2 * PowerPC integer and vector emulation helpers for QEMU.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
23 #include "qemu/host-utils.h"
24 #include "qemu/main-loop.h"
26 #include "exec/helper-proto.h"
27 #include "crypto/aes.h"
28 #include "fpu/softfloat.h"
29 #include "qapi/error.h"
30 #include "qemu/guest-random.h"
32 #include "helper_regs.h"
33 /*****************************************************************************/
34 /* Fixed point operations helpers */
36 static inline void helper_update_ov_legacy(CPUPPCState
*env
, int ov
)
39 env
->so
= env
->ov
= 1;
45 target_ulong
helper_divweu(CPUPPCState
*env
, target_ulong ra
, target_ulong rb
,
51 uint64_t dividend
= (uint64_t)ra
<< 32;
52 uint64_t divisor
= (uint32_t)rb
;
54 if (unlikely(divisor
== 0)) {
57 rt
= dividend
/ divisor
;
58 overflow
= rt
> UINT32_MAX
;
61 if (unlikely(overflow
)) {
62 rt
= 0; /* Undefined */
66 helper_update_ov_legacy(env
, overflow
);
69 return (target_ulong
)rt
;
72 target_ulong
helper_divwe(CPUPPCState
*env
, target_ulong ra
, target_ulong rb
,
78 int64_t dividend
= (int64_t)ra
<< 32;
79 int64_t divisor
= (int64_t)((int32_t)rb
);
81 if (unlikely((divisor
== 0) ||
82 ((divisor
== -1ull) && (dividend
== INT64_MIN
)))) {
85 rt
= dividend
/ divisor
;
86 overflow
= rt
!= (int32_t)rt
;
89 if (unlikely(overflow
)) {
90 rt
= 0; /* Undefined */
94 helper_update_ov_legacy(env
, overflow
);
97 return (target_ulong
)rt
;
100 #if defined(TARGET_PPC64)
102 uint64_t helper_divdeu(CPUPPCState
*env
, uint64_t ra
, uint64_t rb
, uint32_t oe
)
107 if (unlikely(rb
== 0 || ra
>= rb
)) {
109 rt
= 0; /* Undefined */
111 divu128(&rt
, &ra
, rb
);
115 helper_update_ov_legacy(env
, overflow
);
121 uint64_t helper_divde(CPUPPCState
*env
, uint64_t rau
, uint64_t rbu
, uint32_t oe
)
124 int64_t ra
= (int64_t)rau
;
125 int64_t rb
= (int64_t)rbu
;
128 if (unlikely(rb
== 0 || uabs64(ra
) >= uabs64(rb
))) {
130 rt
= 0; /* Undefined */
132 divs128(&rt
, &ra
, rb
);
136 helper_update_ov_legacy(env
, overflow
);
145 #if defined(TARGET_PPC64)
146 /* if x = 0xab, returns 0xababababababababa */
147 #define pattern(x) (((x) & 0xff) * (~(target_ulong)0 / 0xff))
150 * subtract 1 from each byte, and with inverse, check if MSB is set at each
152 * i.e. ((0x00 - 0x01) & ~(0x00)) & 0x80
153 * (0xFF & 0xFF) & 0x80 = 0x80 (zero found)
155 #define haszero(v) (((v) - pattern(0x01)) & ~(v) & pattern(0x80))
157 /* When you XOR the pattern and there is a match, that byte will be zero */
158 #define hasvalue(x, n) (haszero((x) ^ pattern(n)))
160 uint32_t helper_cmpeqb(target_ulong ra
, target_ulong rb
)
162 return hasvalue(rb
, ra
) ? CRF_GT
: 0;
170 * Return a random number.
172 uint64_t helper_darn32(void)
177 if (qemu_guest_getrandom(&ret
, sizeof(ret
), &err
) < 0) {
178 qemu_log_mask(LOG_UNIMP
, "darn: Crypto failure: %s",
179 error_get_pretty(err
));
187 uint64_t helper_darn64(void)
192 if (qemu_guest_getrandom(&ret
, sizeof(ret
), &err
) < 0) {
193 qemu_log_mask(LOG_UNIMP
, "darn: Crypto failure: %s",
194 error_get_pretty(err
));
202 uint64_t helper_bpermd(uint64_t rs
, uint64_t rb
)
207 for (i
= 0; i
< 8; i
++) {
208 int index
= (rs
>> (i
* 8)) & 0xFF;
210 if (rb
& PPC_BIT(index
)) {
220 target_ulong
helper_cmpb(target_ulong rs
, target_ulong rb
)
222 target_ulong mask
= 0xff;
226 for (i
= 0; i
< sizeof(target_ulong
); i
++) {
227 if ((rs
& mask
) == (rb
& mask
)) {
235 /* shift right arithmetic helper */
236 target_ulong
helper_sraw(CPUPPCState
*env
, target_ulong value
,
241 if (likely(!(shift
& 0x20))) {
242 if (likely((uint32_t)shift
!= 0)) {
244 ret
= (int32_t)value
>> shift
;
245 if (likely(ret
>= 0 || (value
& ((1 << shift
) - 1)) == 0)) {
246 env
->ca32
= env
->ca
= 0;
248 env
->ca32
= env
->ca
= 1;
251 ret
= (int32_t)value
;
252 env
->ca32
= env
->ca
= 0;
255 ret
= (int32_t)value
>> 31;
256 env
->ca32
= env
->ca
= (ret
!= 0);
258 return (target_long
)ret
;
261 #if defined(TARGET_PPC64)
262 target_ulong
helper_srad(CPUPPCState
*env
, target_ulong value
,
267 if (likely(!(shift
& 0x40))) {
268 if (likely((uint64_t)shift
!= 0)) {
270 ret
= (int64_t)value
>> shift
;
271 if (likely(ret
>= 0 || (value
& ((1ULL << shift
) - 1)) == 0)) {
272 env
->ca32
= env
->ca
= 0;
274 env
->ca32
= env
->ca
= 1;
277 ret
= (int64_t)value
;
278 env
->ca32
= env
->ca
= 0;
281 ret
= (int64_t)value
>> 63;
282 env
->ca32
= env
->ca
= (ret
!= 0);
288 #if defined(TARGET_PPC64)
289 target_ulong
helper_popcntb(target_ulong val
)
291 /* Note that we don't fold past bytes */
292 val
= (val
& 0x5555555555555555ULL
) + ((val
>> 1) &
293 0x5555555555555555ULL
);
294 val
= (val
& 0x3333333333333333ULL
) + ((val
>> 2) &
295 0x3333333333333333ULL
);
296 val
= (val
& 0x0f0f0f0f0f0f0f0fULL
) + ((val
>> 4) &
297 0x0f0f0f0f0f0f0f0fULL
);
301 target_ulong
helper_popcntw(target_ulong val
)
303 /* Note that we don't fold past words. */
304 val
= (val
& 0x5555555555555555ULL
) + ((val
>> 1) &
305 0x5555555555555555ULL
);
306 val
= (val
& 0x3333333333333333ULL
) + ((val
>> 2) &
307 0x3333333333333333ULL
);
308 val
= (val
& 0x0f0f0f0f0f0f0f0fULL
) + ((val
>> 4) &
309 0x0f0f0f0f0f0f0f0fULL
);
310 val
= (val
& 0x00ff00ff00ff00ffULL
) + ((val
>> 8) &
311 0x00ff00ff00ff00ffULL
);
312 val
= (val
& 0x0000ffff0000ffffULL
) + ((val
>> 16) &
313 0x0000ffff0000ffffULL
);
317 target_ulong
helper_popcntb(target_ulong val
)
319 /* Note that we don't fold past bytes */
320 val
= (val
& 0x55555555) + ((val
>> 1) & 0x55555555);
321 val
= (val
& 0x33333333) + ((val
>> 2) & 0x33333333);
322 val
= (val
& 0x0f0f0f0f) + ((val
>> 4) & 0x0f0f0f0f);
327 uint64_t helper_CFUGED(uint64_t src
, uint64_t mask
)
330 * Instead of processing the mask bit-by-bit from the most significant to
331 * the least significant bit, as described in PowerISA, we'll handle it in
332 * blocks of 'n' zeros/ones from LSB to MSB. To avoid the decision to use
333 * ctz or cto, we negate the mask at the end of the loop.
335 target_ulong m
, left
= 0, right
= 0;
336 unsigned int n
, i
= 64;
337 bool bit
= false; /* tracks if we are processing zeros or ones */
339 if (mask
== 0 || mask
== -1) {
343 /* Processes the mask in blocks, from LSB to MSB */
345 /* Find how many bits we should take */
352 * Extracts 'n' trailing bits of src and put them on the leading 'n'
353 * bits of 'right' or 'left', pushing down the previously extracted
358 right
= ror64(right
| (src
& m
), n
);
360 left
= ror64(left
| (src
& m
), n
);
364 * Discards the processed bits from 'src' and 'mask'. Note that we are
365 * removing 'n' trailing zeros from 'mask', but the logical shift will
366 * add 'n' leading zeros back, so the population count of 'mask' is kept
377 * At the end, right was ror'ed ctpop(mask) times. To put it back in place,
378 * we'll shift it more 64-ctpop(mask) times.
