: try to use xenforeignmemory_map_resource() to map ioreq pages
[qemu.git] / hw / i386 / xen / xen-hvm.c
blob54f99abfea0b6dcb8e14b9094917da9e3a622f24
1 /*
2 * Copyright (C) 2010 Citrix Ltd.
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
7 * Contributions after 2012-01-13 are licensed under the terms of the
8 * GNU GPL, version 2 or (at your option) any later version.
9 */
11 #include "qemu/osdep.h"
13 #include "cpu.h"
14 #include "hw/pci/pci.h"
15 #include "hw/i386/pc.h"
16 #include "hw/i386/apic-msidef.h"
17 #include "hw/xen/xen_common.h"
18 #include "hw/xen/xen_backend.h"
19 #include "qapi/error.h"
20 #include "qapi/qapi-commands-misc.h"
21 #include "qemu/error-report.h"
22 #include "qemu/range.h"
23 #include "sysemu/xen-mapcache.h"
24 #include "trace.h"
25 #include "exec/address-spaces.h"
27 #include <xen/hvm/ioreq.h>
28 #include <xen/hvm/params.h>
29 #include <xen/hvm/e820.h>
31 //#define DEBUG_XEN_HVM
33 #ifdef DEBUG_XEN_HVM
34 #define DPRINTF(fmt, ...) \
35 do { fprintf(stderr, "xen: " fmt, ## __VA_ARGS__); } while (0)
36 #else
37 #define DPRINTF(fmt, ...) \
38 do { } while (0)
39 #endif
41 static MemoryRegion ram_memory, ram_640k, ram_lo, ram_hi;
42 static MemoryRegion *framebuffer;
43 static bool xen_in_migration;
45 /* Compatibility with older version */
47 /* This allows QEMU to build on a system that has Xen 4.5 or earlier
48 * installed. This here (not in hw/xen/xen_common.h) because xen/hvm/ioreq.h
49 * needs to be included before this block and hw/xen/xen_common.h needs to
50 * be included before xen/hvm/ioreq.h
52 #ifndef IOREQ_TYPE_VMWARE_PORT
53 #define IOREQ_TYPE_VMWARE_PORT 3
54 struct vmware_regs {
55 uint32_t esi;
56 uint32_t edi;
57 uint32_t ebx;
58 uint32_t ecx;
59 uint32_t edx;
61 typedef struct vmware_regs vmware_regs_t;
63 struct shared_vmport_iopage {
64 struct vmware_regs vcpu_vmport_regs[1];
66 typedef struct shared_vmport_iopage shared_vmport_iopage_t;
67 #endif
69 static inline uint32_t xen_vcpu_eport(shared_iopage_t *shared_page, int i)
71 return shared_page->vcpu_ioreq[i].vp_eport;
73 static inline ioreq_t *xen_vcpu_ioreq(shared_iopage_t *shared_page, int vcpu)
75 return &shared_page->vcpu_ioreq[vcpu];
78 #define BUFFER_IO_MAX_DELAY 100
80 typedef struct XenPhysmap {
81 hwaddr start_addr;
82 ram_addr_t size;
83 const char *name;
84 hwaddr phys_offset;
86 QLIST_ENTRY(XenPhysmap) list;
87 } XenPhysmap;
89 static QLIST_HEAD(, XenPhysmap) xen_physmap;
91 typedef struct XenIOState {
92 ioservid_t ioservid;
93 shared_iopage_t *shared_page;
94 shared_vmport_iopage_t *shared_vmport_page;
95 buffered_iopage_t *buffered_io_page;
96 QEMUTimer *buffered_io_timer;
97 CPUState **cpu_by_vcpu_id;
98 /* the evtchn port for polling the notification, */
99 evtchn_port_t *ioreq_local_port;
100 /* evtchn remote and local ports for buffered io */
101 evtchn_port_t bufioreq_remote_port;
102 evtchn_port_t bufioreq_local_port;
103 /* the evtchn fd for polling */
104 xenevtchn_handle *xce_handle;
105 /* which vcpu we are serving */
106 int send_vcpu;
108 struct xs_handle *xenstore;
109 MemoryListener memory_listener;
110 MemoryListener io_listener;
111 DeviceListener device_listener;
112 hwaddr free_phys_offset;
113 const XenPhysmap *log_for_dirtybit;
115 Notifier exit;
116 Notifier suspend;
117 Notifier wakeup;
118 } XenIOState;
120 /* Xen specific function for piix pci */
122 int xen_pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num)
124 return irq_num + ((pci_dev->devfn >> 3) << 2);
127 void xen_piix3_set_irq(void *opaque, int irq_num, int level)
129 xen_set_pci_intx_level(xen_domid, 0, 0, irq_num >> 2,
130 irq_num & 3, level);
133 void xen_piix_pci_write_config_client(uint32_t address, uint32_t val, int len)
135 int i;
137 /* Scan for updates to PCI link routes (0x60-0x63). */
138 for (i = 0; i < len; i++) {
139 uint8_t v = (val >> (8 * i)) & 0xff;
140 if (v & 0x80) {
141 v = 0;
143 v &= 0xf;
144 if (((address + i) >= 0x60) && ((address + i) <= 0x63)) {
145 xen_set_pci_link_route(xen_domid, address + i - 0x60, v);
150 int xen_is_pirq_msi(uint32_t msi_data)
152 /* If vector is 0, the msi is remapped into a pirq, passed as
153 * dest_id.
155 return ((msi_data & MSI_DATA_VECTOR_MASK) >> MSI_DATA_VECTOR_SHIFT) == 0;
158 void xen_hvm_inject_msi(uint64_t addr, uint32_t data)
160 xen_inject_msi(xen_domid, addr, data);
163 static void xen_suspend_notifier(Notifier *notifier, void *data)
165 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 3);
168 /* Xen Interrupt Controller */
170 static void xen_set_irq(void *opaque, int irq, int level)
172 xen_set_isa_irq_level(xen_domid, irq, level);
175 qemu_irq *xen_interrupt_controller_init(void)
177 return qemu_allocate_irqs(xen_set_irq, NULL, 16);
180 /* Memory Ops */
182 static void xen_ram_init(PCMachineState *pcms,
183 ram_addr_t ram_size, MemoryRegion **ram_memory_p)
185 MemoryRegion *sysmem = get_system_memory();
186 ram_addr_t block_len;
187 uint64_t user_lowmem = object_property_get_uint(qdev_get_machine(),
188 PC_MACHINE_MAX_RAM_BELOW_4G,
189 &error_abort);
191 /* Handle the machine opt max-ram-below-4g. It is basically doing
192 * min(xen limit, user limit).
194 if (!user_lowmem) {
195 user_lowmem = HVM_BELOW_4G_RAM_END; /* default */
197 if (HVM_BELOW_4G_RAM_END <= user_lowmem) {
198 user_lowmem = HVM_BELOW_4G_RAM_END;
201 if (ram_size >= user_lowmem) {
202 pcms->above_4g_mem_size = ram_size - user_lowmem;
203 pcms->below_4g_mem_size = user_lowmem;
204 } else {
205 pcms->above_4g_mem_size = 0;
206 pcms->below_4g_mem_size = ram_size;
208 if (!pcms->above_4g_mem_size) {
209 block_len = ram_size;
210 } else {
212 * Xen does not allocate the memory continuously, it keeps a
213 * hole of the size computed above or passed in.
215 block_len = (1ULL << 32) + pcms->above_4g_mem_size;
217 memory_region_init_ram(&ram_memory, NULL, "xen.ram", block_len,
218 &error_fatal);
219 *ram_memory_p = &ram_memory;
221 memory_region_init_alias(&ram_640k, NULL, "xen.ram.640k",
222 &ram_memory, 0, 0xa0000);
223 memory_region_add_subregion(sysmem, 0, &ram_640k);
224 /* Skip of the VGA IO memory space, it will be registered later by the VGA
225 * emulated device.
227 * The area between 0xc0000 and 0x100000 will be used by SeaBIOS to load
228 * the Options ROM, so it is registered here as RAM.
230 memory_region_init_alias(&ram_lo, NULL, "xen.ram.lo",
231 &ram_memory, 0xc0000,
232 pcms->below_4g_mem_size - 0xc0000);
233 memory_region_add_subregion(sysmem, 0xc0000, &ram_lo);
234 if (pcms->above_4g_mem_size > 0) {
235 memory_region_init_alias(&ram_hi, NULL, "xen.ram.hi",
236 &ram_memory, 0x100000000ULL,
237 pcms->above_4g_mem_size);
238 memory_region_add_subregion(sysmem, 0x100000000ULL, &ram_hi);
242 void xen_ram_alloc(ram_addr_t ram_addr, ram_addr_t size, MemoryRegion *mr,
243 Error **errp)
245 unsigned long nr_pfn;
246 xen_pfn_t *pfn_list;
247 int i;
249 if (runstate_check(RUN_STATE_INMIGRATE)) {
250 /* RAM already populated in Xen */
251 fprintf(stderr, "%s: do not alloc "RAM_ADDR_FMT
252 " bytes of ram at "RAM_ADDR_FMT" when runstate is INMIGRATE\n",
253 __func__, size, ram_addr);
254 return;
257 if (mr == &ram_memory) {
258 return;
261 trace_xen_ram_alloc(ram_addr, size);
263 nr_pfn = size >> TARGET_PAGE_BITS;
264 pfn_list = g_malloc(sizeof (*pfn_list) * nr_pfn);
266 for (i = 0; i < nr_pfn; i++) {
267 pfn_list[i] = (ram_addr >> TARGET_PAGE_BITS) + i;
270 if (xc_domain_populate_physmap_exact(xen_xc, xen_domid, nr_pfn, 0, 0, pfn_list)) {
271 error_setg(errp, "xen: failed to populate ram at " RAM_ADDR_FMT,
272 ram_addr);
275 g_free(pfn_list);
278 static XenPhysmap *get_physmapping(hwaddr start_addr, ram_addr_t size)
280 XenPhysmap *physmap = NULL;
282 start_addr &= TARGET_PAGE_MASK;
284 QLIST_FOREACH(physmap, &xen_physmap, list) {
285 if (range_covers_byte(physmap->start_addr, physmap->size, start_addr)) {
286 return physmap;
289 return NULL;
292 static hwaddr xen_phys_offset_to_gaddr(hwaddr phys_offset, ram_addr_t size)
294 hwaddr addr = phys_offset & TARGET_PAGE_MASK;
295 XenPhysmap *physmap = NULL;
297 QLIST_FOREACH(physmap, &xen_physmap, list) {
298 if (range_covers_byte(physmap->phys_offset, physmap->size, addr)) {
299 return physmap->start_addr + (phys_offset - physmap->phys_offset);
303 return phys_offset;
306 #ifdef XEN_COMPAT_PHYSMAP
307 static int xen_save_physmap(XenIOState *state, XenPhysmap *physmap)
309 char path[80], value[17];
311 snprintf(path, sizeof(path),
312 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/start_addr",
313 xen_domid, (uint64_t)physmap->phys_offset);
314 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)physmap->start_addr);
315 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) {
316 return -1;
318 snprintf(path, sizeof(path),
319 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/size",
320 xen_domid, (uint64_t)physmap->phys_offset);
321 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)physmap->size);
322 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) {
323 return -1;
325 if (physmap->name) {
326 snprintf(path, sizeof(path),
327 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/name",
328 xen_domid, (uint64_t)physmap->phys_offset);
329 if (!xs_write(state->xenstore, 0, path,
330 physmap->name, strlen(physmap->name))) {
331 return -1;
334 return 0;
336 #else
337 static int xen_save_physmap(XenIOState *state, XenPhysmap *physmap)
339 return 0;
341 #endif
343 static int xen_add_to_physmap(XenIOState *state,
344 hwaddr start_addr,
345 ram_addr_t size,
346 MemoryRegion *mr,
347 hwaddr offset_within_region)
349 unsigned long nr_pages;
350 int rc = 0;
351 XenPhysmap *physmap = NULL;
352 hwaddr pfn, start_gpfn;
353 hwaddr phys_offset = memory_region_get_ram_addr(mr);
354 const char *mr_name;
356 if (get_physmapping(start_addr, size)) {
357 return 0;
359 if (size <= 0) {
360 return -1;
363 /* Xen can only handle a single dirty log region for now and we want
364 * the linear framebuffer to be that region.