383 n
= 64 - ctpop64(mask
);
386 return left
| (right
>> n
);
389 uint64_t helper_PDEPD(uint64_t src
, uint64_t mask
)
398 for (i
= 0; mask
!= 0; i
++) {
401 result
|= ((src
>> i
) & 1) << o
;
407 uint64_t helper_PEXTD(uint64_t src
, uint64_t mask
)
416 for (o
= 0; mask
!= 0; o
++) {
419 result
|= ((src
>> i
) & 1) << o
;
425 /*****************************************************************************/
426 /* PowerPC 601 specific instructions (POWER bridge) */
427 target_ulong
helper_div(CPUPPCState
*env
, target_ulong arg1
, target_ulong arg2
)
429 uint64_t tmp
= (uint64_t)arg1
<< 32 | env
->spr
[SPR_MQ
];
431 if (((int32_t)tmp
== INT32_MIN
&& (int32_t)arg2
== (int32_t)-1) ||
432 (int32_t)arg2
== 0) {
433 env
->spr
[SPR_MQ
] = 0;
436 env
->spr
[SPR_MQ
] = tmp
% arg2
;
437 return tmp
/ (int32_t)arg2
;
441 target_ulong
helper_divo(CPUPPCState
*env
, target_ulong arg1
,
444 uint64_t tmp
= (uint64_t)arg1
<< 32 | env
->spr
[SPR_MQ
];
446 if (((int32_t)tmp
== INT32_MIN
&& (int32_t)arg2
== (int32_t)-1) ||
447 (int32_t)arg2
== 0) {
448 env
->so
= env
->ov
= 1;
449 env
->spr
[SPR_MQ
] = 0;
452 env
->spr
[SPR_MQ
] = tmp
% arg2
;
453 tmp
/= (int32_t)arg2
;
454 if ((int32_t)tmp
!= tmp
) {
455 env
->so
= env
->ov
= 1;
463 target_ulong
helper_divs(CPUPPCState
*env
, target_ulong arg1
,
466 if (((int32_t)arg1
== INT32_MIN
&& (int32_t)arg2
== (int32_t)-1) ||
467 (int32_t)arg2
== 0) {
468 env
->spr
[SPR_MQ
] = 0;
471 env
->spr
[SPR_MQ
] = (int32_t)arg1
% (int32_t)arg2
;
472 return (int32_t)arg1
/ (int32_t)arg2
;
476 target_ulong
helper_divso(CPUPPCState
*env
, target_ulong arg1
,
479 if (((int32_t)arg1
== INT32_MIN
&& (int32_t)arg2
== (int32_t)-1) ||
480 (int32_t)arg2
== 0) {
481 env
->so
= env
->ov
= 1;
482 env
->spr
[SPR_MQ
] = 0;
486 env
->spr
[SPR_MQ
] = (int32_t)arg1
% (int32_t)arg2
;
487 return (int32_t)arg1
/ (int32_t)arg2
;
491 /*****************************************************************************/
492 /* 602 specific instructions */
493 /* mfrom is the most crazy instruction ever seen, imho ! */
494 /* Real implementation uses a ROM table. Do the same */
496 * Extremely decomposed:
498 * return 256 * log10(10 + 1.0) + 0.5
500 #if !defined(CONFIG_USER_ONLY)
501 target_ulong
helper_602_mfrom(target_ulong arg
)
503 if (likely(arg
< 602)) {
504 #include "mfrom_table.c.inc"
505 return mfrom_ROM_table
[arg
];
512 /*****************************************************************************/
513 /* Altivec extension helpers */
514 #if defined(HOST_WORDS_BIGENDIAN)
515 #define VECTOR_FOR_INORDER_I(index, element) \
516 for (index = 0; index < ARRAY_SIZE(r->element); index++)
518 #define VECTOR_FOR_INORDER_I(index, element) \
519 for (index = ARRAY_SIZE(r->element) - 1; index >= 0; index--)
522 /* Saturating arithmetic helpers. */
523 #define SATCVT(from, to, from_type, to_type, min, max) \
524 static inline to_type cvt##from##to(from_type x, int *sat) \
528 if (x < (from_type)min) { \
531 } else if (x > (from_type)max) { \
539 #define SATCVTU(from, to, from_type, to_type, min, max) \
540 static inline to_type cvt##from##to(from_type x, int *sat) \
544 if (x > (from_type)max) { \
552 SATCVT(sh
, sb
, int16_t, int8_t, INT8_MIN
, INT8_MAX
)
553 SATCVT(sw
, sh
, int32_t, int16_t, INT16_MIN
, INT16_MAX
)
554 SATCVT(sd
, sw
, int64_t, int32_t, INT32_MIN
, INT32_MAX
)
556 SATCVTU(uh
, ub
, uint16_t, uint8_t, 0, UINT8_MAX
)
557 SATCVTU(uw
, uh
, uint32_t, uint16_t, 0, UINT16_MAX
)
558 SATCVTU(ud
, uw
, uint64_t, uint32_t, 0, UINT32_MAX
)
559 SATCVT(sh
, ub
, int16_t, uint8_t, 0, UINT8_MAX
)
560 SATCVT(sw
, uh
, int32_t, uint16_t, 0, UINT16_MAX
)
561 SATCVT(sd
, uw
, int64_t, uint32_t, 0, UINT32_MAX
)
565 void helper_mtvscr(CPUPPCState
*env
, uint32_t vscr
)
567 ppc_store_vscr(env
, vscr
);
570 uint32_t helper_mfvscr(CPUPPCState
*env
)
572 return ppc_get_vscr(env
);
575 static inline void set_vscr_sat(CPUPPCState
*env
)
577 /* The choice of non-zero value is arbitrary. */
578 env
->vscr_sat
.u32
[0] = 1;
581 void helper_vaddcuw(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
585 for (i
= 0; i
< ARRAY_SIZE(r
->u32
); i
++) {
586 r
->u32
[i
] = ~a
->u32
[i
] < b
->u32
[i
];
591 void helper_vprtybw(ppc_avr_t
*r
, ppc_avr_t
*b
)
594 for (i
= 0; i
< ARRAY_SIZE(r
->u32
); i
++) {
595 uint64_t res
= b
->u32
[i
] ^ (b
->u32
[i
] >> 16);
602 void helper_vprtybd(ppc_avr_t
*r
, ppc_avr_t
*b
)
605 for (i
= 0; i
< ARRAY_SIZE(r
->u64
); i
++) {
606 uint64_t res
= b
->u64
[i
] ^ (b
->u64
[i
] >> 32);
614 void helper_vprtybq(ppc_avr_t
*r
, ppc_avr_t
*b
)
616 uint64_t res
= b
->u64
[0] ^ b
->u64
[1];
620 r
->VsrD(1) = res
& 1;
624 #define VARITHFP(suffix, func) \
625 void helper_v##suffix(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, \
630 for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \
631 r->f32[i] = func(a->f32[i], b->f32[i], &env->vec_status); \
634 VARITHFP(addfp
, float32_add
)
635 VARITHFP(subfp
, float32_sub
)
636 VARITHFP(minfp
, float32_min
)
637 VARITHFP(maxfp
, float32_max
)
640 #define VARITHFPFMA(suffix, type) \
641 void helper_v##suffix(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, \
642 ppc_avr_t *b, ppc_avr_t *c) \
645 for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \
646 r->f32[i] = float32_muladd(a->f32[i], c->f32[i], b->f32[i], \
647 type, &env->vec_status); \
650 VARITHFPFMA(maddfp
, 0);
651 VARITHFPFMA(nmsubfp
, float_muladd_negate_result
| float_muladd_negate_c
);
654 #define VARITHSAT_CASE(type, op, cvt, element) \
656 type result = (type)a->element[i] op (type)b->element[i]; \
657 r->element[i] = cvt(result, &sat); \
660 #define VARITHSAT_DO(name, op, optype, cvt, element) \
661 void helper_v##name(ppc_avr_t *r, ppc_avr_t *vscr_sat, \
662 ppc_avr_t *a, ppc_avr_t *b, uint32_t desc) \
667 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
668 VARITHSAT_CASE(optype, op, cvt, element); \
671 vscr_sat->u32[0] = 1; \
674 #define VARITHSAT_SIGNED(suffix, element, optype, cvt) \
675 VARITHSAT_DO(adds##suffix##s, +, optype, cvt, element) \
676 VARITHSAT_DO(subs##suffix##s, -, optype, cvt, element)
677 #define VARITHSAT_UNSIGNED(suffix, element, optype, cvt) \
678 VARITHSAT_DO(addu##suffix##s, +, optype, cvt, element) \
679 VARITHSAT_DO(subu##suffix##s, -, optype, cvt, element)
680 VARITHSAT_SIGNED(b
, s8
, int16_t, cvtshsb
)
681 VARITHSAT_SIGNED(h
, s16
, int32_t, cvtswsh
)
682 VARITHSAT_SIGNED(w
, s32
, int64_t, cvtsdsw
)
683 VARITHSAT_UNSIGNED(b
, u8
, uint16_t, cvtshub
)
684 VARITHSAT_UNSIGNED(h
, u16
, uint32_t, cvtswuh
)
685 VARITHSAT_UNSIGNED(w
, u32
, uint64_t, cvtsduw
)
686 #undef VARITHSAT_CASE
688 #undef VARITHSAT_SIGNED
689 #undef VARITHSAT_UNSIGNED
691 #define VAVG_DO(name, element, etype) \
692 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
696 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
697 etype x = (etype)a->element[i] + (etype)b->element[i] + 1; \
698 r->element[i] = x >> 1; \
702 #define VAVG(type, signed_element, signed_type, unsigned_element, \
704 VAVG_DO(avgs##type, signed_element, signed_type) \
705 VAVG_DO(avgu##type, unsigned_element, unsigned_type)
706 VAVG(b
, s8
, int16_t, u8
, uint16_t)
707 VAVG(h
, s16
, int32_t, u16
, uint32_t)
708 VAVG(w
, s32
, int64_t, u32
, uint64_t)
712 #define VABSDU_DO(name, element) \
713 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
717 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
718 r->element[i] = (a->element[i] > b->element[i]) ? \
719 (a->element[i] - b->element[i]) : \
720 (b->element[i] - a->element[i]); \
725 * VABSDU - Vector absolute difference unsigned
726 * name - instruction mnemonic suffix (b: byte, h: halfword, w: word)
727 * element - element type to access from vector
729 #define VABSDU(type, element) \
730 VABSDU_DO(absdu##type, element)
737 #define VCF(suffix, cvt, element) \
738 void helper_vcf##suffix(CPUPPCState *env, ppc_avr_t *r, \
739 ppc_avr_t *b, uint32_t uim) \
743 for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \
744 float32 t = cvt(b->element[i], &env->vec_status); \
745 r->f32[i] = float32_scalbn(t, -uim, &env->vec_status); \
748 VCF(ux
, uint32_to_float32
, u32
)
749 VCF(sx
, int32_to_float32
, s32
)
752 #define VCMP_DO(suffix, compare, element, record) \
753 void helper_vcmp##suffix(CPUPPCState *env, ppc_avr_t *r, \
754 ppc_avr_t *a, ppc_avr_t *b) \
756 uint64_t ones = (uint64_t)-1; \
757 uint64_t all = ones; \
761 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
762 uint64_t result = (a->element[i] compare b->element[i] ? \
764 switch (sizeof(a->element[0])) { \
766 r->u64[i] = result; \
769 r->u32[i] = result; \
772 r->u16[i] = result; \