365 * Avoid tracking any regions that is not videoram and avoid tracking
366 * the legacy vga region. */
367 if (mr == framebuffer && start_addr > 0xbffff) {
368 goto go_physmap;
370 return -1;
372 go_physmap:
373 DPRINTF("mapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx"\n",
374 start_addr, start_addr + size);
376 mr_name = memory_region_name(mr);
378 physmap = g_malloc(sizeof(XenPhysmap));
380 physmap->start_addr = start_addr;
381 physmap->size = size;
382 physmap->name = mr_name;
383 physmap->phys_offset = phys_offset;
385 QLIST_INSERT_HEAD(&xen_physmap, physmap, list);
387 if (runstate_check(RUN_STATE_INMIGRATE)) {
388 /* Now when we have a physmap entry we can replace a dummy mapping with
389 * a real one of guest foreign memory. */
390 uint8_t *p = xen_replace_cache_entry(phys_offset, start_addr, size);
391 assert(p && p == memory_region_get_ram_ptr(mr));
393 return 0;
396 pfn = phys_offset >> TARGET_PAGE_BITS;
397 start_gpfn = start_addr >> TARGET_PAGE_BITS;
398 nr_pages = size >> TARGET_PAGE_BITS;
399 rc = xendevicemodel_relocate_memory(xen_dmod, xen_domid, nr_pages, pfn,
400 start_gpfn);
401 if (rc) {
402 int saved_errno = errno;
404 error_report("relocate_memory %lu pages from GFN %"HWADDR_PRIx
405 " to GFN %"HWADDR_PRIx" failed: %s",
406 nr_pages, pfn, start_gpfn, strerror(saved_errno));
407 errno = saved_errno;
408 return -1;
411 rc = xendevicemodel_pin_memory_cacheattr(xen_dmod, xen_domid,
412 start_addr >> TARGET_PAGE_BITS,
413 (start_addr + size - 1) >> TARGET_PAGE_BITS,
414 XEN_DOMCTL_MEM_CACHEATTR_WB);
415 if (rc) {
416 error_report("pin_memory_cacheattr failed: %s", strerror(errno));
418 return xen_save_physmap(state, physmap);
421 static int xen_remove_from_physmap(XenIOState *state,
422 hwaddr start_addr,
423 ram_addr_t size)
425 int rc = 0;
426 XenPhysmap *physmap = NULL;
427 hwaddr phys_offset = 0;
429 physmap = get_physmapping(start_addr, size);
430 if (physmap == NULL) {
431 return -1;
434 phys_offset = physmap->phys_offset;
435 size = physmap->size;
437 DPRINTF("unmapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx", at "
438 "%"HWADDR_PRIx"\n", start_addr, start_addr + size, phys_offset);
440 size >>= TARGET_PAGE_BITS;
441 start_addr >>= TARGET_PAGE_BITS;
442 phys_offset >>= TARGET_PAGE_BITS;
443 rc = xendevicemodel_relocate_memory(xen_dmod, xen_domid, size, start_addr,
444 phys_offset);
445 if (rc) {
446 int saved_errno = errno;
448 error_report("relocate_memory "RAM_ADDR_FMT" pages"
449 " from GFN %"HWADDR_PRIx
450 " to GFN %"HWADDR_PRIx" failed: %s",
451 size, start_addr, phys_offset, strerror(saved_errno));
452 errno = saved_errno;
453 return -1;
456 QLIST_REMOVE(physmap, list);
457 if (state->log_for_dirtybit == physmap) {
458 state->log_for_dirtybit = NULL;
460 g_free(physmap);
462 return 0;
465 static void xen_set_memory(struct MemoryListener *listener,
466 MemoryRegionSection *section,
467 bool add)
469 XenIOState *state = container_of(listener, XenIOState, memory_listener);
470 hwaddr start_addr = section->offset_within_address_space;
471 ram_addr_t size = int128_get64(section->size);
472 bool log_dirty = memory_region_is_logging(section->mr, DIRTY_MEMORY_VGA);
473 hvmmem_type_t mem_type;
475 if (section->mr == &ram_memory) {
476 return;
477 } else {
478 if (add) {
479 xen_map_memory_section(xen_domid, state->ioservid,
480 section);
481 } else {
482 xen_unmap_memory_section(xen_domid, state->ioservid,
483 section);
487 if (!memory_region_is_ram(section->mr)) {
488 return;
491 if (log_dirty != add) {
492 return;
495 trace_xen_client_set_memory(start_addr, size, log_dirty);
497 start_addr &= TARGET_PAGE_MASK;
498 size = TARGET_PAGE_ALIGN(size);
500 if (add) {
501 if (!memory_region_is_rom(section->mr)) {
502 xen_add_to_physmap(state, start_addr, size,
503 section->mr, section->offset_within_region);
504 } else {
505 mem_type = HVMMEM_ram_ro;
506 if (xen_set_mem_type(xen_domid, mem_type,
507 start_addr >> TARGET_PAGE_BITS,
508 size >> TARGET_PAGE_BITS)) {
509 DPRINTF("xen_set_mem_type error, addr: "TARGET_FMT_plx"\n",
510 start_addr);
513 } else {
514 if (xen_remove_from_physmap(state, start_addr, size) < 0) {
515 DPRINTF("physmapping does not exist at "TARGET_FMT_plx"\n", start_addr);
520 static void xen_region_add(MemoryListener *listener,
521 MemoryRegionSection *section)
523 memory_region_ref(section->mr);
524 xen_set_memory(listener, section, true);
527 static void xen_region_del(MemoryListener *listener,
528 MemoryRegionSection *section)
530 xen_set_memory(listener, section, false);
531 memory_region_unref(section->mr);
534 static void xen_io_add(MemoryListener *listener,
535 MemoryRegionSection *section)
537 XenIOState *state = container_of(listener, XenIOState, io_listener);
538 MemoryRegion *mr = section->mr;
540 if (mr->ops == &unassigned_io_ops) {
541 return;
544 memory_region_ref(mr);
546 xen_map_io_section(xen_domid, state->ioservid, section);
549 static void xen_io_del(MemoryListener *listener,
550 MemoryRegionSection *section)
552 XenIOState *state = container_of(listener, XenIOState, io_listener);
553 MemoryRegion *mr = section->mr;
555 if (mr->ops == &unassigned_io_ops) {
556 return;
559 xen_unmap_io_section(xen_domid, state->ioservid, section);
561 memory_region_unref(mr);
564 static void xen_device_realize(DeviceListener *listener,
565 DeviceState *dev)
567 XenIOState *state = container_of(listener, XenIOState, device_listener);
569 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
570 PCIDevice *pci_dev = PCI_DEVICE(dev);
572 xen_map_pcidev(xen_domid, state->ioservid, pci_dev);
576 static void xen_device_unrealize(DeviceListener *listener,
577 DeviceState *dev)
579 XenIOState *state = container_of(listener, XenIOState, device_listener);
581 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
582 PCIDevice *pci_dev = PCI_DEVICE(dev);
584 xen_unmap_pcidev(xen_domid, state->ioservid, pci_dev);
588 static void xen_sync_dirty_bitmap(XenIOState *state,
589 hwaddr start_addr,
590 ram_addr_t size)
592 hwaddr npages = size >> TARGET_PAGE_BITS;
593 const int width = sizeof(unsigned long) * 8;
594 unsigned long bitmap[DIV_ROUND_UP(npages, width)];
595 int rc, i, j;
596 const XenPhysmap *physmap = NULL;
598 physmap = get_physmapping(start_addr, size);
599 if (physmap == NULL) {
600 /* not handled */
601 return;
604 if (state->log_for_dirtybit == NULL) {
605 state->log_for_dirtybit = physmap;
606 } else if (state->log_for_dirtybit != physmap) {
607 /* Only one range for dirty bitmap can be tracked. */
608 return;
611 rc = xen_track_dirty_vram(xen_domid, start_addr >> TARGET_PAGE_BITS,
612 npages, bitmap);
613 if (rc < 0) {
614 #ifndef ENODATA
615 #define ENODATA ENOENT
616 #endif
617 if (errno == ENODATA) {
618 memory_region_set_dirty(framebuffer, 0, size);
619 DPRINTF("xen: track_dirty_vram failed (0x" TARGET_FMT_plx
620 ", 0x" TARGET_FMT_plx "): %s\n",
621 start_addr, start_addr + size, strerror(errno));
623 return;
626 for (i = 0; i < ARRAY_SIZE(bitmap); i++) {
627 unsigned long map = bitmap[i];
628 while (map != 0) {
629 j = ctzl(map);
630 map &= ~(1ul << j);
631 memory_region_set_dirty(framebuffer,
632 (i * width + j) * TARGET_PAGE_SIZE,
633 TARGET_PAGE_SIZE);
638 static void xen_log_start(MemoryListener *listener,
639 MemoryRegionSection *section,
640 int old, int new)
642 XenIOState *state = container_of(listener, XenIOState, memory_listener);
644 if (new & ~old & (1 << DIRTY_MEMORY_VGA)) {
645 xen_sync_dirty_bitmap(state, section->offset_within_address_space,
646 int128_get64(section->size));
650 static void xen_log_stop(MemoryListener *listener, MemoryRegionSection *section,
651 int old, int new)
653 XenIOState *state = container_of(listener, XenIOState, memory_listener);
655 if (old & ~new & (1 << DIRTY_MEMORY_VGA)) {
656 state->log_for_dirtybit = NULL;
657 /* Disable dirty bit tracking */
658 xen_track_dirty_vram(xen_domid, 0, 0, NULL);
662 static void xen_log_sync(MemoryListener *listener, MemoryRegionSection *section)
664 XenIOState *state = container_of(listener, XenIOState, memory_listener);
666 xen_sync_dirty_bitmap(state, section->offset_within_address_space,
667 int128_get64(section->size));
670 static void xen_log_global_start(MemoryListener *listener)
672 if (xen_enabled()) {
673 xen_in_migration = true;
677 static void xen_log_global_stop(MemoryListener *listener)
679 xen_in_migration = false;
682 static MemoryListener xen_memory_listener = {
683 .region_add = xen_region_add,
684 .region_del = xen_region_del,
685 .log_start = xen_log_start,
686 .log_stop = xen_log_stop,
687 .log_sync = xen_log_sync,
688 .log_global_start = xen_log_global_start,
689 .log_global_stop = xen_log_global_stop,
690 .priority = 10,
693 static MemoryListener xen_io_listener = {
694 .region_add = xen_io_add,
695 .region_del = xen_io_del,
696 .priority = 10,
699 static DeviceListener xen_device_listener = {
700 .realize = xen_device_realize,
701 .unrealize = xen_device_unrealize,
704 /* get the ioreq packets from share mem */
705 static ioreq_t *cpu_get_ioreq_from_shared_memory(XenIOState *state, int vcpu)
707 ioreq_t *req = xen_vcpu_ioreq(state->shared_page, vcpu);
709 if (req->state != STATE_IOREQ_READY) {
710 DPRINTF("I/O request not ready: "
711 "%x, ptr: %x, port: %"PRIx64", "
712 "data: %"PRIx64", count: %u, size: %u\n",
713 req->state, req->data_is_ptr, req->addr,
714 req->data, req->count, req->size);
715 return NULL;
718 xen_rmb(); /* see IOREQ_READY /then/ read contents of ioreq */
720 req->state = STATE_IOREQ_INPROCESS;
721 return req;
724 /* use poll to get the port notification */
725 /* ioreq_vec--out,the */
726 /* retval--the number of ioreq packet */
727 static ioreq_t *cpu_get_ioreq(XenIOState *state)
729 int i;
730 evtchn_port_t port;
732 port = xenevtchn_pending(state->xce_handle);
733 if (port == state->bufioreq_local_port) {
734 timer_mod(state->buffered_io_timer,
735 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME));
736 return NULL;
739 if (port != -1) {
740 for (i = 0; i < max_cpus; i++) {
741 if (state->ioreq_local_port[i] == port) {
742 break;
746 if (i == max_cpus) {
747 hw_error("Fatal error while trying to get io event!\n");
750 /* unmask the wanted port again */
751 xenevtchn_unmask(state->xce_handle, port);
753 /* get the io packet from shared memory */
754 state->send_vcpu = i;
755 return cpu_get_ioreq_from_shared_memory(state, i);
758 /* read error or read nothing */
759 return NULL;
762 static uint32_t do_inp(uint32_t addr, unsigned long size)
764 switch (size) {
765 case 1:
766 return cpu_inb(addr);
767 case 2:
768 return cpu_inw(addr);
769 case 4:
770 return cpu_inl(addr);
771 default:
772 hw_error("inp: bad size: %04x %lx", addr, size);
776 static void do_outp(uint32_t addr,
777 unsigned long size, uint32_t val)
779 switch (size) {
780 case 1:
781 return cpu_outb(addr, val);
782 case 2:
783 return cpu_outw(addr, val);
784 case 4:
785 return cpu_outl(addr, val);
786 default:
787 hw_error("outp: bad size: %04x %lx", addr, size);
792 * Helper functions which read/write an object from/to physical guest
793 * memory, as part of the implementation of an ioreq.