782 env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
785 #define VCMP(suffix, compare, element) \
786 VCMP_DO(suffix, compare, element, 0) \
787 VCMP_DO(suffix##_dot, compare, element, 1)
803 #define VCMPNE_DO(suffix, element, etype, cmpzero, record) \
804 void helper_vcmpne##suffix(CPUPPCState *env, ppc_avr_t *r, \
805 ppc_avr_t *a, ppc_avr_t *b) \
807 etype ones = (etype)-1; \
809 etype result, none = 0; \
812 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
814 result = ((a->element[i] == 0) \
815 || (b->element[i] == 0) \
816 || (a->element[i] != b->element[i]) ? \
819 result = (a->element[i] != b->element[i]) ? ones : 0x0; \
821 r->element[i] = result; \
826 env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
831 * VCMPNEZ - Vector compare not equal to zero
832 * suffix - instruction mnemonic suffix (b: byte, h: halfword, w: word)
833 * element - element type to access from vector
835 #define VCMPNE(suffix, element, etype, cmpzero) \
836 VCMPNE_DO(suffix, element, etype, cmpzero, 0) \
837 VCMPNE_DO(suffix##_dot, element, etype, cmpzero, 1)
838 VCMPNE(zb
, u8
, uint8_t, 1)
839 VCMPNE(zh
, u16
, uint16_t, 1)
840 VCMPNE(zw
, u32
, uint32_t, 1)
841 VCMPNE(b
, u8
, uint8_t, 0)
842 VCMPNE(h
, u16
, uint16_t, 0)
843 VCMPNE(w
, u32
, uint32_t, 0)
847 #define VCMPFP_DO(suffix, compare, order, record) \
848 void helper_vcmp##suffix(CPUPPCState *env, ppc_avr_t *r, \
849 ppc_avr_t *a, ppc_avr_t *b) \
851 uint32_t ones = (uint32_t)-1; \
852 uint32_t all = ones; \
856 for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \
858 FloatRelation rel = \
859 float32_compare_quiet(a->f32[i], b->f32[i], \
861 if (rel == float_relation_unordered) { \
863 } else if (rel compare order) { \
868 r->u32[i] = result; \
873 env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
876 #define VCMPFP(suffix, compare, order) \
877 VCMPFP_DO(suffix, compare, order, 0) \
878 VCMPFP_DO(suffix##_dot, compare, order, 1)
879 VCMPFP(eqfp
, ==, float_relation_equal
)
880 VCMPFP(gefp
, !=, float_relation_less
)
881 VCMPFP(gtfp
, ==, float_relation_greater
)
885 static inline void vcmpbfp_internal(CPUPPCState
*env
, ppc_avr_t
*r
,
886 ppc_avr_t
*a
, ppc_avr_t
*b
, int record
)
891 for (i
= 0; i
< ARRAY_SIZE(r
->f32
); i
++) {
892 FloatRelation le_rel
= float32_compare_quiet(a
->f32
[i
], b
->f32
[i
],
894 if (le_rel
== float_relation_unordered
) {
895 r
->u32
[i
] = 0xc0000000;
898 float32 bneg
= float32_chs(b
->f32
[i
]);
899 FloatRelation ge_rel
= float32_compare_quiet(a
->f32
[i
], bneg
,
901 int le
= le_rel
!= float_relation_greater
;
902 int ge
= ge_rel
!= float_relation_less
;
904 r
->u32
[i
] = ((!le
) << 31) | ((!ge
) << 30);
905 all_in
|= (!le
| !ge
);
909 env
->crf
[6] = (all_in
== 0) << 1;
913 void helper_vcmpbfp(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
915 vcmpbfp_internal(env
, r
, a
, b
, 0);
918 void helper_vcmpbfp_dot(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
921 vcmpbfp_internal(env
, r
, a
, b
, 1);
924 #define VCT(suffix, satcvt, element) \
925 void helper_vct##suffix(CPUPPCState *env, ppc_avr_t *r, \
926 ppc_avr_t *b, uint32_t uim) \
930 float_status s = env->vec_status; \
932 set_float_rounding_mode(float_round_to_zero, &s); \
933 for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \
934 if (float32_is_any_nan(b->f32[i])) { \
937 float64 t = float32_to_float64(b->f32[i], &s); \
940 t = float64_scalbn(t, uim, &s); \
941 j = float64_to_int64(t, &s); \
942 r->element[i] = satcvt(j, &sat); \
949 VCT(uxs
, cvtsduw
, u32
)
950 VCT(sxs
, cvtsdsw
, s32
)
953 target_ulong
helper_vclzlsbb(ppc_avr_t
*r
)
955 target_ulong count
= 0;
957 for (i
= 0; i
< ARRAY_SIZE(r
->u8
); i
++) {
958 if (r
->VsrB(i
) & 0x01) {
966 target_ulong
helper_vctzlsbb(ppc_avr_t
*r
)
968 target_ulong count
= 0;
970 for (i
= ARRAY_SIZE(r
->u8
) - 1; i
>= 0; i
--) {
971 if (r
->VsrB(i
) & 0x01) {
979 void helper_vmhaddshs(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
980 ppc_avr_t
*b
, ppc_avr_t
*c
)
985 for (i
= 0; i
< ARRAY_SIZE(r
->s16
); i
++) {
986 int32_t prod
= a
->s16
[i
] * b
->s16
[i
];
987 int32_t t
= (int32_t)c
->s16
[i
] + (prod
>> 15);
989 r
->s16
[i
] = cvtswsh(t
, &sat
);
997 void helper_vmhraddshs(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
998 ppc_avr_t
*b
, ppc_avr_t
*c
)
1003 for (i
= 0; i
< ARRAY_SIZE(r
->s16
); i
++) {
1004 int32_t prod
= a
->s16
[i
] * b
->s16
[i
] + 0x00004000;
1005 int32_t t
= (int32_t)c
->s16
[i
] + (prod
>> 15);
1006 r
->s16
[i
] = cvtswsh(t
, &sat
);
1014 void helper_vmladduhm(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
1018 for (i
= 0; i
< ARRAY_SIZE(r
->s16
); i
++) {
1019 int32_t prod
= a
->s16
[i
] * b
->s16
[i
];
1020 r
->s16
[i
] = (int16_t) (prod
+ c
->s16
[i
]);
1024 #define VMRG_DO(name, element, access, ofs) \
1025 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1028 int i, half = ARRAY_SIZE(r->element) / 2; \
1030 for (i = 0; i < half; i++) { \
1031 result.access(i * 2 + 0) = a->access(i + ofs); \
1032 result.access(i * 2 + 1) = b->access(i + ofs); \
1037 #define VMRG(suffix, element, access) \
1038 VMRG_DO(mrgl##suffix, element, access, half) \
1039 VMRG_DO(mrgh##suffix, element, access, 0)
1046 void helper_vmsummbm(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
1047 ppc_avr_t
*b
, ppc_avr_t
*c
)
1052 for (i
= 0; i
< ARRAY_SIZE(r
->s8
); i
++) {
1053 prod
[i
] = (int32_t)a
->s8
[i
] * b
->u8
[i
];
1056 VECTOR_FOR_INORDER_I(i
, s32
) {
1057 r
->s32
[i
] = c
->s32
[i
] + prod
[4 * i
] + prod
[4 * i
+ 1] +
1058 prod
[4 * i
+ 2] + prod
[4 * i
+ 3];
1062 void helper_vmsumshm(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
1063 ppc_avr_t
*b
, ppc_avr_t
*c
)
1068 for (i
= 0; i
< ARRAY_SIZE(r
->s16
); i
++) {
1069 prod
[i
] = a
->s16
[i
] * b
->s16
[i
];
1072 VECTOR_FOR_INORDER_I(i
, s32
) {
1073 r
->s32
[i
] = c
->s32
[i
] + prod
[2 * i
] + prod
[2 * i
+ 1];
1077 void helper_vmsumshs(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
1078 ppc_avr_t
*b
, ppc_avr_t
*c
)
1084 for (i
= 0; i
< ARRAY_SIZE(r
->s16
); i
++) {
1085 prod
[i
] = (int32_t)a
->s16
[i
] * b
->s16
[i
];
1088 VECTOR_FOR_INORDER_I(i
, s32
) {
1089 int64_t t
= (int64_t)c
->s32
[i
] + prod
[2 * i
] + prod
[2 * i
+ 1];
1091 r
->u32
[i
] = cvtsdsw(t
, &sat
);
1099 void helper_vmsumubm(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
1100 ppc_avr_t
*b
, ppc_avr_t
*c
)
1105 for (i
= 0; i
< ARRAY_SIZE(r
->u8
); i
++) {
1106 prod
[i
] = a
->u8
[i
] * b
->u8
[i
];
1109 VECTOR_FOR_INORDER_I(i
, u32
) {
1110 r
->u32
[i
] = c
->u32
[i
] + prod
[4 * i
] + prod
[4 * i
+ 1] +
1111 prod
[4 * i
+ 2] + prod
[4 * i
+ 3];
1115 void helper_vmsumuhm(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
1116 ppc_avr_t
*b
, ppc_avr_t
*c
)
1121 for (i
= 0; i
< ARRAY_SIZE(r
->u16
); i
++) {
1122 prod
[i
] = a
->u16
[i
] * b
->u16
[i
];
1125 VECTOR_FOR_INORDER_I(i
, u32
) {
1126 r
->u32
[i
] = c
->u32
[i
] + prod
[2 * i
] + prod
[2 * i
+ 1];
1130 void helper_vmsumuhs(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
1131 ppc_avr_t
*b
, ppc_avr_t
*c
)
1137 for (i
= 0; i
< ARRAY_SIZE(r
->u16
); i
++) {
1138 prod
[i
] = a
->u16
[i
] * b
->u16
[i
];
1141 VECTOR_FOR_INORDER_I(i
, s32
) {
1142 uint64_t t
= (uint64_t)c
->u32
[i
] + prod
[2 * i
] + prod
[2 * i
+ 1];
1144 r
->u32
[i
] = cvtuduw(t
, &sat
);
1152 #define VMUL_DO_EVN(name, mul_element, mul_access, prod_access, cast) \
1153 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1157 for (i = 0; i < ARRAY_SIZE(r->mul_element); i += 2) { \
1158 r->prod_access(i >> 1) = (cast)a->mul_access(i) * \
1159 (cast)b->mul_access(i); \
1163 #define VMUL_DO_ODD(name, mul_element, mul_access, prod_access, cast) \
1164 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1168 for (i = 0; i < ARRAY_SIZE(r->mul_element); i += 2) { \
1169 r->prod_access(i >> 1) = (cast)a->mul_access(i + 1) * \
1170 (cast)b->mul_access(i + 1); \
1174 #define VMUL(suffix, mul_element, mul_access, prod_access, cast) \
1175 VMUL_DO_EVN(mule##suffix, mul_element, mul_access, prod_access, cast) \
1176 VMUL_DO_ODD(mulo##suffix, mul_element, mul_access, prod_access, cast)
1177 VMUL(sb
, s8
, VsrSB
, VsrSH
, int16_t)
1178 VMUL(sh
, s16
, VsrSH
, VsrSW
, int32_t)
1179 VMUL(sw
, s32
, VsrSW
, VsrSD
, int64_t)
1180 VMUL(ub
, u8
, VsrB
, VsrH
, uint16_t)
1181 VMUL(uh
, u16
, VsrH
, VsrW
, uint32_t)
1182 VMUL(uw
, u32
, VsrW
, VsrD
, uint64_t)
1187 void helper_vmulhsw(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1191 for (i
= 0; i
< 4; i
++) {
1192 r
->s32
[i
] = (int32_t)(((int64_t)a
->s32
[i
] * (int64_t)b
->s32
[i
]) >> 32);
1196 void helper_vmulhuw(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1200 for (i
= 0; i
< 4; i
++) {
1201 r
->u32
[i
] = (uint32_t)(((uint64_t)a
->u32
[i
] *
1202 (uint64_t)b
->u32
[i
]) >> 32);
1206 void helper_vmulhsd(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1210 muls64(&discard
, &r
->u64
[0], a
->s64
[0], b
->s64
[0]);
1211 muls64(&discard
, &r
->u64
[1], a
->s64
[1], b
->s64
[1]);
1214 void helper_vmulhud(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1218 mulu64(&discard
, &r
->u64
[0], a
->u64
[0], b
->u64
[0]);
1219 mulu64(&discard
, &r
->u64
[1], a
->u64
[1], b
->u64
[1]);
1222 void helper_vperm(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
,
1228 for (i
= 0; i
< ARRAY_SIZE(r
->u8
); i
++) {
1229 int s
= c
->VsrB(i
) & 0x1f;
1230 int index
= s
& 0xf;
1233 result
.VsrB(i
) = b
->VsrB(index
);
1235 result
.VsrB(i
) = a
->VsrB(index
);
1241 void helper_vpermr(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
,
1247 for (i
= 0; i
< ARRAY_SIZE(r
->u8
); i
++) {
1248 int s
= c
->VsrB(i
) & 0x1f;
1249 int index
= 15 - (s
& 0xf);
1252 result
.VsrB(i
) = a
->VsrB(index
);
1254 result
.VsrB(i
) = b
->VsrB(index
);
1260 #if defined(HOST_WORDS_BIGENDIAN)
1261 #define VBPERMQ_INDEX(avr, i) ((avr)->u8[(i)])
1262 #define VBPERMD_INDEX(i) (i)
1263 #define VBPERMQ_DW(index) (((index) & 0x40) != 0)
1264 #define EXTRACT_BIT(avr, i, index) (extract64((avr)->u64[i], index, 1))
1266 #define VBPERMQ_INDEX(avr, i) ((avr)->u8[15 - (i)])
1267 #define VBPERMD_INDEX(i) (1 - i)
1268 #define VBPERMQ_DW(index) (((index) & 0x40) == 0)
1269 #define EXTRACT_BIT(avr, i, index) \
1270 (extract64((avr)->u64[1 - i], 63 - index, 1))
1273 void helper_vbpermd(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1276 ppc_avr_t result
= { .u64
= { 0, 0 } };
1277 VECTOR_FOR_INORDER_I(i
, u64
) {
1278 for (j
= 0; j
< 8; j
++) {
1279 int index
= VBPERMQ_INDEX(b
, (i
* 8) + j
);
1280 if (index
< 64 && EXTRACT_BIT(a
, i
, index
)) {
1281 result
.u64
[VBPERMD_INDEX(i
)] |= (0x80 >> j
);
1288 void helper_vbpermq(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1293 VECTOR_FOR_INORDER_I(i
, u8
) {
1294 int index
= VBPERMQ_INDEX(b
, i
);
1297 uint64_t mask
= (1ull << (63 - (index
& 0x3F)));
1298 if (a
->u64
[VBPERMQ_DW(index
)] & mask
) {
1299 perm
|= (0x8000 >> i
);
1308 #undef VBPERMQ_INDEX
1311 #define PMSUM(name, srcfld, trgfld, trgtyp) \
1312 void helper_##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1315 trgtyp prod[sizeof(ppc_avr_t) / sizeof(a->srcfld[0])]; \
1317 VECTOR_FOR_INORDER_I(i, srcfld) { \
1319 for (j = 0; j < sizeof(a->srcfld[0]) * 8; j++) { \
1320 if (a->srcfld[i] & (1ull << j)) { \
1321 prod[i] ^= ((trgtyp)b->srcfld[i] << j); \
1326 VECTOR_FOR_INORDER_I(i, trgfld) { \
1327 r->trgfld[i] = prod[2 * i] ^ prod[2 * i + 1]; \
1331 PMSUM(vpmsumb
, u8
, u16
, uint16_t)
1332 PMSUM(vpmsumh
, u16
, u32
, uint32_t)
1333 PMSUM(vpmsumw
, u32
, u64
, uint64_t)
1335 void helper_vpmsumd(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1338 #ifdef CONFIG_INT128
1340 __uint128_t prod
[2];
1342 VECTOR_FOR_INORDER_I(i
, u64
) {
1344 for (j
= 0; j
< 64; j
++) {
1345 if (a
->u64
[i
] & (1ull << j
)) {
1346 prod
[i
] ^= (((__uint128_t
)b
->u64
[i
]) << j
);
1351 r
->u128
= prod
[0] ^ prod
[1];
1357 VECTOR_FOR_INORDER_I(i
, u64
) {
1358 prod
[i
].VsrD(1) = prod
[i
].VsrD(0) = 0;
1359 for (j
= 0; j
< 64; j
++) {
1360 if (a
->u64
[i
] & (1ull << j
)) {
1364 bshift
.VsrD(1) = b
->u64
[i
];
1366 bshift
.VsrD(0) = b
->u64
[i
] >> (64 - j
);
1367 bshift
.VsrD(1) = b
->u64
[i
] << j
;
1369 prod
[i
].VsrD(1) ^= bshift
.VsrD(1);
1370 prod
[i
].VsrD(0) ^= bshift
.VsrD(0);
1375 r
->VsrD(1) = prod
[0].VsrD(1) ^ prod
[1].VsrD(1);
1376 r
->VsrD(0) = prod
[0].VsrD(0) ^ prod
[1].VsrD(0);
1381 #if defined(HOST_WORDS_BIGENDIAN)
1386 void helper_vpkpx(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1390 #if defined(HOST_WORDS_BIGENDIAN)
1391 const ppc_avr_t
*x
[2] = { a
, b
};
1393 const ppc_avr_t
*x
[2] = { b
, a
};
1396 VECTOR_FOR_INORDER_I(i
, u64
) {
1397 VECTOR_FOR_INORDER_I(j
, u32
) {
1398 uint32_t e
= x
[i
]->u32
[j
];
1400 result
.u16
[4 * i
+ j
] = (((e
>> 9) & 0xfc00) |
1401 ((e
>> 6) & 0x3e0) |
1408 #define VPK(suffix, from, to, cvt, dosat) \
1409 void helper_vpk##suffix(CPUPPCState *env, ppc_avr_t *r, \
1410 ppc_avr_t *a, ppc_avr_t *b) \
1415 ppc_avr_t *a0 = PKBIG ? a : b; \
1416 ppc_avr_t *a1 = PKBIG ? b : a; \
1418 VECTOR_FOR_INORDER_I(i, from) { \
1419 result.to[i] = cvt(a0->from[i], &sat); \
1420 result.to[i + ARRAY_SIZE(r->from)] = cvt(a1->from[i], &sat);\
1423 if (dosat && sat) { \
1424 set_vscr_sat(env); \
1428 VPK(shss
, s16
, s8
, cvtshsb
, 1)
1429 VPK(shus
, s16
, u8
, cvtshub
, 1)
1430 VPK(swss
, s32
, s16
, cvtswsh
, 1)
1431 VPK(swus
, s32
, u16
, cvtswuh
, 1)
1432 VPK(sdss
, s64
, s32
, cvtsdsw
, 1)
1433 VPK(sdus
, s64
, u32
, cvtsduw
, 1)
1434 VPK(uhus
, u16
, u8
, cvtuhub
, 1)
1435 VPK(uwus
, u32
, u16
, cvtuwuh
, 1)
1436 VPK(udus
, u64
, u32
, cvtuduw
, 1)
1437 VPK(uhum
, u16
, u8
, I
, 0)
1438 VPK(uwum
, u32
, u16
, I
, 0)
1439 VPK(udum
, u64
, u32
, I
, 0)
1444 void helper_vrefp(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*b
)
1448 for (i
= 0; i
< ARRAY_SIZE(r
->f32
); i
++) {
1449 r
->f32
[i
] = float32_div(float32_one
, b
->f32
[i
], &env
->vec_status
);
1453 #define VRFI(suffix, rounding) \
1454 void helper_vrfi##suffix(CPUPPCState *env, ppc_avr_t *r, \
1458 float_status s = env->vec_status; \
1460 set_float_rounding_mode(rounding, &s); \
1461 for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \
1462 r->f32[i] = float32_round_to_int (b->f32[i], &s); \
1465 VRFI(n
, float_round_nearest_even
)
1466 VRFI(m
, float_round_down
)
1467 VRFI(p
, float_round_up
)
1468 VRFI(z
, float_round_to_zero
)
1471 void helper_vrsqrtefp(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*b
)
1475 for (i
= 0; i
< ARRAY_SIZE(r
->f32
); i
++) {
1476 float32 t
= float32_sqrt(b
->f32
[i
], &env
->vec_status
);
1478 r
->f32
[i
] = float32_div(float32_one
, t
, &env
->vec_status
);
1482 #define VRLMI(name, size, element, insert) \
1483 void helper_##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1486 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1487 uint##size##_t src1 = a->element[i]; \
1488 uint##size##_t src2 = b->element[i]; \
1489 uint##size##_t src3 = r->element[i]; \
1490 uint##size##_t begin, end, shift, mask, rot_val; \
1492 shift = extract##size(src2, 0, 6); \
1493 end = extract##size(src2, 8, 6); \
1494 begin = extract##size(src2, 16, 6); \
1495 rot_val = rol##size(src1, shift); \
1496 mask = mask_u##size(begin, end); \
1498 r->element[i] = (rot_val & mask) | (src3 & ~mask); \
1500 r->element[i] = (rot_val & mask); \
1505 VRLMI(vrldmi
, 64, u64
, 1);
1506 VRLMI(vrlwmi
, 32, u32
, 1);
1507 VRLMI(vrldnm
, 64, u64
, 0);
1508 VRLMI(vrlwnm
, 32, u32
, 0);
1510 void helper_vsel(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
,
1513 r
->u64
[0] = (a
->u64
[0] & ~c
->u64
[0]) | (b
->u64
[0] & c
->u64
[0]);
1514 r
->u64
[1] = (a
->u64
[1] & ~c
->u64
[1]) | (b
->u64
[1] & c
->u64
[1]);
1517 void helper_vexptefp(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*b
)
1521 for (i
= 0; i
< ARRAY_SIZE(r
->f32
); i
++) {
1522 r
->f32
[i
] = float32_exp2(b
->f32
[i
], &env
->vec_status
);
1526 void helper_vlogefp(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*b
)
1530 for (i
= 0; i
< ARRAY_SIZE(r
->f32
); i
++) {
1531 r
->f32
[i
] = float32_log2(b
->f32
[i
], &env
->vec_status
);
1535 #define VEXTU_X_DO(name, size, left) \
1536 target_ulong glue(helper_, name)(target_ulong a, ppc_avr_t *b) \
1538 int index = (a & 0xf) * 8; \
1540 index = 128 - index - size; \
1542 return int128_getlo(int128_rshift(b->s128, index)) & \
1543 MAKE_64BIT_MASK(0, size); \
1545 VEXTU_X_DO(vextublx
, 8, 1)
1546 VEXTU_X_DO(vextuhlx
, 16, 1)
1547 VEXTU_X_DO(vextuwlx
, 32, 1)
1548 VEXTU_X_DO(vextubrx
, 8, 0)
1549 VEXTU_X_DO(vextuhrx
, 16, 0)
1550 VEXTU_X_DO(vextuwrx
, 32, 0)
1553 void helper_vslv(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1556 unsigned int shift
, bytes
, size
;
1558 size
= ARRAY_SIZE(r
->u8
);
1559 for (i
= 0; i
< size
; i
++) {
1560 shift
= b
->VsrB(i
) & 0x7; /* extract shift value */
1561 bytes
= (a
->VsrB(i
) << 8) + /* extract adjacent bytes */
1562 (((i
+ 1) < size
) ? a
->VsrB(i
+ 1) : 0);
1563 r
->VsrB(i
) = (bytes
<< shift
) >> 8; /* shift and store result */
1567 void helper_vsrv(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1570 unsigned int shift
, bytes
;
1573 * Use reverse order, as destination and source register can be
1574 * same. Its being modified in place saving temporary, reverse
1575 * order will guarantee that computed result is not fed back.