795 * Equivalent to
796 * cpu_physical_memory_rw(addr + (req->df ? -1 : +1) * req->size * i,
797 * val, req->size, 0/1)
798 * except without the integer overflow problems.
800 static void rw_phys_req_item(hwaddr addr,
801 ioreq_t *req, uint32_t i, void *val, int rw)
803 /* Do everything unsigned so overflow just results in a truncated result
804 * and accesses to undesired parts of guest memory, which is up
805 * to the guest */
806 hwaddr offset = (hwaddr)req->size * i;
807 if (req->df) {
808 addr -= offset;
809 } else {
810 addr += offset;
812 cpu_physical_memory_rw(addr, val, req->size, rw);
815 static inline void read_phys_req_item(hwaddr addr,
816 ioreq_t *req, uint32_t i, void *val)
818 rw_phys_req_item(addr, req, i, val, 0);
820 static inline void write_phys_req_item(hwaddr addr,
821 ioreq_t *req, uint32_t i, void *val)
823 rw_phys_req_item(addr, req, i, val, 1);
827 static void cpu_ioreq_pio(ioreq_t *req)
829 uint32_t i;
831 trace_cpu_ioreq_pio(req, req->dir, req->df, req->data_is_ptr, req->addr,
832 req->data, req->count, req->size);
834 if (req->size > sizeof(uint32_t)) {
835 hw_error("PIO: bad size (%u)", req->size);
838 if (req->dir == IOREQ_READ) {
839 if (!req->data_is_ptr) {
840 req->data = do_inp(req->addr, req->size);
841 trace_cpu_ioreq_pio_read_reg(req, req->data, req->addr,
842 req->size);
843 } else {
844 uint32_t tmp;
846 for (i = 0; i < req->count; i++) {
847 tmp = do_inp(req->addr, req->size);
848 write_phys_req_item(req->data, req, i, &tmp);
851 } else if (req->dir == IOREQ_WRITE) {
852 if (!req->data_is_ptr) {
853 trace_cpu_ioreq_pio_write_reg(req, req->data, req->addr,
854 req->size);
855 do_outp(req->addr, req->size, req->data);
856 } else {
857 for (i = 0; i < req->count; i++) {
858 uint32_t tmp = 0;
860 read_phys_req_item(req->data, req, i, &tmp);
861 do_outp(req->addr, req->size, tmp);
867 static void cpu_ioreq_move(ioreq_t *req)
869 uint32_t i;
871 trace_cpu_ioreq_move(req, req->dir, req->df, req->data_is_ptr, req->addr,
872 req->data, req->count, req->size);
874 if (req->size > sizeof(req->data)) {
875 hw_error("MMIO: bad size (%u)", req->size);
878 if (!req->data_is_ptr) {
879 if (req->dir == IOREQ_READ) {
880 for (i = 0; i < req->count; i++) {
881 read_phys_req_item(req->addr, req, i, &req->data);
883 } else if (req->dir == IOREQ_WRITE) {
884 for (i = 0; i < req->count; i++) {
885 write_phys_req_item(req->addr, req, i, &req->data);
888 } else {
889 uint64_t tmp;
891 if (req->dir == IOREQ_READ) {
892 for (i = 0; i < req->count; i++) {
893 read_phys_req_item(req->addr, req, i, &tmp);
894 write_phys_req_item(req->data, req, i, &tmp);
896 } else if (req->dir == IOREQ_WRITE) {
897 for (i = 0; i < req->count; i++) {
898 read_phys_req_item(req->data, req, i, &tmp);
899 write_phys_req_item(req->addr, req, i, &tmp);
905 static void regs_to_cpu(vmware_regs_t *vmport_regs, ioreq_t *req)
907 X86CPU *cpu;
908 CPUX86State *env;
910 cpu = X86_CPU(current_cpu);
911 env = &cpu->env;
912 env->regs[R_EAX] = req->data;
913 env->regs[R_EBX] = vmport_regs->ebx;
914 env->regs[R_ECX] = vmport_regs->ecx;
915 env->regs[R_EDX] = vmport_regs->edx;
916 env->regs[R_ESI] = vmport_regs->esi;
917 env->regs[R_EDI] = vmport_regs->edi;
920 static void regs_from_cpu(vmware_regs_t *vmport_regs)
922 X86CPU *cpu = X86_CPU(current_cpu);
923 CPUX86State *env = &cpu->env;
925 vmport_regs->ebx = env->regs[R_EBX];
926 vmport_regs->ecx = env->regs[R_ECX];
927 vmport_regs->edx = env->regs[R_EDX];
928 vmport_regs->esi = env->regs[R_ESI];
929 vmport_regs->edi = env->regs[R_EDI];
932 static void handle_vmport_ioreq(XenIOState *state, ioreq_t *req)
934 vmware_regs_t *vmport_regs;
936 assert(state->shared_vmport_page);
937 vmport_regs =
938 &state->shared_vmport_page->vcpu_vmport_regs[state->send_vcpu];
939 QEMU_BUILD_BUG_ON(sizeof(*req) < sizeof(*vmport_regs));
941 current_cpu = state->cpu_by_vcpu_id[state->send_vcpu];
942 regs_to_cpu(vmport_regs, req);
943 cpu_ioreq_pio(req);
944 regs_from_cpu(vmport_regs);
945 current_cpu = NULL;
948 static void handle_ioreq(XenIOState *state, ioreq_t *req)
950 trace_handle_ioreq(req, req->type, req->dir, req->df, req->data_is_ptr,
951 req->addr, req->data, req->count, req->size);
953 if (!req->data_is_ptr && (req->dir == IOREQ_WRITE) &&
954 (req->size < sizeof (target_ulong))) {
955 req->data &= ((target_ulong) 1 << (8 * req->size)) - 1;
958 if (req->dir == IOREQ_WRITE)
959 trace_handle_ioreq_write(req, req->type, req->df, req->data_is_ptr,
960 req->addr, req->data, req->count, req->size);
962 switch (req->type) {
963 case IOREQ_TYPE_PIO:
964 cpu_ioreq_pio(req);
965 break;
966 case IOREQ_TYPE_COPY:
967 cpu_ioreq_move(req);
968 break;
969 case IOREQ_TYPE_VMWARE_PORT:
970 handle_vmport_ioreq(state, req);
971 break;
972 case IOREQ_TYPE_TIMEOFFSET:
973 break;
974 case IOREQ_TYPE_INVALIDATE:
975 xen_invalidate_map_cache();
976 break;
977 case IOREQ_TYPE_PCI_CONFIG: {
978 uint32_t sbdf = req->addr >> 32;
979 uint32_t val;
981 /* Fake a write to port 0xCF8 so that
982 * the config space access will target the
983 * correct device model.