1577 for (i
= ARRAY_SIZE(r
->u8
) - 1; i
>= 0; i
--) {
1578 shift
= b
->VsrB(i
) & 0x7; /* extract shift value */
1579 bytes
= ((i
? a
->VsrB(i
- 1) : 0) << 8) + a
->VsrB(i
);
1580 /* extract adjacent bytes */
1581 r
->VsrB(i
) = (bytes
>> shift
) & 0xFF; /* shift and store result */
1585 void helper_vsldoi(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, uint32_t shift
)
1587 int sh
= shift
& 0xf;
1591 for (i
= 0; i
< ARRAY_SIZE(r
->u8
); i
++) {
1594 result
.VsrB(i
) = b
->VsrB(index
- 0x10);
1596 result
.VsrB(i
) = a
->VsrB(index
);
1602 void helper_vslo(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1604 int sh
= (b
->VsrB(0xf) >> 3) & 0xf;
1606 #if defined(HOST_WORDS_BIGENDIAN)
1607 memmove(&r
->u8
[0], &a
->u8
[sh
], 16 - sh
);
1608 memset(&r
->u8
[16 - sh
], 0, sh
);
1610 memmove(&r
->u8
[sh
], &a
->u8
[0], 16 - sh
);
1611 memset(&r
->u8
[0], 0, sh
);
1615 #if defined(HOST_WORDS_BIGENDIAN)
1616 #define ELEM_ADDR(VEC, IDX, SIZE) (&(VEC)->u8[IDX])
1618 #define ELEM_ADDR(VEC, IDX, SIZE) (&(VEC)->u8[15 - (IDX)] - (SIZE) + 1)
1621 #define VINSX(SUFFIX, TYPE) \
1622 void glue(glue(helper_VINS, SUFFIX), LX)(CPUPPCState *env, ppc_avr_t *t, \
1623 uint64_t val, target_ulong index) \
1625 const int maxidx = ARRAY_SIZE(t->u8) - sizeof(TYPE); \
1626 target_long idx = index; \
1628 if (idx < 0 || idx > maxidx) { \
1629 idx = idx < 0 ? sizeof(TYPE) - idx : idx; \
1630 qemu_log_mask(LOG_GUEST_ERROR, \
1631 "Invalid index for Vector Insert Element after 0x" TARGET_FMT_lx \
1632 ", RA = " TARGET_FMT_ld " > %d\n", env->nip, idx, maxidx); \
1635 memcpy(ELEM_ADDR(t, idx, sizeof(TYPE)), &src, sizeof(TYPE)); \
1644 #if defined(HOST_WORDS_BIGENDIAN)
1645 #define VEXTDVLX(NAME, SIZE) \
1646 void helper_##NAME(CPUPPCState *env, ppc_avr_t *t, ppc_avr_t *a, ppc_avr_t *b, \
1647 target_ulong index) \
1649 const target_long idx = index; \
1650 ppc_avr_t tmp[2] = { *a, *b }; \
1651 memset(t, 0, sizeof(*t)); \
1652 if (idx >= 0 && idx + SIZE <= sizeof(tmp)) { \
1653 memcpy(&t->u8[ARRAY_SIZE(t->u8) / 2 - SIZE], (void *)tmp + idx, SIZE); \
1655 qemu_log_mask(LOG_GUEST_ERROR, "Invalid index for " #NAME " after 0x" \
1656 TARGET_FMT_lx ", RC = " TARGET_FMT_ld " > %d\n", \
1657 env->nip, idx < 0 ? SIZE - idx : idx, 32 - SIZE); \
1661 #define VEXTDVLX(NAME, SIZE) \
1662 void helper_##NAME(CPUPPCState *env, ppc_avr_t *t, ppc_avr_t *a, ppc_avr_t *b, \
1663 target_ulong index) \
1665 const target_long idx = index; \
1666 ppc_avr_t tmp[2] = { *b, *a }; \
1667 memset(t, 0, sizeof(*t)); \
1668 if (idx >= 0 && idx + SIZE <= sizeof(tmp)) { \
1669 memcpy(&t->u8[ARRAY_SIZE(t->u8) / 2], \
1670 (void *)tmp + sizeof(tmp) - SIZE - idx, SIZE); \
1672 qemu_log_mask(LOG_GUEST_ERROR, "Invalid index for " #NAME " after 0x" \
1673 TARGET_FMT_lx ", RC = " TARGET_FMT_ld " > %d\n", \
1674 env->nip, idx < 0 ? SIZE - idx : idx, 32 - SIZE); \
1678 VEXTDVLX(VEXTDUBVLX
, 1)
1679 VEXTDVLX(VEXTDUHVLX
, 2)
1680 VEXTDVLX(VEXTDUWVLX
, 4)
1681 VEXTDVLX(VEXTDDVLX
, 8)
1683 #if defined(HOST_WORDS_BIGENDIAN)
1684 #define VEXTRACT(suffix, element) \
1685 void helper_vextract##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t index) \
1687 uint32_t es = sizeof(r->element[0]); \
1688 memmove(&r->u8[8 - es], &b->u8[index], es); \
1689 memset(&r->u8[8], 0, 8); \
1690 memset(&r->u8[0], 0, 8 - es); \
1693 #define VEXTRACT(suffix, element) \
1694 void helper_vextract##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t index) \
1696 uint32_t es = sizeof(r->element[0]); \
1697 uint32_t s = (16 - index) - es; \
1698 memmove(&r->u8[8], &b->u8[s], es); \
1699 memset(&r->u8[0], 0, 8); \
1700 memset(&r->u8[8 + es], 0, 8 - es); \
1709 void helper_xxextractuw(CPUPPCState
*env
, ppc_vsr_t
*xt
,
1710 ppc_vsr_t
*xb
, uint32_t index
)
1713 size_t es
= sizeof(uint32_t);
1718 for (i
= 0; i
< es
; i
++, ext_index
++) {
1719 t
.VsrB(8 - es
+ i
) = xb
->VsrB(ext_index
% 16);
1725 void helper_xxinsertw(CPUPPCState
*env
, ppc_vsr_t
*xt
,
1726 ppc_vsr_t
*xb
, uint32_t index
)
1729 size_t es
= sizeof(uint32_t);
1730 int ins_index
, i
= 0;
1733 for (i
= 0; i
< es
&& ins_index
< 16; i
++, ins_index
++) {
1734 t
.VsrB(ins_index
) = xb
->VsrB(8 - es
+ i
);
1740 #define XXBLEND(name, sz) \
1741 void glue(helper_XXBLENDV, name)(ppc_avr_t *t, ppc_avr_t *a, ppc_avr_t *b, \
1742 ppc_avr_t *c, uint32_t desc) \
1744 for (int i = 0; i < ARRAY_SIZE(t->glue(u, sz)); i++) { \
1745 t->glue(u, sz)[i] = (c->glue(s, sz)[i] >> (sz - 1)) ? \
1746 b->glue(u, sz)[i] : a->glue(u, sz)[i]; \
1755 #define VEXT_SIGNED(name, element, cast) \
1756 void helper_##name(ppc_avr_t *r, ppc_avr_t *b) \
1759 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1760 r->element[i] = (cast)b->element[i]; \
1763 VEXT_SIGNED(vextsb2w
, s32
, int8_t)
1764 VEXT_SIGNED(vextsb2d
, s64
, int8_t)
1765 VEXT_SIGNED(vextsh2w
, s32
, int16_t)
1766 VEXT_SIGNED(vextsh2d
, s64
, int16_t)
1767 VEXT_SIGNED(vextsw2d
, s64
, int32_t)
1770 #define VNEG(name, element) \
1771 void helper_##name(ppc_avr_t *r, ppc_avr_t *b) \
1774 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1775 r->element[i] = -b->element[i]; \
1782 void helper_vsro(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1784 int sh
= (b
->VsrB(0xf) >> 3) & 0xf;
1786 #if defined(HOST_WORDS_BIGENDIAN)
1787 memmove(&r
->u8
[sh
], &a
->u8
[0], 16 - sh
);
1788 memset(&r
->u8
[0], 0, sh
);
1790 memmove(&r
->u8
[0], &a
->u8
[sh
], 16 - sh
);
1791 memset(&r
->u8
[16 - sh
], 0, sh
);
1795 void helper_vsubcuw(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1799 for (i
= 0; i
< ARRAY_SIZE(r
->u32
); i
++) {
1800 r
->u32
[i
] = a
->u32
[i
] >= b
->u32
[i
];
1804 void helper_vsumsws(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1811 upper
= ARRAY_SIZE(r
->s32
) - 1;
1812 t
= (int64_t)b
->VsrSW(upper
);
1813 for (i
= 0; i
< ARRAY_SIZE(r
->s32
); i
++) {
1815 result
.VsrSW(i
) = 0;
1817 result
.VsrSW(upper
) = cvtsdsw(t
, &sat
);
1825 void helper_vsum2sws(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1832 for (i
= 0; i
< ARRAY_SIZE(r
->u64
); i
++) {
1833 int64_t t
= (int64_t)b
->VsrSW(upper
+ i
* 2);
1836 for (j
= 0; j
< ARRAY_SIZE(r
->u64
); j
++) {
1837 t
+= a
->VsrSW(2 * i
+ j
);
1839 result
.VsrSW(upper
+ i
* 2) = cvtsdsw(t
, &sat
);
1848 void helper_vsum4sbs(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1853 for (i
= 0; i
< ARRAY_SIZE(r
->s32
); i
++) {
1854 int64_t t
= (int64_t)b
->s32
[i
];
1856 for (j
= 0; j
< ARRAY_SIZE(r
->s32
); j
++) {
1857 t
+= a
->s8
[4 * i
+ j
];
1859 r
->s32
[i
] = cvtsdsw(t
, &sat
);
1867 void helper_vsum4shs(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1872 for (i
= 0; i
< ARRAY_SIZE(r
->s32
); i
++) {
1873 int64_t t
= (int64_t)b
->s32
[i
];
1875 t
+= a
->s16
[2 * i
] + a
->s16
[2 * i
+ 1];
1876 r
->s32
[i
] = cvtsdsw(t
, &sat
);