985 val = (1u << 31) |
986 ((req->addr & 0x0f00) << 16) |
987 ((sbdf & 0xffff) << 8) |
988 (req->addr & 0xfc);
989 do_outp(0xcf8, 4, val);
991 /* Now issue the config space access via
992 * port 0xCFC
994 req->addr = 0xcfc | (req->addr & 0x03);
995 cpu_ioreq_pio(req);
996 break;
998 default:
999 hw_error("Invalid ioreq type 0x%x\n", req->type);
1001 if (req->dir == IOREQ_READ) {
1002 trace_handle_ioreq_read(req, req->type, req->df, req->data_is_ptr,
1003 req->addr, req->data, req->count, req->size);
1007 static int handle_buffered_iopage(XenIOState *state)
1009 buffered_iopage_t *buf_page = state->buffered_io_page;
1010 buf_ioreq_t *buf_req = NULL;
1011 ioreq_t req;
1012 int qw;
1014 if (!buf_page) {
1015 return 0;
1018 memset(&req, 0x00, sizeof(req));
1019 req.state = STATE_IOREQ_READY;
1020 req.count = 1;
1021 req.dir = IOREQ_WRITE;
1023 for (;;) {
1024 uint32_t rdptr = buf_page->read_pointer, wrptr;
1026 xen_rmb();
1027 wrptr = buf_page->write_pointer;
1028 xen_rmb();
1029 if (rdptr != buf_page->read_pointer) {
1030 continue;
1032 if (rdptr == wrptr) {
1033 break;
1035 buf_req = &buf_page->buf_ioreq[rdptr % IOREQ_BUFFER_SLOT_NUM];
1036 req.size = 1U << buf_req->size;
1037 req.addr = buf_req->addr;
1038 req.data = buf_req->data;
1039 req.type = buf_req->type;
1040 xen_rmb();
1041 qw = (req.size == 8);
1042 if (qw) {
1043 if (rdptr + 1 == wrptr) {
1044 hw_error("Incomplete quad word buffered ioreq");
1046 buf_req = &buf_page->buf_ioreq[(rdptr + 1) %
1047 IOREQ_BUFFER_SLOT_NUM];
1048 req.data |= ((uint64_t)buf_req->data) << 32;
1049 xen_rmb();
1052 handle_ioreq(state, &req);
1054 /* Only req.data may get updated by handle_ioreq(), albeit even that
1055 * should not happen as such data would never make it to the guest (we
1056 * can only usefully see writes here after all).
1058 assert(req.state == STATE_IOREQ_READY);
1059 assert(req.count == 1);
1060 assert(req.dir == IOREQ_WRITE);
1061 assert(!req.data_is_ptr);
1063 atomic_add(&buf_page->read_pointer, qw + 1);
1066 return req.count;
1069 static void handle_buffered_io(void *opaque)
1071 XenIOState *state = opaque;
1073 if (handle_buffered_iopage(state)) {
1074 timer_mod(state->buffered_io_timer,
1075 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME));
1076 } else {
1077 timer_del(state->buffered_io_timer);
1078 xenevtchn_unmask(state->xce_handle, state->bufioreq_local_port);
1082 static void cpu_handle_ioreq(void *opaque)
1084 XenIOState *state = opaque;
1085 ioreq_t *req = cpu_get_ioreq(state);
1087 handle_buffered_iopage(state);
1088 if (req) {
1089 ioreq_t copy = *req;
1091 xen_rmb();
1092 handle_ioreq(state, &copy);
1093 req->data = copy.data;
1095 if (req->state != STATE_IOREQ_INPROCESS) {
1096 fprintf(stderr, "Badness in I/O request ... not in service?!: "
1097 "%x, ptr: %x, port: %"PRIx64", "
1098 "data: %"PRIx64", count: %u, size: %u, type: %u\n",
1099 req->state, req->data_is_ptr, req->addr,
1100 req->data, req->count, req->size, req->type);
1101 destroy_hvm_domain(false);
1102 return;
1105 xen_wmb(); /* Update ioreq contents /then/ update state. */
1108 * We do this before we send the response so that the tools
1109 * have the opportunity to pick up on the reset before the
1110 * guest resumes and does a hlt with interrupts disabled which
1111 * causes Xen to powerdown the domain.