1884 void helper_vsum4ubs(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1889 for (i
= 0; i
< ARRAY_SIZE(r
->u32
); i
++) {
1890 uint64_t t
= (uint64_t)b
->u32
[i
];
1892 for (j
= 0; j
< ARRAY_SIZE(r
->u32
); j
++) {
1893 t
+= a
->u8
[4 * i
+ j
];
1895 r
->u32
[i
] = cvtuduw(t
, &sat
);
1903 #if defined(HOST_WORDS_BIGENDIAN)
1910 #define VUPKPX(suffix, hi) \
1911 void helper_vupk##suffix(ppc_avr_t *r, ppc_avr_t *b) \
1916 for (i = 0; i < ARRAY_SIZE(r->u32); i++) { \
1917 uint16_t e = b->u16[hi ? i : i + 4]; \
1918 uint8_t a = (e >> 15) ? 0xff : 0; \
1919 uint8_t r = (e >> 10) & 0x1f; \
1920 uint8_t g = (e >> 5) & 0x1f; \
1921 uint8_t b = e & 0x1f; \
1923 result.u32[i] = (a << 24) | (r << 16) | (g << 8) | b; \
1931 #define VUPK(suffix, unpacked, packee, hi) \
1932 void helper_vupk##suffix(ppc_avr_t *r, ppc_avr_t *b) \
1938 for (i = 0; i < ARRAY_SIZE(r->unpacked); i++) { \
1939 result.unpacked[i] = b->packee[i]; \
1942 for (i = ARRAY_SIZE(r->unpacked); i < ARRAY_SIZE(r->packee); \
1944 result.unpacked[i - ARRAY_SIZE(r->unpacked)] = b->packee[i]; \
1949 VUPK(hsb
, s16
, s8
, UPKHI
)
1950 VUPK(hsh
, s32
, s16
, UPKHI
)
1951 VUPK(hsw
, s64
, s32
, UPKHI
)
1952 VUPK(lsb
, s16
, s8
, UPKLO
)
1953 VUPK(lsh
, s32
, s16
, UPKLO
)
1954 VUPK(lsw
, s64
, s32
, UPKLO
)
1959 #define VGENERIC_DO(name, element) \
1960 void helper_v##name(ppc_avr_t *r, ppc_avr_t *b) \
1964 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1965 r->element[i] = name(b->element[i]); \
1969 #define clzb(v) ((v) ? clz32((uint32_t)(v) << 24) : 8)
1970 #define clzh(v) ((v) ? clz32((uint32_t)(v) << 16) : 16)
1972 VGENERIC_DO(clzb
, u8
)
1973 VGENERIC_DO(clzh
, u16
)
1978 #define ctzb(v) ((v) ? ctz32(v) : 8)
1979 #define ctzh(v) ((v) ? ctz32(v) : 16)
1980 #define ctzw(v) ctz32((v))
1981 #define ctzd(v) ctz64((v))
1983 VGENERIC_DO(ctzb
, u8
)
1984 VGENERIC_DO(ctzh
, u16
)
1985 VGENERIC_DO(ctzw
, u32
)
1986 VGENERIC_DO(ctzd
, u64
)
1993 #define popcntb(v) ctpop8(v)
1994 #define popcnth(v) ctpop16(v)
1995 #define popcntw(v) ctpop32(v)
1996 #define popcntd(v) ctpop64(v)
1998 VGENERIC_DO(popcntb
, u8
)
1999 VGENERIC_DO(popcnth
, u16
)
2000 VGENERIC_DO(popcntw
, u32
)
2001 VGENERIC_DO(popcntd
, u64
)
2010 #if defined(HOST_WORDS_BIGENDIAN)
2011 #define QW_ONE { .u64 = { 0, 1 } }
2013 #define QW_ONE { .u64 = { 1, 0 } }
2016 #ifndef CONFIG_INT128
2018 static inline void avr_qw_not(ppc_avr_t
*t
, ppc_avr_t a
)
2020 t
->u64
[0] = ~a
.u64
[0];
2021 t
->u64
[1] = ~a
.u64
[1];
2024 static int avr_qw_cmpu(ppc_avr_t a
, ppc_avr_t b
)
2026 if (a
.VsrD(0) < b
.VsrD(0)) {
2028 } else if (a
.VsrD(0) > b
.VsrD(0)) {
2030 } else if (a
.VsrD(1) < b
.VsrD(1)) {
2032 } else if (a
.VsrD(1) > b
.VsrD(1)) {
2039 static void avr_qw_add(ppc_avr_t
*t
, ppc_avr_t a
, ppc_avr_t b
)
2041 t
->VsrD(1) = a
.VsrD(1) + b
.VsrD(1);
2042 t
->VsrD(0) = a
.VsrD(0) + b
.VsrD(0) +
2043 (~a
.VsrD(1) < b
.VsrD(1));
2046 static int avr_qw_addc(ppc_avr_t
*t
, ppc_avr_t a
, ppc_avr_t b
)
2049 t
->VsrD(1) = a
.VsrD(1) + b
.VsrD(1);
2050 t
->VsrD(0) = a
.VsrD(0) + b
.VsrD(0) +
2051 (~a
.VsrD(1) < b
.VsrD(1));
2052 avr_qw_not(¬_a
, a
);
2053 return avr_qw_cmpu(not_a
, b
) < 0;
2058 void helper_vadduqm(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2060 #ifdef CONFIG_INT128
2061 r
->u128
= a
->u128
+ b
->u128
;
2063 avr_qw_add(r
, *a
, *b
);
2067 void helper_vaddeuqm(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
2069 #ifdef CONFIG_INT128
2070 r
->u128
= a
->u128
+ b
->u128
+ (c
->u128
& 1);
2073 if (c
->VsrD(1) & 1) {
2077 tmp
.VsrD(1) = c
->VsrD(1) & 1;
2078 avr_qw_add(&tmp
, *a
, tmp
);
2079 avr_qw_add(r
, tmp
, *b
);
2081 avr_qw_add(r
, *a
, *b
);
2086 void helper_vaddcuq(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2088 #ifdef CONFIG_INT128
2089 r
->u128
= (~a
->u128
< b
->u128
);
2093 avr_qw_not(¬_a
, *a
);
2096 r
->VsrD(1) = (avr_qw_cmpu(not_a
, *b
) < 0);
2100 void helper_vaddecuq(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
2102 #ifdef CONFIG_INT128
2103 int carry_out
= (~a
->u128
< b
->u128
);
2104 if (!carry_out
&& (c
->u128
& 1)) {
2105 carry_out
= ((a
->u128
+ b
->u128
+ 1) == 0) &&
2106 ((a
->u128
!= 0) || (b
->u128
!= 0));
2108 r
->u128
= carry_out
;
2111 int carry_in
= c
->VsrD(1) & 1;
2115 carry_out
= avr_qw_addc(&tmp
, *a
, *b
);
2117 if (!carry_out
&& carry_in
) {
2118 ppc_avr_t one
= QW_ONE
;
2119 carry_out
= avr_qw_addc(&tmp
, tmp
, one
);
2122 r
->VsrD(1) = carry_out
;
2126 void helper_vsubuqm(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2128 #ifdef CONFIG_INT128
2129 r
->u128
= a
->u128
- b
->u128
;
2132 ppc_avr_t one
= QW_ONE
;
2134 avr_qw_not(&tmp
, *b
);
2135 avr_qw_add(&tmp
, *a
, tmp
);
2136 avr_qw_add(r
, tmp
, one
);
2140 void helper_vsubeuqm(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
2142 #ifdef CONFIG_INT128
2143 r
->u128
= a
->u128
+ ~b
->u128
+ (c
->u128
& 1);
2147 avr_qw_not(&tmp
, *b
);
2148 avr_qw_add(&sum
, *a
, tmp
);
2151 tmp
.VsrD(1) = c
->VsrD(1) & 1;
2152 avr_qw_add(r
, sum
, tmp
);
2156 void helper_vsubcuq(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2158 #ifdef CONFIG_INT128
2159 r
->u128
= (~a
->u128
< ~b
->u128
) ||
2160 (a
->u128
+ ~b
->u128
== (__uint128_t
)-1);
2162 int carry
= (avr_qw_cmpu(*a
, *b
) > 0);
2165 avr_qw_not(&tmp
, *b
);
2166 avr_qw_add(&tmp
, *a
, tmp
);
2167 carry
= ((tmp
.VsrSD(0) == -1ull) && (tmp
.VsrSD(1) == -1ull));
2174 void helper_vsubecuq(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
2176 #ifdef CONFIG_INT128
2178 (~a
->u128
< ~b
->u128
) ||
2179 ((c
->u128
& 1) && (a
->u128
+ ~b
->u128
== (__uint128_t
)-1));
2181 int carry_in
= c
->VsrD(1) & 1;
2182 int carry_out
= (avr_qw_cmpu(*a
, *b
) > 0);
2183 if (!carry_out
&& carry_in
) {
2185 avr_qw_not(&tmp
, *b
);
2186 avr_qw_add(&tmp
, *a
, tmp
);
2187 carry_out
= ((tmp
.VsrD(0) == -1ull) && (tmp
.VsrD(1) == -1ull));
2191 r
->VsrD(1) = carry_out
;
2195 #define BCD_PLUS_PREF_1 0xC
2196 #define BCD_PLUS_PREF_2 0xF
2197 #define BCD_PLUS_ALT_1 0xA
2198 #define BCD_NEG_PREF 0xD
2199 #define BCD_NEG_ALT 0xB
2200 #define BCD_PLUS_ALT_2 0xE
2201 #define NATIONAL_PLUS 0x2B
2202 #define NATIONAL_NEG 0x2D
2204 #define BCD_DIG_BYTE(n) (15 - ((n) / 2))
2206 static int bcd_get_sgn(ppc_avr_t
*bcd
)
2208 switch (bcd
->VsrB(BCD_DIG_BYTE(0)) & 0xF) {
2209 case BCD_PLUS_PREF_1
:
2210 case BCD_PLUS_PREF_2
:
2211 case BCD_PLUS_ALT_1
:
2212 case BCD_PLUS_ALT_2
:
2230 static int bcd_preferred_sgn(int sgn
, int ps
)
2233 return (ps
== 0) ? BCD_PLUS_PREF_1
: BCD_PLUS_PREF_2
;
2235 return BCD_NEG_PREF
;
2239 static uint8_t bcd_get_digit(ppc_avr_t
*bcd
, int n
, int *invalid
)
2243 result
= bcd
->VsrB(BCD_DIG_BYTE(n
)) >> 4;
2245 result
= bcd
->VsrB(BCD_DIG_BYTE(n
)) & 0xF;
2248 if (unlikely(result
> 9)) {
2254 static void bcd_put_digit(ppc_avr_t
*bcd