1113 if (runstate_is_running()) {
1114 ShutdownCause request;
1116 if (qemu_shutdown_requested_get()) {
1117 destroy_hvm_domain(false);
1119 request = qemu_reset_requested_get();
1120 if (request) {
1121 qemu_system_reset(request);
1122 destroy_hvm_domain(true);
1126 req->state = STATE_IORESP_READY;
1127 xenevtchn_notify(state->xce_handle,
1128 state->ioreq_local_port[state->send_vcpu]);
1132 static void xen_main_loop_prepare(XenIOState *state)
1134 int evtchn_fd = -1;
1136 if (state->xce_handle != NULL) {
1137 evtchn_fd = xenevtchn_fd(state->xce_handle);
1140 state->buffered_io_timer = timer_new_ms(QEMU_CLOCK_REALTIME, handle_buffered_io,
1141 state);
1143 if (evtchn_fd != -1) {
1144 CPUState *cpu_state;
1146 DPRINTF("%s: Init cpu_by_vcpu_id\n", __func__);
1147 CPU_FOREACH(cpu_state) {
1148 DPRINTF("%s: cpu_by_vcpu_id[%d]=%p\n",
1149 __func__, cpu_state->cpu_index, cpu_state);
1150 state->cpu_by_vcpu_id[cpu_state->cpu_index] = cpu_state;
1152 qemu_set_fd_handler(evtchn_fd, cpu_handle_ioreq, NULL, state);
1157 static void xen_hvm_change_state_handler(void *opaque, int running,
1158 RunState rstate)
1160 XenIOState *state = opaque;
1162 if (running) {
1163 xen_main_loop_prepare(state);
1166 xen_set_ioreq_server_state(xen_domid,
1167 state->ioservid,
1168 (rstate == RUN_STATE_RUNNING));
1171 static void xen_exit_notifier(Notifier *n, void *data)
1173 XenIOState *state = container_of(n, XenIOState, exit);
1175 xenevtchn_close(state->xce_handle);
1176 xs_daemon_close(state->xenstore);
1179 #ifdef XEN_COMPAT_PHYSMAP
1180 static void xen_read_physmap(XenIOState *state)
1182 XenPhysmap *physmap = NULL;
1183 unsigned int len, num, i;
1184 char path[80], *value = NULL;
1185 char **entries = NULL;
1187 snprintf(path, sizeof(path),
1188 "/local/domain/0/device-model/%d/physmap", xen_domid);
1189 entries = xs_directory(state->xenstore, 0, path, &num);
1190 if (entries == NULL)
1191 return;
1193 for (i = 0; i < num; i++) {
1194 physmap = g_malloc(sizeof (XenPhysmap));
1195 physmap->phys_offset = strtoull(entries[i], NULL, 16);
1196 snprintf(path, sizeof(path),
1197 "/local/domain/0/device-model/%d/physmap/%s/start_addr",
1198 xen_domid, entries[i]);
1199 value = xs_read(state->xenstore, 0, path, &len);
1200 if (value == NULL) {
1201 g_free(physmap);
1202 continue;
1204 physmap->start_addr = strtoull(value, NULL, 16);
1205 free(value);
1207 snprintf(path, sizeof(path),
1208 "/local/domain/0/device-model/%d/physmap/%s/size",
1209 xen_domid, entries[i]);
1210 value = xs_read(state->xenstore, 0, path, &len);
1211 if (value == NULL) {
1212 g_free(physmap);
1213 continue;
1215 physmap->size = strtoull(value, NULL, 16);
1216 free(value);
1218 snprintf(path, sizeof(path),
1219 "/local/domain/0/device-model/%d/physmap/%s/name",
1220 xen_domid, entries[i]);
1221 physmap->name = xs_read(state->xenstore, 0, path, &len);
1223 QLIST_INSERT_HEAD(&xen_physmap, physmap, list);
1225 free(entries);
1227 #else
1228 static void xen_read_physmap(XenIOState *state)
1231 #endif
1233 static void xen_wakeup_notifier(Notifier *notifier, void *data)
1235 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 0);
1238 static int xen_map_ioreq_server(XenIOState *state)
1240 void *addr = NULL;
1241 xenforeignmemory_resource_handle *fres;
1242 xen_pfn_t ioreq_pfn;
1243 xen_pfn_t bufioreq_pfn;
1244 evtchn_port_t bufioreq_evtchn;
1245 int rc;
1248 * Attempt to map using the resource API and fall back to normal
1249 * foreign mapping if this is not supported.
1251 QEMU_BUILD_BUG_ON(XENMEM_resource_ioreq_server_frame_bufioreq != 0);
1252 QEMU_BUILD_BUG_ON(XENMEM_resource_ioreq_server_frame_ioreq(0) != 1);
1253 fres = xenforeignmemory_map_resource(xen_fmem, xen_domid,
1254 XENMEM_resource_ioreq_server,
1255 state->ioservid, 0, 2,
1256 &addr,
1257 PROT_READ | PROT_WRITE, 0);
1258 if (fres != NULL) {
1259 trace_xen_map_resource_ioreq(state->ioservid, addr);
1260 state->buffered_io_page = addr;
1261 state->shared_page = addr + TARGET_PAGE_SIZE;
1262 } else if (errno != EOPNOTSUPP) {
1263 error_report("failed to map ioreq server resources: error %d handle=%p",
1264 errno, xen_xc);
1265 return -1;
1268 rc = xen_get_ioreq_server_info(xen_domid, state->ioservid,
1269 (state->shared_page == NULL) ?
1270 &ioreq_pfn : NULL,
1271 (state->buffered_io_page == NULL) ?
1272 &bufioreq_pfn : NULL,
1273 &bufioreq_evtchn);
1274 if (rc < 0) {
1275 error_report("failed to get ioreq server info: error %d handle=%p",
1276 errno, xen_xc);
1277 return rc;
1280 if (state->shared_page == NULL) {
1281 DPRINTF("shared page at pfn %lx\n", ioreq_pfn);
1283 state->shared_page = xenforeignmemory_map(xen_fmem, xen_domid,
1284 PROT_READ | PROT_WRITE,
1285 1, &ioreq_pfn, NULL);
1286 if (state->shared_page == NULL) {
1287 error_report("map shared IO page returned error %d handle=%p",
1288 errno, xen_xc);
1292 if (state->buffered_io_page == NULL) {
1293 DPRINTF("buffered io page at pfn %lx\n", bufioreq_pfn);
1295 state->buffered_io_page = xenforeignmemory_map(xen_fmem, xen_domid,
1296 PROT_READ | PROT_WRITE,
1297 1, &bufioreq_pfn,
1298 NULL);
1299 if (state->buffered_io_page == NULL) {
1300 error_report("map buffered IO page returned error %d", errno);
1301 return -1;
1305 if (state->shared_page == NULL || state->buffered_io_page == NULL) {
1306 return -1;
1309 DPRINTF("buffered io evtchn is %x\n", bufioreq_evtchn);
1311 state->bufioreq_remote_port = bufioreq_evtchn;
1313 return 0;
1316 void xen_hvm_init(PCMachineState *pcms, MemoryRegion **ram_memory)
1318 int i, rc;
1319 xen_pfn_t ioreq_pfn;