, uint8_t digit
, int n
)
2257 bcd
->VsrB(BCD_DIG_BYTE(n
)) &= 0x0F;
2258 bcd
->VsrB(BCD_DIG_BYTE(n
)) |= (digit
<< 4);
2260 bcd
->VsrB(BCD_DIG_BYTE(n
)) &= 0xF0;
2261 bcd
->VsrB(BCD_DIG_BYTE(n
)) |= digit
;
2265 static bool bcd_is_valid(ppc_avr_t
*bcd
)
2270 if (bcd_get_sgn(bcd
) == 0) {
2274 for (i
= 1; i
< 32; i
++) {
2275 bcd_get_digit(bcd
, i
, &invalid
);
2276 if (unlikely(invalid
)) {
2283 static int bcd_cmp_zero(ppc_avr_t
*bcd
)
2285 if (bcd
->VsrD(0) == 0 && (bcd
->VsrD(1) >> 4) == 0) {
2288 return (bcd_get_sgn(bcd
) == 1) ? CRF_GT
: CRF_LT
;
2292 static uint16_t get_national_digit(ppc_avr_t
*reg
, int n
)
2294 return reg
->VsrH(7 - n
);
2297 static void set_national_digit(ppc_avr_t
*reg
, uint8_t val
, int n
)
2299 reg
->VsrH(7 - n
) = val
;
2302 static int bcd_cmp_mag(ppc_avr_t
*a
, ppc_avr_t
*b
)
2306 for (i
= 31; i
> 0; i
--) {
2307 uint8_t dig_a
= bcd_get_digit(a
, i
, &invalid
);
2308 uint8_t dig_b
= bcd_get_digit(b
, i
, &invalid
);
2309 if (unlikely(invalid
)) {
2310 return 0; /* doesn't matter */
2311 } else if (dig_a
> dig_b
) {
2313 } else if (dig_a
< dig_b
) {
2321 static int bcd_add_mag(ppc_avr_t
*t
, ppc_avr_t
*a
, ppc_avr_t
*b
, int *invalid
,
2328 for (i
= 1; i
<= 31; i
++) {
2329 uint8_t digit
= bcd_get_digit(a
, i
, invalid
) +
2330 bcd_get_digit(b
, i
, invalid
) + carry
;
2331 is_zero
&= (digit
== 0);
2339 bcd_put_digit(t
, digit
, i
);
2346 static void bcd_sub_mag(ppc_avr_t
*t
, ppc_avr_t
*a
, ppc_avr_t
*b
, int *invalid
,
2352 for (i
= 1; i
<= 31; i
++) {
2353 uint8_t digit
= bcd_get_digit(a
, i
, invalid
) -
2354 bcd_get_digit(b
, i
, invalid
) + carry
;
2362 bcd_put_digit(t
, digit
, i
);
2368 uint32_t helper_bcdadd(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, uint32_t ps
)
2371 int sgna
= bcd_get_sgn(a
);
2372 int sgnb
= bcd_get_sgn(b
);
2373 int invalid
= (sgna
== 0) || (sgnb
== 0);
2377 ppc_avr_t result
= { .u64
= { 0, 0 } };
2381 result
.VsrB(BCD_DIG_BYTE(0)) = bcd_preferred_sgn(sgna
, ps
);
2382 zero
= bcd_add_mag(&result
, a
, b
, &invalid
, &overflow
);
2383 cr
= (sgna
> 0) ? CRF_GT
: CRF_LT
;
2385 int magnitude
= bcd_cmp_mag(a
, b
);
2386 if (magnitude
> 0) {
2387 result
.VsrB(BCD_DIG_BYTE(0)) = bcd_preferred_sgn(sgna
, ps
);
2388 bcd_sub_mag(&result
, a
, b
, &invalid
, &overflow
);
2389 cr
= (sgna
> 0) ? CRF_GT
: CRF_LT
;
2390 } else if (magnitude
< 0) {
2391 result
.VsrB(BCD_DIG_BYTE(0)) = bcd_preferred_sgn(sgnb
, ps
);
2392 bcd_sub_mag(&result
, b
, a
, &invalid
, &overflow
);
2393 cr
= (sgnb
> 0) ? CRF_GT
: CRF_LT
;
2395 result
.VsrB(BCD_DIG_BYTE(0)) = bcd_preferred_sgn(0, ps
);
2401 if (unlikely(invalid
)) {
2402 result
.VsrD(0) = result
.VsrD(1) = -1;
2404 } else if (overflow
) {
2415 uint32_t helper_bcdsub(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, uint32_t ps
)
2417 ppc_avr_t bcopy
= *b
;
2418 int sgnb
= bcd_get_sgn(b
);
2420 bcd_put_digit(&bcopy
, BCD_PLUS_PREF_1
, 0);
2421 } else if (sgnb
> 0) {
2422 bcd_put_digit(&bcopy
, BCD_NEG_PREF
, 0);
2424 /* else invalid ... defer to bcdadd code for proper handling */
2426 return helper_bcdadd(r
, a
, &bcopy
, ps
);
2429 uint32_t helper_bcdcfn(ppc_avr_t
*r
, ppc_avr_t
*b
, uint32_t ps
)
2433 uint16_t national
= 0;
2434 uint16_t sgnb
= get_national_digit(b
, 0);
2435 ppc_avr_t ret
= { .u64
= { 0, 0 } };
2436 int invalid
= (sgnb
!= NATIONAL_PLUS
&& sgnb
!= NATIONAL_NEG
);
2438 for (i
= 1; i
< 8; i
++) {
2439 national
= get_national_digit(b
, i
);
2440 if (unlikely(national
< 0x30 || national
> 0x39)) {
2445 bcd_put_digit(&ret
, national
& 0xf, i
);
2448 if (sgnb
== NATIONAL_PLUS
) {
2449 bcd_put_digit(&ret
, (ps
== 0) ? BCD_PLUS_PREF_1
: BCD_PLUS_PREF_2
, 0);
2451 bcd_put_digit(&ret
, BCD_NEG_PREF
, 0);
2454 cr
= bcd_cmp_zero(&ret
);
2456 if (unlikely(invalid
)) {
2465 uint32_t helper_bcdctn(ppc_avr_t
*r
, ppc_avr_t
*b
, uint32_t ps
)
2469 int sgnb
= bcd_get_sgn(b
);
2470 int invalid
= (sgnb
== 0);
2471 ppc_avr_t ret
= { .u64
= { 0, 0 } };
2473 int ox_flag
= (b
->VsrD(0) != 0) || ((b
->VsrD(1) >> 32) != 0);
2475 for (i
= 1; i
< 8; i
++) {
2476 set_national_digit(&ret
, 0x30 + bcd_get_digit(b
, i
, &invalid
), i
);
2478 if (unlikely(invalid
)) {
2482 set_national_digit(&ret
, (sgnb
== -1) ? NATIONAL_NEG
: NATIONAL_PLUS
, 0);
2484 cr
= bcd_cmp_zero(b
);
2490 if (unlikely(invalid
)) {
2499 uint32_t helper_bcdcfz(ppc_avr_t
*r
, ppc_avr_t
*b
, uint32_t ps
)
2505 int zone_lead
= ps
? 0xF : 0x3;
2507 ppc_avr_t ret
= { .u64
= { 0, 0 } };
2508 int sgnb
= b
->VsrB(BCD_DIG_BYTE(0)) >> 4;
2510 if (unlikely((sgnb
< 0xA) && ps
)) {
2514 for (i
= 0; i
< 16; i
++) {
2515 zone_digit
= i
? b
->VsrB(BCD_DIG_BYTE(i
* 2)) >> 4 : zone_lead
;
2516 digit
= b
->VsrB(BCD_DIG_BYTE(i
* 2)) & 0xF;
2517 if (unlikely(zone_digit
!= zone_lead
|| digit
> 0x9)) {
2522 bcd_put_digit(&ret
, digit
, i
+ 1);
2525 if ((ps
&& (sgnb
== 0xB || sgnb
== 0xD)) ||
2526 (!ps
&& (sgnb
& 0x4))) {
2527 bcd_put_digit(&ret
, BCD_NEG_PREF
, 0);
2529 bcd_put_digit(&ret
, BCD_PLUS_PREF_1
, 0);
2532 cr
= bcd_cmp_zero(&ret
);
2534 if (unlikely(invalid
)) {
2543 uint32_t helper_bcdctz(ppc_avr_t
*r
, ppc_avr_t
*b
, uint32_t ps
)
2548 int sgnb
= bcd_get_sgn(b
);
2549 int zone_lead
= (ps
) ? 0xF0 : 0x30;
2550 int invalid
= (sgnb
== 0);
2551 ppc_avr_t ret
= { .u64
= { 0, 0 } };
2553 int ox_flag
= ((b
->VsrD(0) >> 4) != 0);
2555 for (i
= 0; i
< 16; i
++) {
2556 digit
= bcd_get_digit(b
, i
+ 1, &invalid
);
2558 if (unlikely(invalid
)) {
2562 ret
.VsrB(BCD_DIG_BYTE(i
* 2)) = zone_lead
+ digit
;
2566 bcd_put_digit(&ret
, (sgnb
== 1) ? 0xC : 0xD, 1);
2568 bcd_put_digit(&ret
, (sgnb
== 1) ? 0x3 : 0x7, 1);
2571 cr
= bcd_cmp_zero(b
);
2577 if (unlikely(invalid
)) {
2587 * Compare 2 128-bit unsigned integers, passed in as unsigned 64-bit pairs
2590 * > 0 if ahi|alo > bhi|blo,
2591 * 0 if ahi|alo == bhi|blo,
2592 * < 0 if ahi|alo < bhi|blo
2594 static inline int ucmp128(uint64_t alo
, uint64_t ahi
,
2595 uint64_t blo
, uint64_t bhi
)
2597 return (ahi
== bhi
) ?
2598 (alo
> blo
? 1 : (alo
== blo
? 0 : -1)) :
2599 (ahi
> bhi
? 1 : -1);
2602 uint32_t helper_bcdcfsq(ppc_avr_t
*r
, ppc_avr_t
*b
, uint32_t ps
)
2609 ppc_avr_t ret
= { .u64
= { 0, 0 } };
2611 if (b
->VsrSD(0) < 0) {
2612 lo_value
= -b
->VsrSD(1);
2613 hi_value
= ~b
->VsrD(0) + !lo_value
;
2614 bcd_put_digit(&ret
, 0xD, 0);
2618 lo_value
= b
->VsrD(1);
2619 hi_value
= b
->VsrD(0);
2620 bcd_put_digit(&ret
, bcd_preferred_sgn(0, ps
), 0);
2622 if (hi_value
== 0 && lo_value
== 0) {
2630 * Check src limits: abs(src) <= 10^31 - 1
2632 * 10^31 - 1 = 0x0000007e37be2022 c0914b267fffffff
2634 if (ucmp128(lo_value
, hi_value
,
2635 0xc0914b267fffffffULL
, 0x7e37be2022ULL
) > 0) {
2639 * According to the ISA, if src wouldn't fit in the destination
2640 * register, the result is undefined.
2641 * In that case, we leave r unchanged.