1320 XenIOState *state;
1322 state = g_malloc0(sizeof (XenIOState));
1324 state->xce_handle = xenevtchn_open(NULL, 0);
1325 if (state->xce_handle == NULL) {
1326 perror("xen: event channel open");
1327 goto err;
1330 state->xenstore = xs_daemon_open();
1331 if (state->xenstore == NULL) {
1332 perror("xen: xenstore open");
1333 goto err;
1336 xen_create_ioreq_server(xen_domid, &state->ioservid);
1338 state->exit.notify = xen_exit_notifier;
1339 qemu_add_exit_notifier(&state->exit);
1341 state->suspend.notify = xen_suspend_notifier;
1342 qemu_register_suspend_notifier(&state->suspend);
1344 state->wakeup.notify = xen_wakeup_notifier;
1345 qemu_register_wakeup_notifier(&state->wakeup);
1347 rc = xen_map_ioreq_server(state);
1348 if (rc < 0) {
1349 goto err;
1352 rc = xen_get_vmport_regs_pfn(xen_xc, xen_domid, &ioreq_pfn);
1353 if (!rc) {
1354 DPRINTF("shared vmport page at pfn %lx\n", ioreq_pfn);
1355 state->shared_vmport_page =
1356 xenforeignmemory_map(xen_fmem, xen_domid, PROT_READ|PROT_WRITE,
1357 1, &ioreq_pfn, NULL);
1358 if (state->shared_vmport_page == NULL) {
1359 error_report("map shared vmport IO page returned error %d handle=%p",
1360 errno, xen_xc);
1361 goto err;
1363 } else if (rc != -ENOSYS) {
1364 error_report("get vmport regs pfn returned error %d, rc=%d",
1365 errno, rc);
1366 goto err;
1369 /* Note: cpus is empty at this point in init */
1370 state->cpu_by_vcpu_id = g_malloc0(max_cpus * sizeof(CPUState *));
1372 rc = xen_set_ioreq_server_state(xen_domid, state->ioservid, true);
1373 if (rc < 0) {
1374 error_report("failed to enable ioreq server info: error %d handle=%p",
1375 errno, xen_xc);
1376 goto err;
1379 state->ioreq_local_port = g_malloc0(max_cpus * sizeof (evtchn_port_t));
1381 /* FIXME: how about if we overflow the page here? */
1382 for (i = 0; i < max_cpus; i++) {
1383 rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid,
1384 xen_vcpu_eport(state->shared_page, i));
1385 if (rc == -1) {
1386 error_report("shared evtchn %d bind error %d", i, errno);
1387 goto err;
1389 state->ioreq_local_port[i] = rc;
1392 rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid,
1393 state->bufioreq_remote_port);
1394 if (rc == -1) {
1395 error_report("buffered evtchn bind error %d", errno);
1396 goto err;
1398 state->bufioreq_local_port = rc;
1400 /* Init RAM management */
1401 #ifdef XEN_COMPAT_PHYSMAP
1402 xen_map_cache_init(xen_phys_offset_to_gaddr, state);
1403 #else
1404 xen_map_cache_init(NULL, state);
1405 #endif
1406 xen_ram_init(pcms, ram_size, ram_memory);
1408 qemu_add_vm_change_state_handler(xen_hvm_change_state_handler, state);
1410 state->memory_listener = xen_memory_listener;
1411 memory_listener_register(&state->memory_listener, &address_space_memory);
1412 state->log_for_dirtybit = NULL;
1414 state->io_listener = xen_io_listener;
1415 memory_listener_register(&state->io_listener, &address_space_io);
1417 state->device_listener = xen_device_listener;
1418 device_listener_register(&state->device_listener);
1420 /* Initialize backend core & drivers */
1421 if (xen_be_init() != 0) {
1422 error_report("xen backend core setup failed");
1423 goto err;
1425 xen_be_register_common();
1427 QLIST_INIT(&xen_physmap);
1428 xen_read_physmap(state);
1430 /* Disable ACPI build because Xen handles it */
1431 pcms->acpi_build_enabled = false;
1433 return;
1435 err:
1436 error_report("xen hardware virtual machine initialisation failed");
1437 exit(1);
1440 void destroy_hvm_domain(bool reboot)
1442 xc_interface *xc_handle;
1443 int sts;
1444 int rc;
1446 unsigned int reason = reboot ? SHUTDOWN_reboot : SHUTDOWN_poweroff;
1448 if (xen_dmod) {
1449 rc = xendevicemodel_shutdown(xen_dmod, xen_domid, reason);
1450 if (!rc) {
1451 return;
1453 if (errno != ENOTTY /* old Xen */) {
1454 perror("xendevicemodel_shutdown failed");
1456 /* well, try the old thing then */
1459 xc_handle = xc_interface_open(0, 0, 0);
1460 if (xc_handle == NULL) {
1461 fprintf(stderr, "Cannot acquire xenctrl handle\n");
1462 } else {
1463 sts = xc_domain_shutdown(xc_handle, xen_domid, reason);
1464 if (sts != 0) {
1465 fprintf(stderr, "xc_domain_shutdown failed to issue %s, "
1466 "sts %d, %s\n", reboot ? "reboot" : "poweroff",
1467 sts, strerror(errno));
1468 } else {
1469 fprintf(stderr, "Issued domain %d %s\n", xen_domid,
1470 reboot ? "reboot" : "poweroff");
1472 xc_interface_close(xc_handle);
1476 void xen_register_framebuffer(MemoryRegion *mr)
1478 framebuffer = mr;
1481 void xen_shutdown_fatal_error(const char *fmt, ...)
1483 va_list ap;
1485 va_start(ap, fmt);
1486 vfprintf(stderr, fmt, ap);
1487 va_end(ap);
1488 fprintf(stderr, "Will destroy the domain.\n");
1489 /* destroy the domain */
1490 qemu_system_shutdown_request(SHUTDOWN_CAUSE_HOST_ERROR);
1493 void xen_hvm_modified_memory(ram_addr_t start, ram_addr_t length)
1495 if (unlikely(xen_in_migration)) {
1496 int rc;
1497 ram_addr_t start_pfn, nb_pages;
1499 start = xen_phys_offset_to_gaddr(start, length);
1501 if (length == 0) {
1502 length = TARGET_PAGE_SIZE;
1504 start_pfn = start >> TARGET_PAGE_BITS;
1505 nb_pages = ((start + length + TARGET_PAGE_SIZE - 1) >> TARGET_PAGE_BITS)
1506 - start_pfn;
1507 rc = xen_modified_memory(xen_domid, start_pfn, nb_pages);
1508 if (rc) {
1509 fprintf(stderr,
1510 "%s failed for "RAM_ADDR_FMT" ("RAM_ADDR_FMT"): %i, %s\n",
1511 __func__, start, nb_pages, errno, strerror(errno));
1516 void qmp_xen_set_global_dirty_log(bool enable, Error **errp)
1518 if (enable) {
1519 memory_global_dirty_log_start();
1520 } else {
1521 memory_global_dirty_log_stop();