2644 rem
= divu128(&lo_value
, &hi_value
, 1000000000000000ULL);
2646 for (i
= 1; i
< 16; rem
/= 10, i
++) {
2647 bcd_put_digit(&ret
, rem
% 10, i
);
2650 for (; i
< 32; lo_value
/= 10, i
++) {
2651 bcd_put_digit(&ret
, lo_value
% 10, i
);
2660 uint32_t helper_bcdctsq(ppc_avr_t
*r
, ppc_avr_t
*b
, uint32_t ps
)
2667 uint64_t hi_value
= 0;
2668 int sgnb
= bcd_get_sgn(b
);
2669 int invalid
= (sgnb
== 0);
2671 lo_value
= bcd_get_digit(b
, 31, &invalid
);
2672 for (i
= 30; i
> 0; i
--) {
2673 mulu64(&lo_value
, &carry
, lo_value
, 10ULL);
2674 mulu64(&hi_value
, &unused
, hi_value
, 10ULL);
2675 lo_value
+= bcd_get_digit(b
, i
, &invalid
);
2678 if (unlikely(invalid
)) {
2684 r
->VsrSD(1) = -lo_value
;
2685 r
->VsrSD(0) = ~hi_value
+ !r
->VsrSD(1);
2687 r
->VsrSD(1) = lo_value
;
2688 r
->VsrSD(0) = hi_value
;
2691 cr
= bcd_cmp_zero(b
);
2693 if (unlikely(invalid
)) {
2700 uint32_t helper_bcdcpsgn(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, uint32_t ps
)
2705 if (bcd_get_sgn(a
) == 0 || bcd_get_sgn(b
) == 0) {
2710 bcd_put_digit(r
, b
->VsrB(BCD_DIG_BYTE(0)) & 0xF, 0);
2712 for (i
= 1; i
< 32; i
++) {
2713 bcd_get_digit(a
, i
, &invalid
);
2714 bcd_get_digit(b
, i
, &invalid
);
2715 if (unlikely(invalid
)) {
2720 return bcd_cmp_zero(r
);
2723 uint32_t helper_bcdsetsgn(ppc_avr_t
*r
, ppc_avr_t
*b
, uint32_t ps
)
2725 int sgnb
= bcd_get_sgn(b
);
2728 bcd_put_digit(r
, bcd_preferred_sgn(sgnb
, ps
), 0);
2730 if (bcd_is_valid(b
) == false) {
2734 return bcd_cmp_zero(r
);
2737 uint32_t helper_bcds(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, uint32_t ps
)
2740 int i
= a
->VsrSB(7);
2741 bool ox_flag
= false;
2742 int sgnb
= bcd_get_sgn(b
);
2744 ret
.VsrD(1) &= ~0xf;
2746 if (bcd_is_valid(b
) == false) {
2750 if (unlikely(i
> 31)) {
2752 } else if (unlikely(i
< -31)) {
2757 ulshift(&ret
.VsrD(1), &ret
.VsrD(0), i
* 4, &ox_flag
);
2759 urshift(&ret
.VsrD(1), &ret
.VsrD(0), -i
* 4);
2761 bcd_put_digit(&ret
, bcd_preferred_sgn(sgnb
, ps
), 0);
2765 cr
= bcd_cmp_zero(r
);
2773 uint32_t helper_bcdus(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, uint32_t ps
)
2778 bool ox_flag
= false;
2781 for (i
= 0; i
< 32; i
++) {
2782 bcd_get_digit(b
, i
, &invalid
);
2784 if (unlikely(invalid
)) {
2792 ret
.VsrD(1) = ret
.VsrD(0) = 0;
2793 } else if (i
<= -32) {
2794 ret
.VsrD(1) = ret
.VsrD(0) = 0;
2796 ulshift(&ret
.VsrD(1), &ret
.VsrD(0), i
* 4, &ox_flag
);
2798 urshift(&ret
.VsrD(1), &ret
.VsrD(0), -i
* 4);
2802 cr
= bcd_cmp_zero(r
);
2810 uint32_t helper_bcdsr(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, uint32_t ps
)
2815 bool ox_flag
= false;
2816 int sgnb
= bcd_get_sgn(b
);
2818 ret
.VsrD(1) &= ~0xf;
2820 int i
= a
->VsrSB(7);
2823 bcd_one
.VsrD(0) = 0;
2824 bcd_one
.VsrD(1) = 0x10;
2826 if (bcd_is_valid(b
) == false) {
2830 if (unlikely(i
> 31)) {
2832 } else if (unlikely(i
< -31)) {
2837 ulshift(&ret
.VsrD(1), &ret
.VsrD(0), i
* 4, &ox_flag
);
2839 urshift(&ret
.VsrD(1), &ret
.VsrD(0), -i
* 4);
2841 if (bcd_get_digit(&ret
, 0, &invalid
) >= 5) {
2842 bcd_add_mag(&ret
, &ret
, &bcd_one
, &invalid
, &unused
);
2845 bcd_put_digit(&ret
, bcd_preferred_sgn(sgnb
, ps
), 0);
2847 cr
= bcd_cmp_zero(&ret
);
2856 uint32_t helper_bcdtrunc(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, uint32_t ps
)
2859 uint32_t ox_flag
= 0;
2860 int i
= a
->VsrSH(3) + 1;
2863 if (bcd_is_valid(b
) == false) {
2867 if (i
> 16 && i
< 32) {
2868 mask
= (uint64_t)-1 >> (128 - i
* 4);
2869 if (ret
.VsrD(0) & ~mask
) {
2873 ret
.VsrD(0) &= mask
;
2874 } else if (i
>= 0 && i
<= 16) {
2875 mask
= (uint64_t)-1 >> (64 - i
* 4);
2876 if (ret
.VsrD(0) || (ret
.VsrD(1) & ~mask
)) {
2880 ret
.VsrD(1) &= mask
;
2883 bcd_put_digit(&ret
, bcd_preferred_sgn(bcd_get_sgn(b
), ps
), 0);
2886 return bcd_cmp_zero(&ret
) | ox_flag
;
2889 uint32_t helper_bcdutrunc(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, uint32_t ps
)
2893 uint32_t ox_flag
= 0;
2897 for (i
= 0; i
< 32; i
++) {
2898 bcd_get_digit(b
, i
, &invalid
);
2900 if (unlikely(invalid
)) {
2906 if (i
> 16 && i
< 33) {
2907 mask
= (uint64_t)-1 >> (128 - i
* 4);
2908 if (ret
.VsrD(0) & ~mask
) {
2912 ret
.VsrD(0) &= mask
;
2913 } else if (i
> 0 && i
<= 16) {
2914 mask
= (uint64_t)-1 >> (64 - i
* 4);
2915 if (ret
.VsrD(0) || (ret
.VsrD(1) & ~mask
)) {
2919 ret
.VsrD(1) &= mask
;
2921 } else if (i
== 0) {
2922 if (ret
.VsrD(0) || ret
.VsrD(1)) {
2925 ret
.VsrD(0) = ret
.VsrD(1) = 0;
2929 if (r
->VsrD(0) == 0 && r
->VsrD(1) == 0) {
2930 return ox_flag
| CRF_EQ
;
2933 return ox_flag
| CRF_GT
;
2936 void helper_vsbox(ppc_avr_t
*r
, ppc_avr_t
*a
)
2939 VECTOR_FOR_INORDER_I(i
, u8
) {
2940 r
->u8
[i
] = AES_sbox
[a
->u8
[i
]];
2944 void helper_vcipher(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2949 VECTOR_FOR_INORDER_I(i
, u32
) {
2950 result
.VsrW(i
) = b
->VsrW(i
) ^
2951 (AES_Te0
[a
->VsrB(AES_shifts
[4 * i
+ 0])] ^
2952 AES_Te1
[a
->VsrB(AES_shifts
[4 * i
+ 1])] ^
2953 AES_Te2
[a
->VsrB(AES_shifts
[4 * i
+ 2])] ^
2954 AES_Te3
[a
->VsrB(AES_shifts
[4 * i
+ 3])]);
2959 void helper_vcipherlast(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2964 VECTOR_FOR_INORDER_I(i
, u8
) {
2965 result
.VsrB(i
) = b
->VsrB(i
) ^ (AES_sbox
[a
->VsrB(AES_shifts
[i
])]);
2970 void helper_vncipher(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2972 /* This differs from what is written in ISA V2.07. The RTL is */
2973 /* incorrect and will be fixed in V2.07B. */
2977 VECTOR_FOR_INORDER_I(i
, u8
) {
2978 tmp
.VsrB(i
) = b
->VsrB(i
) ^ AES_isbox
[a
->VsrB(AES_ishifts
[i
])];
2981 VECTOR_FOR_INORDER_I(i
, u32
) {
2983 AES_imc
[tmp
.VsrB(4 * i
+ 0)][0] ^
2984 AES_imc
[tmp
.VsrB(4 * i
+ 1)][1] ^
2985 AES_imc
[tmp
.VsrB(4 * i
+ 2)][2] ^
2986 AES_imc
[tmp
.VsrB(4 * i
+ 3)][3];
2990 void helper_vncipherlast(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2995 VECTOR_FOR_INORDER_I(i
, u8
) {
2996 result
.VsrB(i
) = b
->VsrB(i
) ^ (AES_isbox
[a
->VsrB(AES_ishifts
[i
])]);
3001 void helper_vshasigmaw(ppc_avr_t
*r
, ppc_avr_t
*a
, uint32_t st_six
)
3003 int st
= (st_six
& 0x10) != 0;
3004 int six
= st_six
& 0xF;
3007 for (i
= 0; i
< ARRAY_SIZE(r
->u32
); i
++) {
3009 if ((six
& (0x8 >> i
)) == 0) {
3010 r
->VsrW(i
) = ror32(a
->VsrW(i
), 7) ^
3011 ror32(a
->VsrW(i
), 18) ^
3013 } else { /* six.bit[i] == 1 */
3014 r
->VsrW(i
) = ror32(a
->VsrW(i
), 17) ^
3015 ror32(a
->VsrW(i
), 19) ^
3018 } else { /* st == 1 */
3019 if ((six
& (0x8 >> i
)) == 0) {
3020 r
->VsrW(i
) = ror32(a
->VsrW(i
), 2) ^
3021 ror32(a
->VsrW(i
), 13) ^
3022 ror32(a
->VsrW(i
), 22);
3023 } else { /* six.bit[i] == 1 */
3024 r
->VsrW(i
) = ror32(a
->VsrW(i
), 6) ^
3025 ror32(a
->VsrW(i
), 11) ^
3026 ror32(a
->VsrW(i
), 25);
3032 void helper_vshasigmad(ppc_avr_t
*r
, ppc_avr_t
*a
, uint32_t st_six
)
3034 int st
= (st_six
& 0x10) != 0;
3035 int six
= st_six
& 0xF;
3038 for (i
= 0; i
< ARRAY_SIZE(r
->u64
); i
++) {
3040 if ((six
& (0x8 >> (2 * i
))) == 0) {
3041 r
->VsrD(i
) = ror64(a
->VsrD(i
), 1) ^
3042 ror64(a
->VsrD(i
), 8) ^
3044 } else { /* six.bit[2*i] == 1 */
3045 r
->VsrD(i
) = ror64(a
->VsrD(i
), 19) ^
3046 ror64(a
->VsrD(i
), 61) ^
3049 } else { /* st == 1 */
3050 if ((six
& (0x8 >> (2 * i
))) == 0) {
3051 r
->VsrD(i
) = ror64(a
->VsrD(i
), 28) ^
3052 ror64(a
->VsrD(i
), 34) ^
3053 ror64(a
->VsrD(i
), 39);
3054 } else { /* six.bit[2*i] == 1 */
3055 r
->VsrD(i
) = ror64(a
->VsrD(i
), 14) ^
3056 ror64(a
->VsrD(i
), 18) ^
3057 ror64(a
->VsrD(i
), 41);
3063 void helper_vpermxor(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
3068 for (i
= 0; i
< ARRAY_SIZE(r
->u8
); i
++) {
3069 int indexA
= c
->VsrB(i
) >> 4;
3070 int indexB
= c
->VsrB(i
) & 0xF;
3072 result
.VsrB(i
) = a
->VsrB(indexA
) ^ b
->VsrB(indexB
);
3077 #undef VECTOR_FOR_INORDER_I
3079 /*****************************************************************************/
3080 /* SPE extension helpers */
3081 /* Use a table to make this quicker */
3082 static const uint8_t hbrev
[16] = {
3083 0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
3084 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF,
3087 static inline uint8_t byte_reverse(uint8_t val
)
3089 return hbrev
[val
>> 4] | (hbrev
[val
& 0xF] << 4);
3092 static inline uint32_t word_reverse(uint32_t val
)
3094 return byte_reverse(val
>> 24) | (byte_reverse(val
>> 16) << 8) |
3095 (byte_reverse(val
>> 8) << 16) | (byte_reverse(val
) << 24);
3098 #define MASKBITS 16 /* Random value - to be fixed (implementation dependent) */
3099 target_ulong
helper_brinc(target_ulong arg1
, target_ulong arg2
)
3101 uint32_t a
, b
, d
, mask
;
3103 mask
= UINT32_MAX
>> (32 - MASKBITS
);
3106 d
= word_reverse(1 + word_reverse(a
| ~b
));
3107 return (arg1
& ~mask
) | (d
& b
);
3110 uint32_t helper_cntlsw32(uint32_t val
)
3112 if (val
& 0x80000000) {
3119 uint32_t helper_cntlzw32(uint32_t val
)
3125 target_ulong
helper_dlmzb(CPUPPCState
*env
, target_ulong high
,
3126 target_ulong low
, uint32_t update_Rc
)
3132 for (mask
= 0xFF000000; mask
!= 0; mask
= mask
>> 8) {
3133 if ((high
& mask
) == 0) {
3141 for (mask
= 0xFF000000; mask
!= 0; mask
= mask
>> 8) {
3142 if ((low
& mask
) == 0) {
3155 env
->xer
= (env
->xer
& ~0x7F) | i
;
3157 env
->crf
[0] |= xer_so
;